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Abstract. Taiwan is characterized by high mountains den-
sity, with over 200 peaks exceeding 3000 m in elevation. The
alpine treeline ecotone (ATE) is a transitional zone between
different vegetation types. The species distribution, range
variations, and movement patterns of vegetation within the
ATE are crucial indicators for assessing the impact of climate
change and warming on alpine ecosystems. Therefore, this
study focuses on the Xue Mountain glacial cirques in Tai-
wan (approximately 400 ha) and utilizes WorldView-2 satel-
lite images from 2012 and 2021 to compute various vege-
tation indices and texture features (GLCM). By integrating
these features with Random Forest (RF) and U-Net models,
we developed a classification map of the ATE in Xue Moun-
tain. We analyzed changes in bare land, forest, krummholz,
and shadows within the ATE from 2012 to 2021. The re-
sults indicate that the classification accuracy reached an over-
all accuracy (OA) of 0.838 when incorporating raw spec-
tral bands along with vegetation indices and texture features
(GLCM) (77 features in total). Feature importance ranking
and selection reduced training time by 14.3 % while ensur-
ing alignment between field survey treeline positions and
classification results. From 2012 to 2021, tree cover den-
sity increased, with the total forest area expanding by ap-
proximately 10.09 ha. The upper limit of forest distribution
shifted upslope by 32.00± 4.00 m, with the most significant
area changes occurring between 3500 and 3600 m, while the
3700 to 3800 m range remained relatively stable. This study

integrates remote sensing imagery with deep learning classi-
fication methods to establish a large-scale ATE classification
map. The findings provide a valuable reference for the sus-
tainable management of alpine ecosystems in the Xue Moun-
tain glacial cirques in Taiwan.

1 Introduction

Taiwan is located in the subtropical region of Southeast
Asia, with elevations ranging from nearly 4000 m, fostering
diverse ecosystems types and rich biodiversity (Lin et al.,
2021). The island contains more than 200 mountains exceed-
ing 3000 m in elevation (Kuo et al., 2022), making it one of
the highest-density alpine islands in the world (Chen, 2017).
Alpine zone ecosystems are particularly vulnerable to envi-
ronmental change due to their high environmental hetero-
geneity and limited species migration distances, especially
when compared to broader latitudinal climate gradients and
more resilient lowland regions (Engler et al., 2011; Huss
et al., 2017; Li et al., 2018; Zheng et al., 2020). The tran-
sition zone between trees and treeless vegetation in alpine
ecosystems is known as the alpine treeline or the alpine tree-
line ecotone (ATE) (Körner, 2012; Körner and Hoch, 2023).
The ecological processes and changes in this zone are con-
sidered indicators of climate change (Chen et al., 2022),
reflecting the interactions of climate, topography, species
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composition, and disturbance history (Loranger et al., 2016;
Johnson et al., 2017; Mohapatra et al., 2019; Bader et al.,
2021). Based on many studies, changes in the ATE illus-
trate the impacts of climate change on mountain ecosystems,
such as the upward migration of tree species and increased
tree density. However, these shifts are also influenced by
other drivers, including land-use history, altered disturbance
regimes (e.g., fire, landslide, windthrows), herbivory pres-
sure, and species-specific physiological traits. Moreover, cas-
cading effects among these disturbances can further amplify
ecological responses and accelerate treeline dynamics (Wang
et al., 2016; Johnson et al., 2017; Du et al., 2018; Mohapatra
et al., 2019; Stritih et al., 2024; Lu et al., 2025).

Machine learning is increasingly being combined with
high-resolution remote sensing to enhance land-cover and
forest-type classification. Among the numerous algorithms,
each model has its own strengths. Random forests (RF) and
support vector machines (SVM) have gained widespread use
due to their robustness and effectiveness in processing mul-
tispectral data with limited training samples (Belgiu and
Drăguţ, 2016; Jombo et al., 2020; Jackson and Adam, 2021).
RF, in particular, exhibits strong interpretability and stabil-
ity in heterogeneous environments. In contrast, deep learn-
ing models such as U-Net demonstrate superior ability to
capture both spectral and spatial information, achieving high
segmentation accuracy in complex landscapes (Ronneberger
et al., 2015; Freudenberg et al., 2019; Wagner et al., 2019).
Recent comparative studies further demonstrate that RF and
SVM remain reliable and interpretable choices for multi-
spectral classification when training data is limited or imbal-
anced. At the same time, U-Net and other convolutional neu-
ral network (CNN) architectures generally provide superior
spatial accuracy and boundary delineation in high-resolution
or well-labeled datasets. Furthermore, transferability analy-
sis shows that U-Net models generally have better general-
ization capabilities in large or heterogeneous regions, while
RFs tend to perform more consistently in small sample or
sparsely labeled scenarios (Boston et al., 2022; Ge et al.,
2021; Nigar et al., 2024).

In Taiwan, many alpine forest studies have been conducted
through field surveys using an ecological approach at rela-
tively small spatial scales, focusing on flowering phenology
and growth assessment for specific tree species (Chiu et al.,
2022; Liao et al., 2023a; Kudo et al., 2024). In recent years,
Chung et al. (2021) used Landsat 8 imagery combined with
support vector machine (SVM) classification to examine tim-
berline dynamics on Taiwan’s highest peak, Yushan, reveal-
ing the influence of temperature on timberline shifts. The
Xue Mountain, Taiwan’s second-highest peak, has also been
the subject of long-term ecological monitoring (Chung et al.,
2021; Liao et al., 2023b). However, extensive targeting alpine
treeline ecotone (ATE) dynamics remains lacking. This study
provides the first comprehensive analysis of changes in the
ATE landscape in Taiwan’s Xue Mountain glacial cirque re-
gion. It uses ultra-high-resolution WorldView-2 satellite im-

agery with Random Forest (RF) and U-Net models. The
aim is to quantify spatiotemporal changes between 2012 and
2021.

2 Materials and methods

2.1 Study site

The Xue Mountain glacial cirques are located in Shei-Pa Na-
tional Park in north-central Taiwan, covering an area of ap-
proximately 400 ha (Fig. 1). The central peak of Xueshan has
an elevation of 3886 m. The cirque serves as a crucial habitat
for Taiwan’s endemic species, the Yushan Juniper (Juniperus
morrisonicola), Yushan rhododendron (Rhododendron pseu-
dochrystam), and the Taiwan fir (Abies kawakamii), which is
primarily distributed at elevations between 3000 and 3600 m.
Most ecological studies conducted in this research area have
focused on Taiwan fir forests, with several researchers es-
timating wood volumes, competitive pressure, forest struc-
ture, and spatial distribution of the species primarily through
field surveys conducted below the alpine treeline ecotone (Li
et al., 2021; Wang et al., 2021; Chiu et al., 2022; Liao et
al., 2023a, b). In contrast, relatively little attention has been
given to the dynamics of treeline ecotone shifts.

In this study, we define the treeline ecotone not as a fixed
linear boundary but as a transitional zone where krummholz,
such as Yushan Juniper and Yushan rhododendron, begin to
appear within the alpine talus slope (Liao, 2016; Liao et al.,
2023a). This ecotone represents an area of ecological transi-
tion from subalpine forest to alpine vegetation.

2.2 Research flow

This study utilized WorldView-2 satellite imagery from 2021
to extract raw spectral bands, vegetation indices, and tex-
ture features. Starting with the eight spectral bands, vegeta-
tion indices, and texture features were sequentially added to
form four different feature combinations. Classification mod-
els were developed using the RF and U-Net models, and the
optimal model is selected. This model is then applied to 2012
imagery to map the distribution of the alpine treeline and an-
alyzed changes over the decade. The research workflow was
illustrated in Fig. 2.

2.3 Research data

The research data sources were categorized into satellite im-
agery and field surveys, with satellite imagery as the primary
source and field surveys used as supplementary validation
to ensure the accuracy of the treeline boundary. WorldView-
2 was an environmental monitoring satellite operated by
Maxar Technologies Inc. (Colorado, USA). It was launched
on 8 October 2009, and its geolocation accuracy, is reported
to be within 3 m. Depending on the spatial resolution, the re-
visit time ranges from 1.1 to 3.7 d.
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Figure 1. Study area. (a) Geographic location of Shei-Pa National
Park in north-central Taiwan. (b) Treeline ecotone study area lo-
cated in the Xue Mountain glacial cirques within Shei-Pa National
Park. (c) WorldView-2 image showing the research area with topo-
graphic contours.

The satellite provided two imaging modes: panchromatic
and multispectral. The spatial resolution was 0.41 m in the
panchromatic mode, and the spectral range spans 450–
800 nm. This mode offered high spatial resolution, allowing
for detailed image representation. In the multispectral mode,
the spatial resolution was 1.64 m, and the spectral range ex-
tended from 400 to 1040 nm, covering eight spectral bands,
as shown in Table 1. To enhance spatial detail, all multispec-
tral bands were pansharpening using the corresponding high-
resolution panchromatic band, yielding a uniform spatial res-
olution of 0.4 m across all datasets used for feature extrac-
tion. The pansharpened multispectral imagery was the basis
for deriving vegetation indices and texture features.

Two orthorectified, cloud-free WorldView-2 images ac-
quired on 3 November 2012, and 26 September 2021, were
obtained from RiChi Technology Co., Ltd. (New Taipei City,
Taiwan). Due to partial cloud coverage in the 2012 imagery,
only approximately 150 ha of cloud-free area was used for
subsequent temporal comparisons. In contrast, the 2021 im-
agery covered the entire study region (about 400 ha) (Fig. 3).
The 2021 image was therefore used for model training and
feature optimization, and both images were used for anal-
ysis within the common cloud-free area to ensure compa-

Table 1. Spectral characteristics of WorldView-2 satellite bands.

Band Spectral range (nm)

Costal Blue (CB) 400–450
Blue (B) 450–510
Green (G) 510–580
Yellow (Y) 585–625
Red (R) 630–690
Red Edge (RE) 703–745
Near Infrared 1 (NIR1) 770–895
Near Infrared 2 (NIR2) 860–1040

rability. Both images were captured in the autumn season
when vegetation had entered its dormant phase, minimizing
the influence of phenological variability. Histogram match-
ing was applied to ensure radiometric consistency across the
two images. In addition, Global Navigation Satellite System
(GNSS) devices were used to record field survey points in
2023, which were subsequently used to verify alpine treeline
ecotone (ATE) positions and assist in manual ground truth
labeling.

2.4 Vegetation indices

The reflectance spectrum of plant leaves can reflect their in-
ternal physiological status, such as chlorophyll content, wa-
ter content, intercellular spaces, and cell walls (Croft et al.,
2014; Xu et al., 2023; Neuwirthová et al., 2024; Špundová
et al., 2024). The frequently discussed spectral bands in-
clude red (R), the red edge (RE), and the near-infrared (NIR)
bands. Derived vegetation indices, such as the Normalized
Difference Vegetation Index (NDVI) and the Enhanced Veg-
etation Index (EVI), have been widely used (Rouse et al.,
1974; Huete et al., 2002). Additionally, some studies have
suggested that the blue (B) and green (G) bands can be
used to monitor vegetation phenology and forests. For exam-
ple, indices such as the Green Chromatic Coordinate (GCC)
and the Excess Green Index (ExG) have been developed for
this purpose (Sonnentag et al., 2012; Larrinaga and Brotons,
2019). Since image acquisition was affected by terrain, lead-
ing to shadow occurrences that influence classification accu-
racy, this study also planned to adopt the Shadow-Eliminated
Vegetation Index (SEVI) (Jiang et al., 2019). In this study, 11
vegetation indices were used, as summarized in Table 2.

2.5 Texture Feature

With improvements in satellite image resolution, a single
ground object may consist of multiple pixels, making spa-
tial information increasingly important for image interpreta-
tion (Wang et al., 2015). Texture features describe the spa-
tial arrangement and structural patterns of objects within an
image, providing complementary information to spectral re-
flectance. This allows for better discrimination of land cover
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Table 2. List of vegetation indices and their formulas derived from spectral bands.

Vegetation Index Formula Reference

Difference Vegetation Index (DVI) NIR−R Richardson and Wiegand (1977)

Enhanced vegetation index (EVI) 2.5× (NIR−R)
(NIR+6×R−7.5×B+1)

Huete et al. (2002)

Excess Blue Vegetation Index (ExB) 1.4×B−G
G+R+B Mao et al. (2003)

Excess Green Index (ExG) 2×G−R−B
G+R+B Woebbecke et al. (1995)

Excess Green minus Excess Red (ExGR) ExG−ExR Meyer and Neto (2008)

Excess Red Vegetation Index (ExR) 1.4×R−G
G+R+B Meyer et al. (1999)

The Green Chromatic Coordinate (GCC) G/(R+G+B) Gillespie et al. (1987)

Normalized difference index (NDI) G−R
G+R Gitelson and Merzlyak (1994)

Normalized difference vegetation index (NDVI) NIR−R
NIR+R Rouse et al. (1974)

Ratio Vegetation Index (RVI) NIR
R Jordan (1969)

Shadow- Eliminated Vegetation Index (SEVI) RVI+ f (1)× 1
R Jiang et al. (2019)

Figure 2. Research flow for classifying WorldView-2 images of a treeline ecotone on Mt. Xue in Taiwan to detect treeline changes. The
process begins with WorldView-2 satellite image acquisition, followed by feature extraction (spectral bands, vegetation indices, and texture
features), model training using Random Forest (RF) and U-Net, accuracy evaluation, feature selection, and temporal analysis of alpine
treeline changes between 2012 and 2021.
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types with similar spectral characteristics. Texture analy-
sis methods can be categorized into spectral, statistical, and
structural approaches, with the Gray Level Co-occurrence
Matrix (GLCM) in statistical approaches being the most
commonly used (Hsu, 1978). Following the parameter set-
tings suggested by previous studies (Guo et al., 2020; Sibiya
et al., 2021), texture features were extracted to enhance spa-
tial information for classification. In this study, a moving
window size of 7× 7 was applied based on their findings,
which provided an effective balance between detail and noise
in texture analysis. Therefore, this study adopted a 7× 7
moving window to compute the GLCM matrix for each of
the eight bands, analysing seven statistical metrics, resulting
in 56 texture features. The seven statistical metrics used in
this study are listed in Table 3.

2.6 Methods

2.6.1 Random Forest (RF)

Random Forests (RF) was an ensemble classifier widely
used in remote sensing due to its ability to handle high-
dimensional data. It generates multiple decision trees (DTs),
where each tree made predictions based on observed fea-
tures through a series of decision-making steps, ultimately
concluding the target variable. Decision trees, also known as
classification trees, were a type of predictive model. Random
forests used the Bagging algorithm (Bootstrap Aggregating)
as their core classification mechanism. The process began by
randomly sampling the data to create training datasets. Af-
ter each sampling, the selected data points were returned to
the dataset for the next round of sampling (bootstrap sam-
pling) (Breiman, 2001). This process was repeated multiple
times, resulting in several training datasets, which were then
used to train multiple decision trees. This approach allowed
for scenarios where specific data points were sampled multi-
ple times while others may not. Each decision tree selected
a random subset of features at each node to determine the
best split, ultimately generating predictions from each tree.
The final classification result was determined by aggregating
the predictions of all decision trees through a majority voting
approach, which means that each tree casts one “vote” for a
class label, and the class receiving the most votes becomes
the final prediction. To evaluate the importance of each fea-
ture, the Random Forest model uses the Gini Index (Breiman,
2001), which measures the impurity of a node. A node repre-
sents a point in the tree where the dataset is split based on a
feature, with each node divided using the best split among a
random subset of explanatory variables (Breiman, 2001). A
lower Gini value indicates better class separation. The Gini
Index for a node m is calculated as follows:

Ginim =
∑k

k=1
p̂mk

(
1− p̂mk

)
, (1)

where p̂mk was the probability of a sample at node m be-
longing to class k, and K was the total number of classes.

The Gini Index also supported the out-of-bag (OOB) error
estimation and was commonly used to determine feature im-
portance in classification tasks. Feature importance quanti-
fies how much each variable reduces node impurity and con-
tributes to improving classification accuracy across all trees
in the forest (Belgiu and Drăguţ, 2016; Breiman, 2001; Chen
et al., 2023).

2.6.2 U-Net

Ronneberger et al. (2015) proposed the original U-Net
model, which was devolved from the fully convolutional net-
work (FCN) and was initially designed for biomedical im-
age segmentation. The U-Net model consists of a contracting
path (downsampling) and an expanding path (upsampling)
(Ronneberger et al., 2015). Similar to FCN, U-Net did not
use fully connected layers, and its convolutional layers sig-
nificantly reduced the amount of training data required while
allowing inputs of different sizes. Before entering the con-
tracting or expanding path, the data underwent two consec-
utive convolutional layers, which helped the network extract
target features more effectively. This process also enhanced
the integration of fine details with feature maps, thereby im-
proving segmentation quality. Each convolutional layer was
followed by a rectified linear unit (ReLU) activation func-
tion, which enhances training efficiency without affecting
model accuracy. The pooling layer at the bottom served as
a nonlinear form of downsampling, reducing the spatial size
of the data, decreasing the number of parameters and compu-
tational costs, and helping to control overfitting. Since U-Net
lacked fully connected layers, it effectively minimized infor-
mation loss caused by downsampling while preserving finer
image details.

2.6.3 Data set

The WorldView-2 satellite imagery consists of eight spectral
bands. Based on these eight bands, this study derived 13 veg-
etation indices and 56 texture features, resulting in 77 feature
variables. The original eight bands were incrementally com-
bined with vegetation indices and texture features, forming
four different feature combinations (Table 4).

Ground truth data in the study area were manually la-
beled using a pixel-based approach and categorized into four
classes: (1) bare land, referring to areas of exposed soil,
rock surfaces, or sparsely vegetated ground; (2) forest, de-
fined as regions with dense, continuous tree canopy cover; (3)
krummholz, representing stunted, shrub-like trees typically
found at high elevations near the treeline and shaped by wind
or snow pressure (Liao et al., 2023a); and (4) shadow, repre-
senting regions with low reflectance caused by topographic
shading or solar angle effects. The class definitions were es-
tablished based on visual inspection and field knowledge of
the study area (Fig. 4). The labeling process was indepen-
dent and performed by visually interpreting the pansharp-
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Table 3. Description of texture features calculated using the gray-level co-occurrence matrix (GLCM).

Texture Feature Formula Reference

Contrast (Con)
N−1∑
i,j=0

Pi,j (i− j)2 Yuan et al. (1991)

Dissimilarity (Dis)
N−1∑
i,j=0

Pi,j |i− j | Rubner et al. (2001)

Energy (Ene)
N−1∑
i,j=0

P 2
i,j

Hall-Beyer (2017)

Entropy (Ent)
N−1∑
i,j=0

Pi,j

(
− lnPi,j

)
Yuan et al. (1991)

Homogeneity (Hom)
N−1∑
i,j=0

Pi,j

1+(i−j)2 Hall-Beyer (2017)

Mean (M)
N−1∑
i,j=0

iPi,j Materka and Strzelecki (1998)

Variance (Var)
N−1∑
i,j=0

Pi,j (i−Mean)2 Materka and Strzelecki (1998)

Pi,j is the gray-level co-occurrence matrix after normalization.

Figure 3. Extent of the 2012 and 2021 WorldView-2 images in the Xue Mountain glacial cirques. (a) 2021 image and (b) 2012 image. The
red polygon shows the full 2021 coverage (400 ha), while the transparent area indicates the 2012 image affected by cloud contamination. The
purple outline delineates the cloud-free overlap area (150 ha) used for temporal change analysis.

ened RGB composite imagery, referencing known terrain
characteristics, and assisted by field-collected GNSS survey
points.

Each image (5380× 4671 pixels) was segmented into 110
non-overlapping patches of 512× 512 pixels. The dataset
split was performed at the patch level, to avoid spatial au-
tocorrelation and data leakage (Roberts et al., 2017). Specifi-
cally, 80 % of the patches were randomly selected for training

and validation (with a 75/25 split), and the remaining 20 %
were used as an independent test set. In total, 66 patches were
used for training, 22 for validation, and 22 for testing.

2.6.4 Evaluation Index

This study uses overall accuracy (OA), F1-score, and the
Kappa coefficient as assessment metrics to evaluate classifi-
cation accuracy. The formulas for each metric are explained
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Table 4. Definitions of the four feature combinations used in model training. The table shows the input feature types and their corresponding
dimensionality.

Feature combinations Input feature Feature Dimension

1 spectral band 8
2 spectral band, vegetation indices 21
3 spectral band, texture features 64
4 spectral band, vegetation indices, texture features 77

Figure 4. Ground truth label generation for land cover classification. (a) WorldView-2 RGB composite image from 2021; (b) manually
annotated labels showing four classes: forest, krummholz, bare land, and shadow.

below.

OA=
TP+TN

TP+FP+TN+FN
, (2)

F1-score=
2×TP

2×TP+FP+FN
, (3)

Kappa=
Po−Pe

1−Pe
, with (4)

Po =
TP+TN

TP+FP+TN+FN
, and (5)

Pe =
(TP+FN)× (TP+FP)+ (FP+TN)× (FN+TN)

(TP+FP+TN+FN)2 , (6)

Among them, TP (true positive), TN (true negative), FP (false
positive), and FN (false negative).

2.6.5 Bootstrapping

The bootstrap resampling method was a nonparametric ap-
proach used to estimate the variability and confidence inter-
vals (CIs) of a statistic by repeatedly resampling with re-
placement from the original dataset. It enabled robust in-
ference without assuming a specific data distribution (Efron
and Tibshirani, 1994). The percentile method was commonly
used, in which the 2.5th and 97.5th percentiles of the boot-
strap distribution defined the 95 % CI (Davison and Hinkley,
1997). To ensure stable and reliable estimates, between 1000

and 10 000 bootstrap iterations were generally recommended
(Davison and Hinkley, 1997), with at least 5000 replicates
providing sufficient accuracy for most applications (Carpen-
ter and Bithell, 2000).

3 Results

3.1 Feature combination and feature importance
analysis

This study employed Random Forest (RF) and U-Net models
with four feature combinations to examine land cover classes
in Taiwan’s Xue Mountain glacial cirques in the alpine tree-
line ecotone (ATE) region. Four land cover classes – bare
land, forest, krummholz, and shadow – were investigated us-
ing feature combinations of spectral bands (8 features), veg-
etation indices (13 features), and texture features (56 fea-
tures). The classification results of the RF and U-Net mod-
els with four feature combinations were compared in detail
(Fig. 5 and Table 5). In general, the RF model demonstrated
stable, robust classification performance across various fea-
ture dimensions. Specifically, the average F1-score of the RF
model ranged from 0.823 to 0.839, the overall accuracy (OA)
ranged from 0.817 to 0.830, and the Kappa coefficient ranged
from 0.751 to 0.768 (Table 5). Among all classes, shadow
and bare land achieved the highest F1-scores, both exceed-
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ing 0.85, while forest and krummholz maintained moderate
but stable accuracy, ranging from 0.75 to 0.83. Additionally,
the combination 4 yielded the highest F-1 score in forest and
krummholz classes, indicating that the RF model improved
when vegetation indices and texture features were combined
with spectral information.

Furthermore, the U-Net model exhibited a marked im-
provement after incorporating more features. The F1-score
for the forest class increased significantly from 0.609 for fea-
ture combination 1 (spectral bands only) to 0.828 for combi-
nation 4 (spectral, vegetation indices, and texture features).
Likewise, the F1-score for krummholz improved from 0.696
to 0.778. Bare land and shadow also maintained high accu-
racy above 0.82 across all combinations. The U-Net’s overall
performance metrics (F1-score of 0.840, OA of 0.838, and
Kappa of 0.778 in combination 4) surpassed those of RF, in-
dicating that the U-Net model benefited substantially from
integrating spectral, vegetation, and texture information.

Overall, the results showed that incorporating vegeta-
tion indices and texture features improved classification per-
formance, particularly for vegetation classes in the U-Net
model. Based on the higher F1-score in combination 2 than
combination 3, it implied that vegetation indices contributed
more than texture features. However, the highest F1-score
was obtained in combination 4, indicating a complementary
effect from vegetation indices and texture features. Addition-
ally, the consistency between the classified ATE and field-
observed forest–krummholz transitions further confirmed the
classification’s reliability. Overall, both models maintained
stable performance across different feature combinations,
supporting the robustness of the proposed approach.

Based on the RF and U-Net model results, a further fea-
ture importance analysis was conducted to assess individual
features in combination 4, comprising 77 features, includ-
ing spectral bands, vegetation indices, and texture features.
The feature importance analysis results revealed that the cu-
mulative contribution achieved 95 % interpretability with 61
features. Additionally, the OA and Kappa values improved
slightly to 0.842 and 0.784, respectively. Moreover, com-
putation time was reduced by 14.3 % due to fewer features
(Table 6). According to the feature ranking results, spectral
bands and vegetation indices ranked higher than texture fea-
tures, with SEVI, Y, B, G, and NDVI2 identified as the top
five features (Fig. 6).

3.2 Decadal changes in the alpine treeline ecotone
(ATE)

The U-Net model was trained using the 2021 imagery (cov-
ering ∼ 400 ha) and applied to classify both the 2012 and
2021 datasets. However, since the 2012 image was affected
by cloud cover, only the 150 ha of overlapping cloud-free
area was used for the decadal change analysis. The classifica-
tion results were validated against field survey data collected
in 2021, which recorded vegetation types and tree positions

for two tracks in the study area. As shown in Fig. 7, the clas-
sification results closely align well with the GNSS-measured
tree coordinates recorded during the 2023 field survey. Over
the decade, the proportion of forest area increased by 3.4 %,
indicating a possible trend of green coverage expansion as-
sociate with tree growth, denser canopy, or growing saplings.
Meanwhile, the proportion of shadow area also increased by
8.5 %. which may associate with possible tree growth. Addi-
tionally, krummholz and bare land areas decreased by 3.2 %
and 8.7 %, respectively (Table 7). For the forest category, the
forest area expanded by 10.49 ha and was reduced by 0.4 ha
between 2012 and 2021 (Fig. 8 and Table 8).

Based on the 95th percentile of DEM elevation values
for all pixels classified as forest (Fig. 9), the elevation dif-
ference increased by 32.00 m between 2012 and 2021. The
95 % confidence interval (± 4.00 m) was estimated using a
bootstrap resampling method (5000 iterations). Differences
in area changes across various elevation ranges are detailed
in Table 8, with the most significant changes occurring in
the 3600 to 3700 m range, which corresponds to the primary
treeline ecotone change zone in the Xue Mountain region. In
comparison, the most stable area was observed in the 3700 to
3800 m range, where minimal forest presence was detected in
both 2012 and 2021, reflecting physiological limits of trees.

4 Discussion

4.1 Comparison with previous alpine treeline ecotone
remote sensing studies

Recent advancements in remote sensing technology have en-
abled extensive studies on alpine treelines using imagery at
various spatial resolutions (Garbarino et al., 2023). For ex-
ample, Xu et al. (2020) employed Landsat (30 m) data to
assess treeline–climate relationships in China, reporting an
upward shift of ∼ 50 m per 1 °C increase in temperature. At
medium to high resolution, Rösch et al. (2022) achieved over
90 % classification accuracy for Pinus mugo in the Alps us-
ing PlanetScope (3 m) and Sentinel-2 (10 m) data, emphasiz-
ing the value of multi-source data fusion. At very high res-
olution, Terskaia et al. (2020) combined aerial orthophotos
(1–2 m) and WorldView-2 imagery (0.5 m) to quantify shrub
and tree encroachment in Alaska, detecting substantial vege-
tation transitions over six decades.

Building on prior work, fine-scale mapping of alpine tree-
line ecotones (ATEs) remains difficult because transitional
vegetation is spatially heterogeneous, often includes stunted
or shrubby forms such as krummholz, and exhibits subtle
spectral/structural gradients at meter scales (e.g., Bader et
al., 2021; Nguyen et al., 2022). Our study uses ultra-high-
resolution WorldView-2 imagery (0.4 m) and machine learn-
ing workflows to detect fine-scale transitions within the ATE
(∼ 400 ha) in Taiwan. Concretely, we show that integrat-
ing spectral bands, vegetation indices, and texture (GLCM)
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Table 5. Evaluation of classification accuracy using different feature combinations and models. Average F1-score, Overall accuracy (OA)
and Kappa coefficient are shown for Random Forest (RF) and U-Net models. Numbers in parentheses indicate the number of input features.
Bold values indicate the best results for each metric.

Feature (DIMs) Combinations 1(8) Combinations 2(21) Combinations 3(64) Combinations 4(77)

Method RF U-Net RF U-Net RF U-Net RF U-Net

Average F1-score 0.831 0.765 0.823 0.823 0.826 0.782 0.839 0.840
OA 0.819 0.753 0.817 0.780 0.812 0.819 0.830 0.838
Kappa 0.753 0.666 0.751 0.703 0.743 0.755 0.768 0.778

Figure 5. F1-scores for four land cover classes (forest, krummholz, bare land, shadow) using RF and U-Net models with different feature
combinations.

Table 6. Comparison of model performance before and after fea-
ture selection. Training time is presented in hours. The results show
reduced training time and slightly improved classification accuracy
after feature selection.

Without With Difference
feature feature (%)

selection selection

Training time (h) 7.708 6.608 −14.3
OA 0.838 0.842 +0.4
Kappa 0.778 0.784 +0.4

Table 7. Percentage of each land cover class in 2012 and 2021
classification results. Forest and shadow areas increased over time,
while krummholz and bare land decreased.

Classification Increment/
percentage (%) Year Decrement

2012 2021

Forest 22.5 25.9 +3.4
Krummholz 36.4 33.2 −3.2
Bare land 38.1 29.4 −8.7
Shadow 3.0 11.5 +8.5

features at sub-meter resolution enables reliable separation
of krummholz from closed-canopy forest – an underrepre-
sented class distinction in many alpine studies (cf. Korznikov
et al., 2021; Nguyen et al., 2022). This demonstrates the
novelty and practical value of combining modern machine-
learning segmentation with ultra-high-resolution imagery to
fine-scale analyze the alpine treeline ecotone (ATE) in sub-
tropical mountain environments. Related recent work simi-
larly highlights the need for meter-scale approaches to cap-
ture ATE patterns and dynamics (Zou et al., 2022; Carrieri et
al., 2024).

4.2 Alpine treeline ecotone changes and spatial
patterns

Our findings reveal that, from 2012 to 2021, the forest class
of alpine treeline ecotone (ATE) in the Xue Mountain glacial
cirque shifted upward by 32.00± 4.00 m, accompanied by
a pronounced densification of forest cover. This finding
aligns with patterns observed in other mountainous regions
worldwide. For example, in Taiwan’s Hehuan Mountain and
Yushan, similar upward shifts in treeline position and in-
creases in forest density have been reported (Greenwood et
al., 2014; Chung et al., 2021). Likewise, Davis et al. (2020)
observed an upslope advance of 0.83± 0.67 m yr−1 for sev-
eral tree species in the Rocky Mountains of Canada. In con-
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Figure 6. Feature importance ranking derived from the Random Forest model. Features are ranked based on their contribution to classification
accuracy, with the top-ranked features including SEVI, Y (yellow), B (blue), G (green), and NDVI2. Most of the top features are spectral
bands and vegetation indices, while texture features rank lower.

Figure 7. Comparison of satellite imagery and classification results from 2012 and 2021. Panels (a) and (c) show high-resolution satellite
images for 2012 and 2021, respectively. Colored boxes in these images indicate the enlarged areas shown in (b) and (d). Panels (b) and (d)
present the classification results of the corresponding enlarged regions using a U-Net model trained with 61 selected features. Triangles mark
field survey locations.
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Table 8. Forest area, expansion, and reduction across different elevation from 2012 to 2021. The table includes forest area in 2012, net
changes in area, and corresponding percentage changes.

Elevations (m) Forest Area Expansion Reduction Net Change Change
in 2012 (ha) area (ha) area (ha) (ha) (%)

3300–3400 6.99 0.28 0.03 0.25 3.6
3400–3500 12.43 2.21 0.08 2.13 17.1
3500–3600 8.40 5.10 0.23 4.87 58.0
3600–3700 3.26 2.88 0.06 2.82 86.4
3700–3800 0.78 0.02 0.00 0.02 2.5

Figure 8. The spatial distribution of ATE area changes from 2012 to 2021. ATE expansion is marked in dark cyan, reduction is marked in
dark red, persistence is marked in dark blue, and field survey point in purple.

trast, studies in the European Alps have noted significant re-
ductions in snow cover and increased alpine vegetation pro-
ductivity, potentially enhancing local carbon sequestration,
although with a limited global impact (Rumpf et al., 2022).
Additionally, in the eastern Himalayas, over 80 % of trees
have already reached the thermal treeline, with projected up-
slope migration of 140 m by the end of the 21st century due
to warming (Wang et al., 2022). These comparisons sup-
port the robustness of our observed treeline ecotone dynam-
ics and highlight both global consistency and regional vari-
ation in alpine ecosystems response to climate change. It
should be noted that the temporal comparison was limited
to the ∼ 150 ha cloud-free overlap between 2012 and 2021
imagery, which may slightly underestimate the total forest
expansion within the broader 400 ha study area.

Despite the overall satisfactory classification performance,
some confusion between forest and krummholz was ob-
served due to their similar canopy structures and spectral re-
flectance. This misclassification occurred mainly along the
transition between dense forest to stunted krummholz. How-
ever, this issue had only a limited influence on the over-
all outcomes. Field survey validation confirmed that the
classified treeline boundaries were consistent with the ob-
served forest–krummholz transitions in situ, and both RF
and U-Net models maintained high accuracies (OA > 0.83,
Kappa > 0.76). Therefore, the local confusion slightly af-
fected boundary precision but did not alter the overall trend
of the alpine treeline ecotone. To further minimize this ef-
fect in future work, incorporating structural features, such
as LiDAR-derived canopy height models, could improve
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Figure 9. Bootstrap distribution of the 95th percentile elevation
of forest cover for 2012 and 2021. The histogram shows the fre-
quency of estimated 95th percentile elevations (P95) based on re-
sampling. Green bars represent 2012 estimates, while blue bars rep-
resent 2021. The dashed vertical lines indicate the mean P95 value
for each year.

discrimination between forest and krummholz and enhance
classification reliability.

Regarding alpine treeline ecotone spatial patterns, Bader
et al. (2021) classified alpine treeline patterns into discrete
and gradual categories, further distinguishing them into grad-
ual, diffuse, abrupt-diffuse, abrupt, and tree island tree-
lines. Based on the classification results derived from high-
resolution satellite imagery, this study identified the treeline
patterns in the Xue Mountain glacial cirque as abrupt and
tree island treeline patterns. However, additional long-term
field observations are required to further investigate the un-
derlying treeline dynamics and demographic processes (Liao
et al., unpublished data).

4.3 Feature importance

In this study, a total of 77 features were derived from the
satellite imagery, including 8 spectral bands, 13 vegetation
indices, and 56 texture features. To improve model efficiency,
we ranked features using the Random Forest (RF) model
and selected the top 61 features, which accounted for 95 %
of the cumulative importance. Among them, SEVI, Yellow
(Y), Blue (B), Green (G), and NDVI2 were identified as the
most important for classifying the treeline ecotone. Notably,
most of the top-ranked features were spectral or vegetation
index variables, whereas texture features contributed less to
the classification. The feature selection slightly improved the
overall accuracy (+0.4 %) and the Kappa coefficient. Al-
though OA was used as the primary selection criterion, the
analysis also confirmed that the selected features maintained
or improved F1-scores for the forest class, the primary focus
of detecting treeline changes. It should be noted that opti-

mizing overall accuracy (OA) values may sometimes over-
look minority or ecologically important classes. Therefore,
we specifically examined the F1-score for the forest class –
our primary concern for treeline detection – and verified that
its classification performance was not compromised. This
indicates that our feature selection strategy effectively bal-
anced overall model performance with the accuracy of the
most ecologically relevant land-cover category.

Although the numerical improvement in overall accuracy
appears modest, such enhancement is ecologically meaning-
ful. Even slight gains in classification precision can improve
the detection of subtle land cover transitions, particularly the
identification of forest expansion boundaries in alpine tree-
line ecotones. These improvements strengthen the ecological
interpretation of spatial change dynamics and provide a more
reliable foundation for long-term monitoring (e.g., Bader et
al., 2021; Wang et al., 2022).

These findings align with previous studies on vegetation
classification using multispectral satellite imagery, though
the most informative spectral bands may vary depending
on the sensor, study region, and forest type. For instance,
studies using Sentinel-2 imagery (10–20 m resolution) found
the shortwave infrared (SWIR), red, and near-infrared (NIR)
bands to be particularly effective in forest classification tasks.
Bolyn et al. (2018) identified SWIR, red, and NIR as the
most important features for classifying forest types, while
Immitzer et al. (2019) emphasized the role of red and NIR
in time-series-based tree species mapping. Similarly, Hoś-
ciło and Lewandowska (2019) reported improved forest type
discrimination when using multi-temporal red, NIR, and red-
edge bands. In contrast, studies using WorldView-2 imagery
(high-resolution, 0.4–1.6 m) revealed different key spectral
bands. Abutaleb et al. (2021) found that the green, yellow,
red, and NIR2 bands were most relevant for mapping euca-
lyptus trees in a subtropical environment. On the other hand,
Immitzer et al. (2012) reported that blue, green, red, and
NIR1 bands were particularly effective in classifying conif-
erous forest types in Austria.

These variations underscore the contextual nature of fea-
ture importance, suggesting that optimal band selection de-
pends on factors such as spatial resolution, vegetation struc-
ture, and topographic complexity. Our results – emphasizing
SEVI, Y, B, G, and NDVI2 – are well-suited to the alpine
treeline ecotone in Taiwan, where coniferous species such as
Abies kawakamii dominate.

5 Conclusions

This study investigates changes in the alpine treeline eco-
tone (ATE) of the Xue Mountain glacial cirques in Taiwan
from 2012 to 2021, utilizing WorldView-2 imagery inte-
grated with Random Forest and U-Net models. The alpine
treeline ecotone (ATE) in Xue Mountain glacial cirques
was a transitional ecotone where krummholz species – such
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as Yushan juniper (Juniperus morrisonicola) and Yushan
rhododendron (Rhododendron pseudochrysanthum) – begin
to appear within the alpine talus slope. By incorporating
spectral bands, vegetation indices, and texture features, we
achieved high classification accuracy and computational ef-
ficiency for detailed delineation, supported by both satel-
lite classification results and GNSS-referenced field survey
data. The classification results could provide a basis for
further analysis, including ATE patterns, microenvironment
conditions, and how vegetation interacts with the microen-
vironment under climate change scenarios. Feature selec-
tion identified the most important variables as the Shadow-
Eliminated Vegetation Index (SEVI), Yellow (Y), Blue (B),
Green (G) bands, and Normalized Difference Vegetation In-
dex (NDVI2), which can serve as key information for for-
est management and monitoring. Over the past decade, the
study area gained approximately 10.09 ha of forest cover, in-
dicating that trees grew, canopies became denser, or saplings
increased. Additionally, the upper limit of forest distribution
shifted upslope by 32.00± 4.00 m, revealing that forests ex-
panded to higher elevations. These findings offer new in-
sights into ATE dynamics in Taiwan’s alpine environment
and demonstrate the potential of integrating machine learn-
ing techniques with high-resolution satellite imagery for
long-term ecological monitoring.
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