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Abstract. The surface of Mars, unshielded by thick atmo-
sphere or global magnetic field, is exposed to high levels of
cosmic radiation. This ionising radiation field is deleterious
to the survival of dormant cells or spores and the persistence
of molecular biomarkers in the subsurface, and so its char-
acterisation is of prime astrobiological interest. Here, we
present modelling results of the absorbed radiation dose as
a function of depth through the Martian subsurface, suitable
for calculation of biomarker persistence. A second major im-
plementation of this dose accumulation rate data is in appli-
cation of the optically stimulated luminescence technique for
dating Martian sediments.

We present calculations of the dose-depth profile in the
Martian subsurface for various scenarios: variations of sur-
face composition (dry regolith, ice, layered permafrost), so-
lar minimum and maximum conditions, locations of different
elevation (Olympus Mons, Hellas basin, datum altitude), and
increasing atmospheric thickness over geological history. We
also model the changing composition of the subsurface radi-
ation field with depth compared between Martian locations
with different shielding material, determine the relative dose
contributions from primaries of different energies, and dis-
cuss particle deflection by the crustal magnetic fields.

1 Introduction and background

1.1 Astrobiology and Mars

There is the possibility that early Mars was conducive to
the development of life. Large-scale geomorphological ev-
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idence suggests the action of liquid water: extensive val-
ley networks, great floods channels, pooling in crater lakes,
and estuarine deposition fans (Jaumann et al., 2001; Mas-
son et al., 2001). More recently, NASA’s Mars Exploration
Rover Opportunity found unmistakable signs of the chemi-
cal action of liquid water, final proof of a sea once having
covered Meridiani Planum (Squyres et al., 2004). The per-
sistence of such liquid water on the surface requires a higher
atmospheric pressure and more effective greenhouse effect
than at present. Similar to the primordial terrestrial situation,
a significant amount of organic molecules, precursors to the
biochemistry that developed on Earth, is expected to have
been delivered by comet and meteorite fall onto this warmer
wetter Mars (Flynn, 1996).

Today, however, the Martian surface is a harshly inhos-
pitable place. Atmospheric loss has left a surface pressure of
around only 6 mbar and a daily mean equatorial temperature
of 215 K (Carr, 1996). This regime lies beneath the triple-
point of water, and so it is not stable in a liquid state on the
surface. Consequently water, a solvent thought critical for
the origin and persistence of life, exists only as inaccessible
ice or subliming directly into atmospheric vapour. The Mar-
tian surface is a cold barren desert.

A further hazard to surface life is that the thin atmo-
sphere offers practically no protection against solar ultravio-
let. This energetic radiation readily photolyses biomolecules
such as amino acids and DNA and inhibits chlorophyll (ten
Kate et al., 2005; Cockell, 2000a), and a bacterial cell ly-
ing exposed on the Martian surface would be inactivated
within minutes (Schuerger et al., 2006). Furthermore, the
high UV flux is believed to have created an oxidising layer
in the Martian topsoil, hypothesised to explain the failure
of Viking to detect any organic material down to parts per
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billion levels (Yen et al., 2000), not even that expected from
meteoritic infall (Flynn, 1996). Although the possibility
of cryptoendoliths, communities contained within the more
clement micro-environment and UV protection of rock fis-
sures, analogous to those found in the Antarctic dry valleys
has been discussed (Cockell, 2000b), the combination of very
low water availability, high UV flux, oxidation hazard and
scarcity of organic molecules renders the Martian top surface
extremely inhospitable (Clark, 1998).

A great amount of water is believed to remain on Mars,
probably soaked down into the sponge-like regolith, thought
to be highly porous and brecciated to an appreciable depth
from the heavy bombardment (Squyres, 1984). There exists
the possibility, therefore, that chemosynthetic Martian life
remains alive to this day far underground, where the inter-
nal heat of the planet melts the underside of the permafrost
shell into a liquid water aquifer (Boston et al., 1992), and
has been proposed as the source of the recently-detected at-
mospheric methane (Formisano et al., 2004; Krasnopolsky,
2006). Such a habitat would be analogous to the deep hot
biosphere known on Earth, with bacteria discovered within
a bore hole at 5.3 km depth (Szewzyk et al., 1994). On
Mars, the depth necessary for the ambient temperature to
rise high enough for liquid water is calculated to be around
3.7 km at the equator, increasing to 6–7 km in mid-lattitudes,
but these estimates are dependent on estimated parameters
such as the geothermal gradient and freezing point depres-
sion from salt concentration (Hoffman, 2001). Life may also
survive in small refugial habitats nearer the surface around
local geothermal hotspots, such as the Tharsis or Elysium
volcanic regions. However, gaining access to such a deep
environment on Mars is technologically unfeasible for the
foreseeable future: a 5–10 km bore-hole on Mars would re-
quire substantial drilling equipment, and almost certainly hu-
man supervision (Close et al., 2005). The maximum depth
obtainable by near-future robotic probes will be on the or-
der of only meters. ESA’s ExoMars rover, currently planned
for launch in 2013, has been designed with a 2 m drill bit
(Vago et al., 2006). In this accessible region any microbes
will likely be dormant, cryopreserved by the current freez-
ing conditions, and so metabolically inactive and unable to
repair cellular degradation as it occurs. The primary envi-
ronmental hazard to cells and remnant biological molecules
beneath the UV-induced oxidising layer (and so safe from
rapid chemical degradation) is the accumulation of radiation
damage from exogenous ionising particles. The depth of the
oxidising layer is difficult to constrain but is probably not
substantially greater than one meter (Zent, 1998); overlap-
ping the region where such ionising radiation will be a crucial
limiting factor on persistence times. The problem of oxida-
tion can be minimised by searching at the bottom of a recent
impact crater or boulders in the ejecta blanket, or the putative
Cerberus pack-ice (Murray et al., 2005).

1.2 Space radiation environment

The space ionising radiation environment at Mars is com-
posed of two populations of particles. Solar energetic pro-
tons (SEP) are accelerated by flares and coronal mass ejec-
tions, typically up to several hundred MeV, and so the
flux is dependent on the 11-year solar activity cycle. The
peak flux of galactic cosmic ray (GCR) particles, at around
500 MeV/nucleon, is about four orders of magnitude lower
than SEP but the power law tail of the spectra extends up
to 1020 eV at extremely low fluxes. The GCR spectrum is
composed of 85% protons, 14% alpha (helium nuclei), and a
small fraction of heavy ions (fully ionised atomic nuclei) and
electrons, and is thought to be mainly accelerated by Type II
supernovae. GCR below about 1 GeV/nucleon are modulated
by the heliosphere (Klapdor-Kleingrothaus and Zuber, 2000)
so their flux is anticorrelated with the solar activity cycle.

Figure1 plots the GCR energy spectra for proton and he-
lium ion primaries, for both solar maximum and solar mini-
mum conditions, given by the CREME96 model. The mean
SEP flux (Usoskin et al., 2006) is also shown transformed
using the inverse square law to provide a spectrum appropri-
ate for Martian orbit. Solar particle events produce a harder
spectrum than this mean shown, with an enhancement in flux
at energies up to several GeV, but these are short-lived and
rare. Thus, SEP and GCR primaries represent two compli-
mentary populations of ionising particles; high flux but rel-
atively low energy and much lower flux but extending up to
very high energy levels, respectively. Although SEP can pro-
duce transiently high dose rates on the Martian surface, aver-
aged over the long timescales of interest here their subsurface
dose contribution is dominated by GCR (Mileikowsky et al.,
2000; Dartnell et al., 2007) and so are not considered further
in this modelling study.

Unlike Earth, the Martian surface is unprotected from cos-
mic particle radiation by a global dipole magnetic field or
sufficient atmospheric shielding. However, the distribution
of anomalous strong localised crustal magnetic fields in the
ancient highlands suggest Mars did once have an internal dy-
namo that failed early in the planet’s history (Acuna et al.,
1999).

Figure 2 shows our calculated maps of surface flux
of one million 10 MeV electrons and protons propagating
through the most intense crustal magnetic fields over Terra
Sirenum, modelled with the PLANETOCOSMICS pack-
age (http://cosray.unibe.ch/∼laurent/planetocosmics/) using
the CAIN90 spherical harmonic model of the crustal mag-
netic fields (Cain et al., 2003). Such low energy electrons can
be seen to experience significant deflection by the anoma-
lies, producing a protective umbrella effect of particle shad-
ows where no flux strikes the surface surrounded by pile-
up regions of focused flux. The maximum horizontal field
vector in the Terra Sirenum region below 200 km altitude
is on the order of 1 µT. We calculate the gyroradius of a
perpendicularly-incident 10 MeV electron to be 35 km, and
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Fig. 1. Primary spectra for GCR H and He primaries under solar minimum and maximum conditions and annual mean SEP impinging on
Mars. Also shown are the divisions into separate energy ranges used during this modelling.

so it is effectively deflected as it spirals along the field lines.
Protons of equal energy have a much larger gyroradius of
460 km and are only minimally deflected. These simulations
were performed without modelling particle attenuation by
the atmosphere, however, and none of these primaries would
in fact reach the surface. More penetrating primaries with
an energy of around 1 GeV, corresponding to the peak GCR
proton flux, have gyroradii in these field strengths of nearly
6000 km, and so experience negligible deflection. These
crustal fields can thus be ignored in modelling the subsurface
radiation environment on Mars.

Energetic GCR primary ions produce extensive showers
of secondary particles in the terrestrial atmospheric column.
When a GCR strikes an atmospheric nucleus energetic sec-
ondary mesons (pions and kaons), nucleons, gammas and nu-
clear fragments are produced, which then interact with other
nuclei. Secondary mesons decay over a short timescale to
produce muons, gamma rays and electrons. Thus the air
shower is composed of a central “hard component” core of
nuclear fragments within a spreading “soft component” cone
of the electromagnetic cascade (Eidelman et al., 2004). The

flux of secondaries builds with increasing shielding depth un-
til the Pfotzer maximum, after which the average particle en-
ergy is below the threshold for new particle production and
the cascade steadily decays. On Earth, this Pfotzer maximum
occurs at an altitude of around 15 km; roughly the cruising al-
titude of Concorde. Similarly-structured cascades occur not
in the thin Martian atmosphere, but in the top meters of the
ground.

1.3 Radiobiology

The ionising radiation field produced by SEP and GCR is
harmful to life (Nelson, 2003) through both direct and in-
direct mechanisms. Direct damage occurs when deposited
energy excites electrons within biomolecules, leading to ion-
isation or radiolysis. However, radiation primarily inter-
acts with water as it comprises 40–70% of cells and 20%
of bacterial spores, and this creates highly-reactive species
such as the hydroxyl radical or hydrogen peroxide that then
diffuse and attack biomolecules (the indirect mechanism)
(Baumstark-Khan and Facius, 2001). The amount of energy
deposited by ionising radiation in the target material per unit
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Fig. 2. Surface flux maps of modelled 10 MeV electrons and protons propagating through the most intense magnetic anomalies over Terra
Sirenum, centred on−47.8 N 174 E.

mass is termed the dose, measured in J/kg, or Grays (Gy).
Different particles of ionising radiation are not equally haz-
ardous to cells. Gamma radiation is weakly ionising, and on
scales larger than micrometers the energy of a given dose is
deposited uniformly throughout the target. The protons and
high-charge/high-energy (HZE) ions of the hadronic cascade,
however, are highly ionising and deposit energy in a dense
track. Such a pattern of dose deposition is measured as a high
value of linear energy transfer (LET). HZE tracks can cause
clusters of nearby breaks in DNA strands and are therefore
particularly detrimental to cellular survival.

No ionising radiation detector has yet been landed on the
Martian surface, although NASA’s Mars Science Laboratory
(scheduled launch 2009) will carry the Radiation Assessment
Detector (Hassler et al., 2006) and the GEORAD package
has been proposed for ESA’s ExoMars (scheduled launch
2013) to detect solar proton and neutron backscatter flux (an
indirect measure of GCR) (Ambrosi et al., 2005). Until these
return observational data, computer modelling will be cru-
cial in determining the Martian radiation environment both
on the ground and beneath. Previous modelling research has
calculated the expected survival times of different model or-
ganisms (terrestrial microbes exhibiting varying degrees of
radioresistance) in the face of accumulating radiation dose
(Mileikowsky et al., 2000; Pavlov et al., 2002; Dartnell et al.,
2007). We have previously reported (Dartnell et al., 2007) re-
sults from the first Monte Carlo simulation of the subsurface
Martian radiation environment for several pertinent scenar-
ios. The findings included, among others, the prediction of
a 450 000 year survival time of a radioresistant population at
2 m depth (the maximum drill depth of ExoMars;Vago et al.,
2006) in permafrost-laden regolith and an excavation of at

least 7.5 m to be necessary to recover viable cells cryopre-
served within the putative Cerberus pack-ice (Murray et al.,
2005).

Now we continue this research into the question of persis-
tence times of particular organic molecules. Life may per-
haps have fallen extinct in the near subsurface, but would
still betray its prior existence by the presence of distinc-
tive biogenic organic molecules. Assuming a Martian bio-
chemistry convergently similar to the terrestrial system (or
perhaps even a shared ancestry through cross-fertilisation
by lithopanspermia between our two planets;Melosh, 1988;
Moreno, 1988; Mileikowsky et al., 2000), such biomark-
ers would include DNA and proteins, or their component
nucleobases and amino acids respectively, or other cellu-
lar break-down products such as hopanoids (Simoneit et al.,
1998). Many astrobiological instruments designed for recent
or coming Mars landers are based on the detection of such
biomarker molecules.

Here, we model the dose-depth profile of the Martian sub-
surface in order to allow the theoretical or experimental de-
termination of persistence times of such biomarkers.

1.4 Optically Stimulated Luminescence

Another important application for modelling the Martian ra-
diation environment is in calculating the rate of dose accumu-
lation by the rock itself. Optically Stimulated Luminescence
(OSL) is a technique able to provide accurate, and absolute,
measurements of the period since sediments were last ex-
posed to sunlight (i.e. their time of deposition) (Doran et al.,
2004). The energy deposited by ionising radiation in suitable
minerals, such as quartz and feldspar, creates free electrons
trapped within the crystal lattice. Subsequently stimulating
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the exposed samples with light releases the stored energy as
luminescence, a signal that is proportional to the radiation
dose absorbed since burial (Doran et al., 2004). Thus certain
minerals act as a natural dosimeter, and the accumulated dose
can be read by an instrument suitable for inclusion in a Mar-
tian lander (McKeever et al., 2003). The absolute age of the
sediment is given as the ratio of total absorbed radiation dose
(Gy) to the local dose accumulation rate (Gy year−1). Using
this to date formation of a sediment layer assumes that the
grains had been sufficiently exposed to light, thus resetting
the dosimetry “clock”, at the time of deposition; an assump-
tion likely to be true for the aeolian-dominated deposition
and high UV-flux of modern Mars (McKeever et al., 2006).

Using the luminescence signal to accurately date the sedi-
ment requires knowledge of both the dose accumulation rate
in the local environment and the OSL properties of the min-
eral. The significant exclusion of SEP and GCR from the
Earth’s surface by the geomagnetic field and dense terrestrial
atmosphere means that the major source of ionising radia-
tion is from decay of radionuclides in the surrounding rock
itself. On the Martian surface, however, ionisation from SEP
and GCR cascades will dominate, and calculating the dose
accumulation rate as a function of depth, under different sce-
narios, and its variability over time, is vital in calibrating this
potentially crucial dating technique. We present such mod-
elling data here, calculating dose-depth profiles from GCR
under varied scenarios.

2 Method

This research employs Geant4 (Agostinelli et al., 2003) to
perform a Monte Carlo (MC) simulation of the entire sec-
ondary cascades within a full 3-D environment, allowing a
precise specification of the geometry, atmospheric and re-
golithic spatial heterogeneity, reproduction of particle scat-
tering and the actual isotropic angular distribution of incom-
ing primary particles. The Geant4 code has been validated
against experimental data (Beringer et al., 2003; Amako
et al., 2005), and the specific physics description used in this
study, derived from PLANETOCOSMICS, performs well in
calculating particle fluxes as a function of altitude in the ter-
restrial atmosphere (Desorgher et al., 2005).

The model comprises a 70 km atmospheric column atop
20 m of surface material. The layered atmosphere allows ac-
curate reproduction of any desired scenario in terms of com-
position and pressure, density and temperature profiles, and
the surface composition and density can likewise be rapidly
reconfigured. Unless otherwise specified, data on the current
atmosphere is taken from the Mars Climate Database (http:
//www-mars.lmd.jussieu.fr/) to represent noon on a Summer
day (Ls=270–300) within Arabia Terra. This season repre-
sents the annual peak for atmospheric density, and the loca-
tion selected as it lies at the reference altitude with a surface
pressure of 6 mbar.

GCR primary spectra for Z=1–26 (protons to iron nuclei)
are taken from the CREME96 model (https://creme96.nrl.
navy.mil/) for solar minimum and maximum conditions, and
extrapolated to 1 TeV/nucleon with a power-law exponent
of –2.65. In general, the simulations reported here have
used data collected from proton primaries, which are then
weighted by energy integration to account for all GCR spec-
tra (a factor we calculated from the CREME96 model to
equal 1.37 under solar minimum and 1.42 under maximum
conditions). These primary spectra, which range from 102–
106 MeV/nuc, are divided into four sections spanning one
order of magnitue of energy each, as shown in Fig.1, with
each section being simulated in turn and data then collated.
Primaries are sampled from the spectral section, and fired
one-at-a-time with an isotropic angular spread down through
the atmospheric and surface column. The propagation of
all particles are tracked, with a full treatment of physical
interactions and particle decays within the secondary cas-
cades. All energy deposition events in the ground are logged,
and binned into 5 cm-thick layers to produce a fine-detail
dose-depth profile through the Martian subsurface. Figure3
presents a visualisation of the model set-up, with an ener-
getic GCR primary striking the Martian surface to initiate an
extensive subsurface secondary cascade.

Four distinct sets of simulations, representing changes to
the most important parameters, are reported here:

(1) Properties of the surface material, in terms of compo-
sition and density. Elemental composition was modified to
create three distinct scenarios: a) Martian rock with elemen-
tal proportions taken as the mean of Pathfinder analyses of
soil samples (Wänke et al., 2001) at either 1 g/cm3 for dry
dust or 3 g/cm3 to represent denser regolith; b) 1 g/cm3 pure
water ice used to emulate environments such as the north
polar ice cap, frozen crater lakes or the putative Cerberus
pack-ice (Murray et al., 2005); and c) a layered model of
permafrost-containing regolith, stratified into a 25 cm layer
of 1.1 g/cm3 topsoil 2% water by weight, a 75 cm thick layer
of 1.1 g/cm3 topsoil with 16% water, and the bottom 19 m
as 3 g/cm3 regolith with 16% water. This layering repro-
duces the model of subsurface permafrost in Arabia Terra
based on neutron backscatter data (Mitrofanov et al., 2004),
but is also a good approximation of ice-laden regolith in high
latitudes. The elemental compositions of topsoil and regolith
strata were taken as the Pathfinder average soil and calculated
soil-free rock (Wänke et al., 2001) respectively, although pre-
vious studies have found the exact elemental composition to
have negligible effect on the shielding properties of regolith
(Kim et al., 1998). In all these simulations, the GCR spectra
during solar minimum were taken to represent a worse-case
scenario.

(2) Variation of the impingent GCR primary radiation
spectrum, from the worst-case scenario during solar activ-
ity cycle minimum to maximum heliosphere modulation of
the GCR flux, as shown in Fig.1. In this modelling set, as
well as those of simulations (3) and (4) below, the surface
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Fig. 3. Visualisation of the model set-up, showing the extensive
subsurface secondary cascade generated by a single energetic pri-
mary GCR ion from directly above.

material is set as 1 g/cm3 dry dust as this allows simple con-
version between units of true depth (cm) and shielding depth
(g/cm2).

(3) Effect of topographic elevation on the subsurface dose
profile. Mars exhibits the greatest topographic extremes of
any body in the solar system, with roughly a 34 km differ-
ence between the bottom of the Hellas impact basin and the
peak of Olympus Mons. Here we calculate the subsurface
dose-profile in 1 g/cm3 dry dust at elevations between these
two extremes, and also with the atmosphere set to vacuum to
study its contribution to the surface dose. The atmospheric
column above each location was modelled using the tech-
nique explained below in part (4).

(4) Decreasing shielding thickness of the Martian atmo-
sphere over geological history. The current Martian atmo-
sphere creates a surface pressure of 6 mbar at the datum al-
titude. Geomorphological evidence for a warmer wetter pri-
mordial Mars indicates that a previously much thicker atmo-
spheric column has eroded away over time through processes
such as pick-up-ion sputtering, hydrodynamic removal, im-
pact erosion, and chemical reactions with the crust (reviewed
recently byJakosky and Phillips, 2001). The cosmic radi-
ation reaching the surface would have increased over geo-
logical time as the atmospheric shielding diminished, and so
calculations of the subsurface dose profile under different at-
mospheric pressures are important for estimating long-term
biomarker persistence. Although both the primordial atmo-
spheric pressure possessed by Mars and the time course of
its erosion are difficult to constrain (Jakosky and Phillips,
2001), the shielding effects of different atmospheric columns
can be calculated, even if the absolute time they correspond
to is dependent on the particular atmospheric history model.
Equation (1) was used to model primordial atmospheres:

P = P0. exp(−z/z1) (1)

whereP = pressure at the given altitude,P0 = the surface
pressure,z = altitude, andz1 is the scale height of the Martian
atmosphere, calculated to be currently 10.7 km using:

z1 = k.T /g.M (2)

wherek = the Boltzmann constant,T = the characteristic
temperature of the Martian atmosphere (taken here to be cur-
rently 210 K),g = the gravitational field strength of Mars,
andM = average molecular mass of the atmosphere (taken
here to be pure CO2). The Ideal Gas Equation can then be
used to calculate the density profile as a function of the above
pressure profile and characteristic temperature. Even though
the temperature is not constant through the atmosphere, these
exponential functions still provide a good atmospheric ap-
proximation. In any case, in terms of modelling radiation
propagation the exact density and pressure profiles are much
less important than the overall shielding thickness. Figure4
plots the density profiles calculated using the above method
for primordial scenarios with surface pressures of 0.01 bar
(27 g/cm2), 0.1 bar (268 g/cm2) and 0.385 bar (1033 g/cm2).
This 0.385 bar scenario was chosen as it produces an atmo-
sphere with a shielding depth of 1033 g/cm2, equivalent to
the current terrestrial atmosphere.

A denser atmosphere would produce a higher tempera-
ture through improved efficiency of the greenhouse effect,
but to what extent is very poorly constrained as the green-
house mechanisms that operated throughout Martian his-
tory are unknown (e.g.,Forget and Pierrehumbert, 1997;
Haberle, 1998). Assuming an additional warming of 10 K for
a 0.385 bar atmosphere, we plot the calculated density profile
in Fig. 4, along with the profiles produced by±20 K limits.
The scale height is recalculated in each case, but does not
change substantially as it varies linearly with temperature.

Biogeosciences, 4, 545–558, 2007 www.biogeosciences.net/4/545/2007/
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Fig. 4. Altitude-density profiles of the calculated atmospheres.
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mordial case.

As can be seen, the density profile is not overly sensitive
to changes in characteristic temperature. Furthermore, the
shielding depth (the integral under the density curve) of these
±20 K atmospheres differs by less than 0.1% from the calcu-
lated 1033 g/cm2 at 220 K. Thus, in terms of attenuating im-
pingent cosmic radiation, the atmosphere models used here
are robust to changes in parameters.

3 Results

3.1 Verification of results

The first simulation performed was to check that the
common approximation (the superposition model)(Klapdor-
Kleingrothaus and Zuber, 2000) of using weighted proton
(Z=1) data robustly reproduces the dose-profile created by
the complete spectra of all GCR ions (Z=1–26). The model
was set-up with a 16 g/cm2 atmosphere, 3 g/cm3 dry dust
surface and solar minimum GCR flux. Firstly, the subsur-
face dose-profile was calculated by simulating only GCR
protons and weighting these results by a factor of 1.37 (see
Method) to account for all GCR ions. Integrated from the
CREME96 model, proton primaries deliver 73% of the to-
tal GCR energy, He ions a further 19%, and all heavier ions
combined contribute the remaining 8%. A second simula-
tion was run with helium and carbon primaries and the data
energy-weighted to approximate for heavier ions (Z=2–26)
up to 10 GeV/nuc (a light ion modelling limit imposed by
Geant4), and proton data filling in for energies between this
ceiling and 1 TeV/nuc. These two simulations, weighted
proton-only data and weighted proton, He and C data, are
compared in Fig.5. As can be seen, the additional process-
ing demand of generating He and C data is not required, as
the two simulations produce results differing by only 3% in
the top 500 g/cm2. This is not a significant effect as there is
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Fig. 5. Comparison of dose profile created by all GCR primaries
approximated by weighted H only data and combined H/He/C data.

greater variance within different models of the GCR spectra
and high-energy physics models, and the subsequent use of
the proton-only approximation is thus justified.

Using these model parameters, we calculate the current
Martian surface dose to be 6.2 cGy/year, building to a peak
of 6.6 cGy/year at 40 g/cm2 shielding depth. These figures
agree well with those presented in McKeever et al. (2003),
but differ from two other studies into the Martian subsur-
face radiation dose. Pavlov et al. (2002) report values of a
peak dose of 20 cGy/year at 25 g/cm2 depth and Mileikosky
et al. (2000) find a surface dose of 19.4 cGy/year, building to
a peak of 24.9 cGy/year at 30 g/cm2 depth. These two sets of
results differ from each other by a factor of approximately 3,
suggesting that the variation is probably due to normalisation
of data to the total annual GCR flux.

3.2 Surface properties

Figure6 (top) shows the dose-depth profiles calculated for
four distinct surface scenarios: 1 g/cm3 dry dust, 3 g/cm3 dry
regolith, 1 g/cm3 water ice, and a layered permafrost model.
The dose peak occurs at a shallower depth in the 3 g/cm3 dry
regolith due to it’s greater density, but this scales to an equal
shielding depth (40 g/cm2) as the 1 g/cm3 dry dust surface.
The 1 g/cm3 ice matieral creates a dose peak slightly shal-
lower at 30 g/cm2 depth. The top meter of loose topsoil of
the permafrost model shows a dose intermediate between the
dry dust and pure ice models of similar density, and a rapid
decline in dose through the higher density ice-laden regolith
beneath.

Figure6 also shows the composition of the ionising radia-
tion field (proportion of dose deposited by different particle
species) as it changes with depth. In general the hadronic
cascade of HZE and protons is attenuated and the more
deeply penetrating (weakly interacting) particles, muons and
pions, and the electrons produced in the electromagnetic
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Fig. 6. Top: Dose profiles for different surface scenarios. Bottom:
The changing composition of the ionising radiation field with depth,
compared between 1 g/cm3 dry dust and water ice material.

cascade, become increasingly dominant in the radiation envi-
ronment. At all depths, the HZE dose is lower in the ice ma-
terial as it contains a much lower compositional proportion of
heavy elements and so generates fewer HZE in the hadronic
cascade. By 10 m (1000 g/cm2) depth the ice shielding ma-
terial produces a radiation environment with a significantly
greater muon contribution. Neutrons, although treated in
full by our particle interactions model, are uncharged and
do not directly ionise the material, but cause recoiling pro-
tons which are highly ionising. This may explain the higher
proportion of proton-delivered dose at the surface of the ice;
caused by moderation of back-scattering neutrons.

Integration under the dose-depth curve gives the total
amount of energy deposited in the surface. The 20 m depth
of dry regolith is found to absorb 73% of the total energy
delivered by the GCR flux (around 0.02 J/cm2/year), the rest
being absorbed by the atmosphere (5% of the total) or es-
caping with back-scattering particles (mostly neutrons and
gammas). The pure ice column retains 76% of the incoming
energy, the slight increase presumably due to more effective
capture of neutrons by its hydrogenous content (most signif-
icantly the backscattering neutrons, creating the higher dose
observed on the surface).
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Fig. 7. Subsurface dose profiles under solar activity maximum and
minimum conditions.

3.3 Primary radiation spectra

Figure7 shows the calculations when irradiating the model
with the CREME96 spectra for either solar minimum or so-
lar maximum conditions. The surface and peak dose during
solar minimum can be seen to be about double that of solar
maximum. Integrated over the entire 20 m depth, the dose
deposited during solar maximum is only two-thirds that of
minimum activity conditions. Furthermore, the peak dose
during solar maximum, although less in magnitude, occurs
20 g/cm2 deeper in the surface.

These are all effects of the significant heliospheric mod-
ulation of primaries.10 GeV/nuc during periods of solar
maximum. As seen in Fig.1, there is an order of magnitude
difference in flux for 100 MeV primary protons, and still a
modulation factor of 3.6 at 1 GeV. Figure8 shows the dose
contribution from the different energy bands of the GCR pro-
ton spectrum at solar minimum, with the section numbers
corresponding to the ranges indicated in Fig.1.

Several important features are evident here. Protons
<1 GeV (energy section 1) produce no dose peak; their pro-
file is a simple exponential decay. The primaries do not carry
enough kinetic energy for collisions to generate a hadronic
cascade and they are quickly attenuated by the shielding mat-
ter. Each higher energy segment of the proton spectrum pro-
duces a deeper peak. Section 4 (100 GeV–1 TeV) produces a
gentle peak at 1.3 m depth, three times deeper than section 2
primaries, but due to the very low flux of such high energy
primaries this section does not contribute a large proportion
of the total annual dose. The most important energy band
of the primary spectrum is section 2 as it combines a high
flux with relatively energetic particles. Shown in Fig.8, this
energy range (1 GeV–10 GeV) deposits over half of the to-
tal dose in the subsurface. These primaries are significantly
modulated by the heliosphere between solar maximum and
minimum phases (Fig.1), and so the solar activity cycle is
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Fig. 8. Dose contributions from different energy bands of the pri-
mary GCR proton spectrum. Section numbers correspond to the
energy ranges indicated in Fig.1.

manifested in the changing subsurface dose profile (shown
in Fig. 7) principally through modulation of primary protons
in the energy band 1 GeV–10 GeV (section 2 in this model).

3.4 Topographic elevation

Figure9 plots the dose profiles for three characteristic ele-
vations on Mars (Olympus Mons, Hellas basin, and the da-
tum altitude) as well as a null atmosphere. The general trend
across the four scenarios of increasing atmospheric thickness
is decreasing peak dose at a shallower depth beneath the sur-
face.

Even though the Martian atmosphere is comparatively
thin, providing only 6 mbar surface pressure at the reference
altitude, it can be seen that its radiation shielding properties
should not be discounted. Comparrison of the dose profile
at the datum altitude against that beneath vacuum indicates
that even a 16 g/cm2 depth of atmosphere affects cosmic ray
propagation. Perhaps paradoxically, the effect of this addi-
tional shielding is to actually increase the surface dose by
10% through limitted initiation of secondary cascades. At
the lower elevation of the Hellas basin, the surface dose is
lower again as the doubled atmospheric shielding thickness
begins to exert an attenuation effect. Beneath about a meter’s
subsurface depth, the dose profiles for Olympus Mons, da-
tum altitude and Hellas basin roughly follow each other but
for a∼16 g/cm2 shift in depth, and by 5 m depth, variation in
atmospheric thickness has negligible remaining effect.

3.5 Diminishing atmospheric pressure over geological time

Figure 10 plots the subsurface dose profiles under four
surface pressure scenarios (0.385 bar, 1033 g/cm2; 0.1 bar,
268 g/cm2; 0.01 bar, 27 g/cm2; 0.006 bar, 16 g/cm2). This se-
quence of diminishing atmospheric thickness is taken to rep-
resent gaseous loss over the geological history of the planet,
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Fig. 9. Subsurface dose profiles for locations with different eleva-
tions on Mars.
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Fig. 10. Subsurface dose profiles under decreasing atmospheric
depths, over the geological history of Mars. Rescaled plot of
0.385 bar case shown below.

independent of models attempting absolute dating of these
stages.

Decreasing surface pressure produces a non-linear re-
sponse of total atmospheric shielding thickness (integration
of the density-altitude profile), and thus also of generated
subsurface dose profile. Scaling with the combined shielding
thickness of atmosphere and subsurface, however, the sur-
face dose under a 0.385 bar atmosphere is roughly equivalent
to that at 10 m depth with the current atmosphere, and the
surface dose under a 0.1 bar atmosphere equivalent to 2.4 m
depth with 0.01 bar atmosphere.

Figure10also shows a replot of the subsurface dose profile
beneath a 0.385 bar atmosphere (which produces an identical
shielding depth to the current 1 bar terrestrial atmosphere)
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on an expanded scale. The surface dose, deposited almost
entirely by muons and electrons, is 2.6×10−4 Gy/year, less
than the calculated 4×10−4 Gy/year contribution from nat-
ural radioactivity of the regolith (Mileikowsky et al., 2000),
and so the biological effects of GCR are not significant be-
neath such a dense atmosphere.

4 Discussion

4.1 Preservation of astrobiological markers

Exposure of biological macromolecules, such as carbo-
hydrates, nucleic acids and proteins, to ionising radia-
tion is known to cause both fragmentation and aggrega-
tion (Hutchinson, 1963). For protein irradiation under Mar-
tian conditions of low temperature frozen aqueous solutions,
fragmentation through breakage of the polypeptide backbone
is the major damage observed (Filali-Mouhim et al., 1997).
Filali-Mouhim et al.(1997) have found that 70 kGy of radi-
ation (corresponding to 1.3 Myr exposure beneath a meter of
dry dust in our model) is sufficient to shatter lysozyme into
at least 11 small fragments. The molecular masses of en-
zymes have long been approximated by irradiation in aque-
ous solution or as a lyophilized (freeze-dried) powder (Nu-
gent, 1986). The remaining biological activity of an irra-
diated sample of enzymes decreases exponentially with the
absorbed dose, and assuming that the activity of each indi-
vidual polypeptide is destroyed by a single hit (primary ioni-
sation) the decay constant can been used to calculate the tar-
get molecular mass.Pavlov et al.(2002) have used a simi-
lar formula to estimate the part of molecular bonds broken
in a macromolecule of given molecular mass as a function
of absorbed dose, and find that total degradation of macro-
molecules in the top Martian subsurface occurs in 108–109

years. However, there is increasing evidence that protein ra-
diolysis is dependent not on molecular mass but the solvent-
accessible surface area, explaining the observation of prefer-
ential cleavage on solvent-exposed loops and that denatured
proteins fragment to a much greater extent than native ones
(Filali-Mouhim et al., 1997; Audette et al., 2000). Further-
more, such a calculation for complete destruction may over-
estimate the relevant persistence time, as a macromolecule
may not need to be extensively radiolytically modified to es-
cape detection by a biomarker detection instrument designed
to identity specific molecules.

In another attempt to gauge biomolecule survival in
the Martian subsurface radiation environment,Kminek and
Bada (2006) use previously-published dose-depth calcula-
tions (Mileikowsky et al., 2000) with their experimental re-
sults on gamma irradiation of dry amino acids. We, however,
find lower dose rates in the Martian subsurface than reported
by Mileikowsky et al. (2000), yet consistent with other re-
search in the literature. These results are presented here for
use in scaling experimental irradiations to the dose rates at

different depths and locations on Mars. Advances of this
modelling effort over previous astrobiological studies (e.g.,
Mileikowsky et al., 2000; Pavlov et al., 2002) include analy-
sis of variation in atmospheric depth and composition of the
subsurface. Most crucial is the permafrost content of the re-
golith; water is an effective neutron moderator, and as shown
in Fig. 6 ground ice creates a significant dose enhancement
in the near subsurface.

An important consideration in estimating the radiolytic
degradation rates of biosignature macromolecules is the de-
pendence on the LET of the ionising particles. The dense
ionisation tracks of high-LET protons and HZE ions produce
complex clusters of breaks in DNA that is of a lower cellular
reparability than sparse gamma-induced damage and thus has
more severe consequences for survival (Goodhead, 1999).
This disproportionate hazard of high-LET particles can be
taken into account by weighting the physical absorbed dose
by a relative biological effectiveness (RBE) factor, depen-
dent on the responsible particle type and energy, appropriate
for cell death (e.g.,Pavlov et al., 2002; Dartnell et al., 2007).
The relationship between LET and biosignature degradation
is less clear, however. For example,Butts and Katz(1967)
find that the RBE of heavy ions for degradation of dry en-
zymes and viruses is in fact less than unity, meaning that
they are less effective than low-LET radiation due to depo-
sitional saturation. On a smaller scale, that of amino acid or
nucleobase destruction, there is no reason to expect the spa-
tial pattern of HZE ionisation to have a significant effect at
all, andMalinen et al.(2003) find that the radiolysis of ala-
nine is not LET-dependent.

There is an additional factor that may prove to be signifi-
cant to the relative importance of low- or high-LET particle
irradiation under the current Martian subsurface conditions
of very low temperature ice. Radiolysis of biomolecules
occurs through both direct and indirect mechanisms; ioni-
sation from a particle hit (dominant in dry irradiation) and
attack from diffusible free radicals generated by the radiol-
ysis of water (dominant in dilute aqueous solution), respec-
tively (Hutchinson, 1963). Subsurface Martian permafrost is
intermediate to these extremes and so both direct and indi-
rect radiolysis will be important. Radiosensitivity is known
to decrease with lower temperature because of the reduced
diffusion of radicals, and OH· and O2H· become immobile
below 135 K and H· radicals below 77 K (Horneck, 2005).
The yield of single radicals from high-LET particles is lower,
however, due to recombination within the dense ionisation
track, and such radiation produces higher proportions of
molecular oxidants such as H2O2 (Goodhead, 1999) which
are even less mobile at low temperatures.

A further implication of radiolytic degradation on the de-
tectability of biosignatures is that it will be difficult to dis-
tinguish between break-down debris of large biomolecules, a
valid signature of extinct or extant life, and the simple abi-
otic chemical species created in situ by prebiotic chemistry
or exogenously-delivered by meteoritic or cometary in-fall.
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Certain organic molecules, however, may represent robust
evidence of a biogenic origin, rather than abiotic chemistry,
despite their small size. Chemical species such as nucleo-
sides are not believed to be synthesised in great proportions
by prebiotic chemistry (Orgel, 2004); indeed their crucial
status in terrestrial biochemistry is something of a paradox
in the origin of life. Other small species are accepted as
unambiguous molecular fossils in terrestrial deposits, such
as hopanes from the breakdown of oxygenic photosynthetic
cyanobacteria and steranes from eukaryotic and some bac-
terial cell membranes (although the synthesis of sterols re-
quires O2 in all known terrestrial organisms, and so may not
be expected in Martian biota) (Simoneit et al., 1998).

Another potential biosignature of great interest is that
many organic molecules used by terrestrial life are selec-
tively of a single enantiomer, whereas laboratory experi-
ments into prebiotic chemistry produce no such pronounced
bias (Bada and Miller, 1987), and most of the extraterres-
trial amino acids isolated from the Murchison meteorite are
racemised (Engel and Nagy, 1982). Many researchers there-
fore believe that if organics found on Mars were to show a
distinct enantiomer bias this would constitute a robust biosig-
nature. Surviving amino acids in a partially-radiolysed sam-
ple, however, have been found to show a degree of radio-
racemisation (Bonner, 1999, and references to earlier work
therein), and thus removal of this chirality biomarker. Even
if amino acids are isolated in the Martian subsurface, sur-
vivors of oxidation and ionisation, the un-radiolysed fraction
may exhibit enough radioracemisation to not be readily iden-
tifiable as biogenic.

Our modelled unweighted physical dose-depth curves un-
der a variety of different scenarios are presented here for
the use of laboratory experimentation into the persistence of
various biomarkers in the ionising radiation environment of
the Martian near-subsurface. As explained above, there are
important considerations of the radiation field on the poten-
tial detectability of biosignatures on the Martian surface, and
the model described here can be rapidly adapted to incor-
porate new experimental data on the LET- or temperature-
dependence of radiolytic biosignature degradation.

4.2 OSL dating

The upper limit on OSL dating is determined by saturation
of the luminescence signal, an effect due to the finite num-
ber of traps within the material, and generally occurs with
a total dose on the order of several kGy (McKeever et al.,
2003). The temporal limit for Martian sediments may vary
much more than on Earth. The high ionisation rate just be-
neath the surface from unshielded GCR will produce rapid
saturation, but due to the assumed lower incidence of ra-
dioisotopes in the Martian surface, sediments rapidly buried
to depths greater than several meters will experience a dose
rate less than on Earth and so the maximum dating limit may
be extended (Doran et al., 2004). Jain et al.(2006) report the

measured saturation dose of different minerals to range be-
tween 2 kGy–30 kGy, which gives a maximum dating limit
of ∼30 000–460 000 years for rapid burial beneath 30 cm
of dry dust, increasing to∼400 000–6 million years at 5 m
depth, from our radiation model. This agrees with the es-
timation of McKeever et al.(2003) for the upper limit for
dating Martian sediments at 103–106 years.

Heavy charged particles, with their large LET value, cre-
ate regions with high ionisation density. This produces lo-
cal charge saturation effects, and consequently the OSL re-
sponse for a given dose deposited by HZE is lower than that
from low-LET radiation such as energetic electrons or gam-
mas. Thus, the response to weakly ionising and densely
ionising particles, such as gamma rays and heavy ions re-
spectively, is opposite in organism survival and OSL of sed-
iments. Without taking into account this LET-dependent
variation in OSL efficiency, the simple dose rate will over-
estimate effective value (Jain et al., 2006). However, the
exact dependence of OSL efficiency on LET needs to be
experimentally-determined for different particle species and
each dosimeter material likely to be encountered on Mars.
When such experimental data becomes available (e.g.Jain
et al., 2006), these efficiency functions can be readily incor-
porated into our particle transport model to produce more
refined calibrations suitable for Martian OSL dating.

The only other direct chronologies for Mars are based on
the observed crater density, but this technique has poor tem-
poral resolution and is inaccurate for features younger than
about a million years (McKeever et al., 2003). This lower
age range is well covered by OSL dating, and thus it forms
an essential complementary in situ technique for determin-
ing Mars’ geomorphological and climatic history. The dose
profiles presented here can be employed in the necessary cal-
ibration of this dating technique.

5 Conclusions

Ionising radiation is known to be hazardous to the survival
of cells and spores, as well as the persistence of molecu-
lar biomarkers, and so characterising the Martian subsurface
radiation environment created by galactic cosmic rays is of
prime astrobiological interest. In addition, accurate mod-
els of the dose accumulation rate are needed for application
of the optically stimulated luminescence technique for dat-
ing Martian sediments. Various scenarios have been mod-
elled here, covering parameters of the surface composition,
primary radiation spectra, location elevation, and long-term
changes in Martian atmospheric depth.

Our calculated dose-depth profiles, as well as the rela-
tive contributions from different particle species, are found
to be strongly dependent on the shielding material. Although
the surface dose is greatest above ice, the subsurface ion-
isation contribution from HZE flux is reduced. Total sub-
surface energy deposition is found to vary by 60% between
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solar maximum and minimum activity conditions, princi-
pally through heliospheric modulation of GCR proton flux
in the 103–104 MeV energy band. The current thin Martian
atmosphere is also found to be non-negligible for the sur-
face dose, and significant variation found in subsurface dose-
profiles for different elevations. Over geological history, the
Martian atmospheric density has decreased, with a primor-
dial 0.385 bar column calculated to offer sufficient radiation
shielding for the GCR-induced surface dose to be less than
that expected from radionuclide emission.

The unweighted absorbed dose calculations presented
here provide data applicable to both experimental irra-
diation research on biosignature degradation and the use
of OSL dating on Mars. Other important factors, such
as the temperature- or LET-dependence of biosignature
degradation or OSL signal can be rapidly incorporated into
the model presented here as experimentally-derived values
become available.

Edited by: J. Toporski
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