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Abstract. Thawing permafrost in the Arctic threatens to po-
tentially release large amounts of decomposed organic mat-
ter as CO2 or CH4 to the atmosphere. Predicting the ra-
tio of emitted CO2 to CH4 is imperative for reliable future
projections. Here, we review the recent literature concern-
ing methanogenesis, and its current representation in both
land surface models (LSMs) and the state-of-the-art process-
based methane models. We found that the key processes, re-
quired to capture the dynamics of the CO2 : CH4 produc-
tion ratio, are: fermentation, hydrogenotrophic methanogen-
esis, and acetoclastic methanogenesis. Commonly discussed
linked processes are Fe(III)-reduction and homoacetogen-
esis. Environmental factors influencing these processes, as
identified in the literature, are: temperature, pH, water ta-
ble position and alternative electron acceptors. While mod-
ern process-based methane models account for most of these
factors and processes, the same is not true for the simplified
methane formulations in many LSMs, which often opt for
pre-set parameters that define a constant share of methane
production from anaerobic decomposition. This static ap-
proach stands in opposition to the growing amount of lab and
in-situ data, which suggest a high degree of spatio-temporal
variability concerning this ratio, thus preventing its accu-
rate prediction in a changing future Arctic. The challenge
lies in upscaling the data as the environmental factors are
barely quantified at the pan-Arctic scale. Additionally, there
remains the important challenge of how to model and param-
eterize the temperature dependence of the individual under-
lying processes. Going forward, these challenges need to be
overcome in order to reliably project the CO2 : CH4 produc-

tion ratio and methane emissions on larger scales. This will
require a more process-based approach of methanogenesis in
LSMs, for which we suggest a baseline concept here.

1 Introduction

Permafrost-affected soils are a significant global carbon pool,
storing more carbon than there currently is in the atmosphere
(Hugelius et al., 2014; Mishra et al., 2021; Friedlingstein
et al., 2022). This permafrost is already beginning to thaw
(Biskaborn et al., 2019) and large-scale future losses are pro-
jected (McGuire et al., 2018) due to climate change and the
increased warming that is expected to occur in the Arctic
(IPCC, 2021). Thawing permafrost enables the microbial de-
composition of the large amounts of carbon stored across the
Arctic, potentially releasing considerable amounts of carbon
to the atmosphere, thus creating a self-reinforcing carbon-
climate feedback (Beer, 2008; Schuur et al., 2015, 2022).

Of particular interest is the form in which the carbon will
be released to the atmosphere, namely as either CO2 or CH4,
due to the strong difference in climate forcing between the
two gases, with methane being the much more potent one
(Myhre et al., 1998). Methane has contributed 11 % to the
total radiative forcing since 1960, despite its relatively low
concentration in the atmosphere (Canadell et al., 2021). Fur-
thermore, methane emissions have increased nearly 2-fold in
the last two centuries (Canadell et al., 2021) and continue
to grow persistently (Saunois et al., 2020), thus garnering
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much research interest (IPCC, 2021; Canadell et al., 2021;
Saunois et al., 2020; Xu et al., 2016; Chandel et al., 2023).
The majority of emissions are expected to occur as CO2
(Miner et al., 2022; Schädel et al., 2016) but recent stud-
ies also highlight the importance of CH4 emissions from a
thawing Arctic (Knoblauch et al., 2018; Kleinen et al., 2021;
Turetsky et al., 2020). This stresses the need for a more accu-
rately constrained future methane budget, which presently re-
mains uncertain (Ito et al., 2023). Methane production is tied
to anoxic conditions in the soil, which usually occur when the
soil becomes waterlogged (van Huissteden, 2021). Since the
future hydrology of the Arctic remains uncertain (Andresen
et al., 2020; de Vrese et al., 2023), so does the extent and
timing of Arctic methane emissions (Canadell et al., 2021).
This is also the reason for the relative scarcity of model stud-
ies on the topic that involve Earth System Models (ESMs)
(de Vrese et al., 2021). In fact, many ESMs do not explic-
itly model CH4 emissions at all (Schuur et al., 2022). Those
who do, often represent methane production in a highly sim-
plified way, frequently via a certain CO2 : CH4 production
ratio factor (Kleinen et al., 2020; Gasser et al., 2018; Riley
et al., 2011). This is despite the fact that this ratio has been
shown to be highly variable in both laboratory (Knoblauch
et al., 2018; Heslop et al., 2019) and in situ studies (Galera
et al., 2023). Knoblauch et al. (2018) showed in their long-
term incubation study, that methanogenic communities in
permafrost soils need time to establish themselves, resulting
in a lag time of multiple years before eventually a CO2 : CH4
ratio of 0.92± 0.18 was reached (Knoblauch et al., 2018).
Heslop et al. (2019) reported C-CO2 : C-CH4 production ra-
tios between 13–134, depending on soil depth, from their
incubations. Galera et al. (2023) estimated in situ median
CO2 : CH4 emission ratios of 12 and 373, depending on the
tundra type of polygonal tundra soils, though their values
were affected by methanotrophy and, therefore, the actual
production ratios are likely smaller (Galera et al., 2023). An-
other important factor, besides hydrology and soil properties,
is vegetation. Due to the CO2 fertilization effect, the plant
productivity will potentially increase, providing additional
substrate for the methanogens (Kettunen, 2003). This aspect
will especially be important in the Arctic, where large-scale
vegetation changes can be expected upon warming (Swann
et al., 2010; Chapin et al., 2005; Cho et al., 2018).

The methane emission calculation does not stop at the
methane production, however. For the methane to reach the
atmosphere it needs to be first transported from its production
point, through the soil column, to the surface. On its way to
the surface, the methane can be oxidized by methanotrophic
microbes in oxic soil layers, which affects the CO2 : CH4
ratio at the surface (Wania et al., 2010). There exist three
important transport mechanisms: diffusion, ebullition, and
plant-mediated transport (Walter and Heimann, 2000; Wania
et al., 2010; Kaiser et al., 2017). Their relative share is im-
portant with regards to the potential methane oxidation, since
plant-mediated transport, e.g., can enable methane to bypass

the oxidative soil layers (Knoblauch et al., 2015). Diffusion
describes the methane transport along a concentration gra-
dient and is the slowest way of transport, thus facilitating
methane oxidation (Knoblauch et al., 2015). Ebullition is a
rather fast process, describing the rise of methane gas bub-
bles through water (Knoblauch et al., 2015). Lastly, plant-
mediated transport happens largely through vascular plants,
which possess so called aerenchyma, a type of aerated tissue
responsible for supplying O2 to the roots (Wania et al., 2010;
Knoblauch et al., 2015). That tissue enables methane and
CO2 to be transported through the plant to the atmosphere
(Wania et al., 2010). This connection between methane re-
lease and plants further hints at the fact that, aside from hy-
drological changes, future methane emissions are also influ-
enced by vegetation changes (Kettunen, 2003). Many mod-
els account for these three transport ways, including large-
scale land surface models (Kaiser et al., 2017; Wania et al.,
2010; Riley et al., 2011; Chinta et al., 2024). In fact, Xu
et al. (2016) found that the majority of methane models in
their meta-study represented these three pathways already,
albeit to varying degrees of complexity. Considering all this,
it is worth looking into the recent developments concern-
ing methane modeling. In this study we will focus on the
methanogenesis aspect in particular, since other methane-
related processes, e.g., methane transport, have already been
implemented into models in more detail over the years (Wa-
nia et al., 2010; Kaiser et al., 2017; Xu et al., 2016). It is also
worth noting that we focus on terrestrial emissions in this
study. Other methane sources, e.g., wildfires, lakes, and ma-
rine and geological sources, also make up a significant part
of the Arctic methane budget, potentially contributing over
30 % to it (Parmentier et al., 2024). We will first recap the
crucial processes and environmental factors that have been
identified to govern methanogenesis and the CO2 : CH4 ratio
in the literature. We will then examine how methanogene-
sis is currently modeled in land surface models and state-of-
the-art process-based methane models, and discuss efforts to
bridge the divide between laboratory-scale and global-scale
approaches. This will lead to a clear recommendation of a
model structure for a methanogenesis module inside a land-
surface model that can predict, process-based, the CO2 : CH4
production ratio.

2 The complexity of methanogenesis

One of the most challenging aspects of studying and mod-
eling CH4 production in soils is its high degree of complex-
ity, encompassing various different processes, which are, in
turn, affected by a multitude of environmental factors ((Xu
et al., 2015, 2016; van Bodegom and Scholten, 2001; Grant,
1998; Song et al., 2020; Sulman et al., 2022)). Methano-
genesis is not one simple straight-forward process but rather
an entanglement of various interacting microbial processes
in the soil (Xu et al., 2015). The two main methanogene-
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sis pathways are hydrogenotrophic and acetoclastic methano-
genesis, during which hydrogen or acetate are being used
as substrate by the microbes respectively, and methane is
produced (Conrad, 1999). A review performed by Xu et al.
(2016) found that out of the 40 investigated models only 3
represented these two major pathways. This is significant be-
cause the two processes yield different products: acetoclastic
methanogenesis results in CO2 and CH4 production, while
hydrogenotrophic methanogenesis only produces CH4 (Con-
rad, 1999). Furthermore, the contribution from each process
to total methanogenesis varies strongly between different en-
vironments (Conrad, 1999), soil depth (Liu et al., 2017), and
active layer vs. permafrost layers (Song et al., 2021), among
others. Considering this, the need to distinctly represent these
processes in models becomes evident if a realistic portrayal
of the CO2 : CH4 production ratio wants to be achieved.

The most important environmental factors that influ-
ence methanogenesis are temperature (Yvon-Durocher et al.,
2014), soil pH (Sulman et al., 2022), water table depth (Chen
et al., 2021), and soil biogeochemical conditions (Philben
et al., 2020). Especially temperature has a profound effect
on not only microbial decomposition processes in general
(Kirschbaum, 1995; Hobbie, 1996), but also on the CO2 :

CH4 ratio in particular (Yvon-Durocher et al., 2014; Roy
Chowdhury et al., 2015). This is due to the different temper-
ature sensitivities of the processes involved (Yvon-Durocher
et al., 2014), though generally both CH4 and CO2 produc-
tion experience an increase with rising temperature (Treat
et al., 2015; Schädel et al., 2016). Yvon-Durocher et al.
(2014) showed in their meta-analysis that methanogenesis
as a whole exhibits a higher average temperature depen-
dence than general respiration (0.98 vs. 0.65 eV; measured
as activation energy). In fact, such differences in tempera-
ture dependence persist even down to the finest scale, with
temperature determining enzyme kinetics and thermodynam-
ics of the individual methanogenesis sub-processes (Conrad,
2023). Temperature-induced microbial community changes
may lead to changes in the dominant methanogenesis path-
way, moving from acetoclastic to hydrogenotrophic with in-
creasing temperatures, thus affecting the CO2 : CH4 ratio
(Conrad, 2023).

Naturally, this level of complexity can hardly be repre-
sented in global models. In methane modeling, there exist
two common ways of representing the effect of temperature
(Chandel et al., 2023): the Q10 value and the Arrhenius-type
functions (Chandel et al., 2023).

f (T )=Q
(T−Tref)
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10 (1)
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R

[
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(2)

In the Arrhenius equation, 1E is the activation energy, R

is the universal gas constant, and T0 is the reference temper-
ature (Xu et al., 2016). The Q10 parameter expresses the fac-
tor by which the reaction rate increases upon a 10 °C change

in temperature (Reichstein and Beer, 2008) and it is ubiqui-
tously used to express temperature dependency across mod-
els (Xu et al., 2016). Although, for microbial models in par-
ticular, Chandel et al. (2023) found the Arrhenius functions
to be more common. Despite its widespread use, however,
the Q10 concept is very simple (Reichstein and Beer, 2008)
and not without criticism, owing in parts to the large span of
reported values (Wu et al., 2021). Most models put the value
for methanogenesis in the range of 1.5–4 (Xu et al., 2016)
– often a central value of around 2 is chosen (Riley et al.,
2011; Tang et al., 2010) – which lies in the range of values
reported from many lab experiments (Roy Chowdhury et al.,
2015; Treat et al., 2015; Inglett et al., 2012; Su et al., 2024;
Lupascu et al., 2012). Despite that, a meta analysis by Hamdi
et al. (2013) showed that the entire spectrum of reported Q10
values from lab and field studies has a large range from < 2
to > 300 (Hamdi et al., 2013). Wu et al. (2021) further criti-
cized the use of constant Q10 parameters in models as overly
simplistic, even finding that the decomposition rate behaved
linearly rather than exponentially in the 5 to 30 °C range in
their model experiment (Wu et al., 2021). They argue instead
in favor of a more in-depth biogeochemical model approach
that accounts for individual processes (Wu et al., 2021).

As for the second frequently used method, the idea be-
hind Arrhenius functions is to express the temperature sen-
sitivity through the activation energy of the process in ques-
tion (Yvon-Durocher et al., 2014; Chen et al., 2021; Chandel
et al., 2023; Li et al., 2023). This approach is based on fit-
ting data to the Boltzmann–Arrhenius function, which, sim-
ilar to the Q10 approach, assumes an exponential increase
of the metabolic rate with increasing temperature (Yvon-
Durocher et al., 2014; Chen et al., 2021). Here, reported val-
ues for methanogenesis lie between 0.62 and 0.98 eV (Yvon-
Durocher et al., 2014; Chen et al., 2021; Li et al., 2023). Both
Q10 and activation energy values have been observed to de-
crease with increasing temperature and vice versa (Hamdi
et al., 2013; Reichstein and Beer, 2008). In models, the Q10
parameter is usually chosen, with different processes some-
times having their own distinct Q10 values (Song et al.,
2020). This is still rare, however, with many models set-
tling on a single Q10 value for methane production (Riley
et al., 2011; Kettunen, 2003; Xu et al., 2015), despite the ev-
idence for differences in the temperature response between
the main pathways (Conrad, 2023). Methanotrophy usually
has its own Q10 value in models, which is typically assessed
at a slightly lower value than the one for methanogenesis,
lying between 1.2–2.4 (Riley et al., 2011; Kettunen, 2003;
Zhu et al., 2014; Sabrekov et al., 2016; Murguia-Flores et al.,
2018; Grant, 1999). Since temperature is only a piece of the
puzzle, the difficulty of how to accurately represent this fac-
tor in models alone hints at the overarching complexity of
methane modeling.

Besides the two main methanogenesis pathways intro-
duced earlier, there exist further processes that have an effect
on methanogenesis. This can either be directly through pro-
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cesses like hydrolysis and fermentation, which break down
the organic matter and provide the substrate for methanogen-
esis (Tang et al., 2016b; Grant, 1998), or indirectly through
other redox reactions such as Fe(III) reduction (Sulman et al.,
2022; Zheng et al., 2019; Philben et al., 2020; Yang et al.,
2016; Roy Chowdhury et al., 2015). Especially the interplay
between methanogenesis and Fe(III) reduction has been the
subject of recent studies and their interactions have started
to be included in models (Sulman et al., 2022; Zheng et al.,
2019). Additionally, some soil processes are in competition
with methanogenesis for substrate, like other, energetically
more favorable metabolic pathways (Lovley, 1991). Another
example is homoacetogenesis, through which acetate is be-
ing produced by the consumption of H2 and CO2. While ac-
etate is the main substrate for methane production by ace-
toclastic methanogenesis, homoacetogenesis thereby reduces
the substrates for hydrogenotrophic methanogens (LeeWays
et al., 2022; Diekert and Wohlfarth, 1994). Looking at this
web of interconnected process (Xu et al., 2015; Song et al.,
2020; Sulman et al., 2022), it becomes evident that by as-
suming a prescribed CO2 : CH4 production ratio in process-
based models, the reliability of future methane emission pro-
jections from warming Arctic soils and thawing permafrost
is highly limited.

3 Representation of methanogenesis in LSMs

Despite recent efforts to integrate process-based methane
production in LSMs (Song et al., 2020), their representation
of CH4 production largely remains overly simplified (Chan-
del et al., 2023). This is also true for the land surface schemes
that are a part of widely used ESMs, such as the ones partak-
ing in the CMIP6 (Coupled Model Intercomparison Project
Phase 6), though simulating the CH4 feedback was not part
of this project (Eyring et al., 2016). These models were fea-
tured in the latest IPCC AR6 report (Canadell et al., 2021),
so it would be desirable if they were able to simulate methane
production from thawing permafrost landscapes in a more re-
alistic fashion that reflects the seasonality and variability ob-
served in studies (Galera et al., 2023; Knoblauch et al., 2018;
Li et al., 2023; Chen et al., 2021). This dire need to more
accurately portray permafrost carbon processes in ESMs has
recently been reaffirmed by Schädel et al. (2024) who con-
cluded that methane emissions are only represented to an “in-
termediate” degree in ESMs. Tightly connected aspects such
as wetland distribution remain “poorly” represented (Schädel
et al., 2024). The latter hints at a larger problem in regards to
accurately modeling methanogenesis in soils. Methanogen-
esis occurs when soils become waterlogged and oxygen is
eventually depleted (van Huissteden, 2021). Predicting this
in models, however, has been a persistent challenge (de Vrese
et al., 2021; Schädel et al., 2024). In models, this limitation
of methanogenesis to anoxic conditions is usually realized
through two different methods: (1) simulating the water-table

in a given area and (2) explicitly modeling and tracking the
O2 concentration in the soil layers (Morel et al., 2019). The
former case is frequently realized via a TOPMODEL ap-
proach (Beven and Kirkby, 1979), which determines the in-
undated areas in a grid cell (Kleinen et al., 2020), thus repre-
senting horizontal heterogeneity while the latter method rep-
resents vertical heterogeneity. Although many models settle
for one of the two methods, they are not mutually exclusive.
Regardless of the chosen method(s), the problem remains
that soil hydrology is subject to a high degree of sub-grid het-
erogeneity, especially in Arctic permafrost-affected regions
(Beer, 2016; Schuur et al., 2008).

In JSBACH, the land component of MPI-ESM (Max
Planck Institute for Meteorology Earth System Model)
(Mauritsen et al., 2019) featured in CMIP6 (Zechlau et al.,
2022), methane production has been modeled through a tem-
perature dependent partition factor which prescribes the frac-
tion of carbon released as methane from total anaerobic de-
composition (Kleinen et al., 2021) – an approach based on
the CLM(4Me) model by Riley et al. (2011). The tempera-
ture dependence in their model is realized through a Q10 fac-
tor (Kleinen et al., 2020), which leads to an increased share
of methane under warming conditions. The model uses the
TOPMODEL approach to calculate the inundated fraction in
the grid cells (Kleinen et al., 2020).

Another example is the UK Earth System Model’s LSM
JULES (Sellar et al., 2019), which calculates methane pro-
duction from substrate availability, temperature, and the wet-
land fraction of the gridbox (Clark et al., 2011; Chadburn
et al., 2020) through a multilayered scheme (Comyn-Platt
et al., 2018; Burke et al., 2017), using a tuned methane pro-
duction scaling factor (Chadburn et al., 2020). The temper-
ature sensitivity is modeled through an Arrhenius function
and inundated areas are represented through the saturated
grid cell fraction via TOPMODEL (Chadburn et al., 2020;
Comyn-Platt et al., 2018). Furthermore, Chadburn et al.
(2020) showed an altered version of JULES called JULES-
microbe, which features a much more detailed decomposi-
tion process including hydrolysis, methanogenic microbial
biomass, and microbial activity, though they do not explic-
itly model the two main methanogenesis pathways either
(Chadburn et al., 2020). Instead they partition the produced
gases equally into CH4 and CO2, based on the theoretically
assumed 1 : 1 production ratio of acetoclastic methanogen-
esis (Conrad, 1999; Chadburn et al., 2020). Recently, the
UKESM has further received an emission-driven fully cou-
pled methane cycle (Folberth et al., 2022), showing the on-
going research development towards more in-depth methane
representation.

The ORCHIDEE model is another commonly used
LSM, which over the years has been updated to repre-
sent permafrost processes and high-latitude peatlands in
ORCHIDEE-PEAT(Guimberteau et al., 2018; Qiu et al.,
2019). It has recently received an updated methane module
named ORCHIDEE-PCH4, based on the scheme described
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by Khvorostyanov et al. (2008a, b), which uses the same tem-
perature and soil moisture dependent function for methano-
genesis as for aerobic respiration, albeit with a 10-times
lower rate (Salmon et al., 2022; Khvorostyanov et al., 2008a).
Temperature dependence was modeled through a Q10 func-
tion, although the relationship is assumed to be linear in-
stead of exponential at values below 0 °C, reaching zero
at −1°C (Qiu et al., 2019; Koven et al., 2011). While the
base ORCHIDEE-PEAT uses the TOPMODEL approach to
determine inundated grid cell fractions (Qiu et al., 2019),
ORCHIDEE-PCH4 explicitly uses the oxygen concentration
in the soil for methanogenesis (Salmon et al., 2022). The lat-
ter model has only been evaluated with data from peatlands
(Salmon et al., 2022). Peatlands, however, are a very specific
environment with unique features and model requirements
(Mozafari et al., 2023). This limits the model’s application
to these areas even though Arctic methane emissions from
permafrost thaw will arise from other sources as well, such
as thermokarst lakes or simply from thaw and inundation of
non-peatland soils (Saunois et al., 2020).

A land-surface model that has seen some recent progress
in improving its methane representation is the Energy Exas-
cale Earth System Model’s (E3SM) land model (ELM) (Ric-
ciuto et al., 2021). Originally, its methane module was based
on the CLM(4Me) (Riley et al., 2011), same as for JSBACH
(Kleinen et al., 2021). Since then, there have been attempts
to update the methane module and include a more process-
based representation of many methane processes, for exam-
ple in the ELM-SPRUCE version with acetoclastic and hy-
drogenotrophic methanogenesis, based in large parts on the
process-based methane model developed by Xu et al. (2015)
(Ricciuto et al., 2021; Xu et al., 2015). This updated module,
however, has yet to be incorporated into the ELM for global
simulations as part of E3SM (Ricciuto et al., 2021). The cur-
rent version still uses the CO2 : CH4 ratio partition factor as
proposed by Riley et al. (2011), as well as a Q10 param-
eter for modeling the temperature dependence of methane
production (Chinta et al., 2024). As for inundation, ELM
uses a typical hydrological sub-model to calculate the spacial
distribution of wetlands, however, it has recently received
an updated version with a focus on wetlands called ELM-
Wet, which introduces a distinct sub-grid wet-landunit that
enables a more mechanistic portrayal of wetland processes
(Yazbeck et al., 2025).

4 State of process-based models of methanogenesis at
local scale applications

In contrast to global LSMs, there exist smaller process-based
methane models on the lab and site scale that represent
many of the processes related to methane production in much
more detail (Xu et al., 2016, 2015; Grant, 1998; van Bode-
gom and Scholten, 2001). The process-based methane mod-
els discussed in this section include both standalone mod-

els and methane-focused modules developed for larger mod-
els, such as LSMs. In contrast to the previously discussed
LSMs, which are being used in global simulations, often as
part of ESMs, the models in this section were developed for
site-level or lab-scale applications, with an explicit focus on
methane processes. Indeed, there has been an ongoing effort
to refine the modeling of methane over the decades and a
plethora of models with varying complexity have emerged,
with models using process-based methanogenesis represen-
tation at the top (Xu et al., 2016). It is these process-based
approaches that are needed to better understand the processes
underlying methane dynamics in the soil, which will then
enable more accurate predictions on how these processes
and, by extension, the methane budget at large will react
to future climate change (Chandel et al., 2023). It should
be noted, however, that many of the past in-depth methane
models have been designed for environments other than per-
mafrost landscapes, with much of the research being fo-
cused on (rice) paddy soils (Fumoto et al., 2008; van Bode-
gom and Scholten, 2001) and general wetland areas (Tang
et al., 2010; Chadburn et al., 2020; Forbrich et al., 2024).
Although process-based models should ideally be applicable
across different environments, permafrost-affected soils ex-
hibit unique properties and microbial structures (Miner et al.,
2022; Beer et al., 2022; Song et al., 2021) that are only com-
parable to the aforementioned ecosystems to a limited de-
gree. Masyagina and Menyailo (2020) have shown that the
methane emission patterns of permafrost-affected areas dif-
fered significantly to those of non-permafrost areas, high-
lighting this issue. Nevertheless, since the thorough synthe-
sis conducted by Xu et al. (2016), this development has only
continued further and in recent years some highly sophisti-
cated methane models have been published. One such state-
of-the-art model is the methane module developed by Song
et al. (2020) for the IBIS terrestrial ecosystem model (Song
et al., 2020). It is based on microbial functional groups,
encompassing acetoclastic and hydrogenotrophic methano-
genesis, fermentation, homoacetogenesis, and methane oxi-
dation (Song et al., 2020). Mathematically, these processes
are largely realized through formulas based on Michaelis–
Menten kinetics (Song et al., 2020), while most of the param-
eter values stem from Grant (1998) and Kettunen (2003). In
the decomposition cascade, the model starts with dissolved
organic carbon (DOC), which is calculated from the total
soil organic carbon pool (SOC) via a temperature and mois-
ture dependent DOC : SOC ratio factor (Song et al., 2020).
Acetate, CO2 and H2 are then produced through fermenta-
tion (Song et al., 2020). In the next step, these fermentation
products act as the substrate for the two main methanogene-
sis pathways (Conrad, 1999) and homoacetogenesis (Diekert
and Wohlfarth, 1994; Song et al., 2020).

One process that has recently started to be included in
methane models more frequently is iron reduction (Sulman
et al., 2022; Zheng et al., 2019). It is an energetically more
favorable metabolic pathway for microbes, during which
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Fe(III) is being reduced to Fe(II) under anoxic conditions
(Lovley, 1991). Although these processes are in competi-
tion with each other (Lovley, 1991; Sulman et al., 2022),
they have been observed to occur concurrently in soils (Roy
Chowdhury et al., 2015; Sulman et al., 2022), thus hinting at
a more complicated interplay (Sulman et al., 2022; Zheng
et al., 2019). A recent model that includes this process is
the model developed by Sulman et al. (2022). It features
largely the same microbial (methane) processes as the Song
et al. (2020) model, minus the homoacetogenesis, in a com-
parable level of detail. Their model, however, adds another
level of complexity by explicitly modeling the Fe(III) reduc-
tion alongside the methane processes (Sulman et al., 2022).
The methane production is modeled via Monod-type equa-
tions and the interactions with Fe(III) reduction as well as
the dependence of the methanogenic pathway on pH was
represented (Sulman et al., 2022). They found the inclu-
sion of other terminal electron acceptors to be important
for accurate methane predictions, since Fe(III) reduction ei-
ther increased or decreased CH4 production, depending on
how much substrate was available to the microbes (Sulman
et al., 2022). These findings complement the results from
Tang et al. (2016b), who also used a process-based methane
model, and found that Fe(III) reduction positively impacted
methanogenesis, by means of raising the pH, when substrate
was not limiting (Tang et al., 2016b). Their model is an aug-
mented version of the CLM-CN model (Thornton and Rosen-
bloom, 2005), which has been expanded by incorporating ad-
ditional biogeochemical process from, e.g., ecosys (Grant,
1998) and the model from Xu et al. (2015).

Similarly, Zheng et al. (2019) developed a process-based
methane model that uses Monod-type equations to model
methanogenesis (acetoclastic and hydrogenotrophic) and
features Fe(III)-reduction and fermentation (Zheng et al.,
2019). They further included a thermodynamic factor to sim-
ulate the dynamic between the different redox processes
(Zheng et al., 2019). In their model, hydrolysis of polysac-
charides was assumed to be the rate limiting process for
methanogenesis under anaerobic conditions (Zheng et al.,
2019; Yang et al., 2016), which aligns with the importance of
substrate availability for the methanogenesis-iron-reduction-
system found by Sulman et al. (2022). This connection has
further been supported by incubation study results that also
found a correlation between iron reduction, acetate produc-
tion and methanogenesis (Yang et al., 2016). Fermenters pre-
fer organic carbon compounds with low-molecular weight
and the fermentation products (e.g., acetate) are required for
methanogenesis (Yang et al., 2016). Consequently, this early
stage of the anaerobic decomposition appears to have signifi-
cant impact on the final methane production rate (Yang et al.,
2016; Zheng et al., 2019). The designation of hydrolysis as
the rate-limiting step has, however, been called into question
by Conrad (2023), who instead argued in favor of the final
steps in the methanogenesis process as being rate limiting
(Conrad, 2023).

The methane model developed by Morel et al. (2019) as
a module for the ISBA LSM (Noilhan and Planton, 1989)
is another interesting approach. They model methanogene-
sis with the same 10-times lower decomposition rate, com-
pared to aerobic decomposition, from Khvorostyanov et al.
(2008a) that is also used in the recent ORCHIDEE mod-
ule (Salmon et al., 2022). Aside from the usual temperature
and substrate availability dependence, their model also fac-
tors in the limitation by oxygen concentration in each re-
spective soil layer (Morel et al., 2019). Their approach of
explicitly modeling O2 concentration in the soil layers and
its impact on methanogenesis differs from the more common
approach of determining the water table level and strictly
limiting methanogenesis to layers below that level (Morel
et al., 2019) – an approach that has previously been criti-
cized (Yang et al., 2017). Their model, however, does not
have a representation of the two main methanogenesis path-
ways (Morel et al., 2019), thus reducing its complexity.

The data-constrained process-based methane model from
(Ma et al., 2017) is another example for a methane module
incorporated in a terrestrial ecosystem model (TECO) (Ma
et al., 2017). Even though methanogenesis itself is not mod-
eled in as much detail as other models discussed here – they
used an ecosystem-specific CH4-release ratio parameter with
no distinction between pathways – their warming experiment
resulted in an increased CH4 : CO2 emission ratio (Ma et al.,
2017). This makes the study one of the few who put a focus
on the changes of this ratio.

5 Going forward – bridging the divide between scales

Looking at the discussed small-scale process-based methane
models and global LSMs side by side, it becomes clear that
they differ profoundly with regard to how detailed methane
processes, especially methanogenesis, are being represented.
Bridging this gap and using the process understanding gained
in smaller scale process-based models have been identified
as major remaining challenges for making ESMs more reli-
able and grounded in reality (Zheng et al., 2019; Xu et al.,
2016; Chandel et al., 2023; Ricciuto et al., 2021). This de-
velopment is needed, if models want to capture the highly
variable CO2 : CH4 ratios observed in the field (Galera et al.,
2023) and lab (Knoblauch et al., 2018; Heslop et al., 2019).
At this point, it is important to clearly distinguish between
methane production and emission ratios. The high variabil-
ity of CO2 : CH4 emission ratios measured in the field is the
result of many different processes (Galera et al., 2023), be-
yond methanogenesis. The methane has to be transported to
the surface and, depending on the dominant transport mecha-
nism, may be oxidized almost completely by methanotrophs
before it can reach the atmosphere (Wania et al., 2010; de
Vrese et al., 2021). Additionally, CO2 emissions from other
processes that happen concurrently with methanogenesis at
sites with anaerobic conditions, such as Fe(III) or sulfate re-
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duction (Dettling et al., 2006; Sulman et al., 2022), and respi-
ration in oxic layers also affect the CO2 : CH4 emission ratio
(Galera et al., 2023). Refining the methanogenesis process
alone will consequently not be sufficient for greatly reduc-
ing the uncertainty of the emission ratio between CO2 and
methane at the surface. However, the modeling of methano-
genesis, and by extension the CO2 : CH4 production ratio, in
the soil is already a source of uncertainty. Looking at the pro-
duction ratios obtained under controlled lab conditions from
Knoblauch et al. (2018), who reported values between 0.2–
0.8, in contrast to the fixed ratio factors used in many LSMs
(see Table 1), it becomes evident that using these fixed ratios
directly leads to an increase of the uncertainty of methane
release, already in the initial step. To quantify this uncer-
tainty, especially in relation to the other processes affecting
the methane budget, a dynamic process-based methane mod-
els is needed, giving further agency to its development.

First efforts in this direction are being done, with one ex-
ample being the inclusion of the aforementioned model by
Song et al. (2020) into a terrestrial ecosystem model. Another
case is the model by Ricciuto et al. (2021), which has been
included in the ELM and features a process-based methano-
genesis scheme (Xu et al., 2015). Their model reproduced
the observed distinct seasonality of the two main methano-
genesis pathways (Ricciuto et al., 2021), showing the advan-
tages of such a detailed representation, though their model
has so far only been run on a site level scale (Ricciuto et al.,
2021). These models are focused on natural wetland (Song
et al., 2020) and peatland emissions (Ricciuto et al., 2021)
respectively, meaning that the distinct features of permafrost-
affected areas (Masyagina and Menyailo, 2020) are largely
not considered in their model composition and subsequent
evaluation with site data (Song et al., 2020; Ricciuto et al.,
2021). Still, the ELM has recently received an improved wet-
land scheme in ELM-Wet and there are plans to implement
the already discussed in-depth methane model by Sulman
et al. (2022) in the future to further improve methanogene-
sis representation (Yazbeck et al., 2025).

Sulman et al. (2024) have recently performed a similar in-
clusion of an in-depth biogeochemical model into a LSM,
featuring methanogenesis and methanotrophy among oth-
ers, but their model study was concerned with and evaluated
against data from coastal wetlands, which are distinct in their
own right with, e.g., sulfate dynamics (Sulman et al., 2024).
Modeling efforts like these are direly needed for permafrost-
affected soils as well (Schädel et al., 2024), since estimations
of the permafrost-carbon-climate feedback remain uncertain
in both their spatiotemporal extent and magnitude (Miner
et al., 2022; Nitzbon et al., 2024). Indeed, the future ratio of
CO2 : CH4 emissions is one of the key open questions in that
endeavor (Schuur et al., 2022). Even though the emission ra-
tio is affected by many other processes, as discussed above,
the production ratio is an important initial step. Additionally,
the representation of permafrost processes in ESMs is gener-
ally still severely lacking (Miner et al., 2022; Schädel et al.,

2024), with many of the models informing the most recent
IPCC report still not having permafrost processes included
(Canadell et al., 2021).

More complexity or realism, in regards to how certain
processes are modeled, might not always be the optimal
way however. Sulman et al. (2018) argued in their meta
study, for example, that the ever increasing complexity and
amount of processes in SOC-focused models may in fact
add to the already large uncertainty of projections, due to
an increase in modeling possibilities to choose from (Sul-
man et al., 2018). A more concrete example would be the
JULES LSM, which had in the past been enhanced with a
more detailed methane soil-transport and oxidation scheme
(McNorton et al., 2016). This scheme was later-on aban-
doned due to the overall negligible improvement in terms of
making the results more accurate (Comyn-Platt et al., 2018).
In light of many other processes being underrepresented or
all out missing in global models, the adequate complexity of
each included process needs to be considered. Abrupt thaw
processes, e.g., could lead to an increase in permafrost thaw
emissions by up to 40 % if accounted for, yet they are not
featured in global models (Turetsky et al., 2020; Schädel
et al., 2024). Naturally, numerical resources are not endless
and current ESMs already struggle with their ever-increasing
complexity (Schädel et al., 2024). Considering this, it might
be necessary to find a middle ground between the current
state of methane representation in most LSMs and the state-
of-the-art smaller scale process-based methane models. Fur-
thermore, it will be important to quantify the uncertainty and
importance of the various processes contributing to the total
methane budget, to see which processes require more atten-
tion, numerical resources and further refinement.

In conclusion, when modeling methane production in
soils, the essential processes determining the CO2 : CH4 pro-
duction ratio appear to be (1) fermentation, which has been
identified as a potential rate-limiting step in multiple studies
(Zheng et al., 2019; Sulman et al., 2022; Philben et al., 2020),
(2) acetoclastic and (3) hydrogenotrophic methanogenesis
and the variable share between the two (Conrad, 1999).
LSMs need to feature at least these three core-processes (see
Fig. 1) if the dynamics of the CO2 : CH4 production ratio
wants to be represented.

Additionally, these core-processes may be complemented
by closely connected processes that either enhance or
stand in competition with methanogenesis, most importantly
Fe(III) reduction and homoacetogenesis (see Fig. 2), some-
thing that has already been achieved in some smaller scale
process-based models (Sulman et al., 2022; Zheng et al.,
2019; LeeWays et al., 2022; Diekert and Wohlfarth, 1994).
Though it would undoubtedly be preferable to have these an-
cillary processes featured in LSMs as well, this would make
the task all the more difficult. Previous studies found, for ex-
ample, Fe(III) reduction to impact methanogenesis indirectly
through changes to the pH (Sulman et al., 2022; Zheng et al.,
2019), meaning that LSMs would have to both model global
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Table 1. Overview of the main models discussed in this paper.

Models Overview

Model Methanogenesis Temperature Reference

JSBACH3.2 pre-set fraction, following Riley et al. (2011) Q10 Mauritsen et al. (2019);
Kleinen et al. (2020)

JULES scaling factor, pre-set fraction Arrhenius Sellar et al. (2019);
Chadburn et al. (2020);
Clark et al. (2011)

JULES-microbe methanogenic microbial biomass and activity,
CO2 : CH4 partition pre-set 1 : 1

Arrhenius Sellar et al. (2019);
Chadburn et al. (2020);
Clark et al. (2011)

ORCHIDEE-PEAT reduced rate parameter with respect to aerobic
respiration, following Khvorostyanov et al.
(2008a, b)

Q10 Guimberteau et al.
(2018); Salmon et al.
(2022); Qiu et al.
(2019)

ELM pre-set fraction, following Riley et al. (2011) Q10 Ricciuto et al. (2021);
Chinta et al. (2024)

ELM-SPRUCE acetoclastic and hydrogenotrophic pathways,
following Xu et al. (2015)

Q10 Ricciuto et al. (2021)

Song et al. model for IBIS acetoclastic and hydrogenotrophic pathways,
fermentation, homoacetogenesis

Q10 Song et al. (2020)

Sulman et al. model for PFLOTRAN acetoclastic and hydrogenotrophic pathways,
fermentation, Fe(III) reduction

CLM-CN T
response function

Sulman et al. (2022);
Tang et al. (2016a)

Tang et al. model for CLM-CN acetoclastic and hydrogenotrophic pathways,
fermentation

CLM-CN T
response function

Tang et al. (2016b);
Thornton and
Rosenbloom (2005)

Zheng et al. model acetoclastic and hydrogenotrophic pathways,
fermentation, Fe(III) reduction

CLM-CN T
response function

Zheng et al. (2019);
Thornton and
Rosenbloom (2005)

Morel et al. model for ISBA LSM reduced rate parameter, based on
Khvorostyanov et al. (2008b)

Q10 Morel et al. (2019)

Ma et al. model for TECO ecosystem-specific CH4-release ratio
parameter

Q10 Ma et al. (2017)

Figure 1. Schematic structure of the suggested core-processes required for modeling the dynamics of the CO2 : CH4 production ratio, with
(1) fermentation, (2) hydrogenotrophic methanogenesis, and (3) acetoclastic methanogenesis.
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soil Fe concentrations and soil pH levels. When considering
the current, highly simplified state of methanogenesis mod-
eling in LSMs, it would be a more realistic first step to focus
on the three aforementioned core-processes, before tackling
further connected processes.

These processes are influenced by multiple environmen-
tal factors, the most important of which are: temperature
(Yvon-Durocher et al., 2014), pH (Sulman et al., 2022), and
oxygen availability (Morel et al., 2019) or water table depth
(Chen et al., 2021). Soil biogeochemical conditions, espe-
cially the discussed interplay with Fe(III) reduction, is an-
other important, albeit more complicated factor that has rel-
atively recently emerged as a focus point in modeling stud-
ies on methane (Philben et al., 2020; Sulman et al., 2022;
Zheng et al., 2019; Yang et al., 2016). Despite their im-
portance, many of these factors are poorly quantified across
the Arctic (Stimmler et al., 2023). This is largely due to
the scarcity of observational field data in the vast and re-
mote Arctic areas like Northern Russia (Suleymanov et al.,
2024). ESMs, however, require spatial maps of these soil pa-
rameters to accurately portray the soil biogeochemical pro-
cesses in the Arctic regions. Besides the obvious need for
more field data, there are some recent publications which
provide spatial datasets derived from the few data we al-
ready have. (Stimmler et al., 2023; Suleymanov et al., 2024).
Stimmler et al. (2023) extrapolated sampling data to create a
Pan-Arctic map of bioavailable soil elements, including Fe,
based on lithology. Another interesting approach is shown in
Suleymanov et al. (2024) who used machine learning algo-
rithms to digitally map soil properties, like soil pH, in Arc-
tic areas with scarce data availability. These techniques may
prove to be important tools to bridge the large gaps in the
spatial data. Both still depend on field data, however, which
means that more extensive field studies remain crucial (Su-
leymanov et al., 2024). The same is true for methanogene-
sis measurement data required to benchmark models at large
scales, something that is difficult to attain for the same rea-
sons. In fact, Ma et al. (2021) have shown the importance
of constraining models with in situ observational data, since
CH4 and CO2 emissions show distinct responses to climate
change (Ma et al., 2021). Even though lab incubations only
offer limited insights into in situ conditions (Galera et al.,
2023), they can nevertheless be useful to isolate and study
single processes that are hard to disentangle in the field.

Concerning the temperature dependence, the Q10 function
is arguably the most commonly used method for describing
the temperature sensitivity of methane production in models
(Xu et al., 2016), likely due to its simplicity (Reichstein and
Beer, 2008). At the same time, the Q10 value has been repeat-
edly identified as a highly sensitive model parameter (Chinta
et al., 2024; Riley et al., 2011; Song et al., 2020; Ma et al.,
2017), making its accurate assessment paramount. Parameter
estimations, however, vary strongly between different mod-
els (Xu et al., 2016), owing in large part to the wide range
of reported values from experiments (Roy Chowdhury et al.,

2015; Hamdi et al., 2013; Wu et al., 2021). Furthermore, the
different temperature sensitivities of the processes involved
in fermentation and methanogenesis (Conrad, 2023) need to
be considered and should be represented in future models.
Reducing the uncertainty introduced through the modeling
of temperature dependence will be a crucial step towards im-
proving the overall predictive abilities of methane models.

For predicting future methane emissions from soils, fur-
ther processes are required. First, the transport of methane to
the surface through the main three transport ways (Walter and
Heimann, 2000; Wania et al., 2010; Kaiser et al., 2017) and,
second, methanotrophy, which has the possibility to drasti-
cally reduce methane emissions before they reach the atmo-
sphere (de Vrese et al., 2021). These processes are, however,
already more broadly represented in models (Xu et al., 2016),
including LSMs (Wania et al., 2010; Kaiser et al., 2017;
Chinta et al., 2024), compared to methanogenesis. Here it
could be interesting to explore, e.g., the kinetic differences
between low-affinity and high-affinity methanogens, the for-
mer requiring high methane concentrations while the latter
can function even under atmospheric methane concentrations
(Voigt et al., 2023; Dion-Kirschner et al., 2024), which is
rarely explored in models. One model study that did include
high-affinity methanogens into a biogeochemical model is
the one by Oh et al. (2020). They used the Terrestrial Ecosys-
tem Model (TEM) (Zhuang et al., 2004, 2013) as a basis
and found that the addition of high-affinity methanogens to
the model led to a doubling of the Arctic upland methane
sink, reducing net CH4 emissions by ca. 5.5 Tg CH4 per year
(Oh et al., 2020). This significant reduction shows that fur-
ther refining methanotrophy in models will also be crucial
for reducing the uncertainty of CO2 : CH4 emission ratios,
and more studies focused on the inclusion of high-affinity
methanogens in models are needed (Oh et al., 2020).

There are other important uncertainty sources concerning
the methane budget, one of which are cold season methane
fluxes, which can make up more than half of the total an-
nual Arctic methane flux (Zona et al., 2016). In models,
however, these emissions are commonly underestimated and
poorly constrained (Treat et al., 2018; Ito et al., 2023). Treat
et al. (2018) showed that constraining a process-based model
ensemble with measured data from the non-growing sea-
son (September–May) could increase the annual wetland
methane flux by 25 % when compared to the unconstrained
approach. These findings have been corroborated by Ito et al.
(2023), who compared the cold season (September–May)
methane flux outputs of 16 models to in situ observational
data and found that the models underestimated methane
emissions during that period, with the discrepancy being es-
pecially pronounced in months that exhibited air temper-
atures under 0 °C. This underestimation is due to insuffi-
cient cold season process representation and parametrization
(Ito et al., 2023; Treat et al., 2018). Models fail to capture,
for example, the observed burst of methane emissions dur-
ing the freeze-in period in late-autumn (Mastepanov et al.,
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Figure 2. Schematic structure of a more complex approach for modeling the dynamics of the CO2 : CH4 production ratio, with core-
processes (1) fermentation, (2) hydrogenotrophic methanogenesis, (3) acetoclastic methanogenesis in blue, and closely connected process
(4) Homoacetogenesis and (5) Fe(III) reduction in green.

2008). This period falls into the “zero curtain” period, dur-
ing which the soil stays unfrozen, while temperatures stay
at around 0 °C, due to latent heat of fusion of soil water
and snow cover insulation (Zona et al., 2016). The latter is
especially important because changes to the snow cover af-
fect soil thermodynamics, which, in turn, affects soil biogeo-
chemistry and permafrost dynamics (Pongracz et al., 2021).
The impact of improving the representation of snow pro-
cesses in models for further reducing uncertainty in project-
ing Arctic methane emissions, has been shown by Pongracz
et al. (2021), who implemented a multi-layer snow-scheme
into the LPJ-GUESS dynamic vegetation model and found a
significant improvement to the simulated permafrost extent.
Further model refinement of these processes is, consequently,
needed to reduce this uncertainty in the Arctic methane bud-
get (Ito et al., 2023).

Finally, the uncertainty of wetland extent and distribution
as well as their poor representation in models (Schädel et al.,
2024) remain some of the most important sources of un-
certainty concerning the Arctic methane budget, as recently
shown again by Ying et al. (2025) in their machine-learning-
based upscaling study. Here in this paper, we present a frame-
work for a more process-based portrayal of methanogenesis
in LSMs and review which processes and factors need to be
considered for capturing the dynamics of the CO2 : CH4 pro-
duction ratio. This development becomes a necessity if re-
search questions such as the prediction of pan-Arctic green-
house gas fluxes under a changing future hydrology want
to be answered with a higher degree of confidence. How-
ever, the many other discussed processes that make up the
total methane budget have high degrees of uncertainty as
well and estimating their respective importance and quan-
tifying their uncertainties will be crucial going forward. In
the end, a more process-based methanogenesis approach in
models could contribute to more reliable estimates of the
carbon-climate feedback, for which the relative roles of car-

bon dioxide and methane emissions represent an important
factor (Schuur et al., 2022).
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