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Abstract. Forest soils are generally considered a sink for
atmospheric methane (CH4), but their uptake rate can vary
considerably in space and time. This study investigated
the role of topography and vegetation on soil CH4 fluxes
and the temporal patterns of spatially upscaled soil CH4
fluxes in a topographically complex cold-temperate moun-
tain forest in central Japan. We measured soil CH4 fluxes
nine times during the snow-free season at multiple loca-
tions within a 40 ha area in a forested watershed. Non-
waterlogged soils were a sink of CH4, while small wetland
patches emitted CH4 consistently throughout the study pe-
riod. We used a machine-learning approach to upscale the
measured soil CH4 fluxes to the landscape scale for non-
waterlogged soils at each date of measurement, using to-
pographic and vegetation attributes derived from a digital
elevation model and aerial images. The accuracy of pre-
dicted fluxes varied seasonally, with the highest model per-
formance observed in early autumn (R2

= 0.67) and the low-
est in mid-summer (R2

= 0.31). Predicted CH4 fluxes varied
significantly across topographic positions, with greater up-
take on ridges and slopes than on the plain and foot slopes.
Topography played a predominant role compared to veg-
etation in the spatial variability of CH4 fluxes. Predicted
CH4 fluxes at the landscape scale in the non-waterlogged
area ranged from −0.34 to −0.60 gCH4 ha−1 h−1 in spring,
−0.39 to −1.28 g CH4 ha−1 h−1 in summer, and −0.48
to −0.89 gCH4 ha−1 h−1 in autumn. Seasonal fluxes were
highly correlated with the 20 d antecedent precipitation in-
dex (R2

= 0.70), revealing the importance of seasonal mois-
ture conditions in regulating CH4 flux dynamics. This study
highlighted the importance of topography in controlling soil
CH4 fluxes and the efficiency of remote sensing and ma-
chine learning approaches to scale field measurements to the

landscape level, enabling visualization of spatial patterns of
fluxes across the landscape over time, despite high uncer-
tainty on some measurement dates, particularly for low el-
evation pixels.

1 Introduction

Methane (CH4), the second most important anthropogenic
greenhouse gas, contributes substantially to the anthro-
pogenic radiative forcing and is responsible for approxi-
mately 0.5 °C of current global warming compared to 1850–
1900 (IPCC, 2023). Natural wetlands (149 TgCH4 yr−1) and
rice cultivation (30 Tg CH4 yr−1) are important sources of
CH4; in contrast, non-waterlogged soils are considered a bio-
logical sink of atmospheric CH4, with an estimated uptake of
25–45 Tgyr−1, contributing 5 %–7 % to the global CH4 sink
(Saunois et al., 2020). Forest soils account for approximately
60 % of global soil CH4 uptake (Dutaur and Verchot, 2007),
and soil uptake rates are particularly high in Japanese moun-
tain forests due to their high porosity (Ishizuka et al., 2000).
CH4 uptake by forest soils is driven by methane-oxidizing
bacteria in oxic soil layers, whereas anaerobic environments
such as wetland soils are usually dominated by methanogenic
archaea producing CH4 (Christiansen et al., 2016). CH4 pro-
duction can also occur in non-waterlogged soils, either in
deeper soil layers or in microsites located in otherwise well-
aerated soil layers, if anaerobic conditions prevail (Angel et
al., 2012). Hence, CH4 oxidation and production can occur
simultaneously at the same location, contributing to the net
flux.

Net soil CH4 fluxes depend mainly on the soil air-filled
porosity (AFP), which in turn depends on total porosity and
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soil water content. A high AFP enhances gas diffusion in
soil and, consequently, microbial CH4 oxidation (Kruse et
al., 1996). Soil organic matter at the soil surface can act as a
physical barrier to atmospheric CH4 diffusion and reduce the
CH4 uptake rate (Yu et al., 2017). Conversely, carbon sub-
strates released by the decomposition of soil organic matter
can increase CH4 oxidation activity either by directly stim-
ulating the growth of methanotrophs or by promoting CH4
production in anaerobic microsites and indirectly support-
ing the growth of methanotrophs (West and Schmidt, 1999).
Additionally, soil nutrients can influence soil CH4 fluxes
by regulating the soil microbial community. The activity of
methanotrophic microorganisms is affected by the availabil-
ity of inorganic nitrogen (Bodelier and Laanbroek, 2004).
Although methanotrophic activity can be nitrogen-limited in
forest soils (Veldkamp et al., 2013), increasing ammonium
(NH+4 ) concentration often reduces CH4 uptake due to com-
petitive inhibition by NH+4 of the enzyme methane mono-
oxygenase, which can oxidize both CH4 and NH+4 . Nitrate
(NO−3 ) can also be a potent inhibitor of CH4 oxidation in
some soils (Mochizuki et al., 2012). Although temperature
affects microbial activities, including methanogenesis and
methanotrophy (Luo et al., 2013; Praeg et al., 2017), CH4
uptake is generally less sensitive to changes in soil tempera-
ture than in soil moisture (Epron et al., 2016).

Topography and vegetation cover can create a predictable
distribution of soil moisture and nutrients across topographi-
cally complex landscapes (Jeong et al., 2017; Murphy et al.,
2011). In Japan, forests cover 68 % of the land, mostly in
mountain areas. Conifers account for 44 % of the total forest
area (Lundbäck et al., 2021; Nakamura and Krestov, 2005).
Topography is a critical determinant of soil hydrological con-
ditions, from well-drained slopes to waterlogged riparian ar-
eas (Kaiser et al., 2018). Topography can also impact soil nu-
trient availability by altering leaf litter accumulation and the
movement of soil nutrients (Osborne et al., 2017; Tateno and
Takeda, 2003). The spatial distribution of trees, differences
in species abundance across the landscape, and variation in
litter chemistry often create heterogeneity in soil nitrogen cy-
cling (Osborne et al., 2017). Furthermore, differences in stem
flow and throughfall related to differences in canopy struc-
ture between tree species can indirectly influence spatial pat-
terns of soil moisture (Holwerda et al., 2006).

In situ chamber measurements have long been the dom-
inant method for studying CH4 fluxes in forests, provid-
ing insight into the processes that drive them (Brumme and
Borken, 1999; Guckland et al., 2009; Itoh et al., 2009). Until
recently, most studies reported spatially average flux values
measured at several locations (Gomez et al., 2016; Itoh et al.,
2009). This method is acceptable for small patches of ho-
mogeneous landscapes, such as crops or single-species tree
plantations in flat terrain. However, it is inappropriate for
more complex landscapes, as the number of sampling points
required to obtain an accurate spatially-averaged flux would
increase considerably.

In complex terrains, measurement locations can be
grouped into several distinct categories according to land-
forms (Courtois et al., 2018; Gomez et al., 2016; Itoh et al.,
2009; Kagotani et al., 2001; Kaiser et al., 2018; Warner et al.,
2018), soil microtopographic features (Epron et al., 2016),
vegetation characteristics (Guckland et al., 2009), or land
uses (Jacinthe et al., 2015). However, as Vainio et al. (2021)
pointed out, aggregation assumes spatial homogeneity of
fluxes within each category or requires a large number of
sampling points to capture the spatial heterogeneity, and this
approach ignores the spatially continuous nature of soil pro-
cesses and their drivers.

More recently, regressions with multiple landscape at-
tributes derived from remote sensing-based maps have been
successfully applied to upscale CH4 to a catchment scale
(Kaiser et al., 2018). Recent studies conducted on a 12 ha
forested watershed (Warner et al., 2019), a 10 ha boreal for-
est plot (Vainio et al., 2021), two northern peatland-forest-
mosaic catchments of 450 and 790 ha, respectively (Räsä-
nen et al., 2021), and a 450 ha subarctic tundra (Virkkala et
al., 2024) have demonstrated the effectiveness of machine-
learning modelling approaches for upscaling CH4 fluxes
from remote sensing data.

Soil CH4 fluxes exhibit strong spatiotemporal variability
in temperate mountain forests, and robust large-scale esti-
mates remain scarce despite their importance for consoli-
dating the global methane budget because upscaling fine-
scale chamber-measured CH4 fluxes requires an explicit un-
derstanding of their spatial and seasonal heterogeneity. We
assessed the role of terrain attributes (topography, vegeta-
tion) on methane fluxes throughout the snow-free season in
a topographically complex mountain landscape, and how the
spatial heterogeneity of predicted fluxes and the aggregated
fluxes at the landscape level vary over time. We measured
soil CH4 fluxes several times during the snow-free season
at multiple locations within a 40 ha area in a forested wa-
tershed. We applied a random forest machine-learning ap-
proach in combination with terrain attributes from remotely
sensed data, i.e., a digital elevation model (DEM) and a veg-
etation map derived from aerial images, to upscale measured
soil CH4 fluxes to the landscape level. We hypothesized that
(1) terrain attributes related to water accumulation are reli-
able predictors of soil CH4 fluxes, (2) spatial patterns of un-
certainties in predicted soil CH4 fluxes vary seasonally due
to a wet early summer influenced by the East Asian mon-
soon, (3) predicted soil CH4 fluxes vary within the landscape
depending on topography and vegetation, and (4) seasonal
variations of CH4 flux at the landscape scale are explained
by recent past precipitations.
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2 Materials and methods

2.1 Description of the study site and experimental
design

This study was conducted in the forested upper Yura River
watershed (520 ha, 35.34° N; 135.76° E) located at the Ashiu
Experimental Forest of Kyoto University in northeastern Ky-
oto Prefecture, Japan (Fig. 1). The mean annual tempera-
ture and precipitation were 10.3 °C and 2732 mm, respec-
tively, between 2011 and 2020 and the ground was covered
by snow (2–3 m depth) from mid-December to mid-April
(Epron et al., 2023). The study area is characterized by a
cool-temperate monsoon climate, with a very humid early
summer (520 mm in June and July on average between 2011
and 2020) and occasionally heavy precipitation caused by ty-
phoons in late summer. The soils in the study area are clas-
sified as brown forest soils according to the Classification of
Forest Soils in Japan (cambisols according to the FAO clas-
sification), with a relatively thick brownish-black A horizon
with a crumb structure and a brown B horizon with a blocky
structure (Hirai et al., 1988; Ueda et al., 1993). The for-
est is primarily dominated by Cryptomeria japonica D. Don
(Japanese cedar, 73 % of the basal area in four 1 ha census
plots), mixed with more than 50 broadleaved species (Ishi-
hara et al., 2011).

The study site covered an area of 40.2 ha and included 55
sampling points for CH4 flux measurements and soil sam-
pling (Fig. 1). The sampling points were chosen along three
transects perpendicular to the main river, from the plain to the
ridges covering two slopes (south-facing and north-facing),
as well as in a lateral canyon, and along transects parallel
to the main river, on the plain, above the foot slope and on
a ridge. The sampling was designed to encompass the land-
scape heterogeneity, while being constrained by the geogra-
phy of the site and safety considerations. We recorded the po-
sitions of all sampling locations using a portable GPS tracker
(Garmin, eTrex® Touch 35) accurate to a radius of 5 m or
less.

2.2 Soil sampling and analysis

Soil cores were collected using a sampling cylinder at 0–
10 cm depth at approximately 0.3 m of the flux measure-
ment points. Samples were sieved at 2 mm and separated into
stones and fine earth. The fresh weight of the fine earth frac-
tion was measured before being air-dried. Bulk density of
this fraction was determined as the ratio of oven-dried soil
(subsample dried at 105 °C) to the soil volume. Soil texture
was analysed using the micro-pipette method, following Burt
et al. (1993). Total soil carbon (C) and nitrogen (N) con-
tents were measured using a Macro Corder JM 1000CN (J-
SCIENCE LAB Co., Ltd., Japan). The soil pH was measured
in a suspension (10 g of soil in 25 mL distilled H2O) after
shaking for 1 h.

2.3 Topographic characterization

To characterize and process the terrain attributes related to
soil CH4 fluxes, we used a 0.5 m grid digital elevation model
(DEM) based on airborne laser surveys conducted through-
out the upper Yura River watershed in 2012 by the Ashiu
Experimental Forest staff. The DEM was further processed
and conditioned into a 5 m grid DEM image according to the
GPS tracker’s accuracy (≤ 5 m) that was used to locate each
soil collar position, enabling us to identify the corresponding
pixels on the terrain attribute grids. We derived several to-
pographic attributes from the DEM using SAGA Next Gen-
eration in QGIS (v3.34.5-Prizren). The calculated attributes
included slope, profile curvature (PrC), topographic position
index (TPI), SAGA wetness index (SWI), and vertical dis-
tance to channel network (VDCN). Among the many at-
tributes that can be derived from a DEM, we avoided se-
lecting those that would be redundant to limit collinearities
and overparameterization. Our preselection was motivated
by the fact that methane fluxes result from the activity of
methanotrophic and methanogenic communities, which are
controlled by soil moisture and chemistry (C, N, pH), and,
to a lesser extent, temperature. All the preselected attributed
were correlated with soil moisture and chemistry (Table A1)
and can potentially serve as a proxy for the spatial distribu-
tion of soil moisture and nutrient availability (Jeong et al.,
2017; Kemppinen et al., 2018).

Slope, and profile curvature were calculated following the
9-parameter 2nd order polynom method (Zevenbergen and
Thorne, 1987). Negative values of profile curvature indicate
a convex surface where the flow of water accelerates as it
moves downslope; in contrast, positive values suggest a con-
cave surface where the flow slows down (Pachepsky et al.,
2001).

SWI is a refined version of the topographic wetness in-
dex (TWI) (Beven and Kirkby, 1979), which indicates that
the spatial distribution of soil moisture is defined as TWI=
ln(SCA/ tanO), where SCA refers to the specific catchment
area and O is the local slope. SWI considers small differ-
ences in elevation values by using an iterative modification of
the specific catchment area, assuming rather homogenous hy-
drologic conditions in the flat areas. The SWI was calculated
using the SAGA wetness index algorithm, which is available
in the SAGA library and integrated within QGIS (Conrad et
al., 2015). Prior to computation, the DEM was hydrologically
corrected by filling sinks to ensure continuous flow routing
(Wang and Liu, 2006).

TPI describes the relative position of a location within a
landscape, indicating whether it is on a ridge, slope, or valley
based on the elevation compared to the surrounding terrain at
a specified radius (Ågren et al., 2014). Positive values indi-
cate ridges; negative values indicate depressions, and zero or
near-zero values indicate slopes or flat areas. TPI is a highly
scale-dependent variable and was calculated at the centre of
circular areas with radii of 20, 30, and 50 m using the un-
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Figure 1. Map of the upper Yura River watershed with its location in Japan on the left and an enlargement of the 40.2 ha study area on the
right. The green triangles represent the 52 flux measurement locations on unsaturated soils and the red dots the 3 measurement locations on
waterlogged soils. (Japan map: http://www.gsi.go.jp/ENGLISH/page_e30286.html, last access: 18 November 2025).

filled DEM. In our final model, we used TPI calculated with
a 30 m radius, as it had the highest Spearman correlations
with soil physical and chemical properties that influence soil
CH4 fluxes (Table A1).

VDCN was calculated as the elevation difference between
each grid cell and the baseline of the nearest stream channel.
This parameter serves as a proxy for groundwater depth, with
lower VDCN values typically corresponding to areas with
shallower groundwater and higher water tables, and higher
values indicating deeper groundwater levels often found at
higher topographic positions (Bock and Köthe, 2008). To cal-
culate VDCN, the filled DEM was first used to create a flow
accumulation layer using the multiple flow direction method
(Freeman, 1991). The resulting flow accumulation raster was
then used to create topographically defined flow channel net-
works, applying flow initiation thresholds of 0.5, 2.5, and
5 ha. VDCN then subsequently calculated for each threshold.
In our final model, we used VDCN calculated with a 5 ha ini-
tiation threshold, as it has the highest Spearman correlations
with soil physical and chemical properties that influence soil
CH4 fluxes (Table A1).

The site was classified into non-waterlogged areas (includ-
ing ridges, slopes, foot slopes and plains as topographic po-
sitions where the soil is almost always unsaturated), wet-
lands (small patches with water-saturated soil year-round
in the plain), and rivers. To distinguish wetland and non-
waterlogged areas, we collected additional GPS positions at
the edges and within the three wetland patches, in addition to
the positions of the 55 sampling points. We then used SWI,
PrC, slope, and VDCN to predict the locations of wetlands

using a machine learning approach described in the Supple-
ment (Sect. S1). Finally, the boundaries between wetlands
and non-waterlogged areas were refined by visual inspection.
We acknowledged that using a fixed boundary between non-
waterlogged areas and wetlands, although these boundaries
may vary seasonally depending on the balance between pre-
cipitation and evaporation, may increase uncertainties in CH4
flux prediction. Predicting the temporal variations of these
boundaries was beyond the scope of this work, and, at our
site, wetlands represent only 1 % of the pixels (see below),
and their boundaries even less. A posteriori, pixels classified
as wetland had SWI values above 8.1, profile curvature be-
tween−0.003 and 0.001, slope values below 6.8, and VDCN
values below 2.2 (Fig. S1). For river mapping, pixels cor-
responding to rivers were identified in the channel network
raster, which was calculated using a 5 ha initiation threshold.
Slope angle and TPI at 30 m radius were used to partition
the non-waterlogged areas into ridges, slopes, foot slopes,
and the plain. Locations with TPI values of 5 or greater were
defined as ridges, representing locally elevated, convex sur-
faces. Locations with TPI values ≤−5 were defined as foot
slopes, concave surface. Areas with intermediate TPI values
(−5< TPI< 5) were further divided according to slope an-
gle: sites with slope > 18° were defined as slopes, and those
with slope ≤ 18° were defined as plains. Non-waterlogged
areas, wetlands, and rivers, accounted for 94 %, 1 %, and 5 %
of the total study area, with respectively 52 sampling points
located in non-waterlogged areas, including 14 in plains, 9
in foot slopes, 16 in slopes, and 13 in ridges, while 3 were
situated in wetland areas.

Biogeosciences, 23, 683–708, 2026 https://doi.org/10.5194/bg-23-683-2026
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2.4 Vegetation classification

Tree inventory was conducted during the flux measurement
period to classify the vegetation surrounding the flux mea-
surement points. A circular plot with a 10 m radius was es-
tablished, centred at each flux measurement point. Within the
plot, all trees were identified at the species level, and their di-
ameter at breast height (DBH) was measured. We calculated
the plot basal area (BA) as the sum of the cross-sectional
areas (CSA) at breast height of all tree trunks in each plot,
and subsequently determined the relative basal area of conif-
erous trees (RBACON) in each plot. Then, we predicted the
BA and RBACON for the entire study area using SWI, TPI,
VDCN, and the normalized vegetation index (NDVI) using
a machine learning approach described in the Supplement
(Sect. S2, Fig. S2). Vegetation density was classified into
three categories based on the quantile distribution of BA:
high (BA > 2.6, upper quartile), medium (0.9< BA< 2.6,
interquartile range), and low (BA > 2.6, lower quartile).
High, medium, and low vegetation density accounted for
37 %, 37 % and 26 % of the total study area (Fig. S3), repre-
sented by 14, 28 and 10 sampling points, respectively. Veg-
etation types were classified based on RBACON. Three types
were defined: coniferous when RBACON was higher than
0.75, broadleaf when it was lower than 0.25, or mixed (com-
prising both conifers and broadleaved trees). These three
types accounted 6 %, 22 % and72 % of the total study area
(Fig. S3), represented by 11, 19 and 22 sampling points, re-
spectively.

2.5 Flux measurements

Soil CH4 fluxes were measured using a static, non-steady-
state, non-flow-through system composed of a dark acrylic
chamber (20 cm diameter and 12.5 cm height) connected to
a cavity-enhanced absorption spectroscopy gas analyser (Li
7810, Licor; Lincoln, USA) with two PTFE tubes, each 1.8 m
long and 4 mm in inner diameter. One week before the first
measurements, a 20 cm diameter, 9 cm tall PVC collar was
inserted approximately 5 cm into the soil at each sampling
point. Flux from each collar was measured on nine occa-
sions in 2023: in early spring after snowmelt (27 April), mid-
spring (12 May), late spring (31 May), early summer (6 July),
mid-summer (26 July), late summer (4 September), early au-
tumn (7 October), mid-autumn (7 November), and late au-
tumn (30 November). When measuring fluxes from the three
small wetland patches, we took care to avoid trampling the
soil near the collars, taking advantage of the abundant pres-
ence of stones and coarse woody debris.

To measure soil CH4 flux, the chamber was placed on the
collar, and changes in CH4 and CO2 concentrations inside
were recorded for 4 min at a frequency of 1 Hz. The slope
of the linear regression of CH4 concentration over time was

used to calculate the soil CH4 flux:

FCH4 =
1[CH4]

1t
×

V ×P

A×R× T
(1)

where FCH4 is the soil CH4 flux, 1[CH4]
1t

is the slope of the
linear change in CH4 concentrations over time, V is the sys-
tem volume (chamber, collar above the ground, tubes, and
analyser), A is the soil area covered by the collar, and R is
the ideal gas constant (8.314 J K−1 mol−1). A constant value
of 93 525 Pa for an elevation of 650 m was used for the at-
mospheric pressure (P ). The slope was calculated over 90 s
following Epron et al. (2023). The R2 of the linear variation
of CH4 concentration was less than 0.9 for a single measure-
ment, and for this measurement, the R2 of the linear varia-
tion of CO2 concentration was 0.99, indicating that the low
R2 for CH4 was due to the near-zero CH4 flux and not to an
erroneous measurement.

Soil moisture content and soil temperature near each collar
were recorded on each measurement date using a soil mois-
ture probe (SM150-T Device, Cambridge, UK) and a digital
thermometer.

2.6 Climatic data

Air temperature and rainfall were measured every 10 min at
a nearby weather station operated by the Field Science Ed-
ucation and Research Centre of Kyoto University. The an-
tecedent precipitation index (API), an indicator of soil mois-
ture conditions, was calculated using the following equation:

APIn =
n∑
t=1

Pt × k
t (2)

where, Pt is the precipitation during day t , k is the recession
coefficient, and n is the number of antecedent days. The pa-
rameter k accounts for the water removed from the soil by
evapotranspiration and drainage.

2.7 Modelling

We applied quantile regression forests (QRF) introduced by
Meinshausen (2006), an extension of the random forests (RF)
algorithm. RF is an ensemble learning method that builds
a set of regression trees, and the final prediction is the av-
erage of all the regression trees, which are evaluated using
out-of-bag cross-validation (Breiman, 2001). The QRF al-
gorithm estimates the full conditional distribution of the re-
sponse variable as a function of its predictors, not just the
mean as with the original RF algorithm. Therefore, it is pos-
sible to extract the prediction interval for each pixel across
the landscape for each measurement period. We used the five
terrain attributes (slope, PrC, TPI at 30 m radius, SWI, and
VDCN at 5 ha initiation threshold), basal area (BA), and rel-
ative basal area of coniferous trees to BA (RBACON) as pre-
dictors. Our strategy was to directly predict CH4 fluxes using
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topographic and vegetation variables as proxies for soil mois-
ture and chemistry, because incorporating soil moisture and
chemistry as predictors, which would need to be extrapolated
to the landscape level, would introduce additional layers of
uncertainty. Unfortunately, the machine learning model was
unable to accurately reproduce the measured fluxes when
wetland measurements were included in the training dataset,
likely due to the imbalance between the 52 non-waterlogged
and only 3 wetland sampling points. The comparison of mod-
els including and not including wetland data is shown in Ta-
ble A2 (3 of 55 collars for data, less than 1 % of the landscape
pixels). Patches, which had temporarily water-saturated soils,
were not excluded.

We followed three steps to develop models for predicting
soil CH4 fluxes at each measurement period. Before apply-
ing QRFs, we eliminated the less important variables and
identified the most relevant predictors for each measurement
date, using a variable selection algorithm for random forest
models proposed by Genuer et al. (2010) and implemented in
the “VSURF” package for R (Genuer et al., 2015). This ap-
proach systematically uses a repeated cross-validation pro-
cedure to rank variables by their importance index and it-
eratively eliminates the least informative ones to minimize
model error. The result is a refined subset of predictors that
enhances model interpretation and predictive performance.
The predictor reduction approach has previously been used
to map CH4 fluxes (Räsänen et al., 2021; Warner et al., 2019)
and soil properties (Jeong et al., 2017; Miller et al., 2015).

After selecting the relevant predictor variables, the QRF
models were trained to predict CH4 fluxes using the R-
packages “caret” (Kuhn and Johnson, 2013) and “quantreg-
Forest” (Meinshausen, 2017). The mtry parameter, which de-
termines the number of randomly selected predictor variables
at each node, was tested from 2 to n− 1 (n being the total
number of predictors) using leave-one-out cross-validation
to minimize prediction error and maximize the variance ex-
plained by the model. The ntree parameter was set to 500,
ensuring the model constructed an ensemble of 500 deci-
sion trees. For each of the nine measurement dates, model
accuracy was evaluated based on the root mean square er-
ror (RMSE) and coefficient of determination (R2). R2 was
calculated as the square of the correlation between observed
and cross-validated predicted fluxes, as implemented in the
“caret” package. Furthermore, we calculated the variable’s
importance scores using the “vip” R-package (Greenwell and
Boehmke, 2020). Variable importance scores were estimated
using a permutation-based approach, in which the values of
each predictor in the training data were randomly permuted
to assess the resulting change in model performance, as quan-
tified by the adjusted R-squared value. A greater reduction
in adjusted R2 indicated a higher importance of the predictor
variable. We generated the accumulated local effect (ALE)
plots to visualize the response of CH4 fluxes to the predictor
variables, accounting for the effect of the predictors in the
model (Apley and Zhu, 2020). In ALE plots, an ALE value

of zero on the y axis corresponds to the mean predicted CH4
flux, with positive values indicating higher and negative val-
ues indicating lower flux under the specific predictor on the
x axis. ALE reduces a complex machine learning function to
depend on only one or, in some cases, two input variables,
and visualizes the effect of a selected variable on the pre-
dicted CH4 flux. The method removes the confounding ef-
fects of other input variables, computes the partial derivatives
(local effects) of the prediction function with respect to the
variable of interest, and integrates (accumulates) these effects
across the range of that variable.

The output of the QRFs was a set of conditional prediction
distributions of CH4 fluxes for each landscape pixel and mea-
surement dates. Because these prediction distributions were
often not normally distributed, the median of the conditional
prediction distribution at each pixel was used as the final pre-
diction, and the interquartile range of the distribution was
used to quantify the uncertainty in the prediction (Warner
et al., 2019). Prediction uncertainties were expressed as a
percentage (i.e., interquartile range of the conditional pre-
diction distribution divided by the median). Modelling was
conducted independently for each of the nine measurement
dates, without including meteorological data, as in previous
studies (Vainio et al., 2021; Warner et al., 2019).

2.8 Statistical analysis

We used analysis of variance (ANOVA) to test the differences
in soil properties across the topographic positions and veg-
etation types and densities. Interactions were not included
because the model would be rank-deficient as there were no
“pure” broadleaved plots on the ridge. We examined the rela-
tionships between soil properties and topographic and vege-
tation variables using Spearman’s rank correlation analysis
using the ‘Hmisc’ package (Harrell, 2003). Linear mixed-
effect models (LMM) were used to test the relationship be-
tween the predicted fluxes at pixel levels and measured fluxes
(fixed effect), with flux measurement dates as a random ef-
fect and between the predicted soil CH4 fluxes and mea-
sured soil CH4 fluxes aggregated by landscape units (topo-
graphical position, vegetation types, and vegetation density),
which were included as random effects on both slope and
intercept. The root mean square error (RMSE) was used to
evaluate model performance at each date, and the marginal
and conditional coefficients of the determination (R2

m and
R2

c ) were used to determine the strength of the relationship
between the predicted and measured fluxes. LMM was car-
ried out using the “lmerTest” package (Bates et al., 2015;
Kuznetsova et al., 2017), and R2

m and R2
c were calculated

using the “MUMIn” package (Bartoñ, 2010). To test the ef-
fects of topographic positions, vegetation types, and densi-
ties on predicted CH4 fluxes while accounting for spatial au-
tocorrelation, we also used a linear mixed-effect model. To-
pographic positions, vegetation types, and densities were in-
cluded in the model as fixed effects, and pixel ID as a random
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effect. Interactions were not included as no pixel contains
“pure” broadleaved vegetation on the ridge. To eliminate spa-
tial autocorrelation among residuals, we incorporated an ex-
ponential spatial correlation structure based on each pixel co-
ordinate nested within each measurement date. This was per-
formed using the “nlme” package (Pinheiro et al., 1999). The
semi-variogram of the residuals confirmed that the residuals
were not spatially correlated. To quantify the effect size that
indicates the relative contribution of each factor to the total
variance in the response variable, we calculated eta-squared
(η2

p) values using the “effectsize” package (Ben-Shachar et
al., 2019). A pairwise comparison across the topographic po-
sitions, vegetation types, and densities was performed us-
ing the “emmeans” package (Lenth, 2017). Linear regression
models were used to examine the relationship between pre-
dicted soil CH4 fluxes at the landscape scale and API. The re-
cession coefficient (k) and the number of antecedent days (n)
were not fixed a priori but optimized to maximize R2 while
ensuring the best distribution of the residuals, allowing pa-
rameters k and n to vary iteratively from 0.6 to 0.9 with an
increment of 0.01 and from 0 to 30 with an increment of 0.01,
respectively. Using a more complex bivariate model with an
exponential function of air temperature did not improve the
quality of the fit and returnedQ10 values that were not signif-
icantly different from 1, as previously reported (Epron et al.,
2016). Calculations, modelling, and statistical analyses were
performed using the R statistical programming environment
(R Core Team, 2024).

3 Results

3.1 Environmental conditions and soil properties
across non-waterlogged topographic and vegetation
features

The total rainfall in the study area during the snow-free pe-
riod of 2023 was 1578.5 mm, with relatively high rainfall in
late-May to mid-June and a peak on 15 August due to the
typhoon Lan (Fig. 2a). The monthly mean air temperature
ranged from 7.5 to 24.2 °C during the study period (Fig. 2b).
Mean soil moisture content varied seasonally, with the high-
est (47.7± 1.1 %; mean± standard error) observed in the
early summer (6 July) and the lowest (32.9±1.2 %) in the late
summer (4 September) (Fig. 2c). Mean soil temperature fol-
lowed a similar trend to air temperature across the study pe-
riod (Fig. 2d). Non-waterlogged soils consistently absorbed
CH4 (negative fluxes, Fig. 2e), while soils in the three small
wetland patches emitted CH4 (positive flux, Fig. A1). Varia-
tion in CH4 fluxes across the measurement dates was consis-
tent with the seasonal patterns of rainfall and air temperature.
The fluxes measured on two collars that were temporarily
waterlogged were positive on one occasion each.

Topographic positions were significantly related to several
soil properties (bulk density, pH, total carbon and nitrogen,

Figure 2. Seasonal variation in (a) daily rainfall and (b) daily air
temperature from April to November in 2023 measured at a weather
station located nearby our study area, and (c) mean soil moisture
content, (d) mean soil temperature, and (e) mean CH4 fluxes from
non-waterlogged soils, including all topographic positions (n= 52).
Vertical bar indicating the standard error.

and mean temperature), whereas vegetation type and vegeta-
tion density were significantly related to soil temperature and
soil moisture, respectively (Table 1). The bulk density of the
fine earth fraction was relatively low due to the presence of
stones, highest in the plain (0.42± 0.04 g cm−3, mean±SE)
and significantly lowest in the ridge (0.26± 0.04 g cm−3).
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Soil pH differed significantly across topographic positions
(p < 0.001), with more acidic conditions observed at higher
elevations (ridge: 4.0± 0.14) compared to the plain (5.1±
0.73). Similarly, total carbon (C) and total nitrogen contents
(N) were significantly higher on the ridges (16.7± 2.2 % C
and 0.8± 0.10 % N) and lower in the plain (5.1± 0.73 %
C and 0.3± 0.04 % N). Mean soil temperature also signifi-
cantly varied across topographic positions, with the highest
in the plain (14.3± 0.2 °C) and the lowest in the foot slope
(13.4± 0.2 °C). In contrast, the soil texture of the fine earth
fraction (clay, silt, and sand) and mean soil moisture content
did not vary significantly with topographic positions.

Vegetation type significantly influenced soil temperature,
with the highest values observed under broadleaved stands
and the lowest under coniferous stands. Vegetation density
significantly affected soil moisture content, which was high-
est in low-density areas and lowest in medium-density areas.

3.2 Selected variables and performance of the
non-waterlogged soil CH4 flux models

The topographic position index (TPI) was consistently se-
lected in all seasons, with high importance scores, ranging
from 0.54 to 0.88, depending on the measurement dates (Ta-
ble 2). The SAGA wetness index (SWI) was selected for
most measurement dates, except for two, where the vertical
distance to the channel network (VDCN) was selected in-
stead. SWI importance scores were higher in summer than
in the other seasons. VDCN and profile curvature (PrC)
were occasionally selected along with TPI and TWI. VDCN
showed moderate to low importance scores, contributing
mostly in mid-spring (0.66) and early autumn (0.58). PrC,
although less consistently selected, played a role in specific
seasons, particularly in early spring and mid to late autumn.
Accumulated local effect (ALE) plots showed the direction
of the variables’ effects on soil CH4 fluxes for each mea-
surement date (Fig. A2). For the two most influential predic-
tors, low CH4 uptake rates were associated with low TPI val-
ues, while they were associated with high SWI values. The
vegetation density (BA) was selected only on two dates on
27 April 2023 and 7 October 2023, without improving the
model accuracy, so we did not include it the final models
(Table A3).

Model accuracy showed seasonal variation, with
the highest obtained in early autumn (R2

= 0.67;
RMSE= 0.81 nmol m−2 s−1) and the lowest in mid-
spring (R2

= 0.31; RMSE= 0.82 nmol m−2 s−1; Table 2).
The relationship between measured and predicted fluxes for
each measurement date showed that estimated fluxes were
close to the observed fluxes (Fig. 3a–i).

Overall, the slope of the relationship between measured
and predicted fluxes (fixed effects) was not significantly dif-
ferent from 1 and was similar at all dates. The marginal (R2

m)
and conditional (R2

c ) coefficients of determination were 0.93
and 0.94, respectively, highlighting the consistency of the

prediction for all measurement dates (linear mixed model,
Table A4). To validate the fluxes at the landscape level, pre-
dicted fluxes were aggregated by landscape unit (i.e., topo-
graphic position, vegetation type, and vegetation density) and
compared with the aggregated measured fluxes, which were
consistent with the measured fluxes (Fig. 4, Table A5).

3.3 Predicted non-waterlogged soil CH4 fluxes

We predicted that non-waterlogged soils consistently uptake
CH4 across the seasons (negative fluxes, Fig. 5). Predicted
median CH4 fluxes showed significant spatial heterogeneity,
which was consistent across the seasons (Fig. 5). The high-
est net CH4 uptake was predicted on ridges and the steep-
est parts of the slopes and decreased toward the foot slopes
near streams and the flat plain (Fig. 6a). Coniferous and
mixed stands showed the highest uptake compared to the
broadleaved stands (Fig. 6b). Vegetation density (BA) also
influenced the soil CH4 uptake with higher uptake in the high
and medium density areas. Although substantial variation
was observed within each landscape unit, topographic posi-
tion exerted the strongest control on CH4 fluxes (η2

p = 0.43),
followed by vegetation density (η2

p = 0.11) and vegetation
type (η2

p = 0.006) (Table A6).

3.4 Uncertainty of predicted non-waterlogged soil CH4
fluxes

The spatial distribution of the percentage of predicted un-
certainty varied across seasons (Fig. 7). The percentage was
consistently low to moderate (less than 100 %) for pixels
on ridges and steep slopes, but extremely high uncertain-
ties (more than 500 %) was observed at some dates for low-
elevation pixels when predicted fluxes were close to zero.
However, low predicted fluxes were often associated with
equally low predicted uncertainty (Fig. A3). The proportion
of pixels with low uncertainty (< 50 %) was highest in early
autumn (39.7 % of the total non-waterlogged pixels) and low-
est in early spring (5.7 % of the total non-waterlogged pix-
els). In contrast, moderate uncertainty (50 %–100 %) was
predominant in most seasons, particularly in spring and au-
tumn, accounting for approximately 50 % of the landscape.
Moderate to high uncertainty (101 %–500 %) was also pre-
dominant on some measurement dates, particularly in late
spring (49.8 % of the total non-waterlogged pixels). Extreme
uncertainty (> 500 %) was very rare in all seasons, except
for a small peak in late autumn (0.26 % of the total non-
waterlogged pixels, Table A7).

3.5 Predicted seasonal fluxes at the landscape level

The predicted CH4 flux from non-waterlogged soil per
hectare was calculated as the sum of the predicted fluxes
at each pixel multiplied by pixel area (25 m2), and the sum
divided by the non-waterlogged area. Across the landscape,
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Table 1. Mean (± standard error) of soil bulk density (BD), texture (clay, silt and sand), total carbon (C) and nitrogen (N) concentration,
pH, mean soil water content (SWC) and temperature (Tsoil) according to topographic position, vegetation type, and vegetation density.
SWC and Tsoil are the average of the 9 measurement dates. A soil core (0–10 cm depth) was sampled at approximately 0.3 m of each soil
collar. Different lowercase letters indicate significant differences among topographic positions, vegetation types, and vegetation densities
(p < 0.05). The p values of the ANOVA are shown in the last rows. The number of independent replicates in each factor level is indicated in
the first column.

Factor Bulk density Clay Silt Sand pH Total C Total N Mean SWC Mean Tsoil
(g cm−3) (%) (%) (%) (%) (%) (%) (°C)

Position

Plain (n= 14) 0.42± 0.04 a 8± 2 27± 3 65± 4 4.9± 0.1 a 5.1± 0.7 a 0.3± 0.0 a 44.2± 2.0 14.3± 0.2 a
Foot slope (n= 9) 0.36± 0.06 ab 8± 2 33± 4 60± 5 4.3± 0.1 b 8.3± 2.2 a 0.5± 0.1 ab 42.1± 2.0 13.4± 0.2 b
Slope (n= 16) 0.29± 0.03 ab 10± 2 29± 3 60± 4 4.3± 0.1 b 10.0± 1.1 a 0.6± 0.1 ab 39.2± 1.4 13.9± 0.1 a
Ridge (n= 13) 0.26± 0.04 b 9± 2 23± 4 68± 4 4.0± 0.1 b 16.7± 2.2 b 0.8± 0.1 b 40.1± 2.0 13.9± 0.1 ab

Vegetation type

Broadleaved (n= 19) 0.38± 0.04 10± 2 29± 3 61± 4 4.7± 0.1 6.8± 1.0 0.4± 0.1 43.3± 1.6 14.2± 0.1 a
Coniferous (n= 11) 0.32± 0.04 7± 1 27± 4 66± 5 4.3± 0.1 11.1± 2.4 0.6± 0.1 40.8± 1.7 13.4± 0.2 b
Mixed (n= 22) 0.29± 0.03 9± 1 26± 2 64± 3 4.2± 0.1 12.4± 1.6 0.6± 0.1 39.7± 1.3 13.9± 0.1 a

Vegetation density

High (n= 14) 0.32± 0.04 9± 2 28± 3 64± 4 4.4± 0.1 10.6± 2.02 0.57± 0.1 40.4± 0.1 a 13.7± 0.2
Medium (n= 28) 0.30± 0.03 10± 1 28± 3 62± 3 4.3± 0.1 11.3± 1.34 0.59± 0.1 39.5± 1.0 a 13.9± 0.1
Low (n= 10) 0.43± 0.05 8± 2 26± 3 66± 4 4.7± 0.2 6.1± 1.27 0.40± 0.1 47.6± 2.1 b 14.2± 0.2

Anova results

Position p < 0.05 p = 0.55 p = 0.33 p = 0.49 p < 0.001 p < 0.001 p < 0.01 p = 0.12 p < 0.001
Vegetation type p = 0.81 p = 0.30 p = 0.92 p = 0.66 p = 0.75 p = 0.90 p = 0.99 p = 0.52 p < 0.001
Vegetation density p = 0.58 p = 0.45 p = 0.58 p = 0.43 p = 0.99 p = 0.93 p = 0.98 p < 0.05 p = 0.91

Table 2. Selected variables for the quantile regression forest (QRF) models applied to non-waterlogged soil CH4 fluxes at each measurement
date, along with the R2 and root mean square error (RMSE) values to evaluate the accuracy of the models. Importance scores of the selected
variables are shown in parentheses, indicating their contribution to predicting soil CH4 fluxes.

Measurement dates Selected variables R2 RMSE (nmol m−2 s−1)

27 April 2023 SWI (0.57), TPI (0.67), PrC (0.58) 0.53 0.52
12 May 2023 TPI (0.80), VDCN (0.66) 0.31 0.82
31 May 2023 SWI (0.55), TPI (0.57), VDCN (0.42) 0.43 0.48
6 July 2023 SWI (0.73), TPI (0.60) 0.40 0.50
26 July 2023 SWI (0.80), TPI (0.69) 0.37 1.02
4 September 2023 SWI (0.74), TPI (0.85) 0.40 1.18
7 October 2023 TPI (0.88), VDCN (0.58) 0.67 0.81
7 November 2023 SWI (0.32), TPI (0.84), VDCN (0.12), PrC (0.45) 0.59 0.66
30 November 2023 SWI (0.32), TPI (0.54), VDCN (0.21), PrC (0.28) 0.51 0.56

the average CH4 flux by non-waterlogged soils during the
snow-free season was −0.66 (interquartile range: −0.94 to
−0.44) g CH4 ha−1 h−1. Predicted median seasonal fluxes
ranged from −0.34 to −0.60 g CH4 ha−1 h−1 in spring, from
−0.39 to −1.28 g CH4 ha−1 h−1 in summer, and from −0.48
to −0.89 g CH4 ha−1 h−1 in autumn (Fig. 8a). CH4 uptake
was low across the landscape in early (27 April) and late
spring (31 May), while higher uptake was predicted in mid-
spring (12 May). CH4 uptake remained low in the early wet
summer (6 July) and increased toward the mid (26 July) to
late dry summer (4 September) when it reached its peaks. Net

CH4 uptake then decreased from early autumn (7 October)
and reached its lowest rate in late autumn (30 November).

This seasonal variation in predicted median fluxes was
well explained by the 20 d antecedent precipitation index
(R2
= 0.70, p < 0.01) with a recession coefficient of 0.69

(Fig. 8b), followed closely by the 30 d (R2
= 0.69) and 7 d

(R2
= 0.68) API (Table A8).
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Figure 3. Comparison of predicted (median of the quartile predictions from QRFs) and measured CH4 fluxes (n= 52) for each measurement
date. Vertical bars indicate the interquartile ranges of the prediction distribution. Intercepts and slopes are estimated using a linear mixed-
effect model with measurement dates as a random effect (full statistics are shown in Table A4). The diagonals are the identity (1 : 1) lines.

4 Discussion

4.1 Selected variables

We employed quantile regression forest (QRF) models,
driven only by topographic attributes, to upscale in-situ soil
CH4 flux measurements from sampling points to the land-
scape level for each measurement date in all topographic po-
sitions, but excluding wetlands (1 % of our study area). Al-
though selected twice, the inclusion of BA did not improve
the accuracy and performance of the model and was even-
tually not retained in any final models, while RBACON was
never selected.

Among all tested topographic variables derived from the
DEM, SWI, TPI, PrC, and VDCN were consistently selected
in different models across all measurement periods, empha-

sizing their importance in upscaling CH4 fluxes. Overall, the
results validated our first hypothesis, as the selected topo-
graphic attributes were related to water circulation and accu-
mulation.

Among these variables, SWI, which positively influence
CH4 fluxes (low uptake in areas with high SWI), represents
water accumulation potential and is a common surrogate for
soil moisture in mountainous regions. This key factor con-
trols CH4 fluxes by affecting gas diffusion and microbial
activity (Kaiser et al., 2018; Vainio et al., 2021; Warner et
al., 2019), as SWI integrates potential inflows and discharges
through runoff and drainage (Ågren et al., 2014; Beven and
Kirkby, 1979). SWI was selected in seven out of nine mea-
surement periods but not on 12 May and 7 October. These
two periods correspond to transitional seasons, i.e., mid-
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Figure 4. Comparison between aggregated mean predicted and measured soil CH4 fluxes from non-waterlogged soil for (a) topographic
position, (b) vegetation type, and (c) vegetation density (full statistics are shown in Table A5). The diagonals are the identity (1 : 1) lines.

spring and early autumn, when the landscape is generally
drier, and water does not accumulate.

TPI describes the elevation of a location relative to those
of the surrounding terrain within a given radius, allowing the
identification of landform positions such as ridges, slopes,
and valleys (Ågren et al., 2014). TPI is generally calculated
using a non-filled DEM, which is also more representative
of local-scale moist depression that SWI doesn’t capture, as
SWI is calculated using the filled DEM (Kemppinen et al.,
2018). In our study, TPI was consistently selected in all mea-
surement periods, and clearly related, highlighting that lo-
calized moisture, and potentially soil chemistry, are more
influential parameters in controlling the CH4 fluxes at the
landscape level. Areas with negative TPI values (e.g., val-
leys or depressions) typically function as convergence zones,
where water and nutrients accumulate due to gravitational
flow and reduced drainage. In contrast, positive TPI values
(e.g., ridges and convex upper slopes) are more divergent, of-
ten characterized by increased drainage and runoff, and lim-
ited water and nutrient retention. TPI negatively affected soil
CH4 fluxes (high uptake in areas with high TPI).

PrC refers to the curvature of the land surface in the direc-
tion of the slope (along a flow line) which was selected three
times (27 April, 7 November and 30 November) across the
measurement dates. It influences the acceleration or decel-
eration of surface and subsurface water flow (Ågren et al.,
2014). Negative values (concave slopes) tend to slow wa-
ter movement, promoting water and nutrient accumulation in
soils. Conversely, positive values (convex slopes) accelerate
flow, often reducing water retention time and lowering nutri-
ent accumulation due to leaching or erosion. Excluding PrC
from the list of available variables for selection decreased the
model performance for these three dates, probably because

PrC helps discriminate between plains and slopes, both of
which have near-zero TPI values.

VDCN is another important variable reflecting groundwa-
ter level conditions. Lower values typically observed near
stream channels with higher groundwater level (Bock and
Köthe, 2008). When the landscape was drier (12 May and
7 October), and SWI was not selected, TPI and VDCN
had more substantial explanatory power. VDCN was also
selected several times with SWI. Interestingly, VDCN has
been shown to be useful in distinguishing well-drained from
poorly drained soils (Bell et al., 1992; Kravchenko et al.,
2002). It may explain why excluding VDCN from the list
of variables available for selection decreased model perfor-
mance. This highlights that SWI and TPI alone were not suf-
ficient to reflect local soil moisture conditions, as drainage
conditions can potentially vary across the landscape, which
controls soil microhabitat conditions and thus influences
CH4 fluxes.

QRF modelling is non-parametric machine learning ap-
proach is particularly suited for handling non-linear rela-
tionships and complex interactions among predictors (Mein-
shausen, 2006). However, although the topographic pre-
dictors have successfully predicted CH4 fluxes, the QRF
method, like other statistical methods, does not provide a
mechanistic understanding of the underlying biogeochemi-
cal processes, and the existence of confounding factors can-
not be ruled out.

4.2 Model performance and uncertainty

Soil CH4 fluxes predicted by QRF models were close to the
measured fluxes for all measurement periods (Fig. 3; Ta-
ble A4). We recognize that our models, by forcing pixel-scale
predictors (5 m resolution) to explain finer-scale chamber
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Figure 5. Maps of predicted soil CH4 fluxes at each pixel of the study area (40.2 ha) for each measurement date. Values represent the median
of the conditional prediction distribution for each pixel (5 m× 5 m).

measurements (20 cm diameter), may actually overestimate
the predictive accuracy of the models at coarser scales. How-
ever, the predicted soil CH4 fluxes not only closely matched
the individual measured fluxes, but also when the two were
aggregated by topographic position classes (ridge, slope, foot
slope, and plain), vegetation density classes (high, medium,
and low) or vegetation type classes (coniferous, mixed, and
broadleaf, Fig. 4; Table A5). This confirmed that our mod-
els did not only predict point-level flux heterogeneity but
were also able to capture the landscape-scale flux patterns
and indicated that topographic attributes could be used for
upscaling CH4 fluxes in mountain landscapes. Overall, the
performance of the models developed for scaling CH4 fluxes
was comparable to previous studies using topographic data
for similar purposes (Kaiser et al., 2018; Vainio et al., 2021;
Virkkala et al., 2024; Warner et al., 2019). However, it is im-

portant to note that direct comparisons between studies are
difficult due to variations in cross-validation approaches, as
the choice of cross-validation technique can significantly in-
fluence model performance (Roberts et al., 2017).

Unfortunately, it was not possible to accurately predict
CH4 fluxes when measurements collected in wetland patches
were included in the training data, as the model accuracy
decreased at all dates (Table A9). As a consequence, the
marginal and conditional coefficients of determination of the
relationship between the predicted and measured fluxes de-
creased from 0.93 and 0.94 respectively to 0.70 when wet-
land data were included. This is probably because neither
the topographic features nor the vegetation differed suffi-
ciently between the large areas functioning as CH4 sinks and
the small wetland patches in the plain area functioning as
CH4 sources (Fig. A1). Räsänen et al. (2021) noticed that
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Figure 6. Predicted soil CH4 fluxes at the landscape scale averaged over the nine measurement dates, aggregated by (a) topographic positions,
(b) vegetation type, and (c) vegetation density (Full statistics with significance of the differences between each landscape unit shown in
Table A6). Green squares indicate the mean of the measured fluxes with standard errors, blue triangles indicate the mean of the predicted
fluxes at the landscape level and grey boxplots indicate the distribution of the predicted fluxes.

spatial patterns of CH4 fluxes could be accurately predicted
in a northern peatland-forest-mosaic landscape when they
were modelled for sinks and sources separately. This sepa-
ration was not possible in our study due to the low number of
measurement locations in wetlands, related to their small ex-
tent (1 %) in our non-waterlogged soil-dominated landscape.
Wetland exclusion, although acceptable in our 40 ha study
area due to their small extent, would overestimate CH4 up-
take if incorrectly applied at larger scales, i.e., to the entire
upper Yura River catchment in our case or to other hydrolog-
ically complex forest landscapes.

One advantage of the QRF approach is its ability to es-
timate prediction intervals (Meinshausen, 2006), thus offer-
ing insights into the uncertainty associated with the predicted
flux value at each pixel. The spatial distribution of the uncer-
tainty associated with the predicted soil CH4 fluxes varied
seasonally (Fig. 7; Table A7) in agreement with our second
hypothesis, reflecting both spatial heterogeneity and tempo-
ral changes in model confidence. In our study, the spatial pat-
terns of QRF-derived uncertainties were consistently related
to topographic position and flux magnitude. Predictions in
ridge and steep slope pixels generally exhibited low percent-
age uncertainties (often below 100 %), likely because these
well-drained areas were well represented in the training data
and exhibited relatively stable and high CH4 uptake across
seasons. In contrast, extremely high percentage uncertain-

ties (exceeding 500 %) were observed in some low-lying pix-
els during specific seasons, especially where predicted CH4
fluxes were close to zero. Our models did not predict me-
dian positive fluxes although positive fluxes were occasion-
ally measured. However, the possibility of positive fluxes is
reflected in the large uncertainties associated with near-zero
fluxes. A crucial methodological point is that percentage un-
certainty is a relative measure; even a small absolute uncer-
tainty around a near-zero prediction can yield a very large
percentage (Warner et al., 2019). In addition, large absolute
uncertainties can result from large differences in fluxes mea-
sured at locations with similar topographic characteristics.

The lowest uncertainty was obtained in late summer and
early autumn, i.e., under warm and dry conditions, indicat-
ing better model performance when hydrological conditions
were less variable. In contrast, larger uncertainties were pro-
duced by the models in early spring and late autumn, as well
as in late spring and early summer, when measured and pre-
dicted soil CH4 fluxes were lowest. The East Asian monsoon
flow bringing warm and humid air mass and resulting in the
rainy season in late spring and early summer, as well as low
evapotranspiration in early spring and late autumn, may have
introduced greater variability in soil hydrology, contributing
to higher uncertainties. Nevertheless, low to moderate un-
certainty (< 100 %) was the most prevalent class across all
seasons, consistently accounting for more than half the land-
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Figure 7. Uncertainty map of predicted soil CH4 fluxes at each pixel of the study area (40.2 ha) for each measurement date. Values represent
the ratio of the interquartile range to the median of the prediction distribution for each pixel (5 m× 5 m).

scape – up to 80 % in late summer and early autumn – while
extreme uncertainties (> 500 %) were very rare in all sea-
sons. This suggests that the models performed well overall.
Although some areas remain challenging to model, the QRF
approach provides generally reliable spatial predictions of
soil CH4 fluxes with quantifiable and interpretable uncertain-
ties.

4.3 Spatial patterns of predicted soil CH4 fluxes

The models revealed clear spatial patterns in soil CH4 fluxes
that were consistent across measurement dates, even though
the models selected different variables at each date. Predicted
soil CH4 fluxes closely matched topographic gradients, con-
sistent with our third hypothesis. Ridges and upper slopes
exhibited the highest net CH4 uptake, functioning as strong
sinks for CH4 across all seasons, whereas CH4 uptakes were
lowest in plain and foot slope positions. These topographic

patterns of CH4 uptake are consistent with previous studies.
In a temperate forest in central Ontario, Canada, the highest
CH4 uptake was observed on slopes and ridges (Wang et al.,
2013). Similarly, in a temperate forest in Maryland, USA,
transition zones were identified as hotspots for CH4 uptake
(Warner et al., 2018). In a tropical forest in China, hillslopes
exhibited the highest CH4 uptake, while lower uptake was
observed at the foot slopes and in groundwater discharge ar-
eas (Yu et al., 2021). Similarly, CH4 uptake was greater on
ridges than at valley bottoms in a subtropical forest in Puerto
Rico (Quebbeman et al., 2022).

In our studied landscape, we observed lower soil bulk den-
sity on ridges and slopes than on the plain area, indicating
that ridge and slope soils have higher porosity, which is con-
sistent with higher soil CH4 oxidation rates due to higher
diffusion rates of O2 and CH4 from the atmosphere through
soil pores (Ishizuka et al., 2009). Although we did not as-
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Figure 8. Predicted soil CH4 fluxes, calculated as the mean of all pixels in the study area (40.2 ha), and antecedent precipitation index (API).
(a) Seasonal variations in predicted soil CH4 fluxes at the landscape scale and (b) relationship between predicted soil CH4 fluxes at the
landscape scale and the 20 d API. Vertical bars indicate the uncertainty of the predicted fluxes.

sess the methanotroph community structure, the greater at-
mospheric CH4 uptake on slopes and ridges is consistent with
the community structure observed in a subalpine forest, with
type I methanotrophs dominating in riparian soils, whereas
type II methanotrophs were more prevalent in upland soils
(Du et al., 2015). The higher soil carbon (C) and nitrogen
(N) contents observed on ridges and slopes at our site may
contribute to higher soil CH4 uptake, as soil CH4 uptake has
been found to be positively correlated with soil organic mat-
ter content in subtropical and temperate forests (Lee et al.,
2023). Possible explanations are that higher soil carbon may
increase the availability of labile substrates that stimulate
methanotrophic activity by increasing CH4 supply through
enhanced methanogenesis in anoxic microsites or by directly
providing substrate for facultative methane-oxidizing bacte-
ria, thereby increasing their abundance (Jensen et al., 1998;
Semrau et al., 2011; West and Schmidt, 1999). Soil nitro-
gen was probably predominantly in organic form, and there-
fore the soil concentration of nitrate and ammonium, known
to inhibit CH4 oxidation by methanotrophs at high concen-
tration (King and Schnell, 1994; Mochizuki et al., 2012),
likely remained low (Aronson and Helliker, 2010; Bodelier
and Laanbroek, 2004). Nitrogen is an essential nutrient for
the growth of methanotrophs, whose activity has been shown
to be nitrogen-limited in forest soils (Börjesson and Nohrst-
edt, 2000; Martinson et al., 2021; Veldkamp et al., 2013).
Therefore, mineralization of these low levels of organic ni-
trogen could alleviate the nitrogen limitation of CH4 oxida-
tion and partly explain the higher soil CH4 uptake observed
on ridges and slopes, where total nitrogen concentration was
higher than at the foot slopes and in the plain.

Although the effect-size of vegetation density was much
smaller than that of topographic position, the predicted soil
CH4 uptake was significantly lower in areas with low basal
area. Vegetation density can also potentially be related to
local moisture conditions, as dense vegetation likely con-
sume more water, thus increasing the soil air-filled porosity
(Hakamada et al., 2020; Vanclay, 2009). Unexpectedly, al-
though a very small effect-size, our models predicted higher
soil CH4 uptake in conifer-dominated areas and lower up-
take in broadleaf-dominated areas, contrary to previous ev-
idence of greater soil CH4 uptake in plots containing only
deciduous broadleaved tree species than in plots containing
evergreen coniferous trees, either alone or in mixture (Jevon
et al., 2023). The discrepancy between this previous study
and our results may be related to the fact that their study
area was ten times smaller and more topographically homo-
geneous than ours (4 versus 40 ha). Moreover, soil proper-
ties that could explain the lower rate of CH4 oxidation in
coniferous than in broadleaved stands, such as higher acid-
ity (Borken et al., 2003; Hütsch, 1998; Ishizuka et al., 2000)
did not differ significantly among the three types of vege-
tation cover at our site, whereas they differed according to
topographic position. However, vegetation types and density
were not randomly distributed among topographic positions
(Table A9), meaning that the confounding effects of vegeta-
tion and DEM-derived variables on the prediction soil CH4
uptake could make it difficult to separate the influence of veg-
etation and topography in our complex mountain landscape.
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4.4 Predicted soil CH4 fluxes at the landscape scale and
seasonal variation

The CH4 fluxes per hectare were calculated by aggregat-
ing pixel-level predictions and normalizing them to the to-
tal non-waterlogged area, allowing for standardized com-
parison across sites, although there are still very few com-
parable data available, making it difficult to analyse the
causes of differences across sites. Our highest CH4 up-
take in late summer was −1.28 g CH4 ha−1 h−1 (interquar-
tile range −1.70 to −0.89), 2.6 times higher in abso-
lute value than in a forested watershed in Maryland,
USA (−0.47 g CH4 ha−1 h−1, Warner et al., 2019), but
slightly lower than in a boreal pine forest in Finland
(−1.59 g CH4 ha−1 h−1, Vainio et al., 2021).

Consistent with our fourth hypothesis, the seasonal vari-
ation in soil CH4 fluxes at the landscape scale in the non-
waterlogged areas demonstrates a strong sensitivity to soil
moisture dynamics, which were effectively captured using
the Antecedent Precipitation Index (API). The API, serving
as a proxy for soil moisture dynamics, integrates precipita-
tion over a defined period and includes a recession factor
to account for evapotranspiration and drainage. Short dura-
tions (e.g., 7 d) reflect surface moisture, while longer du-
rations (e.g., 30 d) capture deeper soil moisture conditions
(Schoener and Stone, 2020; Sidle et al., 2000; Yamao et al.,
2016). Among the API durations tested, the 20 d API with a
recession coefficient of 0.69 showed the highest explanatory
power (R2

= 0.70), although using either a 30 d or a 7 d API
would provide similar goodness of fit with similar recession
coefficients, indicating that soil moisture conditions across
different depths had similar influence on CH4 flux variabil-
ity. The consistently low recession coefficient (Kohler and
Linsley, 1951) suggested that rainwater does not accumu-
late in our watershed. High API values indicate wetter an-
tecedent conditions, which can suppress CH4 uptake by re-
ducing oxygen availability and thus limiting methanotrophic
activity, and by temporarily turning the subsoil condition to
anoxic, promoting methane production and reducing net CH4
uptake (Angel et al., 2012; Hu et al., 2023; Kruse et al.,
1996). Conversely, drier periods with low API values were
observed in mid and late summer and earlier autumn, when
soils were better aerated, creating favourable conditions for
atmospheric CH4 oxidation and leading to greater CH4 up-
take.

5 Conclusion

In conclusion, our study showed the dominant role of to-
pography, compared to that of vegetation, on the spatial
variation of soil CH4 fluxes in mountain forest landscapes
throughout the snow-free season. The quantile regression for-
est models successfully captured these ridge-to-plain spatial
gradients where the soil is almost always unsaturated, with

strong performance. However, our modelling approach was
unable to accurately predict CH4 fluxes when including mea-
surements collected in three wetland patches functioning as
CH4 sources in the plain area (1 % of the total landscape).
CH4 uptake was consistently highest on ridges and slopes,
where well-drained soils with lower bulk density and higher
porosity supported enhanced methanotrophic activity. Fur-
thermore, the seasonal dynamics of the predicted soil CH4
flux at the landscape scale was well-captured by the 20 d An-
tecedent Precipitation Index (API), with a significant positive
relationship between API and CH4 uptake, emphasizing the
sensitivity of CH4 uptake by non-waterlogged soils to sea-
sonal fluctuations in soil moisture conditions. The integration
of terrain-based predictors and moisture history provides a
reliable framework for scaling soil CH4 fluxes across com-
plex landscapes, highlighting the importance of considering
both static (topography, vegetation) and dynamic (climate)
controls in future assessments of CH4 flux.
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Appendix A

Table A1. Spearman’s rank correlation test between soil properties measured on soil cores (0–10 cm depth) sampled at approximately 0.3 m
of each soil collar and topographic and vegetation attributes. Significant coefficients are shown in bold.

Mean SWC Mean Tsoil Total C Total N pH BD Sand Silt Clay

PrC −0.21 0.14 0.27 0.23 −0.27 −0.14 0.24 −0.26 −0.06
Slope −0.17 −0.24 0.25 0.22 −0.51 −0.11 0.00 −0.02 0.01
TPI 20 m −0.35 −0.11 0.45 0.39 −0.34 −0.26 0.05 −0.04 0.03
TPI 30 m −0.31 −0.08 0.64 0.55 −0.46 −0.36 0.11 −0.14 0.03
TPI 50 m −0.33 −0.08 0.59 0.50 −0.42 −0.31 0.11 −0.13 0.02
SWI 0.43 0.27 −0.62 −0.55 0.65 0.41 −0.03 0.04 −0.01
VDCN 0.5 ha −0.24 −0.16 0.61 0.52 −0.51 −0.36 0.16 −0.20 0.04
VDCN 2.5 ha −0.24 −0.20 0.71 0.62 −0.65 −0.42 0.18 −0.22 −0.02
VDCN 5 ha −0.31 −0.29 0.65 0.56 −0.71 −0.47 0.16 −0.23 0.09
BA −0.37 −0.29 0.22 0.13 −0.25 −0.19 −0.03 0.08 0.00
RBACON −0.17 −0.56 0.30 0.19 −0.41 −0.17 0.03 0.02 −0.11

SWC: soil water content; Tsoil: soil temperature; BD: soil bulk density

Table A2. R2 and root mean square error (RMSE) values for the quantile regression forest (QRF) models applied to soil CH4 fluxes without
wetland and with wetland at each measurement date. Note that the same variables were selected at all dates in both cases.

Measurement dates Selected variables R2 (RMSE, nmol m−2 s−1) R2 (RMSE, nmol m−2 s−1)
Without wetland With wetland

27 Apr 2023 SWI, TPI, PrC 0.53 (0.52) 0.37 (0.86)
12 May 2023 TPI, VDCN 0.31 (0.82) 0.22 (1.27)
31 May 2023 SWI, TPI, VDCN 0.43 (0.48) 0.25 (1.07)
6 Jul 2023 SWI, TPI 0.40 (0.50) 0.34 (1.99)
26 Jul 2023 SWI, TPI 0.37 (1.02) 0.30 (1.60)
4 Sep 2023 SWI, TPI 0.40 (1.18) 0.38 (1.27)
7 Oct 2023 TPI, VDCN 0.67 (0.81) 0.42 (1.07)
7 Nov 2023 SWI, TPI, VDCN, PrC 0.59 (0.66) 0.47 (1.25)
30 Nov 2023 SWI, TPI, VDCN, PrC 0.51 (0.56) 0.40 (0.57)

Table A3. Comparison of the accuracy of the quantile regression forest (QRF) models applied to non-waterlogged soil CH4 fluxes without
and with vegetation at the two dates where BA was selected. Selected variables and their importance scores in parentheses, along with the
R2 and root mean square error (RMSE) values (model with vegetation is in bold letters).

Date Selected variables R2 RMSE

27 Apr 2023 SWI (0.57) PrC (0.58) TPI (0.67) 0.53 0.52
SWI (0.64) BA (0.42) TPI (0.50) 0.51 0.52

7 Oct 2023 TPI (0.88) VDCN (0.58) 0.67 0.81
TPI (0.77) VDCN (0.39) BA (0.27) 0.55 0.80
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Table A4. Summary of the linear mixed model (LMMs) analysing the relationship between the predicted soil CH4 fluxes and measured
soil CH4 fluxes, with measurement periods included as a random effect on both slope and intercept. The p values of the fixed effect were
for testing if the intercept was different from zero and the slope different from 1. The statistics panel at the bottom left shows the marginal
(R2

m) and conditional (R2
c ) coefficients of determination, the root mean square error of the model, and the overall significance of the model

(p value).

Fixed effect: predicted CH4 flux Random effects: measurement dates

Estimate±SE p values Intercept Slope

Intercept 0.15± 0.03 from 0: 0.003 27 Apr 2023 −0.05 0.03
Slope 1.16± 0.02 from 1: 0.92 12 May 2023 −0.02 0.02

31 May 2023 −0.05 0.02
6 Jul 2023 −0.06 0.02

Statistics 26 Jul 2023 0.07 0.00

n 467 4 Sep 2023 0.14 −0.03
R2

m 0.94 7 Oct 2023 0.02 −0.04
R2

c 0.95 7 Nov 2023 −0.01 −0.04
RMSE 0.26 30 Nov 2023 −0.03 0.01
p value 2.5× 10−9
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Table A5. Summary of the linear mixed model (LMMs) analysing the relationship between the predicted soil CH4 fluxes and measured soil
CH4 fluxes, with landscape units (either positions, vegetation types, and vegetation density) included as a random effect on both slope and
intercept. The p values of the fixed effect were for testing if the intercept was different from zero and the slope different from 1. The statistics
panel at the bottom left shows the marginal (R2

m) and conditional (R2
c ) coefficients of determination, the root mean square error of the model,

and the overall significance of the model.

Fixed effect: Predicted CH4 flux Random effect: Positions

Estimate±SE p values Intercept Slope
Intercept −0.17± 0.04 from 0: 0.006 Plain 0.01 −0.02
Slope 0.94± 0.05 from 1: 0.99 Foot slope 0.01 0.01

Statistics Slope −0.05 0.1

n 36 Ridge 0.05 −0.09
R2

m 0.93
R2

c 0.98
RMSE 0.20
p value 7.8× 10−5

Fixed effect: Predicted CH4 flux Random effect: Vegetation type

Intercept −0.19± 0.07 from 0: 0.08 Broadleaf 0.02 0.02
Slope 0.82± 0.09 from 1: 0.99 Coniferous −0.09 −0.14

Statistics Mixed 0.08 0.12

n 27
R2

m 0.91
R2

c 0.96
RMSE 0.17
p value 0.01

Fixed effect: Predicted CH4 flux Random effect: Vegetation density

Intercept −0.13± 0.05 from 0: 0.08 High −0.01 0.02
Slope 0.81± 0.08 from 1: 0.99 Medium 0.06 −0.14

Statistics Low −0.05 0.11

n 27
R2

m 0.80
R2

c 0.95
RMSE 0.19
p value 0.01

Table A6. Summary of the linear mixed model (LMM) analysing the effects of topographic position, vegetation type, and vegetation density
on predicted soil CH4 fluxes. Pixel ID was included as a random effect, and spatial autocorrelation among residuals was eliminated. η2

p was
calculated as the effect size of each explanatory variable. Letters indicated the significance within each landscape unit.

Explanatory variables p value Effect size (η2
p) [with 95 % CI]

Position [df= 3] < 0.001 0.43 [0.42, 0.44]
Plain (a), Foot slope (b), Slope (c), Ridge (c)

Vegetation type [df= 2] < 0.001 0.006 [0.00, 0.01]
Broadleaf (a), Coniferous (b), Mixed (c)

Vegetation density [df= 2] < 0.001 0.11 [0.10, 0.12]
High (c), Medium (b), Low (a)
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Table A7. Percentage of pixels in the study area distributed among four levels of predicted relative uncertainty for soil CH4 fluxes from
non-waterlogged soil.

Measurement date Uncertainty

< 50 % 50 %–99 % 100 %–500 % > 500 %

27 Apr 2023 5.72 % 53.29 % 40.99 % 0.01 %
12 May 2023 19.93 % 54.01 % 26.06 % –
31 May 2023 10.90 % 39.29 % 49.81 % –
6 Jul 2023 27.76 % 38.32 % 33.92 % –
26 Jul 2023 21.12 % 40.66 % 38.13 % 0.09 %
4 Sep 2023 30.19 % 51.24 % 18.58 % –
7 Oct 2023 39.68 % 38.13 % 22.19 % –
7 Nov 2023 17.50 % 46.10 % 36.4 % –
30 Nov 2023 7.83 % 43.65 % 48.26 % 0.26 %

Table A8. Statistics of the linear relationship between soil CH4 fluxes at the landscape scale and antecedent precipitation indexes (API). 20
antecedent days provided the best fit. 30 and 7 antecedent days are shown as common metrics in hydrology. Adjusted recession coefficients
(k) and determination coefficients (R2) are shown.

Antecedent days k R2

20 0.69 0.70
30 0.69 0.69
7 0.67 0.68

Table A9. Proportion of vegetation density and type associated with the different topographic positions across the study area (40.2 ha).

Position Vegetation density Proportion (%) Vegetation type Proportion (%)

Plain
High 19.6 Broadleaf 91.8
Medium 8.4 Coniferous 2.7
Low 72.0 Mixed 5.5

Foot slope
High 4.9 Broadleaf 12.9
Medium 38.5 Coniferous 0.5
Low 56.6 Mixed 86.6

Slope
High 33.4 Broadleaf 4.5
Medium 46.3 Coniferous 20.1
Low 20.3 Mixed 75.4

Ridge
High 86.0 Coniferous 13.6
Medium 14.0 Mixed 86.4
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Figure A1. Seasonal variation in soil CH4 fluxes from wetlands (means and standard error, n= 3).

Figure A2. Accumulated local effect (ALE) plots for the quantile regression forest (QRF) models applied to non-waterlogged soil CH4
fluxes at each measurement date.
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Figure A3. Relationships between predicted uncertainty and predicted soil CH4 fluxes using quantile regression forest (QRF) models applied
to non-waterlogged soil CH4 fluxes at each measurement date. The highest uncertainty is observed for a near-zero prediction.
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