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Abstract. Understanding carbon flux dynamics in tropical
ecosystems is crucial for evaluating their role in global cli-
mate regulation. This study investigates the temporal vari-
ability of the net ecosystem exchange (NEE) of CO2 and
its interactions with key meteorological variables in a trop-
ical forest ecosystem of the Pantanal, Brazil. Using high-
resolution hourly data from a flux tower, we apply De-
trended Fluctuation Analysis (DFA) and Detrended Cross-
Correlation Analysis (DCCA) to analyze diurnal to seasonal
cycles of NEE, latent heat (LE), sensible heat (H ), global
radiation (Rg), air and soil temperature (Tair and Tsoil), rel-
ative humidity (RH), and vapor pressure deficit (VPD). The
results reveal a strong diurnal coupling between solar radia-
tion, temperature, and carbon fluxes, with peak CO2 uptake
occurring at midday. A key novel finding is a marked shift
to strong anti-persistence in NEE at the weekly scale during
the dry season, a pattern supported by concurrent reductions
in LE and RH and increases in H and VPD. This highlights
that water limitation is a critical driver of carbon release and
reveals a previously unidentified regulatory mechanism in
the ecosystem’s carbon cycle. These findings underscore the
sensitivity of carbon dynamics to hydrometeorological con-
ditions and underline the necessity of multi-scale analysis.
Uncertainties remain regarding the role of extreme droughts
and floods, as well as land-use dynamics, which merit further
investigation.

1 Introduction

The Pantanal is one of the largest floodplains in the world, lo-
cated in the center of South America, covering approximately
160 000 km2 across Brazil, Bolivia, and Paraguay (Teodoro
et al., 2016). About 40 % of this territory lies within Brazil,
encompassing the states of Mato Grosso and Mato Grosso do
Sul (da Silva and de Moura Abdon, 1998). It is a significant
sedimentary basin whose ecological dynamics are deeply in-
fluenced by climatic variables such as precipitation, temper-
ature, and humidity, which shape the seasonal flood regimes
that sustain its highly diverse flora and fauna (Louzada et al.,
2020).

Although the Pantanal holds global ecological and cli-
matic importance, there is still a lack of systematic stud-
ies using high-resolution quantitative data that allow robust
modeling of climate–ecosystem interactions (Teodoro et al.,
2016; Pobocikova et al., 2021). Understanding these interac-
tions is essential, especially in the context of climate change,
given the role that tropical ecosystems play in climate reg-
ulation – through CO2 uptake via photosynthesis, emission
by respiration and decomposition, as well as processes like
evapotranspiration, albedo, and heat flux. These processes di-
rectly affect the global carbon balance and the Earth’s climate
system.

In this study, we aim to characterize the temporal vari-
ability and interdependence between the Net Ecosystem Ex-
change of carbon (NEE) and meteorological variables in a
representative area of the Pantanal in Mato Grosso. The data
were obtained using the Eddy Covariance technique, which
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enables direct measurement of CO2 exchanges between the
ecosystem and the atmosphere at high temporal resolution.
This allows for multiscale analysis (hourly, weekly, monthly,
and seasonal), which is essential to detect patterns of persis-
tence, trend, and correlation among variables.

In this research, we applied statistical methods suited to
the non-stationary nature of climatic and ecological time se-
ries, such as Detrended Fluctuation Analysis (DFA) (Peng
et al., 1994) to investigate long-range autocorrelation in in-
dividual series, and Detrended Cross-Correlation Analysis
(DCCA) (Podobnik and Stanley, 2008), whose extension en-
ables the assessment of the level of the relationship between
series pairs using the ρDCCA coefficient (Zebende, 2011).
The results contribute to a more refined understanding of
the Pantanal ecosystem’s response to microclimatic variabil-
ity, providing scientifically relevant insights for conserva-
tion strategies, monitoring efforts, and mitigation of climate
change effects in the region.

2 Materials and methodology

2.1 Materials

This study aimed to investigate the interdependence between
the Net Ecosystem Exchange of carbon (NEE) and relevant
environmental variables, listed in Table 3, including air tem-
perature, solar radiation, relative humidity, sensible heat, la-
tent heat, and vapor pressure deficit. The data were collected
using the Eddy Covariance technique, through a microm-
eteorological tower installed in a seasonally flooded cattle
pasture at the Nossa Senhora Do Carmo ranch (16°22′24′′ S;
56°27′44′′W), located 10 km from the city of Poconé in the
northern Pantanal wetland of Brazil, depicted on Fig. 1.

The numerical analysis was conducted using the DFA and
DCCA calculation code (Zebende and Santos, 2024), and the
climatic data were obtained from the Brazilian Pantanal wet-
land dataset (Arruda and Santos, 2024).

The tower, equipped with high-precision sensors, was
configured with an open-path infrared gas analyzer (LI-
7500A, LI-COR Biosciences) for continuous measurements
of CO2 and water vapor, as well as a three-dimensional
sonic anemometer (RM-Young, Model 81 000) to record the
wind components. The sensors were mounted at a height of
3 m above ground, and data were recorded at a frequency
of 20 Hz, with half-hour averages computed from the raw
data. The initial processing of raw data was performed using
EddyPro® software (v.6.2.0), with corrections applied for
air density fluctuations, spectral losses, frequency response,
and virtual temperature. Quality filters were used to remove
noise, instrumental failures, non-stationary data, and values
outside plausible ranges. After these steps, approximately
80.6 % of the data were retained, with gaps filled using the
marginal distribution sampling (MDS) method implemented

in the REddyProc package, as described by Dalmagro et al.
(2022).

Figure 2 presents the complete time series of the variables
investigated. The combination of the Eddy Covariance tech-
nique with adequate statistical methods enabled the construc-
tion of a reliable and high-resolution dataset, suitable for an-
alyzing climate patterns, seasonal variations, and interactions
between energy and mass fluxes in the ecosystem.

To investigate the interdependencies among variables, we
applied three complementary approaches: Detrended Fluctu-
ation Analysis (DFA), Detrended Cross-Correlation Analysis
(DCCA), and the ρDCCA coefficient. DFA allows the identifi-
cation of long-term auto-correlation within a single time se-
ries, while DCCA detects the presence of cross-correlations
between two time series. The ρDCCA coefficient quantifies
the level of these cross-correlations, providing a normalized
metric ranging from −1 to 1. The joint application of these
methods offers a deeper understanding of the dynamics that
regulate CO2 fluxes and their relationship with microclimatic
factors in the Pantanal.

2.2 Methodology

To investigate temporal correlations and interdependencies
among the variables, two main statistical methods and a
coefficient were employed: Detrended Fluctuation Analysis
(DFA), Detrended Cross-Correlation Analysis (DCCA), and
the cross-correlation coefficient ρDCCA. These methods are
suitable for handling non-stationary time series, allowing the
detection of persistence patterns and correlations across dif-
ferent temporal scales.

2.2.1 DFA (Detrended Fluctuation Analysis)

Since the pioneering work of Hurst (1951), the analysis of
long-range correlations (LRC) in time series has become a
fundamental tool for characterizing temporal dependence in
complex systems. The Hurst exponent, h, quantifies the de-
gree of persistence or anti-persistence of fluctuations over
time and is directly associated with the decay of auto-
correlations as the time lag increases. Originally proposed
in hydro-logical studies of the Nile River, the exponent has
since been widely used to detect long-term memory in vari-
ous classes of natural and socioeconomic systems.

Values of h in the range 0.5< h < 1.0 indicate persis-
tence – fluctuations in the same direction tend to cluster
– while values h < 0.5 indicate anti-persistence, character-
ized by frequent reversals in fluctuation direction. The case
h= 0.5 corresponds to white noise, typical of short-memory
processes in which auto-correlations decay exponentially.
Beyond its relationship with statistical memory, the Hurst ex-
ponent is also linked to the fractal dimension of the series and
is widely used in fields such as hydrology (Koutsoyiannis,
2003), finance (Couillard and Davison, 2005; Bassler et al.,
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Figure 1. Location of the study site in the Pantanal wetland. Map data: © Google Earth 2025.

2006), and nonlinear systems analysis (Matcharashvili and
Prangishvili, 2020).

To quantify LRC in time series that exhibit trends or
non-constant fluctuations, that is, non-stationary series, a
widely recognized approach is Detrended Fluctuation Anal-
ysis (DFA), proposed by Peng et al. (1994). This method re-
moves local trends over various time windows and computes
the average residual fluctuation as a function of scale, en-
abling a reliable estimation of the Hurst exponent even in the
presence of non-stationarity.

The importance and robustness of DFA have been widely
acknowledged in the scientific literature, with applications
in physiological, climatic, ecological, and financial data. The
method quantifies long-term auto-correlation in a single time
series {xk}, for k = 1, . . .,N , providing a robust measure of
the persistence level in the series’ variations. The interpre-
tation of the obtained h values can be found in Table 1, as
suggested by Hu et al. (2001), Kantelhardt et al. (2001).

To precisely quantify this level of persistence, the DFA
algorithm systematically processes the time series. The core
procedure for calculating the scaling exponent α is detailed
as follows:

1. Profile Creation (Integration). Starting from the mean
value, 〈x〉 = 1

N

∑N
k=1xk , the series is demeaned and the

result is cumulatively summed, generating a new series
X(i), called the integrated time series:

X(i)=

i∑
k=1
[xk −〈x〉], for i = 1, . . .,N (1)

2. Segmentation. The profile X(i) is divided into (N − n)
overlapping segments of equal size n (temporal scale).
In this case, each segment k contains (n+ 1) values.

3. Detrending. In each segment, a local trend is removed
from the data by fitting a polynomial of order m, result-
ing in the adjusted ordinate value X̃(i,k) using the least
squares method.

4. Calculation of Local Fluctuation. For each segment k,
the variance of the residuals is calculated as:

f 2
DFA(n,k)=

1
n+ 1

i+n∑
j=i

[X(j)− X̃(j,k)]2 (2)
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Figure 2. Time series of (a) Net Ecosystem Exchange (NEE), (b) sensible (H ) and latent (LE) heat fluxes, (c) global radiation, (d) relative
air humidity, (e) vapor pressure deficit (VPD), and (f) air and soil temperature for the Baía das Pedras site (Northern Pantanal) as a function
of time.

5. Calculation of Mean Fluctuation. The fluctuation func-
tion for each time scale n is given by:

FDFA(n)=

√√√√ 1
(N − n)

(N−n)∑
k=1

f 2
DFA(n,k) (3)

This process is repeated for other temporal scales, with
4≤ n≤N/4.

6. Power-Law Analysis. If the time series exhibits long-
term correlations, FDFA will follow a power-law func-
tion of n. In a log-log plot of F(n) versus n, this may be
represented by a linear relationship, that is:

FDFA ∝ n
α (4)

Here, α is the autocorrelation exponent and the main result
of the DFA method, as described in Table 1, with a good
introduction in Løvsletten (2017).

Following standard DFA literature, we distinguish station-
ary (0< α < 1) from non-stationary (α > 1) regimes and ex-
plicitly single out the Brownian case at α ≈ 1.5 (random

walk) (Peng et al., 1994). This avoids conflating generic non-
stationarity with the special integrated-noise limit.

2.2.2 DCCA Method and Coefficient ρDCCA

DCCA is a generalization of the DFA method for analyzing
cross-correlations between two time series, {xk} and {yk}, of
equal length N , at different time scales n, with removal of
local trends. The method is described in detail in Podobnik
and Stanley (2008), and comprises the following algorithm.

1. Profile Creation (Integration). As in DFA, the two series
are integrated separately, that is, based on the mean val-
ues, 〈x〉 = 1

N

∑N
k=1xk and 〈y〉 = 1

N

∑N
k=1yk , the series

are demeaned and then accumulated, resulting in two
new time series, X(i) and Y (i), called integrated series:

X(i)=

i∑
k=1
[xk −〈x〉] and

Y (i)=

i∑
k=1
[yk −〈y〉] for i = 1, . . .,N (5)

Biogeosciences, 23, 565–583, 2026 https://doi.org/10.5194/bg-23-565-2026



T. A. O. dos Santos et al.: Multi-scale dynamics of CO2 flux in the Pantanal wetland 569

Table 1. Interpretation of α exponent from DFA method.

Range of α Interpretation

α = 0.5 White Noise: No correlation, random values.
0< α < 0.5 Anti-persistence: High values are followed by low values and vice versa.
0.5< α < 1 Persistence: High values are followed by high values and vice versa.
α ≈ 1 1/f Noise: Long-range correlations.
1< α < 1.5 Persistent, non-stationary (fractional Brownian motion).
α ≈ 1.5 Brownian noise (random walk; integrated white noise).
α > 1.5 Very strong trend/superdiffusive random-walk-like behavior.

2. Segmentation and Detrending. Steps 2 and 3 of DFA are
independently applied to both profiles, X(i) and Y (i).

3. Fluctuation Covariance Calculation. Instead of vari-
ance, DCCA calculates the covariance between the
residuals of the two series in each segment k:

f 2
DCCA(n,k)=

1
n+ 1

i+n∑
j=i

[X(j)− X̃(j,k)][Y (j)

− Ỹ (j,k)] (6)

4. Average Covariance. The average covariance for scale
n is obtained by averaging over all segments:

F 2
DCCA(n)=

1
(N − n)

(N−n)∑
k=1

f 2
DCCA(n,k) (7)

5. Calculation of the Coefficient ρDCCA (Zebende, 2011).
The DCCA cross-correlation coefficient is calculated
using the equation:

ρDCCA(n)=
F 2

DCCA(n)

FDFAx (n)FDFAy (n)
(8)

Where FDFAx (n) and FDFAy (n) are the DFA fluctuations
calculated for the series {xk} and {yk} respectively.

The interpretation of possible values of ρDCCA is shown in
Table 2, noting that ρDCCA(n) ranges from −1 to 1. This
was first postulated in Zebende (2011), in face of others con-
ventional metrics. The main advantage of using the coeffi-
cient ρDCCA lies in its ability to quantify the level of cross-
correlation between non-stationary time series, where tradi-
tional correlation measures (e.g., Pearson’s coefficient) fail
due to their sensitivity to trends and nonstationarity. Unlike
the classical cross-correlation function, which assumes sta-
tionarity, ρDCCA is scale-dependent and normalized, rang-
ing from −1 to 1, making it suitable for detecting and
quantifying correlations embedded in power-law noise and
non-stationary signals. Furthermore, as shown in Zebende
(2011), ρDCCA establishes a direct relationship between the

long-range auto-correlation exponents α1,α2 and the cross-
correlation exponent λ, allowing a consistent and robust in-
terpretation of long-range interactions that cannot be cap-
tured by conventional metrics.

The DCCA cross-correlation coefficient (ρDCCA) is a ro-
bust tool for quantifying the relationship between two non-
stationary time series, finding vast application in hydrolog-
ical and climate studies. For instance, it has been used to
quantify the cross-correlation between air temperature and
relative humidity in various global locations, showing that
their relationship varies significantly and is influenced by
seasonal patterns (Vassoler and Zebende, 2012). In a simi-
lar approach, cross-correlation has been used in case studies
related to water security issues (Fernandez et al., 2024). In
the Brazilian context, the ρDCCA coefficient has also served
as the fundamental metric for constructing complex climate
networks, allowing for an in-depth analysis of the intercon-
nections between different locations based on their climate
data (Oliveira Filho et al., 2023).

The applicability of ρDCCA extends globally to investiga-
tions of climate patterns across different spatial and temporal
scales. A study on temperature records in China used DCCA
to reveal different spatial cross-correlation patterns across
multiple time scales (Yuan and Fu, 2014). Analogously, the
technique has been used to uncover the correlation patterns
between a large-scale climate index, such as the North At-
lantic Oscillation (NAO), and precipitation, demonstrating its
effectiveness in connecting global phenomena with local me-
teorological variables (Tatli and Menteş, 2019).

The DCCA cross-correlation coefficient has been widely
employed to investigate contagion and interdependence in
economic systems. Applications range from the Brazilian
stock market, where correlations between the Ibovespa in-
dex and blue-chip stocks strengthened after the 2008 cri-
sis (da Silva et al., 2015), to international studies introduc-
ing 1ρDCCA as a measure of crisis-driven contagion across
G7 countries (da Silva et al., 2016). Beyond financial mar-
kets, the method has revealed a scale-dependent negative re-
lationship between oil prices and the US dollar exchange
rate (Reboredo et al., 2014). Recent refinements, such as the
sliding-window approach, further allow mapping the tem-
poral evolution of correlations, enhancing the capacity of
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Table 2. Interpretation of ρDCCA coefficient values.

Value of ρDCCA Interpretation

−1.000 perfect anti cross-correlation
(−1.000; −0.666] strong anti cross-correlation
(−0.666; −0.333] moderate anti cross-correlation
(−0.333; 0.000) weak anti cross-correlation
0.000 no cross-correlation
(0.000; 0.333] weak cross-correlation
(0.333; 0.666] moderate cross-correlation
(0.666; 1.000) strong cross-correlation
1.000 perfect cross-correlation

DCCA to capture dynamic interactions in macroeconomic
contexts (Guedes and Zebende, 2019).

3 Results

3.1 Preliminary results

The following variables were analyzed in this study – NEE,
H , LE, Rg, RH, Tair, Tsoil, and VPD – which are described in
Table 3. Before applying advanced statistical methods (DFA
and ρDCCA), a classical descriptive analysis of the variables
was conducted. This step is fundamental for characteriz-
ing data behavior, validating its quality, and establishing the
premises for subsequent analyses.

3.1.1 Descriptive statistics of the time series

Based on observations collected by the micrometeorological
station, time series were constructed for the eight analyzed
variables, as illustrated in Fig. 2. Among them, we highlight
the Net Ecosystem Exchange (NEE) as the dependent vari-
able. This variable exhibits a marked diurnal pattern: during
the day, it tends to negative values, indicating CO2 uptake by
vegetation through photosynthesis; at night, values become
positive, reflecting CO2 release by respiration. Figure 2a also
reveals seasonal fluctuation, with NEE values ranging ap-
proximately from−40 to+40 µmolm−2 s−1, consistent with
the annual vegetation growth cycles.

Figure 2b and c show the sensible heat flux (H ), latent heat
flux (LE), and global radiation (Rg), measured in Wm−2.
These variables display well-defined diurnal cycles, with
peaks during the day and values close to zero at night. Rg
exhibits pronounced seasonality, with peaks during summer
(December to February) and minimum values in winter (June
to August), a pattern also observed for H and LE, though
with greater variability in the hotter months.

Relative humidity (RH), shown in Fig. 2d, is higher dur-
ing the night and early morning, approaching 100 %, and de-
clines throughout the day as temperature rises. The vapor
pressure deficit (VPD), shown in Fig. 2e, displays the op-
posite pattern, reaching its highest values during the day, re-

flecting increased evaporative demand of the air. Figure 2f
illustrates the diurnal cycles of air and soil temperature: the
air warms and cools more quickly, whereas the soil, due to
its higher thermal inertia, shows lower amplitude and ther-
mal lag, sometimes surpassing air temperature.

Table 4 summarizes the main indicators of descriptive
statistics for the investigated variables. For NEE, a slightly
positive mean (0.54) is observed, while the median (1.44)
and mode (−10.10) suggest an asymmetric distribution. The
other variables follow patterns consistent with regional cli-
matology, exhibiting high values for LE and Rg, broad ther-
mal variation, and moderate asymmetries.

Descriptive statistics applied to the atmospheric dataset al-
low for an objective synthesis of variability and predomi-
nant patterns throughout the sampling period. Metrics such
as mean, median, mode, standard deviation, skewness, and
kurtosis enable the characterization of central tendencies,
fluctuation amplitude, and distribution shape, contributing to
the identification of anomalies and validation of data quality.
This initial characterization provides a solid foundation for
subsequent analyses, guiding the selection and interpretation
of advanced analytical methods applied in this study to inves-
tigate interdependencies and correlations among variables.

The initial descriptive analysis presented in Table 4 char-
acterized the individual distributions of the eight analyzed
atmospheric variables based on metrics such as mean, me-
dian, mode, standard deviation, skewness, and kurtosis. This
step provided a preliminary understanding of central trends
and data variability, identifying relevant patterns and possi-
ble distributional asymmetries.

To further characterize these patterns and investigate their
variation over the 24 h cycle, Fig. 3 was developed, showing
the hourly means of these variables. This graphical repre-
sentation is fundamental for identifying characteristic diur-
nal cycles, such as air heating and cooling processes, relative
humidity oscillations, energy flux fluctuations, and vegeta-
tion responses to environmental conditions. The hourly visu-
alization enables a better understanding of how each variable
behaves at different times of the day, providing valuable in-
sights for modeling atmospheric and ecological processes as
well as for subsequent analyses of interdependence among
these variables.

3.1.2 Descriptive statistics considering daily seasonal
patterns

In this study, we consider the Net Ecosystem Exchange
(NEE) as the central variable, as it directly reflects the dy-
namics of CO2 exchange at the soil–atmosphere interface.
Figure 3 makes it possible to visualize the characteristic di-
urnal pattern of each variable and, crucially, to analyze the
interactions and temporal lags among them, such as the lag
of the temperature peak relative to maximum solar radia-
tion and the ecosystem’s photosynthetic response (NEE) to
light availability. Taken together, these observed patterns and
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Table 3. Variables under study.

Abbreviation Meaning Description

NEE Net Ecosystem Exchange Represents the difference between CO2 uptake by photosynthesis and
CO2 release by ecosystem respiration. Negative values indicate CO2
absorption (carbon sink), positive values indicate CO2 release (carbon
source).

H Sensible Heat Flux Energy transferred between the surface and the atmosphere due to
temperature difference.

LE Latent Heat Flux Energy involved in evaporation or transpiration (evapotranspiration).

Rg Global Radiation Total solar radiation reaching the Earth’s surface, including direct and
diffuse radiation.

RH Relative Humidity Ratio of water vapor present in the air to the maximum amount the air
could hold at the same temperature.

Tair Air Temperature Air temperature measured at a specific height above the surface.

Tsoil Soil Temperature Temperature measured in the soil, usually at a specific depth.

VPD Vapor Pressure Deficit Difference between saturated water vapor pressure and current water
vapor pressure in the air. Indicates evaporation and transpiration
potential.

The eight environmental variables measured in the Pantanal and what each abbreviation stands for.

Table 4. Descriptive statistics of the eight time series, with N = 75386 observations.

NEE H LE Rg RH Tair Tsoil VPD
(µmolm−2 s−1) (Wm−2) (Wm−2) (Wm−2) (%) °C °C (hPa)

Mean 0.54 36.0 78.5 224 73.8 26.4 29.8 12.6
Median 1.44 0.9 31.6 7.3 79.2 26.0 30.1 7.7
Mode −10.10 101.0 108.0 0.00 93.7 24.1 29.7 0.00
sd 6.79 66.8 105.0 308 20.0 5.43 3.00 13.9
Minimum −35.00 −188.0 −244.0 0.00 11.8 1.3 18.2 0.00
Maximum 35.00 602.0 699.0 1270 99.8 42.6 39.6 83.5
Skewness −0.17 1.7 1.8 1.09 −0.80 −0.14 −0.46 1.48
Kurtosis 3.50 2.5 2.8 −0.235 −0.293 0.190 0.296 1.99

interactions form a biogeophysical signature that character-
izes the intrinsic functioning and the dynamics of energy and
mass exchange at the study site.

Figure 3a shows that the highest NEE values occur at
night, between 07:00 and 11:00 LT (UTC−4), reaching ap-
proximately 4 µmol m−2 s−1. This behavior is expected, since
the absence of solar radiation inhibits photosynthesis, caus-
ing plants to stop carbon assimilation and release CO2
through respiration. After this period, the mean NEE val-
ues stabilize around 3.7µmolm−2 s−1 until sunrise, when
solar radiation (Rg) begins to strike the surface (around
05:00 a.m.), reactivating photosynthesis. From that point on,
there is a progressive decline in mean NEE values, reach-
ing a minimum around 01:00 p.m., with an average of ap-
proximately−5.7µmolm−2 s−1, coinciding with theRg peak
shown in Fig. 3b. This pattern clearly highlights NEE as a

sensitive indicator of the daily balance between CO2 absorp-
tion and emission, strongly regulated by the alternation be-
tween daytime photosynthesis and nighttime respiration.

Figure 3b presents the average hourly profiles of global
radiation (Rg), sensible heat flux (H ), and latent heat flux
(LE), according to the definitions in Table 3. All three vari-
ables exhibit a near-normal distribution, with daytime peaks
around 01:00 p.m., coinciding with peak solar incidence. The
Rg curve is symmetric and shows high kurtosis, reflecting a
sharp solar radiation peak concentrated between 12:00 and
01:00 p.m. The LE profile, on the other hand, shows slight
right-skewness, indicating that values remain high for longer
during the afternoon, even after Rg starts to decline. This
persistence in latent heat flux can be explained by several
factors, such as continued plant transpiration after peak ra-
diation, soil water availability, and the thermal inertia of
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Figure 3. Mean values for each hour of the day (local time) of all eight variables.

biomass, which accumulates heat throughout the day and
releases it gradually. Additionally, potential nonlinearities
in the relationship between LE and vapor pressure deficit
(VPD) may contribute to this behavior. Together, these en-
ergy fluxes provide important insights into the energy ex-
change processes between the surface and the atmosphere,
with direct implications for the mechanisms regulating the
daily CO2 cycle.

Figure 3c presents the average hourly profiles of air tem-
perature (Tair) and soil temperature (Tsoil). Air temperature
exhibits greater daily thermal amplitude compared to soil
temperature, indicating a faster response of the atmosphere
to variations in solar radiation throughout the day. This dif-
ference is attributed to the higher heat capacity and density
of soil, which requires more energy to undergo noticeable
temperature changes. As a result, the soil warms and cools
more slowly, accumulating heat during the day and gradu-
ally releasing it at night. This thermal inertia plays an impor-
tant role in modulating the surface microclimate, contribut-
ing to ecosystem thermal stability and influencing other at-
mospheric and biogeochemical processes, such as evapotran-
spiration and surface energy balance.

Figure 3d shows the average hourly profiles of relative
humidity (RH) and vapor pressure deficit (VPD), revealing
an inverse dynamic between these variables throughout the
daily cycle. During the early morning hours, RH reaches its

highest values, close to 90 %, due to lower temperatures and
the reduced capacity of air to retain water vapor. As tem-
perature rises throughout the day, especially between 02:00
and 04:00 p.m., this capacity increases, resulting in a sharp
drop in RH, reaching minimum values around 53 %. Con-
versely, VPD remains low overnight (about 3hPa) and in-
creases rapidly after sunrise, peaking around noon to early
afternoon (about 29hPa), when the atmosphere is hottest and
driest. This mirrored relationship between RH and VPD is
essential to understanding the control mechanisms of evap-
otranspiration, as VPD is one of the main drivers of atmo-
spheric evaporative demand on vegetation.

The daily-scale analysis reveals how the solar radiation cy-
cle modulates the thermal and hydrological patterns of the
ecosystem, directly influencing the behavior of net carbon
flux (NEE). Increased global radiation (Rg) during the day
raises air (Tair) and soil (Tsoil) temperatures, reduces relative
humidity (RH), and intensifies vapor pressure deficit (VPD),
creating conditions that favor photosynthesis and, conse-
quently, CO2 absorption. At night, with the decline of Rg,
air and soil masses cool down, humidity increases, and VPD
decreases, favoring plant respiration and CO2 release. How-
ever, understanding the mean daily behavior of these vari-
ables is not sufficient to capture broader variability patterns,
such as those associated with meteorological events, season-
ality, or persistent changes in climate conditions. Therefore,

Biogeosciences, 23, 565–583, 2026 https://doi.org/10.5194/bg-23-565-2026



T. A. O. dos Santos et al.: Multi-scale dynamics of CO2 flux in the Pantanal wetland 573

it is necessary to expand the analysis to a weekly scale, as
presented in Fig. 4, in order to identify short-term trends and
potential deviations from the typical diurnal pattern that may
significantly influence energy, water vapor, and carbon fluxes
in the ecosystem.

3.1.3 Descriptive statistics considering weekly seasonal
patterns

Figure 4a presents the weekly mean of Net Ecosystem Ex-
change (NEE), revealing a clear seasonal pattern throughout
the year. The negative values observed at the beginning of
the year indicate a net absorption of CO2 by vegetation, typi-
cal of the rainy season and the active growth phase. Between
weeks 5 and 10, NEE reaches its most negative values, re-
flecting peak photosynthetic activity driven by high water
availability and intense solar radiation. From that point on,
values become progressively less negative, eventually turn-
ing positive between weeks 20 and 30 – coinciding with the
peak of the dry season. This behavior suggests a decline in
photosynthesis, possibly due to water stress, and the predom-
inance of plant respiration, resulting in net CO2 emissions.
Toward the end of the year, with the return of rainfall, NEE
again shows negative values, indicating a resumption of car-
bon assimilation by vegetation. This pattern highlights the
role of NEE as a sensitive indicator of the interaction be-
tween climatic variables and ecosystem processes throughout
the annual cycle.

The LE curve shows its lowest values during the central
part of the year (approximately between weeks 25 and 40).
Since LE is directly linked to water availability for evap-
otranspiration, these low values indicate a period of water
stress or a dry season. During this phase, soil water is scarce,
and plants close their stomata to avoid dehydration, dras-
tically reducing transpiration. Consequently, little energy is
used in this process. This interpretation is strongly supported
by the sharp drop in Relative Humidity (RH) in panel (d)
and the dramatic peak in Vapor Pressure Deficit (VPD) in
panel (e) during the same period. A high VPD indicates very
dry air, which hampers plant transpiration.

In contrast, sensible heat flux (H ) shows the opposite be-
havior of LE: it peaks between weeks 25 and 40, when LE is
at its minimum. This happens because the incident solar en-
ergy (Rg) that cannot be dissipated via evapotranspiration is
converted into heat, increasing surface temperature and en-
hancing heat transfer to the atmosphere. The H peak coin-
cides with the highest air temperatures, as shown in Fig. 4c.
This redistribution of available energy highlights the role of
soil moisture in modulating the surface energy balance.

Global radiation (Rg), also shown in Fig. 4b, follows a typ-
ical seasonal pattern of the annual solar cycle in the South-
ern Hemisphere: higher values at the beginning and end of
the year (austral summer) and lower values during winter,
reflecting the regional insolation regime.

Weekly average air temperature (Tair) and soil tempera-
ture (Tsoil), illustrated in Fig. 4c, follow similar patterns, both
with clear seasonality. Air temperature starts the year with
higher values, reaches a minimum around weeks 25 to 30
(22 °C), and rises again to about 32 °C by year-end. Soil
temperature follows the same general pattern, with slightly
higher mean values than air temperature and smaller varia-
tion amplitude due to its greater thermal inertia. This thermal
behavior is relevant because it reveals a transition from anti-
correlation to persistence between Tair and Tsoil at the weekly
scale, suggesting different dominating processes during dis-
tinct phases of the annual cycle.

Figure 4d shows that relative humidity (RH) is high at the
beginning and end of the year (above 80 %) and reaches min-
imum values (53 %) between weeks 25 and 30. Conversely,
VPD, in Fig. 4e, exhibits behavior opposite to RH: it is lower
during humid periods (8 hPa) and peaks at the height of the
dry season (25 hPa).

In summary, the weekly averages analysis reveals the ex-
istence of two well-defined climatic regimes in the study
region: a rainy season, concentrated in the early and late
months of the year, characterized by higher CO2 absorption
(negative NEE), high relative humidity, low VPD values, and
intense evapotranspiration activity (high LE); and a dry sea-
son, in the middle of the year, marked by net CO2 release,
decreased relative humidity, high VPD, reduced LE, and in-
creased H . These patterns reflect the strong climatic control
over energy and carbon fluxes in the Pantanal ecosystem.

3.1.4 Descriptive statistics considering monthly
seasonal patterns

To consolidate the understanding of the observed seasonal
cycle, following the analysis of hourly and weekly scales,
we now turn to the evaluation of the average monthly be-
havior of the variables. The monthly mean is an important
tool as it smooths out short-term fluctuations highlighted in
the weekly averages, allowing larger-scale climatic patterns,
such as the onset, peak, and end of the wet and dry seasons,
to become more evident. This data aggregation helps reduce
statistical noise and enhance the dominant seasonal signal
in a more robust manner. Thus, monthly analysis provides a
macroscopic and integrative perspective, essential for accu-
rately characterizing the climatic periods that govern ecosys-
tem dynamics throughout the year.

Figure 5 shows the monthly means of the atmospheric
and ecosystem variables analyzed. Net Ecosystem Exchange
(NEE) displays negative values in the first months of the
year, indicating net CO2 uptake by vegetation. From March
onward, there is a gradual increase in these values, which
become positive in June and peak in September. Then, the
curve decreases again, returning to negative values in De-
cember. This pattern reflects the ecosystem’s annual produc-
tivity cycle: net CO2 absorption mainly occurs during the
rainy season, when vegetation is most active, while net emis-
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Figure 4. Weekly mean values for all eight variables under study.

Figure 5. Monthly mean values for all variables under study.
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sions (positive NEE values) between May and September in-
dicate a period of reduced photosynthetic activity, character-
istic of the dry season.

Global radiation (Rg) peaks during the summer (Decem-
ber to February) and reaches its minimum in winter (May to
July), with monthly mean values around 175 Wm−2 between
June and July. Sensible heat flux (H ) generally follows the
same pattern as Rg, with high values during the warm/wet
season and a significant drop during the dry season. Latent
heat flux (LE) also follows a similar trend, but with nuances
related to water availability: in some months of the dry sea-
son (July, August, and September), LE is lower than H , re-
flecting the limitation of water for evapotranspiration. Dur-
ing the rainy season, LE increases, showing that energy par-
titioning betweenH and LE is sensitive to the water balance:
higher LE during wet periods and higher H during dry pe-
riods, when energy is predominantly used for warming the
environment.

Air temperature (Tair) starts the year with average values
above 26 °C (January to March), decreasing to its annual
minimum in June–July (below 24 °C), and rising again in the
second half of the year, with a new peak in September. Soil
temperature (Tsoil) follows a similar pattern to Tair, but with
slightly higher values and lower thermal amplitude, reflect-
ing the thermal inertia of the soil. These temperature patterns
confirm the alternation between warm and cool seasons in
the Pantanal, with the cooler period coinciding with the dry
season.

Relative humidity (RH) shows high values from January to
April (above 80 %), gradually decreasing during the dry sea-
son, reaching minimum values between August and Septem-
ber (55 %–60 %). Humidity begins to rise again with the on-
set of the rainy season in October. Conversely, vapor pres-
sure deficit (VPD) exhibits behavior opposite to RH: it be-
gins the year with values between 8 and 10 hPa, increases
significantly during the dry season, peaking at around 24 hPa
in September, and then decreases with the return of the rains.
The high VPD during the dry season indicates extremely dry
air, increasing the evaporative demand on vegetation and pro-
moting water stress.

Figure 5 clearly summarizes the annual climatic and hy-
drological cycle of the Pantanal, highlighting two well-
defined seasons:

– Rainy season (October to April): marked by negative
NEE (net CO2 uptake), high temperatures, high global
radiation, high LE, high relative humidity, and low
VPD.

– Dry season (June to September): characterized by pos-
itive NEE (net CO2 emission), lower temperatures, re-
duced global radiation, dominance of H over LE, low
relative humidity, and high VPD.

With the monthly analysis confirming a well-defined sea-
sonal pattern, the next step is to group the data into a quar-

terly scale. This approach synthesizes the ecosystem’s av-
erage states during the peak of each season, reducing intra-
seasonal variability and facilitating comparisons between cli-
matic macroperiods, such as the peak of the rainy season and
the core of the dry season. Therefore, quarterly aggregation
will be essential for deepening the functional characteriza-
tion of the Pantanal ecosystem’s annual cycle.

Having the analysis of monthly averages consolidated the
existence of a well-defined seasonal pattern, the next step
consists of grouping these data on a quarterly scale. This ap-
proach allows one to go beyond month-to-month variability
and focus on characterizing the year’s major climatic peri-
ods. Quarterly aggregation functions as a synthesis tool that
quantifies the average state of the ecosystem during the peak
of each season, enabling a direct and robust comparison be-
tween the fundamentally distinct periods that comprise the
annual cycle, such as the height of the rainy season and the
core of the dry season.

Descriptive statistics considering seasonal quarterly
patterns

Quarterly averages represent an integrated synthesis of mi-
croclimatic conditions and the fluxes of energy and mat-
ter throughout the main seasonal phases of the year. Un-
like the sequential analysis provided by monthly means, the
quarterly approach offers representative “snapshots” of the
ecosystem’s average behavior during the peak of the rainy
season, the dry season, and transitional periods. This aggre-
gation scale allows not only for the identification but also the
quantification of the intensity and magnitude of the dominant
processes in each season. For example, it becomes possible
to highlight the predominance of latent heat flux (LE) during
the wet season, in contrast with the dominance of sensible
heat flux (H ) during the dry season – allowing the amplitude
of local seasonality to be defined based on concrete average
values.

From a climatic perspective, the quarters analyzed do not
constitute arbitrary calendar divisions but rather representa-
tive periods of the distinct phases of the hydrological cycle
in the studied region. The first quarter (January–February–
March) generally corresponds to the peak of the rainy sea-
son, characterized by high water availability, elevated rel-
ative humidity, and intense evapotranspirative activity. The
second quarter (April–May–June) represents the transition
from the rainy to the dry season, with a gradual decline in
precipitation and shifts in energy and moisture patterns. The
third quarter (July–August–September) represents the core
of the dry season, with minimal precipitation, low relative
humidity, high vapor pressure deficit (VPD) values, and sig-
nificant water stress on vegetation. Finally, the fourth quarter
(October–November–December) marks the gradual return of
the rainy season, with increasing precipitation and a relief of
dry conditions.
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Figure 6. Quarterly average values for all variables under study.

Figure 6 presents the quarterly means of the analyzed vari-
ables. It can be observed that the average behavior remains
consistent with the patterns identified in the monthly aver-
ages, reinforcing the reliability of seasonal cycles. However,
the quarterly analysis more clearly highlights the periods of
maximum and minimum activity in climatic and ecosystem
processes, functioning as an effective tool for characterizing
the seasonal regimes that shape the environmental dynamics
of the Pantanal.

3.2 Results from the DFA Method

We now proceed with the autocorrelation analysis of the
time series using the Detrended Fluctuation Analysis (DFA)
method, as described in Sect. 2.2.1. This method is a ro-
bust tool for investigating long-range correlations in non-
stationary time series, allowing us to quantify the intrinsic
“memory” of microclimatic processes, something that tradi-
tional autocorrelation methods do not adequately capture.

Figure 7 presents the fluctuations calculated by the DFA
method for each of the eight variables analyzed. The inter-
pretation of these results is based on the values of the α expo-
nents, listed in Table 5. This table provides the estimated au-
tocorrelation coefficients at different temporal scales, based
on the original series measured every 30 min (average of
records captured at 10 Hz). Considering the seasonality dis-
cussed in the previous sections, we adopted four ranges of
temporal scale for estimating α:

Table 5. DFA Exponent.

Index Daily Weekly Monthly Quarterly

NEE 0.96 0.24 0.85 1.07

H 1.31 0.19 0.67 1.23
Rg 1.40 0.17 0.52 0.81
LE 1.33 0.25 0.80 1.39

RH 1.48 0.46 0.85 1.43

Tair 1.51 0.32 | 0.79 0.71 1.23
Tsoil 1.55 0.42 | 1.05 1.02 1.45

VPD 1.43 0.40 0.78 1.36

1. Daily scale. 4≤ n≤ 48 (corresponding to the first sec-
tion of Fig. 7, delimited by vertical dashed lines);

2. Weekly scale. 48< n≤ 336 (for some variables, such
as temperatures, two distinct behaviors are observed
within this range);

3. Monthly scale. 336< n≤ 1440;

4. Quarterly scale. n > 1440.

The values of the α exponents for each variable and scale are
presented in Table 5. We begin the analysis with the behav-
ior of NEE. At the daily scale (4≤ n≤ 48), α = 0.96 was
obtained, indicating strong short-term correlation, that is, the
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CO2 flux on one day is strongly influenced by the conditions
of the previous day, such as solar radiation, temperature,
and vegetation physiological activity. At the weekly scale
(48< n≤ 336), α = 0.24 reveals significant anti-correlation,
possibly related to rhythmic fluctuations (such as weekly
human activity cycles) or ecosystem saturation mechanisms
(e.g., after a peak of CO2 uptake, compensation occurs in
the following days). At the monthly scale (336< n≤ 1440),
α = 0.85 indicates persistence, consistent with the influence
of gradual seasonal trends. At the quarterly scale (n > 1440),
α = 1.07 indicates long-range persistence, reflecting broad
seasonal patterns and possible ecosystem responses to larger-
scale climatic variations.

Considering that NEE is already summarized above and in
Table 5, we now focus on the remaining variables. In general,
DFA reveals the following scale-dependent patterns across
variables:

– Daily scale. α > 1.0 for most variables, consistent with
trend-dominated diurnal cycles.

– Weekly scale. α < 0.5, indicating anti-persistence (alter-
nating increases and decreases across weeks).

– Monthly scale. 0.5< α < 1.0, indicating persistence
compatible with gradual seasonal modulation.

– Quarterly scale. α > 1.0, reflecting long-range persis-
tence driven by broader hydroclimatic forcing.

At the daily window, Tair and Tsoil yield α = 1.51 and α =
1.55, respectively, i.e., at or slightly above the Brownian
limit. This is consistent with daily-scale integrated-noise be-
havior driven by strong diurnal trends and the soil’s ther-
mal inertia. Importantly, DFA handles local trends by con-
struction; the α > 1 values therefore reflect genuine non-
stationary persistence at this scale rather than fitting artifacts.
From a theoretical standpoint, the fluctuation function used
in DFA reproduces the scaling of fractional Gaussian noise
(fGn) and fractional Brownian motion (fBm), and α ≈ 1.5 is
the canonical value for Brownian (fBm) behavior; moreover,
the same framework clarifies why detrending is central – and
nontrivial – when performed on segments, as local polyno-
mial trends are projected out to yield an (asymptotically) un-
biased scaling estimator without recreating a single global
trend. These results are formally linked to second-order
statistics (autocorrelation, power spectrum, variogram), rein-
forcing the interpretation that the near-Brownian exponents
obtained for Tair and Tsoil reflect integrated, trend-dominated
variability at the diurnal scale rather than methodological
bias (Höll et al., 2019).

Among the variables analyzed, global radiation (Rg) and
NEE stand out for not presenting α exponents greater than
1.00 across all scales, unlike the others. NEE shows par-
ticularly complex behavior, with daily persistence, weekly
anti-correlation, and long-term persistence. Meanwhile, Rg
exhibits behavior close to white noise on the monthly

Figure 7. Plot of FDFA as a function of the temporal scale n for the
eight variables. In this analysis, n represents the number of obser-
vation windows, each with a 30 min duration. The vertical lines in-
dicate the time scales of interest: daily (n= 48), weekly (n= 336),
monthly (n= 1440), and quarterly (n= 4320).

scale, reflecting high meteorological variability and the more
stochastic nature of incoming radiation.

The application of DFA allowed us to clearly characterize
the persistence and the presence of long-range correlations
in each time series, revealing dynamic patterns not readily
detectable by conventional methods. However, since it is a
univariate approach, DFA is not capable of capturing inter-
dependencies between distinct variables. To advance in un-
derstanding the relationships between ecosystem carbon flux
(NEE) and the microclimatic factors that influence it, we ap-
ply an extension of DFA: the Detrended Cross-Correlation
Analysis (DCCA), presented in the next section. DCCA al-
lows us to estimate the strength and direction of correlations
between pairs of non-stationary time series, using the ρDCCA
coefficient.

1. Daily time scale, where 4≤ n≤ 48 (these windows cor-
respond to the first section of Fig. 7, see vertical dashed
lines in the figure);

2. Weekly time scale, where 48< n≤ 336 (note that for
temperatures, there are two values for the weekly scale,
reflecting a change in behavior within this scale);

3. Monthly time scale, where 336< n≤ 1440;

4. Quarterly time scale, n > 1440.

3.3 Results for the ρDCCA Coefficient

In this section, we specifically investigate the correlations be-
tween the net ecosystem carbon flux (NEE) and the other mi-
crometeorological variables. Figure 8 shows the ρDCCA val-

https://doi.org/10.5194/bg-23-565-2026 Biogeosciences, 23, 565–583, 2026



578 T. A. O. dos Santos et al.: Multi-scale dynamics of CO2 flux in the Pantanal wetland

Figure 8. DCCA cross-correlation coefficient (ρDCCA) as a function of the time scale n. Each panel displays the cross-correlation between
the carbon flux (NEE) and one of the following micro-meteorological variables: (a) sensible (H ) and latent (LE) heat fluxes; (b) global
radiation (Rg); (c) relative air humidity (RH); (d) air temperature (Tair); (e) soil temperature (Tsoil); and (f) vapor pressure deficit (VPD).

ues obtained for each pair involving NEE. This analysis al-
lows us to explore how different environmental factors influ-
ence the patterns of CO2 exchange across multiple temporal
scales, revealing the dynamics that govern the relationship
between the ecosystem and the atmosphere.

Figure 8a shows the cross-correlations between NEE and
the sensible heat flux (H , yellow squares), and between NEE
and the latent heat flux (LE, orange triangles). For NEE×H ,
a weak anti-correlation is observed at small temporal scales,
with ρDCCA ≈−0.15. The curve decreases to a minimum of
approximately ρDCCA ≈−0.6 at the daily scale, indicating a
moderate anti-correlation. From this scale onward, the corre-
lation gradually becomes less negative, approaching zero at
the monthly scale and reaching ρDCCA ≈ 0.25 at the quar-
terly scale, characterizing a weak correlation. In the case
of NEE×LE, there is also a weak anti-correlation at small
scales, with ρDCCA ≈−0.15, which intensifies to a minimum
of approximately −0.8 at the daily scale, indicating strong
anti-correlation. At the weekly scale, the correlation is mod-
erate (ρDCCA ≈−0.4), and tends toward zero at the monthly
scale. The curve exhibits an inflection at the weekly scale,
with upward concavity up to the daily scale and downward
concavity up to the quarterly scale, where ρDCCA ≈−0.3.
The presence of strong daily anti-correlation between NEE,
H , and LE suggests a complex behavior. Although photo-

synthesis and evapotranspiration are coupled in the diurnal
cycle, at larger scales the correlation weakens, reflecting en-
ergy partitioning and the action of other limiting factors.

Figure 8b shows the cross-correlation between NEE and
global radiation (Rg). A pattern similar to LE is observed,
with ρDCCA ≈−0.2 at small scales, decreasing to approxi-
mately −0.7 at the daily scale (strong anti-correlation). The
correlation becomes less negative at larger scales, passing
through−0.4 at the weekly scale (moderate anti-correlation)
and approaching zero at the monthly scale. At the quarterly
scale, values return to about −0.2, indicating weak anti-
correlation. The strong daily anti-correlation with Rg reflects
the complex balance between radiation and ecosystem car-
bon dynamics: although radiation drives photosynthesis, high
Rg often coincides with elevated VPD and respiration, which
can lead to opposite persistence patterns in NEE, particularly
under conditions of water stress or other environmental con-
straints.

Figure 8c shows the correlation between NEE and rela-
tive humidity (RH), which is the only variable that shows
a positive correlation with NEE. At small scales, the corre-
lation is weak (ρDCCA ≈ 0.2), increasing to a maximum of
ρDCCA ≈ 0.55 at the daily scale, indicating moderate correla-
tion. At the weekly scale, the correlation returns to weak val-
ues and becomes null at the monthly scale. At the quarterly
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scale, there is a slight anti-correlation (ρDCCA ≈−0.25). The
moderate positive daily correlation between NEE and RH is
ecophysiologically consistent, since higher relative humidity
reduces water stress, favoring photosynthesis and increasing
CO2 uptake.

Figure 8d presents the results of ρDCCA between NEE and
air temperature (Tair). At small scales, a weak anti-correlation
is observed (ρDCCA ≈−0.2), with a minimum of −0.45 at
the daily scale (moderate anti-correlation). At the weekly
scale, the correlation becomes nearly null, and at larger scales
the values slightly increase, remaining weak and close to
zero. The transition from moderate anti-correlation to weak
or null correlation at larger scales may reflect the action of
an optimal temperature range for photosynthesis, where ex-
treme temperatures hinder CO2 sequestration.

In Fig. 8e, the correlation between NEE and soil temper-
ature (Tsoil) is presented. A correlation close to zero is ob-
served for most scales, with discrete variations: a slight dip
at the daily scale and a small increase at the weekly scale.
In both cases, the correlation remains weak, with no appar-
ent significance. These results indicate that soil temperature
exerts little direct influence on the long-range fluctuations of
NEE, playing a secondary role compared to other variables.

Finally, Fig. 8f shows the cross-correlation between NEE
and vapor pressure deficit (VPD). At small scales, a weak
anti-correlation is observed (ρDCCA ≈−0.15), which inten-
sifies to ρDCCA ≈−0.55 at the daily scale (moderate anti-
correlation). At the weekly scale, the correlation weak-
ens (ρDCCA ≈−0.15), becoming null at the monthly scale.
At the quarterly scale, a weak positive correlation appears
(ρDCCA ≈ 0.25). The moderate anti-correlation observed at
the daily scale aligns with ecophysiological expectations, as
high VPD values indicate greater evaporative demand, in-
creasing water stress and reducing photosynthetic activity,
consequently lowering CO2 uptake.

4 Conclusion

This study demonstrates that the relationship between carbon
flux and climate in the Pantanal is multifaceted and strongly
scale-dependent. By applying DFA and DCCA methodolo-
gies, we quantified the temporal memory and strength of cor-
relations, revealing a hierarchy of control mechanisms acting
at daily, weekly, and seasonal scales. The Pantanal’s function
as a carbon sink or source is therefore not static, but emerges
from these scale-dependent interactions.

A key finding of our analysis is the detection of weekly
anti-persistence in the Net Ecosystem Exchange (NEE) sig-
nal, where high values are likely to be followed by low values
and vice versa. This sub-monthly regulation is rarely consid-
ered in ecosystem models, yet it may arise from soil mois-
ture depletion, delayed physiological responses, or respira-
tory rebounds after wetting. Incorporating these short-term
processes could refine predictive capacity by acknowledging

that recovery rhythms are an intrinsic part of ecosystem reg-
ulation, rather than noise around daily or seasonal drivers.

At the daily scale, fluxes respond predictably to solar ra-
diation and evaporative demand, while seasonal dynamics
follow the hydrological pulse that shifts the system from a
sink in the wet season to a source in the dry season. Sim-
ilar multi-scale behavior has been reported elsewhere, al-
though the underlying mechanisms vary. In tropical seasonal
forests, weekly respiration pulses often follow rewetting
events (Zhang et al., 2010); in tropical peat swamp forests,
disturbance and drainage rapidly convert systems from sinks
to sources (Hirano et al., 2012); and in temperate ecosys-
tems, long-term eddy covariance records document memory
effects across scales (Desai et al., 2022). Even at continental
scales, as during the 2015–2016 El Niño, drought-induced
lags in carbon flux recovery were driven by the combined ef-
fects of atmospheric aridity and water storage deficits (Liu
et al., 2024). Together, these examples place the Pantanal
within a broader picture where ecosystem resilience arises
from short-lived rebounds embedded in longer-term climatic
constraints.

Comparisons with other biomes further support this inter-
pretation. In a tropical seasonal forest, woody tissue respi-
ration was estimated at about 10 % of gross primary pro-
ductivity (GPP), with strong dependence on leaf area index
(LAI) (Meir and Grace, 2002). Low carbon use efficiency
(CUE) observed in Amazonian forests, only about 30 %, in-
dicates that much of the assimilated carbon is rapidly re-
leased through respiration (Chambers et al., 2004). These
structural and metabolic constraints help explain the capac-
ity for rapid ecosystem-scale fluctuations we observe in the
Pantanal. The weekly anti-persistence we report is also con-
sistent with current views of drought resilience, which em-
phasize not only resistance but also recovery and regulation
across multiple temporal scales (Lu et al., 2025).

We also recognize that carbon balance measurements in
tropical ecosystems remain challenging. In an Amazonian
forest in Pará, for example, annual estimates of carbon bal-
ance were shown to be highly sensitive to the treatment of
nighttime eddy covariance data, highlighting the importance
of independent biometric checks (Miller et al., 2004). In
tropical peat swamps, water table fluctuations alter the bal-
ance between peat decomposition and methane emissions,
underscoring the need for long-term monitoring to capture
both carbon loss and greenhouse gas trade-offs (Darusman
et al., 2022). Against this backdrop of ecological complexity
and methodological uncertainty, the detection of weekly anti-
persistence in the Pantanal provides a concrete and quantifi-
able marker of ecosystem resilience.

In summary, identifying weekly anti-persistence in NEE
reveals new aspects of how tropical floodplains regulate car-
bon exchange. This finding has practical implications: mod-
els of regional climate should incorporate sub-monthly reg-
ulation tied to hydrological pulses and short-lag physiology,
while conservation strategies must prioritize the preservation
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of natural flooding regimes and the mitigation of meteoro-
logical extremes. Safeguarding these processes is essential
for maintaining the Pantanal’s intricate and globally relevant
role in the carbon cycle.

Appendix A: Results of ρDCCA for the other pairs of
variables

Figure A1 presents the results of the detrended cross-
correlation coefficients ρDCCA calculated for all pairs of vari-
ables, except for NEE. This analysis was conducted with the
goal of providing an overview of the degree of interdepen-
dence among the microclimatic variables. The decision to
initially exclude NEE allows for a comparative view of the
internal correlations within the physical system, reserving
the analysis of correlations between these variables and the
ecosystem carbon flux (NEE) for a later and more detailed
stage.

In Fig. A1a, the ρDCCA values are shown for the corre-
lations between sensible heat flux (H ) and the other vari-
ables. At small scales, a moderate correlation is observed be-
tweenH and most variables, with particular emphasis on Rg,
which exhibits strong correlation from the smallest scales
up to the weekly scale. Beyond this point, the correlation
with Rg progressively decreases, becoming moderate at the
monthly scale and weak at the quarterly scale, eventually
reaching values close to zero or even weak anti-correlation at
larger scales. The correlation betweenH and relative humid-
ity (RH) is consistently negative across all scales, with strong
anti-correlation at the daily scale, suggesting that high RH
values are associated with lower energy availability for heat-
ing the air and soil, favoring instead evapotranspiration pro-
cesses (LE). At the weekly, monthly, and quarterly scales, the
anti-correlation between H and RH remains moderate. Soil
temperature (Tsoil) shows very weak or nonexistent correla-
tion with H at small, daily, and weekly scales. At the quar-
terly scale, a weak correlation emerges, which disappears
again at larger scales. At broader time scales, strong corre-
lation is observed between H and VPD, as well as strong
anti-correlation with LE and RH, while the other variables
show no significant correlation with H .

In Fig. A1b, the correlations between global radiation
(Rg) and the other variables are shown. At small scales, Rg
presents moderate correlation with LE, Tair, and VPD, which
intensifies to strong correlation at the daily scale. As the scale
increases, the ρDCCA values for these variables decrease: LE
maintains strong correlation at the daily scale and moder-
ate at the monthly and quarterly scales; Tair exhibits a sim-
ilar pattern, with a drop at the monthly scale and a return
to strong correlation at larger scales; VPD, in turn, shows
decreasing correlation until reaching weak anti-correlation
at longer scales. Soil temperature (Tsoil) initially displays
very weak correlation with Rg at small scales, but shows
continuous growth: weak correlation at daily and monthly

scales, moderate at the quarterly scale, and strong at larger
scales. The correlation between Rg and RH is negative at
small scales, indicating moderate anti-correlation. This anti-
correlation intensifies at the daily scale, decreases to moder-
ate between the weekly and monthly scales, and then grad-
ually reverses sign, transitioning from weak anti-correlation
at the quarterly scale to weak (positive) correlation at larger
scales.

In Fig. A1c, correlations are presented between relative
humidity (RH) and the variables LE, Tair, Tsoil, and VPD.
At small scales, all correlations are negative. LE and Tsoil
show moderate anti-correlation, while Tair and VPD exhibit
strong anti-correlation. The anti-correlation between RH and
Tair is particularly notable at the daily scale, with ρDCCA val-
ues near −1. As the scale increases, this relationship weak-
ens: moderate anti-correlation at the weekly and monthly
scales, weak anti-correlation at the quarterly scale, and no
correlation at larger scales. The behavior of Tsoil is similar:
it shows moderate anti-correlation up to the monthly scale,
weak anti-correlation at the quarterly scale, and no corre-
lation at broader scales. The correlation between RH and
VPD is negative across the entire series, reflecting the ex-
pected inverse relationship between relative humidity and va-
por pressure deficit, reaching values close to −1 at larger
scales. Meanwhile, the correlation between RH and LE starts
as moderate anti-correlation at small scales, becoming strong
at the daily scale and weak at the weekly scale. From the
monthly scale onward, the correlation increases sharply and
becomes positive: moderate at the quarterly scale and strong
at larger scales, reflecting the role of humidity in sustaining
evapotranspiration during prolonged periods.

In Fig. A1d, the correlations between the remaining vari-
able pairs are shown. The two cyan lines represent the cor-
relations between VPD and Tair, and between VPD and Tsoil.
The blue curves represent the correlations between Tsoil and
LE, and between Tsoil and Tair. The magenta curve refers
to the correlation between LE and Tair. In general, all these
variables show positive correlations from small scales to the
monthly scale. From the monthly scale onward, the correla-
tion between LE and Tsoil rapidly decreases, reaching strong
anti-correlation at larger scales. The following points are
noteworthy:

– At the daily scale, the correlation between Tair and VPD
is very strong, indicating that high temperatures are
strongly associated with increased water stress;

– The correlation between LE and Tair is weak at small
scales and also at the quarterly scale, showing moderate
correlation only at larger scales;

– The correlation between Tair and Tsoil displays an ap-
proximately linear pattern, moving from moderate cor-
relation at small scales to very strong correlation at the
largest scales.
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Figure A1. Detrended cross-correlation coefficient, ρDCCA, as a function of time scale n for all variable pairs in the study, except NEE.
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Tatli, H. and Menteş, Ş. S.: Detrended cross-correlation patterns be-
tween North Atlantic oscillation and precipitation, Theor. Appl.
Climatol., 138, 387–397, 2019.

Teodoro, P. E., de Oliveira-Júnior, J. F., da Cunha, E. R., Correa, C.
C. G., Torres, F. E., Bacani, V. M., Gois, G., and Ribeiro, L. P.:
Cluster analysis applied to the spatial and temporal variability of
monthly rainfall in Mato Grosso do Sul State, Brazil, Meteorol.
Atmos. Phys., 128, 197–209, 2016.

Vassoler, R. and Zebende, G.: DCCA cross-correlation coefficient
apply in time series of air temperature and air relative humidity,
Physica A, 391, 2438–2443, 2012.

Yuan, N. and Fu, Z.: Different spatial cross-correlation patterns of
temperature records over China: A DCCA study on different time
scales, Physica A, 400, 71–79, 2014.

Zebende, G.: DCCA cross-correlation coefficient: Quantify-
ing level of cross-correlation, Physica A, 390, 614–618,
https://doi.org/10.1016/j.physa.2010.10.022, 2011.

Zebende, G. F. and Santos, T. A. O.: DFA flutuation, DCCA
flutuation and rho_DCCA calculation code, Zenodo [code],
https://doi.org/10.5281/zenodo.17237546, 2024.

Zhang, Y., Tan, Z., Song, Q., Yu, G., and Sun, X.: Respiration Con-
trols the Unexpected Seasonal Pattern of Carbon Flux in an Asian
Tropical Rain Forest, Atmos. Environ., 44, 3886–3893, 2010.

https://doi.org/10.5194/bg-23-565-2026 Biogeosciences, 23, 565–583, 2026

https://doi.org/10.1103/PhysRevLett.100.084102
https://doi.org/10.1016/j.physa.2010.10.022
https://doi.org/10.5281/zenodo.17237546

	Abstract
	Introduction
	Materials and methodology
	Materials
	Methodology
	DFA (Detrended Fluctuation Analysis)
	DCCA Method and Coefficient DCCA


	Results
	Preliminary results
	Descriptive statistics of the time series
	Descriptive statistics considering daily seasonal patterns
	Descriptive statistics considering weekly seasonal patterns
	Descriptive statistics considering monthly seasonal patterns

	Results from the DFA Method
	Results for the DCCA Coefficient

	Conclusion
	Appendix A: Results of DCCA for the other pairs of variables
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

