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Abstract. In early 2006, Keppler et al. (Nature, 439:187–
191) reported a novel finding that plant leaves, and even
simple organic materials, can release methane under aer-
obic conditions. We investigated here whether the re-
ported methane release might simply arise from methane
desorption from sample surfaces after prior exposure to
higher methane concentrations. We exposed standard cel-
lulose filter papers (i.e. organic material with a high sur-
face area) to atmospheric methane concentration and then
transferred them to a low-methane atmosphere. Our re-
sults suggest that any desorption flux was extremely small
(−0.0001±0.0019 ngCH4 kgDW−1 s−1) and would play no
quantitatively significant role in modifying any measured
methane fluxes.

We also incubated fresh detached leaves of several species
and intactZea maysseedlings under aerobic and low-light
conditions. After correcting for a small measured methane
influx into empty chambers, measured rates of methane emis-
sion by plant materials were zero or, at most, very small,
ranging from−0.25±1.1 ngCH4 kgDW−1 s−1 for Zea mays
seedlings to 0.10±0.08 ngCH4 kgDW−1 s−1 for a mixture of
freshly detached grasses. These rates were much smaller
than the rates originally reported by Keppler et al. (2006).

1 Introduction

Methane is an important greenhouse gas, contributing about
20% to the current radiative forcing of the enhanced green-
house effect (Ramaswamy et al., 2001). It has been inten-
sively studied and it had been thought that all of its sources
and sinks had been identified. Hence, it came as a sur-
prise when Keppler et al. (2006) reported a new finding that
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methane could be released under aerobic conditions by living
plants and even dead plant tissues.

This was corroborated in field measurements of tropical
C4 grasses by Sanhueza and Donoso (2006) who observed
greater net methane efflux from intact grass swards than af-
ter the same swards had been cut. The implication of this
observation was that additional methane was being released
by the grass foliage. Contrary to those findings, Dueck
et al. (2007) and Beerling et al. (2008) conducted detailed
laboratory-based investigations of possible aerobic methane
release. They used different experimental approaches to
overcome some of the measurement challenges of measuring
minute methane fluxes and did not observe any significant
methane emissions in their systems.

Wang et al. (2008) measured aerobic methane released
from a variety of plants from inner Mongolia. They reported
that under dark conditions, about 80% of their test plants did
not produce any measurable amount of methane. Of the 20%
that did produce methane, Wang et al. (2008) showed that
methane release for some of those was simply due to appar-
ent storage of soil-derived methane in stem tissues.

For one species, the xerophytic shrubArtemisia frigida1,
however, Wang et al. (2008) excluded a range of possible
artefacts and still found that leaves produced methane under
aerobic conditions. It is particularly interesting that one of
the studied species clearly produced methane while most of
the others did not. If unaccounted artefacts had played a role
in the work of Wang et al. (2008), one might have expected
aerobic methane release to have been reported for either all
of their samples or for none. On the other hand, this work
contrasts with the observations of Keppler et al. (2006) who

1The species had been described asAchillea frigidaby Wang et
al. (2008). However, it was subsequently confirmed that the species
was actuallyArtemisia frigida(Z.-P. Wang, personal communica-
tion)
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observed methane release from all plant materials they stud-
ied.

In other recent studies, Vigano et al. (2008) and McLeod et
al. (2008) showed that aerobic methane release was linearly
related to exposure to UV radiation. They showed that a va-
riety of plant materials, and plant constituents such as pectin
and lignin, released substantial quantities of methane un-
der exposure to UV radiation or at high temperatures above
80◦C. Highest emissions were recorded at UV levels that ex-
ceeded levels normally found under natural conditions, but
the studies showed that aerobic methane release was, indeed,
possible under these conditions.

Other indirect evidence for the existence of aerobic
methane release came from field studies by Crutzen et
al. (2006), do Carmo et al. (2006) and satellite observations
reported by Frankenberg et al. (2005, 2006), although the lat-
est re-analysis of the satellite data point to somewhat lower
apparent methane emissions from tropical regions (Franken-
berg et al., 2008). Together, these studies presented findings
that were consistent with the presence of aerobic methane
emissions, but other possible sources or adjustments in the
source/sink balance could not be excluded.

At present, the question is still open whether the signifi-
cant apparent methane emissions were actually just artefacts
of the measurement conditions. Kirschbaum et al. (2006)
listed a range of possible artefacts that could have led to spu-
rious observed rates, and Kirschbaum et al. (2007) subse-
quently tried to quantify some of these in greater detail. They
concluded that methane absorption (in the liquid and lipid
phase inside living leaves) and the amount of methane held
within intercellular air spaces, would be unlikely to cause
quantitatively important artefacts, but that methane adsorp-
tion/desorption was of more serious concern (Kirschbaum et
al., 2007).

Methane readily adsorbs onto the surfaces of organic ma-
terials that have been activated to increase their internal sur-
face area. Cell walls of plants consist of a complex network
of a highly porous polysaccharide matrix with large numbers
of small pores (Cheng and Huang, 2004; Celzard and Fierro,
2005). Pore sizes are typically around 5 nm (e.g. Carpita
et al., 1979; Carpita and Gibeaut, 1993) which approach
the molecular diameter of methane to allow a strong inter-
action between organic materials and methane molecules.
This is largely responsible for the high adsorption capaci-
ties of organic matter (Biloe et al., 2002; Lozano-Castello et
al., 2002).

Many organic materials, such as activated charcoal formed
from coconut shells, can strongly adsorb methane, and at
high pressure and moderate temperatures, some are able
to adsorb more methane than their own weight (Wegrzyn
and Gurevich, 1996). Because of that, methane adsorption
has even been considered as a means of storing methane in
natural-gas powered road vehicles (e.g. Wegrzyn and Gure-
vich, 1996).

As adsorption potential decreases with increasing temper-
ature (e.g. Garcia-Perez et al., 2007), adsorption/desorption
could explain not only observed base rates but also the strong
temperature response of aerobic methane release that had
been reported by Keppler et al. (2006). As an increase in tem-
perature reduces the methane adsorption capacity of leaves,
methane will desorb even if the external methane concentra-
tion does not change (Harrison et al., 2000; Shao et al., 2004;
Thammakhet et al., 2005).

Adsorption and desorption are also relatively slow pro-
cesses, in particular to and from organic materials (Pignatello
and Xing, 1996). Some studies have suggested that methane
adsorbed to organic materials can be released into methane-
free air at steady rates for periods of days to weeks (Zhang
and Krooss, 2001; Cheng and Huang, 2004). Unfortunately,
few data are available for low-pressure methane adsorption
capacities of non-activated compounds, and extrapolation
from available adsorption isotherms to a low pressure range
is limited due to the very strong pressure-dependence of ad-
sorption at low pressures (Shao et al., 2004; Walton et al.,
2005; Garcia-Perez et al., 2007; Saha et al., 2007).

Kirschbaum et al. (2007) estimated an adsorption poten-
tial of about 40 000 ngCH4 kgDW−1based on the adsorption
characteristics of plant cell walls of coconut charcoal when
they assumed a simple linear dependence of adsorption on
methane partial pressure. With reported flux rates of less than
1 ngCH4 kgDW−1 s−1 for dead plant materials (Keppler et
al., 2006), Kirschbaum et al. (2007) postulated that methane
desorption could potentially play an important role in con-
tributing to observed apparent fluxes.

As adsorption/desorption is a simple physical process that
occurs everywhere, one has to expect that it would mod-
ify any apparent emission fluxes. The key questions are 1)
whether the amounts potentially adsorbed or desorbed are
large enough to be quantitatively significant; and 2) whether
any fluxes occur at a rate and for a duration over which they
can interfere with experimental measurements. If desorption
is very fast it might be completed during any experimental
equilibration period; if it is very slow, any desorption could
occur at only very small rates.

We conducted a simple experiment to expose a standard
organic material to a normal atmospheric methane concentra-
tion and then to a sub-atmospheric concentration to observe
any methane efflux due to methane desorption. We used stan-
dard cellulose filter paper for the experiment in order to facil-
itate the repeatability of the experiment. Samples were pre-
incubated in an atmospheric methane concentration because
this is of most practical relevance for experiments studying
the release of methane under aerobic conditions.

Following the adsorption experiment with filter papers, we
introduced various detached, but living, plant materials and
intact growingZea maysseedlings into the chambers to de-
termine whether we could observe any detectable aerobic
methane efflux from these plant materials.
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2 Materials and methods

We used six cylindrical plexiglass chambers with an internal
diameter of 140 mm and a volume of 5.7 l. The chambers
were sealed at either end with rubber O-rings and placed on
a laboratory bench where they received light from fluorescent
lamps at about 5µmol quanta m−2 s−1.

Two chambers were left empty (to provide blank tests) and
four chambers were filled with 100 Whatman No. 1 filter pa-
pers (diameter 12.5 cm). The filter papers were stacked on a
stainless steel rod (2 mm diameter) placed in the middle of
the chambers. A gap between each filter paper ensured that
air could diffuse to both sides of each individual filter paper.
The total weight of each stack of filter papers was approxi-
mately 112.2 g.

The chambers were left open and exposed to the ambi-
ent atmosphere for approximately two weeks. The cham-
bers were then closed and flushed with methane-free air for
10 min at 1,500 ml min−1 via sampling ports at either end of
the chamber. Because of some mixing between gas inside the
chamber and the flushing gas, some methane remained inside
the chamber even after flushing for 10 min. After flushing,
the sampling ports were sealed, and the methane concentra-
tion was recorded over the following six days.

To measure the methane concentration inside the cham-
bers, 5 ml of gas was withdrawn from the sample chamber
using a syringe with a hypodermic needle inserted through
a rubber septum in the sampling port. Sample methane con-
centrations were measured with a gas chromatograph (Varian
CP-3800, Varian Inc., USA) using a flame-ionization detec-
tor. The instrument was calibrated against certified gas stan-
dards. After analysis, 5 ml of methane-free air was injected
back into the chambers to replace the sampled gas. A correc-
tion for this dilution was made in the subsequent calculation
of methane concentrations.

For measuring the methane efflux from living plant mate-
rial, six different plant materials were collected from plants
growing near our laboratory or from a local plant nursery.
We used leaves of Five Finger (Pseudopanax arboreus(Mur-
ray) Philipson) and Broadleaf (Griselinia littoralis Raoul) as
two examples of large and fleshy leaves that were thought
to be least likely to show adverse physiological responses to
detachment from the parent plant. Foliage from a mixture
of local grasses was used as an example of plant material
with likely higher growth and gas exchange rates than the
tree leaves. Recently formed and expanded dandelion flow-
ers (Taraxacum officinaleF. H. Wigg) were used as an exam-
ple of plant material with high specific growth rate as it has
been suggested that aerobic methane release could be related
to cell wall synthesis (Keppler et al., 2006).

We also used Yarrow (Achillea millefoliumL.), a locally
available relative ofAchillea frigida, that had been reported
to have been used by Wang et al. (2008). Once we learnt that
the material had been mislabelled and the species used by
Wang et al. (2008) was actuallyArtemisia frigidaWilld, we

obtained a locally available relative of that species, Worm-
wood (Artemisia absinthiumL.).

Excised plant material was placed in plastic bags, imme-
diately taken to the laboratory and placed inside our sample
chambers. Plant materials did not noticeably dry out dur-
ing the incubation, and it is likely that the plant materials
remained physiologically active during measurements.

We also used intact seedlings of corn (Zea maysL.;
var. “Early Chief”) growing in small pots containing vermi-
culite. Seedlings were 18 days old at the start of the exper-
iment. Pots were last watered two days before the start of
the experiment to avoid any possibility of anaerobic condi-
tions developing in the rooting medium. The development of
anaerobic conditions is unlikely in a vermiculite medium in
any case, but partial drying was used as an extra precaution.
The partial drying was not enough to have caused any wa-
ter stress for plants as evidenced by water exudation on the
leaves inside our sample chambers.

In that experiment, we used empty chambers and cham-
bers with vermiculite-filled pots as controls. However, there
were no apparent differences between empty chambers and
those with pots without plants so that no results from the
empty pots are shown below.

All plant material was exposed to normal atmospheric
methane concentration while growing outside, as well as
inside the chambers until the start of the incubation when
chambers were flushed with methane-free air for 10 min at
1500 ml min−1. Mean ambient methane concentration in the
laboratory from repeated measurements over a number of
days was 1818 ppb. The methane concentration varied be-
tween days, but measurements on the same day were repeat-
able within±15 ppb.

As there was no gas flow through the sample chambers af-
ter they had been sealed, relative humidity inside the cham-
bers probably built up to close to 100%, after which further
water loss from the plant materials was prevented. The CO2
concentration inside sample chambers was not monitored. At
the end of the experiment, all plant material was dried in an
oven at 80◦C for 48 h and weighed. Data were statistically
analysed by using a linear mixed effect model, with confi-
dence intervals based on a t-distribution, fitted using the lme
function in the nlme library of R (R Development Core Team
2008). Confidence intervals for parameters were based on a
t-distribution.

3 Results

Figure 1 shows the change in methane concentration as
a function of time after the methane concentration sur-
rounding the test samples had been changed from atmo-
spheric to a lower methane concentration. Concentrations
did not fall below about 100 ppb because the chambers were
flushed with methane-free air for only 10 min before mea-
surements. Flushing for 10 min constituted a compromise
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Fig. 1. Observed methane concentrations in one of the sample
chambers with a stack of filter papers, shown as a function of time
after incubating samples in air with a low methane concentration.
Up to time zero, samples had been pre-incubated at atmospheric
methane concentrations of about 1800 ppb. The line in (b) is a lin-
ear regression line shown here only for visualisation of the trend.

between flushing for a long period that would have reduced
the initial concentration further and starting measurements as
early as possible in order to observe any early methane des-
orption during the first few minutes after reducing the con-
centration of the surrounding air.

There was no consistent trend in methane concentra-
tions over the first few hours after the initial flushing with
methane-free air (Fig. 1a). However, methane concentrations
increased linearly over the full six days of incubation. With
the absence of measurable trends over the first few hours
of incubation, we then normalised all data relative to the
methane concentrations observed after the end of flushing
with methane-free air on day 0 and combined data from all
chambers (Fig. 2).

On each measurement occasion, individual data points
scattered around mean values by 20–40 ppb. Despite the
scatter on individual days, the trend was also clear with
an apparent flux into sample chambers of 9.5±4.2 ppb d−1

(Mean±95% confidence interval; Fig. 2b), which was al-
most identical to the apparent flux into empty chambers of
9.9±5.9 ppb d−1 (Fig. 2a).

We then subtracted the rate of methane increase in empty
chambers from the change in methane concentration in
chambers with filter papers to derive an apparent flux due
to the presence of filter papers. This was expressed as a flux
per unit dry weight in Fig. 2c. These derived data showed no
apparent trend (−0.0001±0.0019 ngCH4 kgDW−1 s−1) over
the six days of measurement (Fig. 2c), indicating that any
desorptive flux was not discernable within the resolution of
the instrument and the experimental set-up.

We then incubated six different types of plant material in
our chambers. Detached leaf samples were left in the cham-
bers for only one to three days to minimise physiological
changes after removal from the parent plant. Detailed re-
sults for the incubation ofAchillea millefoliumare shown as
an example in Fig. 3.

Fig. 2. Methane concentration as a function of time after incubating
samples in methane-free air for empty chambers(a), chambers with
filter papers(b), and derived apparent methane change in chambers
with filter papers after subtracting the flux into empty chambers(c).
Different symbols refer to different sample chambers. Lines in (a)
and (b) are linear regressions, with relevant coefficients shown in
the figure. No regression line was fitted to data in (c) as the trend in
the data did not differ significantly from 0.

Table 1. Apparent methane fluxes from living detached leaves and
intact plant materials observed under low-light conditions. Data
shown are means±95% confidence intervals.

Scientific name Common name
Rate (ngCH4 kgDW−1 s−1)

Fresh detached Intact plants

Z. mays Corn −0.25±1.1
P.arboreus Five finger 0.007±0.022
G. littoralis Broadleaf 0.026± 0.021
– Mixed grasses 0.102± 0.082
T. officinale Dandelion flowers 0.043± 0.38
Achillea millefolium Yarrow 0.049± 0.049
Artemisia absinthium Wormwood 0.068± 0.077

In this experiment, methane concentrations increased
in the sample chambers (Fig. 3a), and at a slightly
faster rate than in empty chambers, resulting in an
apparent flux of 5µgCH4 kgDW−1 d−1 (Fig. 3b) or
0.049±0.049 ngCH4 kgDW−1 s−1. Derived flux rates for
other plant materials are shown in Table 1.
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Table 2. Comparison of methane fluxes reported by Keppler et al. (2006) and those calculated from plant materials and filter papers in the
present experiment. All numbers are given in ngCH4 kgDW−1 s−1. Detached plant material measured by Keppler et al. (2006) consist of a
mixture of fresh and dried plant material, whereas our detached plant materials were living and probably more comparable to intact plants
measured by Keppler et al. (2006).

Intact plant materials, dark 32±13
Keppler et al. (2006)Detached plant materials, 30◦C, dark 0.33±0.25

Pectin, 30◦C, dark 0.036

Filter papers, 20◦C, low light −0.0001±0.0019
This experimentPlant materials, 20◦C, low light −0.25±1.1

to 0.10±0.08

The rates shown in Table 1 are much smaller
than the rates reported by Keppler et al. (2006) of
32±13 ngCH4 kgDW−1 s−1 for emissions from intact
plant materials (Table 2). Rates reported here are, at most,
comparable to the rates for pure pectin reported by Keppler
et al. (2006).

4 Discussion

Our experiment was primarily designed to quantify the flux
of desorbing methane from a standard organic material, and
to assess whether such a flux could account for any aerobic
methane fluxes from plant material reported in the literature.
We found that methane concentrations changed in chambers
with filter papers at the same rate as in empty chambers, im-
plying a desorptive flux below the detection limit of our ex-
perimental set-up. We, therefore, could not support the hy-
pothesis of Kirschbaum et al. (2007) that methane desorption
might be responsible for observed apparent methane fluxes
under aerobic conditions.

In designing the experiment, we chose measurement mate-
rials and conditions where methane desorption might be rel-
atively large compared to de-novo methane release. Hence,
we used filter papers rather than living plant tissues and did
not expose our material to high light and especially not to
UV radiation. Methane desorption should occur at similarly
negligible rates under experimental conditions where other
fluxes might be more important.

Our observations could indicate (a) that adsorption at low
methane concentration is quantitatively much smaller than
would be expected based on a linear dependence of adsorp-
tion on the surrounding methane concentration; or (b) that
the amounts adsorbed by plant materials are negligible with-
out activation; or (c) that desorption is very fast and com-
pleted during the initial 10 min of chamber flushing; or (d)
that it proceeds at exceedingly slow rates for extended peri-
ods. Whatever the explanation for these negligible observed
fluxes, our tests exclude methane desorption as a quantita-
tively important artefact contributing to any observed aerobic
methane fluxes.

 20 

 
 

 
Figure 3. Methane concentration change (a) and corresponding calculated methane fluxes (b) 

as a function of time after incubating plant samples of Achillea millefolium  in methane-free 

air. Samples had been pre-incubated in normal atmospheric methane. Data in (b) are 

calculated after first subtracting the apparent flux into empty chambers (3.8 ppb d-1) measured 

in that experiment. Lines are regression lines, with relevant coefficients shown in the Figure. 

Fig. 3. Methane concentration change(a) and corresponding cal-
culated methane fluxes(b) as a function of time after incubating
plant samples ofAchillea millefoliumin methane-free air. Samples
had been pre-incubated in normal atmospheric methane. Data in
(b) are calculated after first subtracting the apparent flux into empty
chambers (3.8 ppb d−1) measured in that experiment. Lines are re-
gression lines, with relevant coefficients shown in the figure.

At the same time, we also observed no, or at most very low,
aerobic methane release from living plant tissues. The ob-
served methane flux from living leaves was, at most, a small
fraction of the flux reported by Keppler et al. (2006). We
know of no explanation for these very different findings.

There was some apparent leakage of methane into our
chambers, possibly through the rubber seals of the chamber
or the septum used for extracting samples. Leakage could
have occurred either during the extraction of a sample or dur-
ing the intervening period between sampling. Such a flux
of methane might be driven by pressure differences between
the chamber and the surrounding room air due to small di-
urnal temperature changes and changes in atmospheric pres-
sure with synoptic changes in weather systems.
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This leakage into chambers could possibly be higher
for chambers with plant material because the air in those
chambers would have built up to 100% relative humidity
so that the displacement of gas by water vapour and any
condensation/re-evaporation during small diurnal tempera-
ture changes would have created additional pressure changes
in these chambers. It is thus possible that there would have
been greater leakage into chambers with plant materials than
into empty chambers (or chambers with filter papers). Actual
emission rates from leaves could therefore have been either
very small (if leakage was the same as into empty chambers)
or zero if leakage rates into chambers with leaves were higher
than into chambers without leaves.

While apparent rates emitted by leaves could have been
slightly increased by the possibility of enhanced leakage, it
seems unlikely that there were any artefacts that would have
negated actual fluxes. One possible mechanism for the re-
moval of methane could have been the presence of methan-
otrophic bacteria, which oxidise methane and release carbon
dioxide and water. We tested for that possibility by exposing
some of our plant material to about 13 000 ppb methane and
recorded the methane concentration for the following three
days (data not shown). No significant change in methane
concentration was observed which effectively eliminated the
presence of methanotrophs as a complicating factor in our
experiments.

Consistent with our findings, Dueck et al. (2007) also
found no, or extremely small, methane efflux from measure-
ments on their plant materials, although a subsequent investi-
gation by Vigano et al. (2008) indicated that a small amount
of methane had been produced by the plant material in the
experiment of Dueck et al. (2007). In another recent study,
Beerling et al. (2008) used a different experimental proto-
col and were also unable to detect any aerobic methane re-
lease from their plant materials. It is possible that some of
the differences between the high rates reported by Keppler et
al. (2006) and other workers might have been caused by arte-
facts such as the apparent storage of soil-derived methane in
plant stems that had been identified by Wang et al. (2008).

Wang et al. (2008) looked at 40 different species and found
no methane emission from most of the species once poten-
tial artefacts had been excluded.Artemisia frigida, however,
emitted methane at about 0.9 ngCH4 kgDW−1 s−1. It is pos-
sible that the observations of Wang et al. (2008) might relate
not to species but to some specific aspect of the growth con-
dition or physiological state of plant materials that had been
investigated. When we measured emissions from a related
species,Artemisia absinthium, we found rates that were at
most one tenth of the rates reported by Wang et al. (2008).

Vigano et al. (2008) and McLeod et al. (2008) reported
that aerobic methane release was strongly stimulated by ex-
posure to UV radiation. Vigano et al. (2008) and Keppler
et al. (2008) also reported similar stimulation of aerobic
methane release by high temperatures in excess of 80◦C. Ex-
trapolation of these findings to low-UV and low-temperature

conditions indicates only very low release rates. This recent
work has shown that at least under high UV or high tem-
perature conditions, aerobic methane release can, indeed, be
repeatably observed.

With the range of observations now available, includ-
ing the observations of matching isotopic signature between
plant material and released methane (Keppler et al., 2006),
the detailed investigations by Wang et al. (2008), the identifi-
cation of a link to UV exposure (Vigano et al., 2008; McLeod
et al., 2008) and the elimination of a range of possible arte-
facts (Kirschbaum et al., 2007 and the present study), it does
seem likely that it is indeed possible for methane to be pro-
duced by plants under aerobic conditions, at least by some
plant materials and under some conditions. Divergent find-
ings by Dueck et al. (2007), Wang et al. (2008), Beerling et
al. (2008), and the investigation of live plant materials in the
present study may simply indicate that different species have
different methane production potentials, or that methane pro-
duction varies strongly with environmental or physiological
conditions.

The work of Vigano et al. (2008) and McLeod et al. (2008)
has strongly implicated UV (UV-B and to a lesser extent UV-
A) exposure as an agent of methane release from dead plant
materials, with rates as high as 1000 ngCH4 kgDW−1 s−1.
Keppler et al. (2006), in their original work, observed higher
rates from intact plants than dead plant material, which sug-
gests that a possible second mechanism might operate in liv-
ing tissues. Ghyczy et al. (2008) recently proposed a mecha-
nism that implicated methane release from choline and other
compounds with methyl groups during transient oxygen de-
privation. The hypothesis was supported by a number of ex-
periments in chemical solutions and mitochondrial extracts
from rat livers. While the hypothesis was not tested with
plant cells, it would seem plausible that the same process
could operate in plant mitochondria.

Keppler et al. (2008) and McLeod et al. (2008) recently
corroborated the role of methyl groups as the likely precursor
for methane release under aerobic conditions and the likely
role of reactive oxygen species. McLeod et al. (2008) found
that methane release from pectin was strongly stimulated by
exposure to UV radiation, but that stimulation was lost again
if reactive-oxygen scavenging chemicals were included in
their incubations as well.

The different studies published recently, and our work re-
ported here, all add to the understanding of possible aero-
bic methane release. The different observations still do not
form a completely coherent picture, but plausible explana-
tions to resolve some of the apparently conflicting findings
have recently emerged. It has now become possible to re-
liably prove the existence of aerobic methane release under
UV exposure in repeatable experiments. The involvement of
methyl groups, first postulated by Keppler et al. (2006), has
now been demonstrated more directly (Keppler et al., 2008;
McLeod et al., 2008). There has been much progress in
understanding the mechanisms underlying methane release
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over just the past few months. Nonetheless, further work
is still needed to further characterise the environmental and
physiological conditions that stimulate or suppress aerobic
methane release and to fully be able to appreciate the quan-
titative significance of aerobic methane release in a global
context.
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