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Abstract. The global land carbon sink has increased since
the pre-industrial period, driven by the increasing atmo-
spheric CO2 concentration and physical processes influenced
by climate change. However, detecting these anthropogenic
signals in the global land carbon sink is challenging due to
the large year-to-year variability, which can mask or am-
plify long-term trends, particularly on regional and decadal
scales. This study aims to detect the time it takes for long-
term trends driven mostly by anthropogenic signal to domi-
nate over natural variations, that is, the “time of emergence”,
in the land carbon sink.

For this, we use five large ensembles of historical simu-
lations (1851–2014) and future scenarios (2016–2100) from
Earth system models (ESMs). Our results show that, firstly,
the anthropogenic signal in the global net land carbon sink
emerges from 26 to 66 years in the period 1960–2009 (rel-
ative to the natural variations in the period of 1930–1959),
depending on the ESM considered. The time of emergence is
considerably shorter for the two major gross carbon fluxes:
8–13 years for gross primary productivity and 6–10 years for
total ecosystem respiration. Furthermore, we find that long-
term trends in the net land carbon sink at most regional scales
take at least 20 years longer to emerge than at the global
scale, due to the larger contributions from internal climate
variability at smaller scales.

Secondly, future scenarios show delayed signal detection
compared to historical trends. This delay is mainly due to
weaker anthropogenic signal trends rather than stronger natu-
ral variability. The weaker signal reflects primarily the slow-
down of the increasing net land carbon sink in response to
emission mitigation.

Thirdly, we apply dynamical adjustment to filter out the
year-to-year circulation-induced variability in both the his-
torical and future simulations. This approach substantially
shortens the detection time for the global net land carbon
sink: between 34 %–39 % for the historical period and 29 %–
55 % for the future simulations. This approach can also
shorten the detection time for observational based datasets
(30 % reduction in the period 1960–2009), thereby improv-
ing our ability to detect long-term trends of land carbon sink
variability. Given that long-term trends are mostly associated
with human impacts on the land carbon cycle, our proposed
approach can offer valuable insights on the effectiveness of
policy decisions and their implementation.

1 Introduction

The global land carbon sink has been increasing since the
pre-industrial period (Friedlingstein et al., 2022; Ruehr et al.,
2023), mainly driven by the increasing atmospheric CO2 and
mid- to high-latitude warming caused by human activities
(O’Sullivan et al., 2022). Detecting such anthropogenic sig-
nals in observations of annual atmospheric CO2 concentra-
tion remains challenging due to the large year-to-year natural
variations, which can obscure or enhance long-term trends,
especially at regional scales and for shorter periods (Deser
et al., 2012a; Kay et al., 2015; Maher et al., 2019; Chen et al.,
2021; Bonan et al., 2021).

The global net land carbon sink refers to the balance be-
tween carbon absorption through gross primary productiv-
ity (GPP, photosynthesis at large scale) and carbon release
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through total ecosystem respiration (TER), but also through
fires and other disturbances (Canadell et al., 2021; Ciais
et al., 2022). GPP and TER are directly driven by local cli-
mate variability, such as temperature and precipitation (Jung
et al., 2017; Piao et al., 2020; Canadell et al., 2021). Ele-
vated atmospheric CO2 concentrations have contributed to an
increase in the global land carbon sink (Ruehr et al., 2023)
through increasing GPP (Walker et al., 2021). Warming tem-
peratures, particularly at high latitudes, have also contributed
to increasing GPP (Ruehr et al., 2023).

The long-term trends of the global carbon cycle are super-
imposed with substantial year-to-year variations (Piao et al.,
2020). These variations mostly originate from natural pro-
cesses, including internal climate variability – fluctuations
across a continuum of time scales – as well as from natural
external forcings such as volcanic eruptions and solar radia-
tion (Deser et al., 2012a; Canadell et al., 2021; Eyring et al.,
2021; Mercado et al., 2009; Zhang et al., 2021). Internal
climate variability is often regarded as an irreducible noise
within the signal of long-term forced climatic trends, arising
from internal atmospheric dynamics and from atmosphere-
ocean interactions (Deser et al., 2012b, 2020; Lehner et al.,
2017; Bonan et al., 2021). Such variability manifests both
as short-term weather events and as low-frequency climate
patterns, such as the El Niño/Southern Oscillation (ENSO)
which strongly influence global land carbon sink variations
through associated changes in temperature and precipitation
(Bacastow, 1976; Keeling et al., 1995; IPCC, 2021; Li et al.,
2022).

The detection of anthropogenic signals in the global land
carbon sink is important for improving our understanding of
carbon-climate feedback and refining future carbon projec-
tions (Friedlingstein et al., 2014). Detection involves identi-
fying a statistically significant “signal” of long-term forced
changes against the “noise” of natural variability in the sys-
tem (Chen et al., 2021) and is important for improving our
understanding of carbon-climate feedback and refining fu-
ture carbon projections (Friedlingstein et al., 2014). How-
ever, several fundamental challenges remain:

First, internal climate variability can be realized differ-
ently in multiple simulations under the same external forc-
ings, which may be seen as random and difficult to predict
(Frankcombe et al., 2015; Deser et al., 2020; Doblas-Reyes
et al., 2021; Bonan et al., 2021). Since observations only rep-
resent one unique realization of internal climate variability
(Deser et al., 2020; Doblas-Reyes et al., 2021; Bonan et al.,
2021), they are insufficient to characterize the full range of
physically plausible internal climate variability. Moreover,
internal climate variability is sensitive to the choice and
length of the study period (Kumar et al., 2016; Doblas-Reyes
et al., 2021; Maher et al., 2025), making it harder to separate
natural fluctuations from forced signals (Bonan et al., 2021;
Frankcombe et al., 2015; Doblas-Reyes et al., 2021). This
makes it challenging to capture the full dynamics of internal

climate variability, particularly due to the limited length of
observation records (Maher et al., 2019; Chen et al., 2021).

Second, ecosystem responses vary across geographic re-
gions and timescales of natural climate variations and forc-
ing (Lombardozzi et al., 2014). Regions with high natural cli-
mate variability might not show high land carbon sink vari-
ability (Lombardozzi et al., 2014). The detection and attri-
bution of anthropogenic signals thus strongly depend on the
specific regions of interest (Deser et al., 2012a; Hawkins and
Sutton, 2012; Deser et al., 2012b; Mahlstein et al., 2012;
Lombardozzi et al., 2014). On decadal time scales, inter-
nal climate variability in land-atmosphere CO2 flux often
mask the anthropogenic signals in many regions (Lombar-
dozzi et al., 2014; Kumar et al., 2016; Doblas-Reyes et al.,
2021; Bonan et al., 2021).

Large ensembles of Earth system model (ESM) simula-
tions with perturbed initial conditions are effective tools to
address these challenges (Deser et al., 2020; Bonan et al.,
2021). By running sufficient simulations in a single model
with slightly different initial conditions, and under the same
physical process representation and external forcing, the dis-
tribution of internal climate variability is sampled more ef-
fectively than with a single realization (Milinski et al., 2020;
Chen et al., 2021). The externally perturbed signal (dom-
inated by anthropogenic signal) emerges as the ensemble
mean, that is, a deterministic signal (Milinski et al., 2020;
Deser et al., 2020). The residual after removing the ensemble
mean can thus be regarded as mostly internal natural vari-
ability in the climate system (Milinski et al., 2020; Deser
et al., 2020; Bonan et al., 2021). Based on such large en-
sembles of ESM simulations, the “time of emergence (ToE)”
can be determined as the time required for an external per-
turbed signal (mostly anthropogenic-caused climate change)
to become larger than the amplitude of natural variations
(Hawkins and Sutton, 2012; Lehner et al., 2017; Schluneg-
ger et al., 2020; Bonan et al., 2021). The ToE metric helps
to identify climate change impacts on regional and global
scales, and attribute changes to particular causes (Chen et al.,
2021). However, due to large year-to-year variations, the an-
thropogenic signal may remain within the range of natural
variability for multiple decades (Lombardozzi et al., 2014;
Bonan et al., 2021; Ranasinghe et al., 2021).

Here, we evaluate how long it takes for long-term trends
in the global land carbon sink – primarily driven by anthro-
pogenic perturbations – to be detected at different spatial
scales. To achieve this, we estimate the ToE in ESM sim-
ulations under historical and future scenarios. Our key ob-
jectives are to: (1) detect the anthropogenic perturbed signal
in global land carbon sink in historical simulations (1851–
2014); (2) examine the spatial effects in the ToE on regional
scales; (3) estimate the ToE under various future scenarios
(2016–2100) and (4) test approaches to separate circulation-
induced variability in the ToE in the global land carbon sink.
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2 Methods and dataset

In this study, we use five ESM large ensembles to investigate
the time to detect anthropogenic perturbed signals in global
and regional land carbon sinks.

2.1 Dataset

We use outputs from historical simulations by ESMs with at
least 30 realizations to investigate the ToE in the land carbon
sink. The models selected include the CESM2-LE with 90
simulations (Danabasoglu et al., 2020; Rodgers et al., 2021)
and four models in CMIP6 (Eyring et al., 2016; Brunner
et al., 2020): ACCESS-ESM1-5 with 38 simulations (Ziehn
et al., 2020), CanESM5 with 40 simulations (Swart et al.,
2019), IPSL-CM6A-LR with 33 simulations (Boucher et al.,
2020), and MPI-ESM1-2-LR with 41 simulations (Mauritsen
et al., 2019). All historical simulations are conducted under
the CMIP6 historical forcing, including volcanic eruptions
and changes in atmospheric composition due to human activ-
ities (Eyring et al., 2016). The future scenario simulations are
modeled under different Shared Socioeconomic Pathways
(SSPs), based on varying levels of human-emitted CO2 and
mitigation efforts (Chen et al., 2021; Lee et al., 2021; O’Neill
et al., 2016).

The historical simulations covers the period of 1851–2014
and the future scenario simulations cover the period from
2015 to 2100. The spatial resolution of CESM2-LE outputs
is 0.9375°× 1.25°, and four CMIP6 models is 2.5°× 2.5°
(pre-processed by Brunner et al. (2020) from their native spa-
tial resolution). We select the net biome production (NBP),
gross primary production (GPP), and total ecosystem respi-
ration (TER) from the above five ESMs. Note that the TER in
CESM2-LE is calculated according to Eq. (1), where TER is
estimated as the difference between GPP, primary production
(NPP), corresponding to autotrophic respiration, soil respira-
tion (SR), and litter respiration (LR) (Eq. 1).

TER= GPP−NPP+SR+LR (1)

The TER in four CMIP6 models is calculated based on the
sum of autotrophic (ra) and heterotrophic respiration (rh)
(Eq. 2).

TER= ra+ rh (2)

CESM2-LE outputs of NBP, GPP, NPP, SR, and LR are
downloaded from https://www.earthsystemgrid.org/dataset/
ucar.cgd.cesm2le.lnd.proc.monthly_ave.html (last access:
11 July 2024). For the other four CMIP6 models, NBP, GPP,
ra and rh are downloaded (originally from https://esgf-node.
llnl.gov/projects/cmip6/) then pretreated by Brunner et al.
(2020). We further download the monthly mean sea level
pressure (SLP) from the five models from their respective
sources.

For the regional analysis, we use the regional carbon cy-
cle assessment and processes (RECCAP-2) (Ciais et al.,

2022) map (https://www.bgc-jena.mpg.de/geodb/projects/
Data.php, last access: 19 October 2023) that categorizes the
global land surface into 10 distinct domains, with resolution
of 0.5°× 0.5°.

We also included the observations of atmospheric CO2
growth rate (AGR) at Mauna Loa (Lan et al., 2025)
from 1960 to 2009, downloaded from https://gml.noaa.gov/
webdata/ccgg/trends/co2/co2_gr_gl.txt (last access: 18 Au-
gust 2025). We used monthly mean SLP from the ERA5
reanalysis dataset (Hersbach et al., 2023) for the period
1959–2009, with resolution of 0.25°× 0.25°, downloaded
from https://doi.org/10.24381/cds.f17050d7 (Hersbach et al.,
2023).

2.2 Data pretreatment

NBP, GPP, and TER from CESM2-LE are provided in the
unit of gCm−2 s−1, from which an annual sum is calculated.
NBP, GPP, and TER from four CMIP6 models are in unit of
kgCm−2 s−1 and converted to annual sums in gCm−2 yr−1.
TER is calculated according to Eq. (1) for CESM2-LE and
according to Eq. (2) in the four CMIP6 models. In or-
der to have consistent sign with GPP, TER here is multi-
plied by−1. In the historical simulations (1851–2014), NBP,
GPP, and TER of the five model datasets are area-weighted
and aggregated to domain mean with the spatial resolutions
of 2.5°× 2.5°, 5°× 5°, 10°× 10°, 20°× 20°, 30°× 30°,
45°× 45°, 60°× 60°, and global mean. The global mean of
NBP, GPP, and TER is also calculated for the four future sce-
narios, with period of 2016–2100 selected (in CMIP6 mod-
els the time series starts at July 2015, so we select from 2016
instead). Note that CESM2-LE only includes one future sce-
nario (SSP3-7.0), and other models included all four future
scenarios. SLP from all five ESMs is aggregated to the reso-
lution of 10°× 10°. Data pre-processing, including unit con-
version and spatial aggregation, was performed with the Cli-
mate Data Operators software (Schulzweida, 2023, CDO).

The RECCAP-2 map is area–weighted and aggregated to
2.5°× 2.5°, then categorize the NBP, GPP, and TER to 10
RECCAP-2 regions.

The pretreatment steps of atmospheric CO2 growth rate
(AGR) at Mauna Loa from 1960 to 2009 (Lan et al., 2025)
follows Li et al. (2022). We first remove five volcanic years
(1963, 1982, 1983, 1991, and 1992), then fitted the long-term
trend with locally weighted scatterplot smoothing (Cleveland
et al., 1991, LOWESS). SLP from ERA5 (Hersbach et al.,
2023) also have five volcanic years removed, then area–
weighted and aggregated to the spatial resolution of 9°× 9°.

2.3 Methods

2.3.1 Time of emergence

To determine the time of emergence (ToE), we apply the
noise-to-signal ratio approach, following Bonan et al. (2021).
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The signal (S) refers to the anthropogenic perturbation driven
response, which is the linear regression slope of the ensemble
mean of the simulations for each model (Bonan et al., 2021).
For the calculation of N , we first select all years across all
model simulations over the selected period, then mix the data
from all years in the selected period together and calculate
the standard deviation. In the historical simulations, the noise
(N ) corresponds to the standard deviation of the ensemble
before the 1960s (here is 1930–1959), a period less affected
by human activities compared to more recent ones, and used
as the baseline for natural variability (Bonan et al., 2021). In
the future scenarios, we calculate the ToE for NBP, GPP, and
TER, with the signal period in 2020–2070 and the noise pe-
riod in 2020–2070 (with the ensemble mean removed). ToE
(Eq. 3) represents the time needed for the anthropogenic per-
turbed signal to become larger than the amplitude of the noise
(Bonan et al., 2021).

ToE (years)= 2N/S (3)

Here we use a linear regression slope rather than a nonlin-
ear approach to represent the signal trend, this is to capture
the dominant forced signal in the selected signal period. The
ensemble mean of NBP, GPP and TER reflects the forced
ecosystem response, including anthropogenic forcing, short-
period natural forcings (e.g., volcanic eruptions), and decadal
internal variability (Deser et al., 2012a; Canadell et al., 2021;
Eyring et al., 2021; Mercado et al., 2009; Zhang et al., 2021).
The linear trend captures the first-order (Hasselmann, 1979)
long-term anthropogenic influence, whereas nonlinear meth-
ods could risk overfitting and mis-attributing natural forcing
or internal variability to anthropogenic signals, especially at
regional scales where variability is larger (see Fig. 3 and Ap-
pendix A, Fig. A1).

2.3.2 Noise filtering based on dynamical adjustment

To shorten the detection time, we use a dynamical adjust-
ment technique to estimate circulation-induced variability in
NBP. Dynamical adjustment is a technique in climate sci-
ence, which aims to isolate circulation-induced variability
(such as in temperature and precipitation); where the residual
time series in those climate variables is thought to contain the
forced response (Smoliak et al., 2015; Deser et al., 2016; Sip-
pel et al., 2019). Circulation-induced variability is generally
expected to reflect internal climate variability to the largest
extent (Deser et al., 2016; Smoliak et al., 2015; Sippel et al.,
2019). Therefore, dynamical adjustment allows one to obtain
a higher signal-to-noise ratio in the circulation-filtered resid-
ual time series, where the residual represents the remainder
after subtracting the estimated circulation-induced variability
from the target variable.

Here, we employ ridge regression, a dynamical adjustment
technique, to estimate circulation-induced variability (Sippel
et al., 2019). In our model, the sea level pressure (SLP) field
is used as a predictor and proxy of circulation-induced vari-

ability (Sippel et al., 2019). As a regularized linear regression
method, ridge regression allows for including full spatiotem-
poral dynamics of circulation variations while overcoming
multicollinearity and overfitting, which typically arise from
a large number of predictors and relatively short study pe-
riod (Hastie et al., 2009; Sippel et al., 2019). This approach
was adapted by Li et al. (2022) to evaluate the fraction of
atmospheric circulation-induced variations in global carbon
cycle variability. The key steps include (Sippel et al., 2019; Li
et al., 2022): (1) Select pixel based time series of global SLP,
to be used later for predicting global carbon cycle variabil-
ity. We then calculate the mean seasonal SLP. Because DJF
(December–February) SLP provides the highest predictabil-
ity of annual NBP (see Li et al., 2022, for details), we use
DJF SLP in this study. (2) Select the time series represent-
ing global land carbon variability; here, this corresponds to
the global annual NBP with the ensemble mean removed.
(3) Training and testing. Here, the first half of the dataset is
used for training and the second half for testing. For exam-
ple in historical simulations, the training data is the time se-
ries from 1851 to 1932, and the testing data is in 1933–2014.
(4) Switch the training and testing data to start a new round of
model training and prediction. This means, the training data
from step 3 is used as testing data, and the testing data from
step 3 is used as training data. Then we have the full time
series of NBP that is predicted by DJF SLP. Detailed model
design can be found in Sippel et al. (2019), Li et al. (2022).

By using DJF SLP to predict NBP (with the ensem-
ble mean removed), we estimate the fraction of circulation-
induced variability in global NBP time series. The residual,
after removing the DJF SLP predicted NBP, reflects mostly
the influence of natural forcing (e.g., volcanic eruptions or
solar radiation variability), disturbances (fires, when simu-
lated by models), and unpredictable high frequency inter-
nal climate variability (Sippel et al., 2019; Piao et al., 2020;
Canadell et al., 2021). We hypothesize that this method re-
duces noise levels in NBP and allows for an earlier detection
of the anthropogenic signal.

2.4 Statistical analysis

We perform four statistical analyses: (1) ToE in land carbon
fluxes from historical simulations. We analyse the ToE of the
anthropogenic perturbed signal in NBP, GPP, and TER in the
historical simulations. Following Bonan et al. (2021), the sig-
nal (S) is the linear regression slope of the ensemble mean in
the period of 1960–2009, and noise (N ) is the standard de-
viation of all simulations in the period 1930–1959. We first
compare the historical time series of NBP, GPP, and TER,
and then calculate the ToE according to Eq. (3). (2) Spa-
tial effects on ToE. We examine how the ToE varies glob-
ally and across the 10 RECCAP-2 regions. In addition, we
evaluate the influence of spatial resolution on ToE. We calcu-
late pixel-based ToE values at multiple spatial scales (rang-
ing from 5°× 5° to 60°× 60°) and compare these with the
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global scale. (3) ToE in future projections of the land carbon
fluxes. We calculate the ToE for NBP, GPP, and TER, with
the signal period in 2020–2070 and the noise period in 2020–
2070 (with the ensemble mean removed). (4) Noise reduction
through dynamical adjustment. Given the large year-to-year
variability in NBP, we use ridge regression to remove the
circulation-induced variability in global NBP. To assess the
effectiveness of ToE reduction on a global scale through dy-
namical adjustment, we calculate the relative reduction (dS)
according to Eq. (4).

Note that only the calculated signal (regression slope) with
significance value P < 0.05 is selected. If the calculated sig-
nal (regression slope) is negative, we then take the absolute
signal value to get a positive ToE. Here we select to show the
ToEs less than 150 years.

dS = 100% · (VO−VR)/VO (4)

Note that VO represents the original value (ToE or N ) and
VR is the (ToE or N ) estimated from the original time series
(NBP or GPP) after removing the circulation-induced vari-
ability estimated by using the ridge regression model.

We also calculated the contribution of N and S to ToE
changes in each RECCAP-2 region, relative to the global
scale, for NBP, GPP, and TER. Equation (5) is the natural
logarithmic form of Eq. (3). We first calculate the logarithmic
changes on the global and regional scales, and then calcu-
late the differences between each region and the global mean
(Eq. 6).

ln(ToE)= ln(2×N)+ ln(1/S) (5)

ln(ToEregion)− ln(ToEglobal)= ln(2×Nregion)

− ln(2×Nglobal)+ ln(1/Sregion)

− ln(1/Sglobal) (6)

The contribution of changes in N and S are:

Ncontri = 100%×
ln(2×Nregion)− ln(2×Nglobal)

ln(ToEregion)− ln(ToEglobal)
(7)

Scontri = 100%×
ln(1/Sregion)− ln(1/Sglobal)

ln(ToEregion)− ln(ToEglobal)
(8)

Note that for future scenarios, we substitute the region’s
value to each future scenario’s value.

3 Results and discussion

3.1 Detection of anthropogenic signal in historical
simulations

We first examine the NBP time series for the historical sim-
ulations from 1851 to 2014 (Fig. 1). Before the 1960s, the
ensemble mean (long-term trend) for each model remains
relatively stable with slight variations. After the 1960s, the
ensemble mean shows a noticeable increase. Despite this, the

magnitude of NBP variability remains consistent or slightly
increase throughout the historical period, for all models. In
individual simulations, we observe that the year-to-year vari-
ations are considerably larger than the changes in the ensem-
ble mean, enhancing or offsetting the long-term NBP trend
(Fig. 1).

We then examine the time series of GPP and TER in the
historical simulations (Fig. 1). Both GPP and TER show sim-
ilar trends across models, though ACCESS-ESM1-5 shows
a larger magnitude difference (Fig. 1). The ensemble mean
of GPP and TER are similar until the 1960s, after which
GPP slightly surpassed TER (Fig. 1). year-to-year variations
are minor compared to the long-term trend in the ensem-
ble mean, suggesting that photosynthesis and respiration are
strongly influenced by anthropogenic perturbations. Because
the trends in GPP and TER largely compensate when com-
bined to calculate NBP, the resulting NBP exhibits smaller
long-term trends but pronounced interannual variability.

3.2 Spatial effects of ToE

We then examine how long it takes for the anthropogenic
signal (ensemble mean of each model) to emerge from year-
to-year variations of NBP in global scale and across 10
RECCAP-2 regions (Fig. 2b). Globally, CESM2-LE has the
shortest detection time at 26 years, while CanESM5 takes the
longest at 66 years (Fig. 2b). The detection time in ACCESS-
ESM1-5 is not available, due to a flat trend of ensemble mean
after 1960s.

We first check the ensemble mean of NBP in global scale
and 10 RECCAP-2 regions (Fig. A1). The trends of ensem-
ble mean in NBP subjects to larger interannual variability in
regional than in global scales, particularly in Southeast Asia
and Africa. Comparing noise (N ) and signal (S) (Fig. A4 and
Eq. 3), we found that the variation in detection time across
models is mainly due to differences in year-to-year variabil-
ity and signal trends.

In most of the 10 RECCAP-2 domains, ToE detection in
NBP takes longer than at the global scale (Fig. 2b). We cal-
culate the contribution of changes in N and S to regional
ToE, compared with historical global scale NBP (Fig. A5).
In regions such as South Asia and Australasia, the longer re-
gional ToE is mainly due to larger regional noise (Fig. A5).
While in other regions such as East Asia, the longer regional
ToE is mainly attributable to smaller regional S (Fig. A5).
These effects delay the detection of anthropogenic signals, a
phenomenon we refer to as “spatial delay”.

The spatial delay in NBP can be explained by the reduced
noise from internal climate variability when fluxes are aggre-
gated globally, while the signal trend may be either enhanced
or diminished depending on the specific region considered
(Figs. A4, A5). This is a well-known pattern in detection and
emergence studies in the climate literature (Mahlstein et al.,
2011; Lehner et al., 2017). However, the spatial delay does
not apply everywhere. In Russia, models like CanESM5, and
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Figure 1. Time series of NBP, GPP, and TER from 1851 to 2014 in five ESM large ensembles. The thin lines represent individual simulations,
while the bold lines represent the ensemble mean. The gray lines show NBP, corresponding to the left y axis. The blue and red lines
corresponds to the right y axis and represent GPP and TER, respectively. The number of simulations for each model is listed in the legend
next to the model name. Note that TER in model ACCESS-ESM1-5 only included 24 simulations, due to limited data availability.

IPSL-CM6A-LR show shorter detection time compared to
the global scale (Figs. A4, A5). This is mainly due to appar-
ent smaller noise in Russia of the two models, compared with
global scale and other regions (Figs. A4, A5).

We then evaluate the ToE for GPP and TER (Fig. 2c,
d), both show similar patterns in detection time, and the
relative importance of noise and signal at regional scale
(Figs. A6, A7, A8, A9). Globally, it takes around 8 to 13
years to detect anthropogenic signal in GPP and 6 to 10
years for TER (Fig. 2c, d). As found for NBP, both GPP
and TER show a spatial delay from global scale to regional
scale (Fig. 2c, d). For GPP and TER, longer regional ToEs
are mostly due to larger regional noise rather than weaker
signal trends, except in West Asia, where it is mainly driven
by an apparent weaker signal trend (Figs. A7, A9). Australa-
sia in GPP and TER both generally have the longest detec-
tion time, due to higher noise compared to lower signal levels
(Figs. A6, A8), indicating higher internal climate variability.

In both GPP and TER, South America and Southeast Asia
experience high levels of noise and signal, while West Asia
has relatively low levels of noise and signal (Figs. A6, A8).

Compared with the land carbon sink (NBP), photosyn-
thesis (GPP) and ecosystem respiration (TER) individually
show a much shorter detection time of the anthropogenic
signal (Fig. 2). This is likely due to the fact that GPP and
TER trends are strongly influenced by anthropogenic per-
turbations, with the magnitude of the trend exceeding the
magnitude of internal climate variability in a much shorter
time. However, when calculating NBP, the long-term trends
of GPP and TER offset each other, leaving NBP with weaker
long-term trends relative to the year-to-year natural varia-
tions, thus making it harder to detect the anthropogenic signal
in NBP.

To further analyse the spatial delay effect, we calculate
the distribution of pixel based ToE for NBP, GPP, and TER
under varying resolutions in the historical simulations. For

Biogeosciences, 23, 767–792, 2026 https://doi.org/10.5194/bg-23-767-2026



N. Li et al.: Quantifying the time of emergence of the anthropogenic signal in the global land carbon sink 773

Figure 2. ToE of NBP on a global scale and across 10 RECCAP-2 regions, under historical simulations of five ESM large ensembles. Note
that ToE is the years detectable after 1960, and is calculated with signal period of 1960–2009 relative to the noise period of 1930–1959,
details please check Sect. 2.4. (a) RECCAP-2 map (reproduced from Ciais et al., 2022, Fig. 1, distributed under the Creative Commons
Attribution 4.0 License) that divides the global continents into 10 domains. Note that the RECCAP-2 map is aggregated from 0.5°× 0.5° to
2.5°× 2.5°, the spatial domains are slightly changed. (b) Heat map of the ToE in global and each spatial domain of NBP. (c) and (d) are heat
maps of the ToE in global and each spatial domain of GPP and TER separately. Domains with no significant signal (P > 0.05) or ToE longer
than 150 years are shown as empty squares.

NBP, as the resolution becomes coarser, the spread of the
ToE distribution decreases substantially (Fig. 3), though the
median remains similar. This might be due to noise reduc-
tion by spatial aggregation through offsetting internal climate
variability (Lombardozzi et al., 2014) (Fig. 3). A similar pat-
tern is observed in GPP and TER, where aggregation reduces
the spreads of ToE without substantially altering the medians
(Figs. A10 and A11).

We found global scale takes shorter time to detect long-
term trends induced by anthropogenic effects than at regional
scales, with ToEs increasing for smaller domains as reported
by Lombardozzi et al. (2014), though their study used fewer
models and less than 10 simulations. A few regions, how-
ever, show shorter ToEs than the global scale. For example, in
Russia, CanESM5 and IPSL-CM6A-LR simulate relatively
small noise and stronger signal trends, leading to shorter
ToEs. This maybe relate to the sparsely distributed ecosys-
tems included in models, which are less sensitive to changes
in climate drivers. We found that, for regional NBP, larger
interannual variability in the signal trend also contributes to
longer detection time, likely reflecting different regional cli-
mate drivers (e.g., fires, decadal internal variability, land use

changes (Deser et al., 2012a; Canadell et al., 2021; Eyring
et al., 2021; Mercado et al., 2009). Such large signal vari-
ability in regions like Southeast Asia and Africa therefore
introduces substantial uncertainties in detecting the anthro-
pogenic signal on decadal timescales.

The large interannual variations in NBP largely arise from
variations in GPP and respiration. As regional ecosystems
are more sensitive to precipitation than to temperature (Jung
et al., 2017), much of this variability maybe influenced
by precipitation (Humphrey et al., 2018, 2021). However,
anthropogenic signals in precipitation are less robust and
emerged later than those in temperature (Doblas-Reyes et al.,
2021). Identifying these signals and their impacts on regional
ecosystem activity could therefore enable a cleaner and ear-
lier detection of anthropogenic influences on land carbon
sinks.

3.3 ToE in future projections

We examine the time series of NBP under various future sce-
narios from 2016 to 2100 (Fig. 4). NBP trends of ensemble
mean show large deviations across models (Fig. 4).
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Figure 3. Spatial effect in NBP historical simulations across five ESM large ensembles. The distribution of ToE (years after 1960) is shown
for varying spatial resolutions. We aggregate the global data per pixel to different resolutions, then calculate the ToE per pixel. The line
within each box indicates the median. Note that all signals are in absolute values, so the calculated ToEs are all positive.

In CESM2-LE, the SSP3-7.0 scenario shows a steady in-
crease in NBP until around 2040, followed by stable trend
until 2100 (Fig. 4). ACCESS-ESM1-5 and IPSL-CM6A-
LR exhibit mixed NBP trends in all scenarios, with a
relatively stable trend before 2050 and a gradual decline
afterwards—ACCESS-ESM1-5 even shifted to a net carbon
source (Fig. 4). In CanESM5, all scenarios are mixed and
together increasing until 2050 (Fig. 4). After that, all sce-
narios diverged according to different emission scenarios
(Fig. 4). MPI-ESM1-2-LR also have all scenarios mixed be-
fore around 2050, then diverge clearly with a lower overall
trend (Fig. 4). Except CanESM5, the large year-to-year vari-
ability in NBP makes it challenging to distinguish long-term
trends across scenarios.

We then examine the time series of GPP and TER un-
der future scenarios (Figs. A12 and A13). GPP continues to
rise in all models until 2100, except for SSP1-2.6, in which
GPP slightly decreases after ca. 2060 (Fig. A12). TER fol-
lows a similar pattern, with an increasing trend in line with
the different CO2 emission scenarios (Fig. A13). The in-
crease in GPP is likely due to the enhanced CO2 fertilization
and warming in mid-to-high latitudes (Ruehr et al., 2023;
O’Sullivan et al., 2022).

Distinguishing the ToE for NBP from different future sce-
narios is challenging, due to smaller anthropogenic signal
and larger year-to-year variations across four future scenarios
(Fig. 5). Only CanESM5 shows a clear separation between
scenarios, with ToE of 147 years for SSP1-2.6, 60 years for
SSP2-4.5, 35 years for SSP3-7.0, and 19 years for SSP5-8.5.
Other models take over 44 years to detect the anthropogenic
signal among all scenarios (Fig. 5). In contrast, GPP and TER
trends are more distinct and separated according to different
scenarios, resulting in much shorter ToE (Figs. A15, A17).

This might be due to an increase in the CO2 emission level, or
a stronger anthropogenic signal that outweighs the increased
noise level, making the detection time more driven by im-
pacts from anthropogenic perturbations rather than internal
climate variability (Figs. A16, A18).

The divergence of NBP across models is much larger in
future scenarios than in historical simulations. While mod-
els are inherently different, these differences in the historical
period may be amplified in future scenarios due to: (a) the
increasing influence of CO2 fertilization and land use change
(van Vuuren et al., 2011; O’Neill et al., 2016; Christensen
et al., 2018; Arora et al., 2020; Lee et al., 2021; Ciais et al.,
2013); and (b) Rising temperature and more frequent extreme
events (Friedlingstein et al., 2014; Fischer and Knutti, 2015;
Hewitt et al., 2016; Kharin et al., 2018; Vogel et al., 2020;
Li et al., 2021; Seneviratne et al., 2021). Both may inten-
sify differences in climate-carbon feedbacks among models
(Friedlingstein et al., 2014; Hewitt et al., 2016; Seneviratne
et al., 2021).

In future scenarios, it takes longer to detect the anthro-
pogenic signal in NBP, when compared to historical simu-
lations. This delay is mainly due to the small anthropogenic
signal caused by the compensation effect of GPP and TER,
whose differences are smaller than those in historical sim-
ulations (Figs. 5, A14–A18). This may result from a slow-
down in the long-term GPP trend under warmer climate and
increasing CO2 concentrations in future scenarios. In addi-
tion, larger noise levels (Fig. A14) that might driven by more
frequent extreme events in a warming climate (Arias et al.,
2021) amplifies year-to-year variations in the land carbon
sink. Reducing these year-to-year variations is crucial for re-
ducing the ToE in NBP. In the next section, we apply dy-
namical adjustment to filter out the atmospheric circulation-
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Figure 4. The time series of future NBP from 2016 to 2100 across five ESM large ensembles. The four future scenarios include SSP1-2.6
(red line), SSP2-4.5 (yellow line), SSP3-7.0 (green line), and SSP5-8.5 (purple line). Thin lines represent individual simulations, while thick
lines represent the ensemble mean for each scenario. The number of simulations for each model scenario is indicated in the legend next to
the scenario label.

Figure 5. Heat map of ToE, noise (N ), and signal (S) of global mean NBP under future scenarios.

induced variability in global NBP time series, and assess
whether it can contribute to reduce ToE in both historical
simulations and future scenarios.

3.4 Dynamical adjustment for noise reduction

We use the ridge regression to filter out atmospheric
circulation-induced variability in year-to-year global NBP
variability (Fig. 6). By applying the ridge regression model
that based on sea level pressure as covariates, the circulation-
induced variability in the respective carbon flux is predicted.
The predicted circulation-induced variability is assumed to
contain direct influences (via thermodynamics or CO2 fer-
tilization) of climate change (Sippel et al., 2019). Because
circulation-induced variability is highly variable and often

assumed to be largely internal variability, the residual can be
expected to show a higher signal-to-noise ratio (e.g., Deser
et al., 2016; Sippel et al., 2019).

The noise of global NBP is substantially reduced after
filtering out circulation-induced variability, so that ToE is
reduced in both historical simulations and future scenarios
(Fig. 6, Appendix A, Table A1). In the historical simulations,
the relative reduction in ToE ranges from 34 % (CESM2-LE)
to 39 % (CanESM5), corresponding to 9 and 26 years, re-
spectively (Fig. 6, Table A1). For future scenarios, the reduc-
tion ranges from 29 % to 55 % (42 and 19 years reduction, re-
spectively), except for ACCESS-ESM1-5, where reductions
are mostly less pronounced (Table A1). For GPP, the rela-
tive reduction in ToE is smaller (Fig. A19 and Table A3). In
the historical simulations, it ranges from 13 % (CanESM5)
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to 32 % (ACCESS-ESM1-5), corresponding to 1 and 4 years,
respectively (Fig. A19 and Table A3). For future scenarios,
the relative reduction ranges from 19 % to 60 % (1 and 67
years reduction, respectively) (Fig. A19 and Table A3). The
large reduction of ToE indicates that NBP and GPP are both
substantially affected by circulation-induced variability.

We then test the observations of Atmospheric CO2 growth
rate (AGR) from Mauna Loa (Lan et al., 2025) for the period
1960–2009, matching the period of signal for the ESM anal-
ysis (Fig. 7). The ToE of the observed AGR is 33 years, with
noise of 0.87 gCyr−1 and signal of 0.05 gCyr−2 (Fig. 7).
After removing circulation-induced variations through dy-
namical adjustment, the ToE of the adjusted new AGR is
reduced to 23 years, with noise of 0.70 gCyr−1 and signal
of 0.06 gCyr−2 (Fig. 7). This represents an overall reduction
of about 30 %, contributed by 19 % reduction in noise and
20 % increase in signal. The results show that this approach
can be applied in observations, enabling earlier detection of
anthropogenic signals in global carbon cycle variability.

4 Conclusions

This study examines the detection of long-term trends driven
by anthropogenic signals in the global land carbon sink. Us-
ing five ESM large ensembles, we analyze both the historical
period (1851–2014) and future scenarios (2016–2100).

In the historical period, the global land carbon sink (NBP)
shows large year-to-year variations, which can enhance or
obscure long-term anthropogenic trends. While both carbon
uptake (GPP) and ecosystem respiration (TER) show trends
influenced by anthropogenic perturbations, their year-to-year
variations are relatively small. Since NBP corresponds to the
balance between carbon absorption (photosynthesis) and re-
lease (ecosystem respiration), as well as other fluxes such as
fires, the long-term trend of NBP is in most cases smaller due
to this compensation, leaving NBP with a smaller long-term
trend and relatively larger year-to-year variations.

We find that the ToE is smaller at global scale compared
to regional scales, that is, the anthropogenic signal can be
detected earlier at global scale. In the period of 1960–2009, it
takes over 26 years for NBP signals to emerge from internal
variability, and around 10 years for GPP and TER. At the
regional scale, ToE is longer, which might be due to larger
noise from natural climate variability in most regions, as well
as detected weaker signal trends. Coarser resolutions reduce
the detection time, but the spatial delay is not universal –
some high-latitude regions, for example Russia, is found in
two CMIP6 models having a shorter detection time of NBP.
This is due partly to a smaller noise compared with other
regions and the global scale, and partly due to a high signal
relative to the small average carbon flux at present in those
northern regions. The smaller noise may be also due to the
small average carbon flux, and associated small variability.

In future scenarios, it takes longer to detect the anthro-
pogenic signal in NBP, due to lower anthropogenic signal
level caused by the compensation effect of GPP and TER,
as well as higher noise levels that may result from more fre-
quent extreme events under a warming climate (Friedling-
stein et al., 2014; Fischer and Knutti, 2015; Hewitt et al.,
2016; Kharin et al., 2018; Vogel et al., 2020; Li et al., 2021;
Seneviratne et al., 2021; Arias et al., 2021). The future trends
of global land carbon sink differ significantly across mod-
els. While some models have time series separated by emis-
sions after 2050, others remain mixed through 2100. This
might be due to the large uncertainty in projections of the
global land carbon sink (Friedlingstein et al., 2014; Padrón
et al., 2022). For high CO2 emission scenarios of SSP3-7.0
and SSP5-8.5, CanESM5 continues to increase after around
2050, while other models show carbon saturation, which may
result from model uncertainties related to climate change and
nutrient limitations (Arora et al., 2020). Uncertainty in ToE
in future projections is closely linked to uncertainties across
the model projections of the land carbon sink in the future.
In contrast, GPP and TER increase consistently and are well
separated by different CO2 emission scenarios.

NBP exhibits larger year-to-year variability and it is diffi-
cult to detect the anthropogenic signal. After removing atmo-
spheric circulation-induced variability from NBP, the time
of emergence of the anthropogenic signal is significantly re-
duced. In the historical simulations, the relative reduction in
the ToE ranges from 34 % to 39 %, while in future scenarios
it ranges between 29 % to 55 %. Future NBP is more influ-
enced by anthropogenic perturbations and natural variations
(Arias et al., 2021). However, anthropogenic perturbations
remain the dominant factor of GPP trends, which determine
the time of emergence under all future scenarios. This ap-
proach has been applied in observations and shows an early
detection of anthropogenic signal in global carbon cycle vari-
ability.

The emergence approach used in this study is sensitive to
the choice of the periods for defining noise and signal. More-
over, the fitted linear slope of the ensemble mean may mis-
represent the true signal trend, particularly at regional scales,
due to large forced variability in the ensemble mean (Lom-
bardozzi et al., 2014; Bonan et al., 2021). A better under-
standing of regional ecosystem responses to anthropogenic
signals, along with improved methods that are less sensitive
to large regional variability, may help reduce the detected
emergence time.

This study highlights how early the anthropogenic im-
pacts on the global land carbon sink can be detected. By
using a dynamical adjustment technique to remove atmo-
spheric circulation-induced variability, the detection time can
be largely reduced. However, there are still substantial uncer-
tainties across models, with differing patterns and large year-
to-year variations (Friedlingstein et al., 2014; Arora et al.,
2020). Our proposed approach to use dynamical adjustment
to reduce ToE can contribute to enhance our ability to mon-
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Figure 6. ToE of NBP from historical simulations to future scenarios. Note that ToE in historical simulations is calculated with signal period
of 1960–2009 relative to the noise period of 1930–1959, and ToE in future scenarios is calculated with signal period of 2020–2070 relative to
the noise period of 2020–2070, details please check Sect. 2.4. The solid boxes represent the ToE of NBP, while the hatched boxes represent
the ToE of the NBP residual with the circulation-induced variability removed. In cases where both boxes are missing, the respective signal is
not available (no significance of linear trend slope), or the ToEs are longer than 150 years.

Figure 7. Time series of the atmospheric CO2 growth rate (AGR) at Mauna Loa from 1960 to 2009 (Lan et al., 2025). Five volcanic years
(1963, 1982, 1983, 1991, and 1992) are removed. The red line is the observed AGR. The black line is the long-term trend fitted with a locally
weighted scatterplot smoothing (Cleveland et al., 1991, LOWESS) (signal). The residual (AGR minus fitted long-term trend) was predicted
using SLP through ridge regression with leave-one-out cross validation (blue line). This SLP predicted residual is then subtracted from the
observed AGR to obtain a new AGR time series with circulation-induced variations removed (observed AGR minus SLP predicted residual).
The dashed black line is the new long-term trend. Data pretreatment and the ridge regression model follow paper Li et al. (2022). Note that
the signal period is the same as in models (1960–2009). Due to limited records of CO2 observations before 1958, here we calculate the noise
also in the period 1960–2009.

itor human impacts on land carbon variability and thus sup-
port decision making. This approach is particularly help-
ful for detecting whether recent regional carbon flux trends
are driven by internal climate variability or forced by cli-
mate change. Internally driven trends might not going to be

sustained in the near-future, while trends forced by climate
change are expected to continue.
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Appendix A

Figure A1. Time series of NBP ensemble mean from five ESMs. The thick black line is the global ensemble mean, and the colored lines
represent ensemble means for the 10 RECCAP-2 regions.
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Figure A2. Time series of GPP ensemble mean from five ESMs. The thick black line is the global ensemble mean, and the colored lines
represent ensemble means for the 10 RECCAP-2 regions.
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Figure A3. Time series of TER ensemble mean from five ESMs. The thick black line is the global ensemble mean, and the colored lines
represent ensemble means for the 10 RECCAP-2 regions.
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Figure A4. Heat map of noise and signal of NBP in historical simulations across five ESM large ensembles.

Figure A5. Contribution of N and S to each RECCAP-2 region’s ToE change in NBP, compared with global scale, in historical simulations.
Note that we only show the values with N/S change as the dominant contributor.

Figure A6. Heat map of noise and signal of GPP in historical simulations across five ESM large ensembles.
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Figure A7. Contribution of N and S to each RECCAP-2 region’s ToE change in GPP, compared with global scale, in historical simulations.
Note that we only show the values with N/S change as the dominant contributor.

Figure A8. Heat map of noise and signal in TER in historical simulations across five ESM large ensembles.

Figure A9. Contribution of N and S to each RECCAP-2 region’s ToE change in TER, compared with global scale, in historical simulations.
Note that we only show the values with N/S change as the dominant contributor.
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Figure A10. Spatial effect in GPP historical simulations (1851–2014) across five ESM large ensembles. The distribution of time of emergence
are shown for varying resolutions.

Figure A11. Spatial effect in TER historical simulations (1851–2014) across five ESM large ensembles. The distribution of time of emergence
are shown for varying resolutions.
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Figure A12. The time series of future GPP from 2016 to 2100 across five ESM large ensembles. The four future scenarios include SSP1-2.6
(red line), SSP2-4.5 (yellow line), SSP3-7.0 (green line), and SSP5-8.5 (purple line). Thin lines represent individual simulations, while thick
lines represent the ensemble mean for each scenario. The number of simulations for each model scenario is indicated in the legend next to
the scenario label.

Figure A13. The time series of future TER from 2016 to 2100 across five ESM large ensembles. The four future scenarios include SSP1-2.6
(red line), SSP2-4.5 (yellow line), SSP3-7.0 (green line), and SSP5-8.5 (purple line). Thin lines represent individual simulations, while thick
lines represent the ensemble mean for each scenario. The number of simulations for each model scenario is indicated in the legend next to
the scenario label.
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Figure A14. Contribution of N and S to ToE changes in NBP for future scenario, compared with global scale in historical simulations. Note
that only values where changes in N or S are the dominant contributor are shown.

Figure A15. Heat map of ToE, noise, and signal of GPP under future scenarios.

Figure A16. Contribution of N and S to ToE changes in GPP for each future scenario, compared with global scale in historical simulations.
Note that only values where changes in N or S are the dominant contributor are shown.

Figure A17. Heat map of ToE, noise, and signal of TER under future scenarios.
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Figure A18. Contribution of N and S to ToE changes in TER for each future scenario, compared with global scale in historical simulations.
Note that only values where changes in N or S are the dominant contributor are shown.

Figure A19. ToE of GPP from historical simulations to future scenarios. The light colored boxes represent the ToE of GPP, while the
neighboring darker shade, black framed boxes represent the ToE of the GPP residual, which has the circulation-induced variability removed.

Table A1. ToE reduction in NBP, calculated according to Eq. (4).

Relative change % (Years) CESM2-LE ACCESS-ESM1-5 CanESM5 IPSL-CM6A-LR MPI-ESM1-2-LR

Historical 34 % (9) – 39 % (26) 35 % (16) 36 % (19)
SSP1-2.6 – 2 % (2) 43 % (64) 34 % (29) 31 % (30)
SSP2-4.5 – – 53 % (32) – –
SSP3-7.0 35 % (15) 34 % (34) 55 % (19) – –
SSP5-8.5 – – 52 % (10) 29 % (42) 37 % (26)
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Table A2. Noise reduction in NBP, calculated according to Eq. (4).

Relative change % CESM2-LE ACCESS-ESM1-5 CanESM5 IPSL-CM6A-LR MPI-ESM1-2-LR

Historical 35 % 34 % 48 % 39 % 39 %
SSP1-2.6 – 37 % 53 % 28 % 35 %
SSP2-4.5 – 38 % 54 % 32 % 38 %
SSP3-7.0 34 % 38 % 55 % 31 % 36 %
SSP5-8.5 – 39 % 53 % 20 % 37 %

Table A3. ToE reduction in GPP, calculated according to Eq. (4).

Relative change % (Years) CESM2-LE ACCESS-ESM1-5 CanESM5 IPSL-CM6A-LR MPI-ESM1-2-LR

Historical 25 % (2) 32 % (4) 13 % (1) 26 % (2) 25 % (2)
SSP1-2.6 – 60 % (67) 34 % (3) 26 % (4) 38 % (7)
SSP2-4.5 – 45 % (17) 34 % (2) 28 % (3) 38 % (4)
SSP3-7.0 21 % (1) 41 % (11) 41 % (2) 30 % (2) 36 % (3)
SSP5-8.5 – 43 % (9) 34 % (1) 19 % (1) 37 % (2)

Table A4. Noise reduction in GPP, calculated according to Eq. (4).

Relative change % CESM2-LE ACCESS-ESM1-5 CanESM5 IPSL-CM6A-LR MPI-ESM1-2-LR

Historical 26 % 33 % 14 % 28 % 27 %
SSP1-2.6 – 39 % 34 % 27 % 37 %
SSP2-4.5 – 39 % 34 % 29 % 38 %
SSP3-7.0 21 % 40 % 42 % 30 % 36 %
SSP5-8.5 – 42 % 34 % 18 % 37 %
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