

Supplement of

Perturbation increases source-dependent organic matter degradation rates in estuarine sediments

Guangnan Wu et al.

Correspondence to: Guangnan Wu (guangnan.wu@nioz.nl)

The copyright of individual parts of the supplement might differ from the article licence.

23
24

TABLE OF CONTENTS	Page
Table S1 Composition of artificial rainwater used in aerobic incubation experiments.	S3
Determination of homogenized freeze-dried sediment bulk density and porosity.	S3
Table S2 MixSIAR modelled marine, riverine, and terrestrial contributions to the OM	S4
Table S3 Identified MOM pyrolysis products.	S6
Fig. S1 Relative abundance of aromatics, phytadienes, and pristine in MOM pyrolysis products.	S9
Fig. S2 The Pearson's correlation matrix of sediment properties.	S9
Fig. S3 The concentration of dissolved O ₂ , DIC, CH ₄ and TA in the overlaying water over time during intact sediment core incubation.	S10
Estimation of contribution by OM degradation to sedimentary DIC efflux.	S10
Fig. S4 Benthic flux of dissolved inorganic nitrogen (DIN) and total alkalinity (TA).	S11
Benthic diffusive fluxes of Fe ²⁺ and HS ⁻ .	S12

25
26
27
28
29
30
31

32 **Table. S1.** Composition of artificial rainwater used in aerobic incubation experiments for moisture
 33 adjustment. The composition was based on the Dutch rainwater (Harpenslager et al., 2015).
 34 Chemicals were analytical grade dissolved in milli-Q water.

Salt	Concentration (mg/L)
NaCl	3.13
MgSO ₄ ·7H ₂ O	1.91
MgCl ₂ ·6H ₂ O	1.22
CaCl ₂ ·H ₂ O	2.58
KCl	1.61

35
 36
 37
 38
 39
 40

41 **Determination of homogenized freeze-dried sediment bulk density and porosity**

42
 43 Bulk density was measured based on the method described in Al-Shammary et al. (2018).
 44 Homogenized freeze-dried sediment was carefully poured into a pre-weighed 50-mL graduated cylinder.
 45 The cylinder was gently tapped to level the sediment surface at 50-mL mark. The mass (m_{dry}) and the
 46 volume (V_{dry} , here 50 mL) of the freeze-dried sediment were then recorded. Bulk density (ρ_{bulk}) was
 47 calculated as:

$$48 \quad \rho_{bulk} = \frac{m_{dry}}{V_{dry}}$$

49

50 The sediment particle density (ρ_{sed}) was assumed to be 2.65 g cm⁻³. Porosity (\emptyset) was calculated
 51 according to:

$$52 \quad \emptyset = 1 - \frac{\rho_{bulk}}{\rho_{sed}}$$

53

54 The required volume of artificial rainwater (V_{water}) to adjust water-filled pore space to 60% for 10 g of
 55 homogenized freeze-dried sediment was calculated as:

56

$$57 \quad V_{water} = \frac{10 \text{ grams}}{\rho_{sed}} \cdot \emptyset \cdot 60\%$$

58

59 Homogenized freeze-dried sediment bulk density (ρ_{bulk}) and porosity (\emptyset) were 0.92 g cm⁻³ and 0.65 for
 60 site 115, 0.72 g cm⁻³ and 0.73 for site 86, 1.36 g cm⁻³ and 0.49 for site NWWG-02, 0.91 g cm⁻³ and
 61 0.66 for site 21A, 0.81 g cm⁻³ and 0.69 for site B16, 1.31 g cm⁻³ and 0.51 for site K1v2.

62

63

64

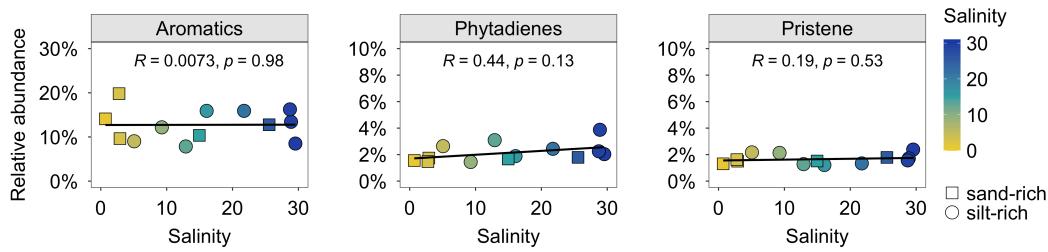
65

66 **Table S2.** MixSIAR modelled marine, riverine, and terrestrial contributions to the OM in 49 PoR
 67 sediments, respectively. Mean value and standard deviation are provided.
 68

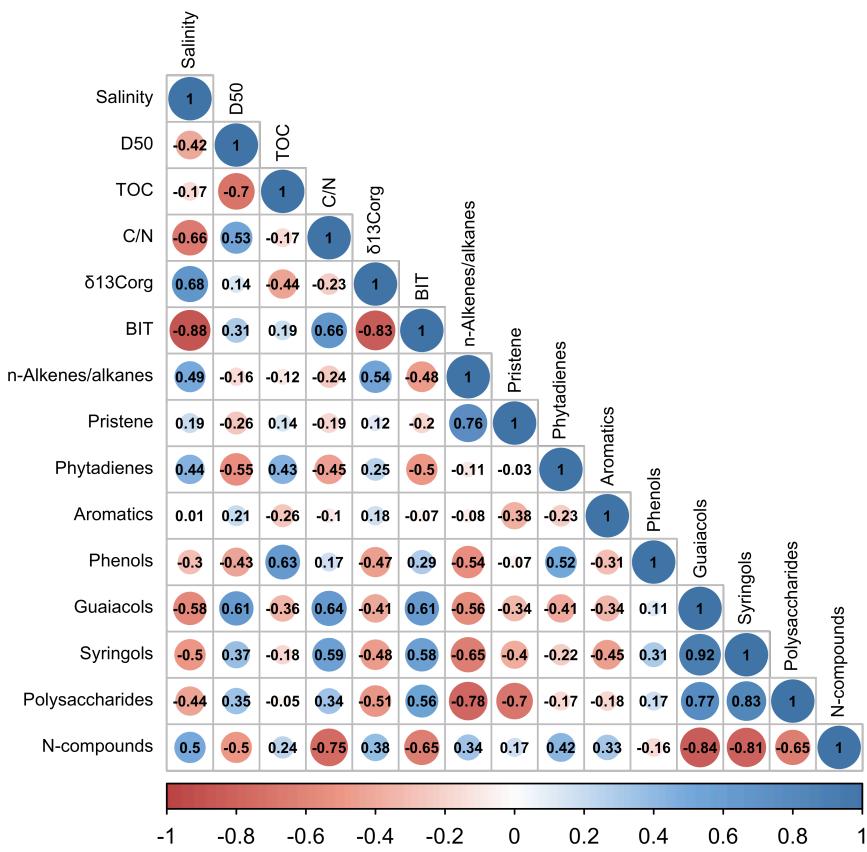
Sediment site	Marine contribution	Riverine contribution	Terrestrial contribution
201	45% \pm 19.6%	32.7% \pm 19.8%	22.3% \pm 19.1%
130	49.9% \pm 19.7%	28% \pm 18%	22% \pm 18.9%
93	27.5% \pm 16.5%	36.3% \pm 22%	36.2% \pm 23.3%
131	58.1% \pm 19.4%	23.7% \pm 16.3%	18.2% \pm 17.3%
202	41.5% \pm 19%	21.7% \pm 16.1%	36.8% \pm 22.3%
117	49% \pm 20.1%	32.4% \pm 19.6%	18.7% \pm 17.8%
90	50.5% \pm 20%	28.3% \pm 18.3%	21.3% \pm 18.6%
89	58.4% \pm 19.7%	24.8% \pm 16.6%	16.9% \pm 17.1%
94	55.5% \pm 19.7%	25.8% \pm 16.9%	18.7% \pm 17.5%
123v1	42.6% \pm 19.7%	36% \pm 20.7%	21.4% \pm 18.7%
115	57.4% \pm 19.7%	26.3% \pm 17.3%	16.3% \pm 16.2%
140	63.4% \pm 18.9%	19.8% \pm 14.2%	16.8% \pm 16.5%
114	62.2% \pm 19.2%	22% \pm 15.5%	15.8% \pm 16.6%
204	32.6% \pm 17.7%	34.6% \pm 21%	32.8% \pm 22.5%
86	63.6% \pm 18.7%	20.3% \pm 14.6%	16.1% \pm 16%
C1	62.7% \pm 19.2%	21.4% \pm 15.2%	15.9% \pm 16.3%
NWWG-09	22.9% \pm 16.1%	48.4% \pm 24.6%	28.8% \pm 22.6%
73	37.3% \pm 20.1%	42% \pm 22.4%	20.7% \pm 19.1%
76	33.8% \pm 18.7%	41.1% \pm 22.2%	25% \pm 20.6%
80C	33.8% \pm 18.9%	42.5% \pm 22.7%	23.6% \pm 20%
71	36.3% \pm 19.4%	41.5% \pm 22.4%	22.2% \pm 19.8%
68	35% \pm 19.3%	42.4% \pm 22.6%	22.5% \pm 20%
66	32.8% \pm 18.6%	43.3% \pm 22.9%	23.9% \pm 20.1%
510	29.1% \pm 18.3%	47.3% \pm 23.7%	23.6% \pm 20.6%
D1	22.5% \pm 15.9%	48.2% \pm 24.6%	29.3% \pm 22.6%
56	32.5% \pm 19%	45.6% \pm 23.3%	22% \pm 19.8%
51	34.6% \pm 19.1%	41.2% \pm 22.5%	24.2% \pm 20.3%
31	31% \pm 18.6%	46.3% \pm 23.7%	22.7% \pm 19.9%
50	26.4% \pm 16.3%	37% \pm 22.3%	36.7% \pm 23.4%
34	27.6% \pm 17.7%	47.4% \pm 23.9%	25.1% \pm 21%
K17	16.9% \pm 12.9%	42.8% \pm 24.4%	40.3% \pm 24.8%
37	17% \pm 13.7%	48.9% \pm 25.4%	34.1% \pm 24.2%
36	22% \pm 15.7%	49.2% \pm 24.7%	28.8% \pm 22.7%
23	18.2% \pm 15.4%	59.4% \pm 25.4%	22.4% \pm 20.9%
21A	24.7% \pm 17%	51.2% \pm 24.2%	24.1% \pm 20.6%
S1	22.5% \pm 16.1%	48.5% \pm 24.5%	29% \pm 22.6%
21Lv2	18.1% \pm 15%	56.9% \pm 25.4%	24.9% \pm 21.5%
17	19.4% \pm 14.6%	47.7% \pm 24.8%	32.9% \pm 23.7%
16	13.2% \pm 10.5%	30.6% \pm 21.5%	56.2% \pm 24.2%
33	13.5% \pm 10.8%	33.3% \pm 22.5%	53.3% \pm 24.6%

B16	$13.8\% \pm 12.7\%$	$55.4\% \pm 26.3\%$	$30.8\% \pm 24.2\%$
B22	$14.6\% \pm 13.2\%$	$55.6\% \pm 25.8\%$	$29.7\% \pm 23.6\%$
NWWG-02	$55.9\% \pm 19.8\%$	$27.3\% \pm 17.8\%$	$16.8\% \pm 17.1\%$
NWWG-16	$27.8\% \pm 17.2\%$	$40.3\% \pm 22.9\%$	$31.9\% \pm 22.8\%$
H4	$21\% \pm 15.6\%$	$48.6\% \pm 24.8\%$	$30.5\% \pm 23.2\%$
84	$10.8\% \pm 9.2\%$	$30.3\% \pm 21.6\%$	$58.9\% \pm 23.7\%$
NMS-18	$23.3\% \pm 15.3\%$	$38.2\% \pm 22.8\%$	$38.4\% \pm 24\%$
14A	$17.3\% \pm 13\%$	$43.6\% \pm 24.5\%$	$39.1\% \pm 24.6\%$
K1v2	$24.8\% \pm 15.8\%$	$12.4\% \pm 11.5\%$	$62.8\% \pm 21.1\%$

69
70
71
72
73
74
75

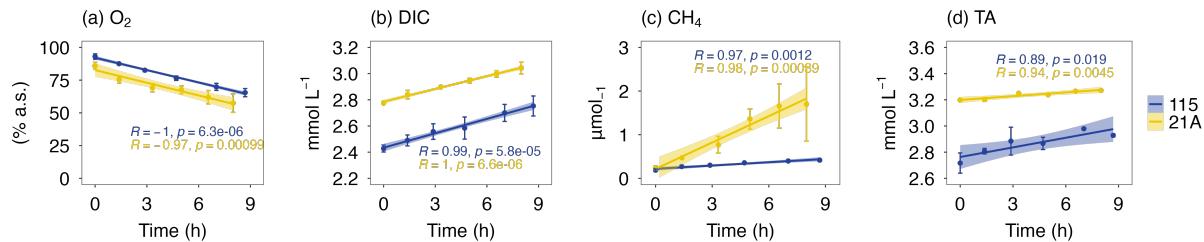

76 **Table. S3.** Identified pyrolysis products, retention time, and their two fragment ions used to quantify
 77 and their assignment according to (Nierop et al., 2017). Types: Alk = *n*-alkenes/alkanes, Ar =
 78 aromatics or alkylbenzenes, Gua = guaiacols, Nt = N-containing compounds, Ph = phenols, Phy =
 79 phytadienes, Pri = pris-1-ene, Ps = polysaccharide-derived products, Syr = syringols. RT = retention
 80 time
 81

RT	Pyrolysis product	<i>m/z</i>	Correction factor	Type
9.47	C _{11:1}	55+57	4.90	Alk
9.70	C _{11:0}	55+57	2.90	Alk
11.50	C _{12:1}	55+57	4.90	Alk
11.76	C _{12:0}	55+57	2.90	Alk
13.50	C _{13:1}	55+57	4.90	Alk
13.72	C _{13:0}	55+57	2.90	Alk
15.45	C _{14:1}	55+57	4.90	Alk
15.57	C _{14:0}	55+57	2.90	Alk
17.15	C _{15:1}	55+57	4.90	Alk
17.32	C _{15:0}	55+57	2.90	Alk
18.82	C _{16:1}	55+57	4.90	Alk
18.98	C _{16:0}	55+57	2.90	Alk
20.40	C _{17:1}	55+57	4.90	Alk
20.55	C _{17:0}	55+57	2.90	Alk
21.90	C _{18:1}	55+57	4.90	Alk
22.05	C _{18:0}	55+57	2.90	Alk
23.30	C _{19:1}	55+57	4.90	Alk
23.48	C _{19:0}	55+57	2.90	Alk
24.70	C _{20:1}	55+57	4.90	Alk
24.82	C _{20:0}	55+57	2.90	Alk
26.00	C _{21:1}	55+57	4.90	Alk
26.12	C _{21:0}	55+57	2.90	Alk
27.26	C _{22:1}	55+57	4.90	Alk
27.36	C _{22:0}	55+57	2.90	Alk
28.45	C _{23:1}	55+57	4.90	Alk
28.55	C _{23:0}	55+57	2.90	Alk
29.59	C _{24:1}	55+57	4.90	Alk
29.69	C _{24:0}	55+57	2.90	Alk
30.69	C _{25:1}	55+57	4.90	Alk
30.79	C _{25:0}	55+57	2.90	Alk
31.75	C _{26:1}	55+57	4.90	Alk
31.85	C _{26:0}	55+57	2.90	Alk
32.76	C _{27:1}	55+57	4.90	Alk
32.86	C _{27:0}	55+57	2.90	Alk
33.74	C _{28:1}	55+57	4.90	Alk
33.84	C _{28:0}	55+57	2.90	Alk
34.69	C _{29:1}	55+57	4.90	Alk


34.79	C _{29:0}	55+57	2.90	Alk
35.60	C _{30:1}	55+57	4.90	Alk
35.71	C _{30:0}	55+57	2.90	Alk
36.51	C _{31:1}	55+57	4.90	Alk
36.60	C _{31:0}	55+57	2.90	Alk
1.84	Benzene	78	1.90	Ar
2.97	Toluene	91+92	1.37	Ar
4.50	Ethylbenzene	91+106	1.60	Ar
4.68	1,3- and 1,4-Dimethylbenzene	91+106	1.60	Ar
5.01	Styrene	103+104	2.06	Ar
5.10	1,2-Dimethylbenzene	91+106	1.60	Ar
9.02	Guaiacol	109+124	1.92	Gua
11.21	4-Methylguaiacol	123+138	2.37	Gua
12.92	4-Ethylguaiacol	137+152	1.24	Gua
13.57	4-Vinylguaiacol	135+150	2.37	Gua
14.39	Eugenol	149+164	4.19	Gua
15.33	<i>cis</i> -Isoeugenol	149+164	4.19	Gua
16.06	<i>trans</i> -Isoeugenol	149+164	4.19	Gua
16.58	4-Acetylguaiacol	151+166	4.12	Gua
2.53	Pyridine	52+79	1.97	Nt
2.69	Pyrrole	67	1.67	Nt
3.98	2-Methylpyrrole	80+81	1.54	Nt
4.19	3-Methylpyrrole	80+81	1.54	Nt
4.36	4-Methylpyridine	66+93	1.93	Nt
9.67	Benzyl nitrile	90+117	2.38	Nt
11.68	Methylbenzylnitril	91+131	2.24	Nt
13.11	Indole	90+117	2.05	Nt
14.85	Methylindole	130+131	2.73	Nt
20.05	Diketodipyrrole	93+186	3.21	Nt
21.64	Diketopiperazine	70+154	5.20	Nt
23.20	Diketopiperazine	70+194	5.20	Nt
23.22	Diketopiperazine	70+154	5.20	Nt
7.17	Phenol	66+94	1.72	Ph
8.62	2-Methylphenol	107+108	2.93	Ph
9.10	3/4-Methylphenol	107+108	2.35	Ph
10.95	4-Ethylphenol	107+122	1.76	Ph
12.04	4-Vinylphenol	91+120	1.78	Ph
12.13	Catechol	64+110	2.42	Ph
22.58	Neophytadiene	68+82	5.79	Phy
22.91	<i>cis</i> -1,3-Phytadiene	68+82	6.80	Phy
23.19	<i>trans</i> -1,3-Phytadiene	68+82	6.80	Phy
21.02	Prist-1-ene	56+57	3.44	Pri
3.75	2-Furaldehyde	95+96	1.60	Ps

6.20	5-Methyl-2-furaldehyde	109+110	1.80	Ps
6.93	4-Hydroxy-5,6-dihydro-(2H)-pyran-2-one	58+114	1.60	Ps
9.02	Levoglucosenone	96+98	4.59	Ps
17.81	Levoglucosan	60+73	2.10	Ps
14.14	Syringol	139+154	2.38	Syr
15.93	4-Methylsyringol	153+168	2.94	Syr
17.32	4-Ethylsyringol	167+182	1.28	Syr
17.94	4-Vinylsyringol	165+180	3.03	Syr
18.57	4-Allylsyringol	179+194	3.08	Syr
19.37	<i>cis</i> -4-Prop-2-enylsyringol	179+194	3.08	Syr
20.14	<i>trans</i> -4-Prop-2-enylsyringol	179+194	3.08	Syr
20.57	4-Acetylsyringol	181+196	3.90	Syr

82
83
84
85
86
87



88
89
90 **Fig. S1.** Relative abundance of aromatics, phytadienes, and prist-1-ene in MOM pyrolysis products.
91
92

93
94 **Fig. S2.** The Pearson's correlation matrix of major sediment properties (i.e. salinity, D50, TOC) with
95 sediment OM source proxies (i.e. CN, BIT index, and MOM pyrolysis products).
96
97
98
99
100

101

102

Fig. S3. The concentration of dissolved O₂, DIC, CH₄ and TA in the overlaying water over time during intact sediment core incubation.

103

104

105

106

107

108 Estimation of contribution by OM degradation to sedimentary DIC efflux

109

110 We correct the measured total DIC fluxes, calculated from time series shown in Fig. S3, for sources
 111 other than oxic and anaerobic OM degradation, e.g. CaCO₃ dissolution. In our approach, we consider
 112 sulfate reduction, estimated from benthic sulfate diffusive rate, and CaCO₃ dissolution as the main total
 113 alkalinity (TA) sources with DIC:TA ratios of 1:1 and 2:1, respectively. The SO₄²⁻:TA stoichiometry of
 114 sulfate reduction is assumed to be 1:2, the theoretical ideal stoichiometry that has also been found
 115 experimentally in organic-rich coastal sediment (Burdige, 2012; Rassmann et al., 2020). Note that
 116 aerobic OM degradation does not contribute to TA. Porewater data indicated that other anaerobic OM
 117 degradation pathways (e.g. Fe-(oxyhydr)oxides reduction, methanogenesis) were minor compared to
 118 sulfate reduction in the surface sediment, thus not considered in the DIC_{OM} calculation.

119

120 Here, we assume that the diffusive sulfate flux across the sediment-water interface represents the
 121 sulfate reduction rate in the uppermost sediment that contributes to the TA and DIC efflux. Sulfate
 122 reduction in the uppermost sediment is assumed to arise from organoclastic sulfate reduction (not e.g.
 123 CH₄ oxidation) and therefore contributes to DIC production from OM degradation (Jørgensen, 2021).
 124 Sulfate diffusive fluxes were calculated from the measured sulfate concentration gradients between the
 125 bottom water and porewater in the uppermost sediment (0–0.5 cm, average 0.25 cm below sediment-
 126 water interface; Table S4) using Fick's first law:

127

128

$$J = -\varphi \times D_{sed} \times \frac{dC}{dz}$$

129

130 where J is the diffusive flux (mmol m⁻² d⁻¹), D_{sed} is the diffusion coefficient in sediment (m² d⁻¹) and
 131 dC/dz is the concentration gradient at the sediment-water interface (mol m⁻⁴). The RStudio package
 132 'marelac' (Soetaert et al., 2023) was used to calculate sulfate diffusion coefficients in water (D_w) for site
 133 115 (salinity 29) and 21A (salinity 5). The temperature applied in the equation was 19 °C as measured
 134 during field work in summer 2021. To calculate the D_{sed} from the diffusion coefficient in water (D_w)
 135 porosity of 0.95 was used for the uppermost fine-grained sediment at both locations to correct for the
 136 tortuosity effect:

137

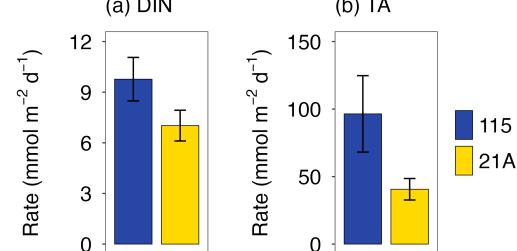
138

$$D_{sed} = \frac{D_w}{1 - 2 \times \log (\text{porosity})}$$

139

140

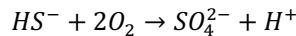
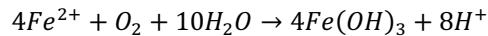
Table S4. Key parameters for calculation of diffusive sulfate fluxes in the surface sediment.


Site	Species	BW	Sed (0.25 cm)	D _{sed} (m ² d ⁻¹)	J _{SO4} (mmol m ⁻² d ⁻¹)
115 (marine)	SO ₄ ²⁻	25.0 mM	23.9 mM	6.85e-5	-28.6
21A (riverine)	SO ₄ ²⁻	4.5 mM	3.9 mM	7.2e-5	-16.4

141 The TA flux from sulfate reduction was obtained by multiplying the SO_4^{2-} flux by a factor of 2 ($\text{SO}_4^{2-}:\text{TA}$ of the reaction is 1:2). Assuming that the remaining TA flux can be ascribed to CaCO_3 dissolution, the corrected alkalinity flux was then used to estimate DIC efflux from CaCO_3 dissolution (TA:DIC of CaCO_3 dissolution is 2:1). The $\text{DIC}_{\text{CaCO}_3}$ was then used to calculate the OM-derived DIC flux, DIC_{OM} (Table S5).

142
143
144
145
146 **Table S5.** Simplified mass balance for benthic DIC and TA fluxes at sites 115 and 21A. $f_{\text{DIC-OM}}$ represents the fraction of the DIC efflux that can be attributed to OM degradation.

Site	DIC (mmol $\text{m}^{-2} \text{d}^{-1}$)	TA	TA_{SO_4}	$\text{DIC}_{\text{CaCO}_3}$	DIC_{OM}	$f_{\text{DIC-OM}}$ na
115 (marine)	158 \pm 52	96 \pm 28	57.2	20 \pm 14	139 \pm 53	0.88 \pm 0.4
21A (riverine)	122 \pm 27	41 \pm 8	32.8	4 \pm 4	118 \pm 27	0.97 \pm 0.3



147
148 The relatively low contribution of CaCO_3 dissolution to DIC efflux, 3–12 %, aligns with previous work
149 that emphasizes the dominant role of OM degradation in DIC fluxes from (organic-rich) non-carbonate
150 coastal sediment (Krumins et al., 2013).

155 **Fig. S4.** Benthic fluxes of (a) dissolved inorganic nitrogen (DIN) and (b) total alkalinity (TA) determined
156 from whole-core incubation. Error bars represent the standard deviation from triplicate core incubations.

163 **Benthic diffusive fluxes of Fe²⁺ and HS⁻**
164165 Diffusion fluxes of Fe²⁺ and HS⁻ were calculated the same way as SO₄²⁻ diffusing fluxes using Fick's
166 first law. Table S6 presents key data for the calculation.
167168 **Table. S6** Benthic diffusive fluxes of Fe²⁺ and HS⁻ for sediment 115 and 21A.

Site	Species	BW	Sed (0.25 cm)	D _{sed} (m ² d ⁻¹)	J (mmol m ⁻² d ⁻¹)
115 (marine)	Fe ²⁺	0.25 µM	2.7 µM	4.54e-5	0.04
21A (riverine)	Fe ²⁺	0.24 µM	0.87 µM	4.78e-5	0.01
115 (marine)	HS ⁻	0 mM	0 mM	1.16e-4	0
21A (riverine)	HS ⁻	0.003 mM	0.004 mM	1.22e-4	0.05

174 Assuming all upward diffusing fluxes of Fe²⁺ and HS⁻ were completely oxidized by O₂, the oxidation
175 rates were ~ 0.1 mmol m⁻² d⁻¹ for both site 115 and 21A, which contributed to less than 1% of the total
176 O₂ consumption rates for both sites.
177
178
179
180
181
182
183

184 **References**

185 Al-Shammary, A. A. G., Kouzani, A. Z., Kaynak, A., Khoo, S. Y., Norton, M., and Gates, W.: Soil Bulk
186 Density Estimation Methods: A Review, *Pedosphere*, 28, 581–596, [https://doi.org/10.1016/s1002-0160\(18\)60034-7](https://doi.org/10.1016/s1002-0160(18)60034-7), 2018.

188 Burdige, D. J.: *Estuarine and Coastal Sediments - Coupled Biogeochemical Cycling*, Elsevier Inc., 279–
189 316 pp., <https://doi.org/10.1016/B978-0-12-374711-2.00511-8>, 2012.

190 Harpenslager, S. F., Van Dijk, G., Kosten, S., Roelofs, J. G. M., Smolders, A. J. P., and Lamers, L. P.
191 M.: Simultaneous high C fixation and high C emissions in Sphagnum mires, *Biogeosciences*, 12, 4739–
192 4749, <https://doi.org/10.5194/bg-12-4739-2015>, 2015.

193 Jørgensen, B. B.: Sulfur Biogeochemical Cycle of Marine Sediments, *Geochem Perspect*, 10, 145–303,
194 <https://doi.org/10.7185/GEOCHEMPERSP.10.2>, 2021.

195 Krumins, V., Gehlen, M., Arndt, S., Van Cappellen, P., and Regnier, P.: Dissolved inorganic carbon and
196 alkalinity fluxes from coastal marine sediments: Model estimates for different shelf environments and
197 sensitivity to global change, *Biogeosciences*, 10, 371–398, <https://doi.org/10.5194/bg-10-371-2013>,
198 2013.

199 Nierop, K. G. J., Reichart, G. J., Veld, H., and Sinninghe Damsté, J. S.: The influence of oxygen
200 exposure time on the composition of macromolecular organic matter as revealed by surface sediments
201 on the Murray Ridge (Arabian Sea), *Geochim Cosmochim Acta*, 206, 40–56,
202 <https://doi.org/10.1016/j.gca.2017.02.032>, 2017.

203 Rassmann, J., Eitel, E. M., Lansard, B., Cathalot, C., Brandily, C., Taillefert, M., and Rabouille, C.:
204 Benthic alkalinity and dissolved inorganic carbon fluxes in the Rhône River prodelta generated by
205 decoupled aerobic and anaerobic processes, *Biogeosciences*, 17, 13–33, <https://doi.org/10.5194/bg-17-13-2020>, 2020.

207 Soetaert, K., Petzoldt, T., Meysman, F., and Meire, L.: *marelac: Tools for Aquatic Sciences*, 2023.

208

209

210