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Abstract. We determined both the nitrogen and carbon
isotopic compositions of various vanadyl alkylporphyrins
isolated from siliceous marine sediments of the Onnagawa
Formation (middle Miocene, northeastern Japan) to inves-
tigate the biogeochemistry and ecology of photoautotrophs
living in the paleo-ocean. The distinctive isotopic sig-
nals support the interpretations of previous works that the
origin of 17-nor-deoxophylloerythroetioporphyrin (DPEP)
is chlorophylls-c1−3, whereas 8-nor-DPEP may have orig-
inated from chlorophylls-a2 or b2 or bacteriochlorophyll-
a. Although DPEP and cycloheptanoDPEP are presum-
ably derived from common precursory pigments, their iso-
topic compositions differed in the present study, suggest-
ing that the latter represents a specific population within
the photoautotrophic community. The averageδ15N value
for the entire photoautotrophic community is estimated to
be –2 to +1‰ from theδ15N values of DPEP (–6.9 to –
3.6‰;n=7), considering that the empirical isotopic relation-
ships that the tetrapyrrole nuclei of chloropigments are de-
pleted in 15N by ∼4.8‰ and enriched in13C by ∼1.8‰
relative to the whole cells. This finding suggests that nitro-
gen utilized in the primary production was supplied mainly
through N2-fixation by diazotrophic cyanobacteria. Based
on theδ13C values of DPEP (–17.9 to –15.6‰;n=7), we
estimated isotopic fractionation associated with photosyn-
thetic carbon fixation to be 8–14‰. This range suggests
the importance ofβ-carboxylation and/or active transport of
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the carbon substrate, indicating in turn the substantial con-
tribution of diazotrophic cyanobacteria to primary produc-
tion. Based on theδ15N values of 17-nor-DPEP (–7.4 to
–2.4‰; n=7), the δ15N range of chlorophylls-c-producing
algae was estimated to be –3 to +3‰. This relative deple-
tion in 15N suggests that these algae mainly utilized nitro-
gen regenerated from diazotrophic cyanobacteria. Given that
diatoms are likely to have constituted the chlorophylls-c-
producing algae within the biogenic-silica-rich Onnagawa
Formation, cyanobacteria-hosting diatoms may have been
important contributors to primary production.

1 Introduction

Sedimentary porphyrins offer great potential in terms of
tracing biogeochemical processes related to past photoau-
totrophic activity. These compounds are mainly de-
rived from chloropigments (chlorophylls and bacteriochloro-
phylls), with minor amounts originating from heme. Sedi-
mentary porphyrins are well preserved in organic-rich sedi-
ments, oil shales, and petroleum (e.g., Treibs, 1936; Baker
and Louda, 1986; Callot and Ocampo, 2000). Because the
structural characteristics of porphyrins reflect those of the
source chloropigments, significant efforts have been made to
assess the structure of porphyrins isolated from sediments
with the aim of understanding their precursors and diage-
netic transformation (Baker and Palmer, 1978; Ocampo et
al., 1985, 1992; Baker and Louda, 1986; Keely et al., 1988,
1990, 1994; Verne-Mismer et al., 1988; Boreham et al.,
1990; Prowse et al., 1990; Eckardt et al., 1991; Keely and
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Maxwell, 1991; Sundararaman and Boreham, 1991; Gib-
bison et al., 1995; Callot and Ocampo, 2000). The stable
isotopic compositions of nitrogen and carbon in porphyrins
also provide critical information on their source organisms
(Hayes et al., 1987; Boreham et al., 1989, 1990; Ocampo et
al., 1989; Popp et al., 1989; Chicarelli et al., 1993; Keely et
al., 1994; Ohkouchi et al., 2006).

Sedimentary porphyrins preserved in marine sediments
originate only from the chloropigments of aquatic photoau-
totrophs, thereby exclusively recording the signal from the
marine primary production. The contribution of chlorophylls
from the terrestrial environment to marine sediments is ex-
pected to be negligibly small for the following reasons. First,
the chlorophylls of higher plants, potentially major chloro-
phyll producers on land, are enzymatically decomposed dur-
ing senescence of the leaf (Kräutler et al., 1991; Matile et
al., 1996; Oberhuber et al., 2003). Second, chlorophylls
and their derivatives are rapidly decomposed by bacteria in
soils (Hoyt, 1966) or grazed by mesofauna (Chamberlain et
al., 2006). Finally, chlorophylls are readily oxidized under
aerobic conditions and/or photo-degraded during transport
(Sanger, 1988). In fact, Chikaraishi et al. (2005b) reported
that chlorophylls and their degradation products originating
from terrestrial plants were present in only minor amounts
in a small lake with a high flux of organic matter from the
surrounding forest.

The nitrogen and carbon isotopic compositions of sed-
imentary porphyrins from marine sediments should there-
fore reflect those of photoautotrophs in the environment at
the time of deposition, thereby providing crucial information
on the physiology and ecology of the phototrophic commu-
nity and the physicochemical conditions of the surface ocean
(Hayes et al., 1987; Boreham et al., 1989, 1990; Ocampo et
al., 1989; Popp et al., 1989; Chicarelli et al., 1993; Keely
et al., 1994; Ohkouchi et al., 2006). Such information is
otherwise difficult to extract based on sedimentological and
other geochemical proxies. The isotopic compositions of
sedimentary porphyrins are expected to preserve the com-
positions of the tetrapyrrole nuclei of chlorophylls even af-
ter diagenetic modification (Sachs et al., 1999; Ohkouchi et
al., 2006, 2008). For this reason, relatively constant isotopic
relationships are theoretically predicted between the pho-
toautotrophic biomass and sedimentary porphyrins, because
the tetrapyrrole nuclei of chlorophylls are synthesized via a
unique biosynthetic pathway after the condensation of eight
5-aminolevulinic acid (ALA; Beale, 1995). Empirically, por-
phyrins are depleted in15N by 4.8±1.4‰ (1σ , n=20) and
enriched in13C by 1.8±0.8‰ (1σ , n=18) relative to cell
biomass (Ohkouchi et al., 2006; 2008).

The nitrogen isotopic composition of photoautotrophs is of
particular interest because it provides information about ni-
trogen processes in the surface ocean (Chicarelil et al., 1993;
Ohkouchi et al., 2006). For example, the nitrogen isotopic
composition of photoautotrophs typically ranges from +5 to
+7‰ in most oceanic environments, reflecting the presence

of 15N-enriched nitrate in oceanic water (Miyake and Wada,
1967; Cline and Kaplan, 1975; Liu and Kaplan, 1989; Bran-
des et al., 1998; Voss et al., 2001; Sigman et al., 2005);
however, once the nitrate becomes consumed and is signif-
icantly depleted, dissolved N2 is made biologically available
via the fixation of N2 by diazotrophs (i.e., N2-fixing organ-
isms), a process that catalytically converts dinitrogen to am-
monium with only minor isotopic fractionation (α=1.000–
1.002; Hoering and Ford, 1960; Delwiche and Steyn, 1970;
Wada, 1980; Wada and Hattori, 1991). Consequently, the
δ15N values for diazotrophs fall within a confined, character-
istic range from –3 to 0‰ (e.g., Minagawa and Wada, 1986;
Montoya et al., 2002). Finally, in a reduced, anaerobic envi-
ronment, photoautotrophs are significantly depleted in15N
because of the large amount of isotopic fractionation that
accompanies the uptake of dissolved ammonia (8–27‰; Ci-
fuentes et al., 1989; Hoch et al., 1992; Pennock et al., 1996;
Waser et al., 1998a, b).

The carbon isotopic composition of photoautotrophs re-
flects isotopic fractionation during the enzymatic carboxy-
lation process (εf ), as well as the kinetic isotope ef-
fect during carbon mass transport into the cell (Far-
quhar et al., 1982b). The overall isotopic fractiona-
tion, εp (defined as 103[(δ13Ccell+1000)/(δ13CCO2aq+1000)–
1]≈δ13Ccell–δ13CCO2aq (‰)), is the sum of these two effects,
normally varying between –20 and –14‰ in the modern
ocean (Bidigare et al., 1997, 1999). Based on the assumption
that ribulose 1,5-bisphosphate carboxylase/oxygenase (RU-
BISCO) is the sole carboxylation enzyme among algae (εf ≈

–29‰; Farquhar et al., 1982a; Guy et al., 1987),εp val-
ues have been used as a proxy for past atmosphericPCO2,
which is presumably the primary factor governing the kinetic
isotopic effect (Popp et al., 1989; Jasper and Hayes, 1990;
Freeman and Hayes, 1992; Jasper et al., 1994; Pagani et al.,
1999). Nonetheless, it is also possible thatεp values indi-
cate changes in the photoautotrophic community in terms of
their physiology, because the isotopic effects of the active
transport of substrates or alternative carboxylation enzymes
are expected to dominate over the influence ofPCO2 (Raven,
1997; Kashiyama et al., 2008).

We recently developed an improved method for the isola-
tion and purification of sedimentary metalloalkylporphyrins
using high-performance liquid chromatography (Kashiyama
et al., 2007a; Kashiyama et al., 2008), specifically designed
for compound-specific isotopic analyses. In the present
work, we applied this method to determine both the nitrogen
and carbon isotopic compositions of various vanadyl alkyl-
porphyrins isolated from siliceous sediments of the middle
Miocene Onnagawa Formation, northeastern Japan. Based
on these data, we discuss the source–product relationships
of various sedimentary porphyrins and the biogeochemistry
and ecology of photoautotrophs in a marginal basin of the
Miocene Pacific Ocean.
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2 Samples and experimental

2.1 Samples and geological background

The middle Miocene Onnagawa Formation consists of hemi-
pelagic siliceous sediments, making up part of a thick Neo-
gene sequence deposited in the Tohoku Trough, a narrow,
NNE–SSW-trending failed rift basin located on the eastern
margin of the Japan Sea (Fig. 1). The Onnagawa Formation
and its equivalents in adjacent areas consist of fine-grained,
diatomaceous deposits that are underlain by shallow marine
facies deposited during the opening of the basin and overlain
by siliciclastic facies deposited during aggradation within
the basin. The opening of the Tohoku Trough was initiated
at ∼17.5 Ma, and it rapidly deepened to 1500 m by 15 Ma
when deposition of the Onnagawa Formation began (Iijima
and Tada, 1990). During deposition of the Onnagawa Forma-
tion, the basin was semi-enclosed and estimated to have been
connected to the Pacific Ocean via a sill of 150–500 m depth
located to the north of the basin (Iijima and Tada, 1990).
Studies on lipid biomarkers from the Onnagawa Formation
and their carbon isotopic compositions have been conducted
by Suzuki et al. (1993), Yamamoto and Watanabe (1994),
Sampei et al. (2003), and Yamamoto et al. (2005).

The studied section is located in the Gojome area, Akita
Prefecture, Japan (Fig. 1). The Onnagawa Formation in this
area generally exhibits centimeter- to decimeter-scale rhyth-
mical alternations of dark-colored argillaceous layers that are
relatively enriched in pyrite and organic matter, and light-
colored biogenic silica-rich layers. These laminations reflect
variations in the flux of diatomaceous silica at a periodicity
of hundreds to thousands of years (Tada, 1991; Koshikawa,
2002). Moreover, laminations at the scale of hundreds of mi-
crons are commonly preserved throughout the section, sug-
gesting the repeated development of anaerobic environments
in the bottom-water. The formation is also characterized by
elevated TOC contents of up to 5% (Tada, 1991).

The lithology and stratigraphy of the studied section have
been described in detail in previous studies (Fig. 1; Tada,
1991; Koshikawa, 2002). Seven samples that represent vari-
ous lithofacies (BA138b; BA140a-III, IV, and V; and GJ01-3,
7, and G) were obtained from two distinct stratigraphic levels
(Horizons 1 and 2; Fig. 1) and analyzed for both bulk organic
matter and sedimentary porphyrins (Table 1).

2.2 Experimental procedures

2.2.1 Isolation of individual porphyrins

Sedimentary porphyrins were extracted from approximately
0.5 kg of pulverized sediments of each sapmle by Soxh-
let extraction with chloroform/methanol (70:30, v/v) for
∼72 h. We conducted isolation and purification of indi-
vidual vanadyl alkylporphyrins by applying the method de-
scribed in Kashiyama et al. (2007a), which were then ana-

lyzed isotopically and/or structurally. An updated high per-
formance liquid chromatography (HPLC) method was em-
ployed for sample BA138b. To avoid the artifact caused
by chromatographic isotopic fractionation during isolation
in the HPLC method (Macko et al., 1987; Bidigare et
al., 1991; Hare et al., 1991; Filer, 1999), Kashiyama et
al. (2007a) introduced a dual-step HPLC method to sep-
arate individual compounds with baseline resolution (de-
scribed below; Fig. 2a and b). Furthermore, because 3-nor-
deoxophylloerythroetioporphyrin (DPEP) (1c) and 8-nor-
DPEP (1d) were not resolved in the second-step normal-
phase HPLC, the isolated fraction containing these two com-
pounds was further separated by reversed-phase HPLC with
extended column length in order to separate with baseline
resolution for isolation (described below; Fig. 2c)

The HPLC methods described below are an update of
those provided by Kashiyama et al. (2007a) after the in-
troduction of a temperature-controlled column oven; they
were used for the preparation of sample BA138b. The meth-
ods used for the rest of the samples are described in detail
in Kashiyama et al. (2007a). The HPLC system (Agilent
1100 series) comprised a binary pump, on-line degasser, au-
tosampler, HPLC column oven (Selerity Technologies Inc.;
POLARATHERMTM Series 9000), and on-line photodiode
array detector (DAD), and was optionally equipped with
a fraction collector and a mass selective detector (MSD)
connected via an atmospheric pressure chemical ionization
(APCI) interface. The system was coupled to a personal
computer installed with Agilent Chemstation software.

In the reversed-phase HPLC, analyses were performed
using three analytical-scale columns (ZORBAX SB-C18,
4.6×250 mm; 5µm silica particle size) connected in se-
ries with a guard column (ZORBAX SB-C18, 4.6×12.5 mm;
5µm silica particle size) set in front. The isocratic
mobile phases were acetonitrile/water/acetic acid/pyridine
(90:10:0.5:0.5, v/v) for the high-resolution HPLC analysis
mode and acetonitrile/N,N-dimethylformamide/water/acetic
acid/pyridine (70:20:10:0.5:0.5, v/v) for the high-sample-
capacity HPLC purification mode; these correspond to
“Mode A” and “Mode B” of Kashiyama et al. (2007a),
respectively. The temperature program for the col-
umn oven and flow rate are summarized in Table 2a
and b. In the normal-phase HPLC, analyses were per-
formed using five analytical-scale columns (ZORBAX Sil,
4.6×250 mm; 5µm silica particle size) connected in se-
ries with a guard column (ZORBAX Sil, 4.6×12.5 mm;
5µm silica particle size) set in front. The iso-
cratic mobile phases weren-hexane/dichloromethane/N,N-
dimethylformamide/acetic acid/pyridine (88:10:1:0.5:0.5,
v/v), and the flow rate was 1 ml min−1. The temperature pro-
gram for the column oven in normal-phase HPLC is summa-
rized in Table 2c.

We undertook additional reversed-phase HPLC for the
isolation of 3-nor- and 8-nor-DPEP (1c and 1e). Seven
analytical-scale columns (ZORBAX SB-C18, 4.6×250 mm;
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Fig. 1. (a) Paleogeographic map and(b) stratigraphic column for the middle Miocene sequence exposed in the Gojome area of northeast
Japan. Horizons 1 and 2 represent the stratigraphic intervals sampled in the present study.

Table 1. Description and bulk properties of the samples analyzed for porphyrin isotopic compositions.

Identification Description Sample
thickness
(mm)

Biogenic
silica
(wt.%)∗

δ15N
(‰)

δ13C
(‰)

TN
(wt. %)

TOC
(wt. %)

Carbonate
(wt. %)

Horizon 1
BA138b Brown dolomite 31 38 2.7 –22.3 0.04 1.3 62.6

BA140a
III Light-colored

porcelanite
10 2.2 –23.2 0.04 1.0 1.9

IV Dark-colored
porcelanite

15 2.1 –23.0 0.04 1.0 2.5

V Light-colored
porcelanite

15 2.2 –23.0 0.04 1.1 2.0

Horizon 2
GJ01-7 Dark-colored

porcelanite
54 52 2.4 –22.0 0.08 1.9 21.6

GJ01-3 Brown dolomite 43 23 2.3 –22.2 0.12 3.1 61.4
GJ01-G Dark siliceous

mudstone
46 40 2.5 –22.1 0.13 3.6 25.3

∗ After Tada (1991) and Koshikawa (2002). For the sample BA140a III, IV, and V, only an average value of these stratigraphically adjacent
layers was reported.
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Fig. 2. (a) First-step, reversed-phase HPLC/DAD chromatogram
(at 408 nm) of the vanadyl alkylporphyrins fraction (sample GJ01-
3). The carbon numbers of porphyrins shown here were assigned
based on HPLC/MS mass spectra. Numbers in bold assigned to
the major peaks refer to the chemical structure described in the
Fig. A1, as conclusively determined by X-ray crystallographic anal-
ysis (see the Supplementary Materialhttp://www.biogeosciences.
net/5/797/2008/bg-5-797-2008-supplement.pdf). Shaded intervals
indicate the fractions collected for second-step HPLC.(b) Second-
step, normal-phase HPLC/DAD chromatogram (at 408 nm) of the
fraction containing isotopically analyzed porphyrins (compounds
1a, 1c, 1d, 1e, and2). The peaks of the target compounds were
separated with baseline resolution and collected for either isotopic
analyses or the third-step HPLC (shaded intervals).(c) Third-step,
reversed-phase HPLC of the fraction containing compounds1cand
1d.

Table 2. Gradient programs of column oven temperature and flow
rate for HPLC analyses.

a) High-resolution HPLC analysis mode
Time (min) Temperature (◦C) Flow rate (ml/min)

0 40 1.0
10 40 1.0
50 80 2.0
60 80 2.0

b) High-sample-capacity HPLC purification mode
Time (min) Temperature (◦C) Flow rate (ml/min)

0 40 1.2
40 80 1.2
60 80 1.2

c) Normal-phase HPLC
Time (min) Temperature (◦C) Flow rate (ml/min)

0 35 1.0
40 45 1.0
60 45 1.0

5µm silica particle size) were connected in series with a
guard column (ZORBAX SB-C18, 4.6×12.5 mm; 5µm sil-
ica particle size) set in front. The column oven tempera-
ture was set at 80◦C, the isocratic mobile phase was acetoni-
trile/water/acetic acid/pyridine (90:10:0.5:0.5, v/v), and the
flow rate was 1 ml min−1.

2.2.2 Structural identification

The structures of porphyrins were tentatively assigned in the
first instance based on HPLC/MS mass spectra, UV-Vis spec-
tra, and comparisons of the obtained relative retention times
with those published in the literature (e.g., Sundararaman and
Boreham, 1993; Fig. 2). Furthermore, the structures of six
isolated porphyrins (including five compounds analyzed iso-
topically) were determined by X-ray crystallography. Dark-
red crystals of isolated individual vanadyl porphyrins were
grown by vapor diffusion (methanol into CHCl3 solution).
Crystals were prepared from 100–800µg of each isolated
compound. Single crystals with variable dimensions (as
small as 0.1×0.1×0.02 mm) were used for X-ray diffraction
analyses. Measurements were made using a Rigaku RAXIS
RAPID imaging plate area detector with graphite monochro-
mated Cu–Kα radiation. The crystallographic data for DPEP
(1a) and 8-nor-DPEP (1d) are reported in Kashiyama et
al. (2008) and Kashiyama et al. (2007b), respectively. The
crystallographic data for other compounds are reported in
the Supplementary Materialhttp://www.biogeosciences.net/
5/797/2008/bg-5-797-2008-supplement.pdfof the present
study.
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Table 3. Nitrogen and carbon isotopic compositions of individual
sedimentary porphyrins.

δ15N (‰) δ13C (‰)

BA138b
1a –3.6 –17.1
1c –3.6 –17.0
1d –1.4 –21.2
1e –3.7 –16.7
2 –5.1 –19.6

BA140a-III
1a –5.8 –17.8
1c –6.7 –17.0
1d –1.8 –19.7
1e –6.3 –17.2
2 –7.5 –19.9

BA140a-IV
1a –5.5 –17.8
1c –5.1 –17.9
1d –6.5 –22.0
1e –4.1 -16.9
2 –6.8 –19.7

BA140a-V
1a –6.9 –17.9
1c –6.3 –17.4
1d –7.2 –20.4
1e –7.4 –16.6
2 –7.6 –19.5

GJ01-7
1a –5.2 –15.6
1e –2.4 –15.1
2 –5.9 -18.6

GJ01-3
1a –4.1 –15.6
1e –4.2 –15.4
2 –5.0 –18.3

GJ01-G
1a –5.4 –15.8
1c –5.8 –15.8
1d –2.3 –17.4
1e –6.1 –15.3
2 –5.2 –18.3

2.2.3 Isotopic analyses

Nitrogen and carbon isotopic compositions were determined
using a ThermoFinnigan Delta plus XP isotope-ratio mass
spectrometer coupled to a Flash EA1112 automatic elemen-
tal analyzer via a Conflo III interface (EA/IRMS; Ohkouchi
et al., 2005). Nitrogen and carbon isotopic compositions are
expressed using conventionalδ-notation against atmospheric
N2 (AIR) and the Peedee Belemnite (PDB), respectively. In
practice, referencing was performed via comparisons with
laboratory standard compounds of known isotopic compo-
sitions; namely, tyrosine (δ15N=+8.44‰, δ13C=–20.50‰)
and Ni etioporphyrin I (δ15N=+0.86‰,δ13C=–34.17‰) pur-
chased from Aldrich Chemical Co. (Milwaukee, WI, USA).

In the present work, we define isotopic fractionation between
the substrate and product (ε) as follows:

ε(‰) ≡ 103
[(δsubstrate+1000)/(δproduct+1000)−1]

≈δsubstrate− δproduct (1)

The purified individual metalloalkylporphyrins and the Ni
etioporphyrin I standard were dissolved in chloroform and
placed onto precleaned tin capsules. After chloroform was
evaporated, the capsules were carefully folded with forceps
prior to analysis. Various quantities (6–30µg) of the Ni etio-
porphyrin I standard were prepared over a range that covers
the quantities of all of the analyzed porphyrin samples; the
standard was then analyzed interspersed with the samples.
The estimated analytical precisions (1σ) of the isotopic com-
positions were 0.11–0.30‰ for nitrogen and 0.12–0.30‰ for
carbon (ranges indicate variations on different days of anal-
ysis), reflecting the instrumental condition of the EA/IRMS
system. We also assessed analytical errors related to the sep-
aration and purification procedures by the repeated prepara-
tion of three major porphyrins (1a, 1e, and2) from triplicate
samples (BA138b). The average isotopic variances of these
porphyrins among the three independent experiments were
0.29‰ for nitrogen and 0.11‰ for carbon (1σ). Overall, the
inclusive analytical errors for all analyses presented in this
paper were 0.3‰ for both nitrogen and carbon.

3 Results

The Onnagawa Formation contains nickel, copper, and
vanadyl alkylporphyrins, with the latter being by far
the most abundant (approximately 40 nmol g−1-sediment;
Kashiyama, 2006); accordingly, the present study focused
on the vanadyl alkylporphyrins.

Figure 2a shows a representative chromatogram of
reversed-phase HPLC for the vanadyl porphyrin fraction.
The major constituents of the vanadyl porphyrins do not dif-
fer among the seven analyzed samples, although they vary
in their relative amounts (Fig. 3). DPEP (1a) was the most
abundant porphyrin in all samples (15–30% of total vanadyl
porphyrins), with either 17-nor-DPEP (1e) or C33 cyclohep-
tanoDPEP (2) being the second-most abundant. Other ma-
jor components included 3-methyl-DPEP (1b), 3-nor- DPEP
(1c), and C29 cycloalkanoporphyrin (structure tentatively as-
signed).

The nitrogen and carbon isotopic compositions of individ-
ual porphyrins from the seven samples are summarized in
Table 3. Overall, the examined porphyrins show wide ranges
in isotopic compositions, from –8 to –2‰ for nitrogen and
from –19 to –15‰ for carbon. Certain isotopic trends are ob-
served among various porphyrins from each sample (Fig. 4),
probably reflecting physiological variations among distinc-
tive source photoautotrophs. Below, we examine therela-
tive isotopic differences among different porphyrin species
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and their chemical structures with the aim of elucidating the
source–product relationships between the studied sedimen-
tary porphyrins and their precursory chloropigments.

4 Discussion

4.1 Source–product relationships of various porphyrins

4.1.1 Origins of 17-nor-DPEP

17-nor- DPEP was first reported by Shul’ga et al. (1986)
and Serebrennikova et al. (1987) from Siberian oil. A spe-
cific origin for this compound was suggested by Verne-
Mismer et al. (1988), who considered it as a degradation
product of chlorophylls-c1−3 after the defunctionalization
of the carboxyvinyl group at the C-17 position via a re-
action analogous to the Schumm devinylation reaction (Di
Nello and Dolphin, 1981). In contrast, most varieties of
chlorophylls and bacteriochlorophylls are potential sources
of DPEP (1a), the most abundant sedimentary porphyrin
(Fig. 3), although it is expected to be most commonly de-
rived from chlorophyll-a1 (6a), the main photosynthetic pig-
ment of virtually every quantitatively significant aquatic pho-
toautotroph in an aerated biosphere. 17-nor-DPEP may also
have a non-specific origin such as DPEP after the defunc-
tionalization of the carboxyethyl group in other kinds of
chloropigments or after the thermal cleavage of the C-17
ethyl group of DPEP. In the present study, we observed sta-
tistically significant13C-enrichment in 17-nor-DPEP rela-
tive to that in DPEP (Fig. 4; see statistical tests in Table
S1 in Supplementary Materialshttp://www.biogeosciences.
net/5/797/2008/bg-5-797-2008-supplement.pdf), supporting
the specific origin of 17-nor-DPEP, chlorophylls-c in partic-
ular. Thus, it is plausible that the isotopic compositions of
17-nor-DPEP represent those of the marine algal groups that
produce chlorophylls-c, including diatoms, haptophytes, and
dinoflagellates.

4.1.2 Origins of 3-nor- and 8-nor-DPEP

In addition to 17-nor-DPEP (1e), two other varieties of
C30 porphyrins lacking an ethyl group of DPEP (1a) were
observed: 3-nor- and 8-nor-DPEPs (1c and 1d, respec-
tively). Considering the biosynthetic scheme of chloropig-
ments, ethyl groups that are lost from the C-3, C-8, or C-17
positions are equivalent in their ultimate origin because the
two carbon atoms of each ethyl group originate in the two
methylene carbons of the carboxyethyl group of Uroporpho-
bilinogen (9), a universal precursor of all chlorophyllides.
Therefore, losses of ethyl groups at these positions would
not differentiate the carbon isotopic compositions of the three
porphyrins, if derived from a common source. Given that in
the present study we obtained contrasting isotopic data for
the three C30 porphyrins (Fig. 4a), we conclude that they
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Fig. 3. Relative abundances of major components in the seven an-
alyzed samples. Numbers in bold refer to the chemical structure
described in the Fig. A1.
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symbols).115N and113C refer to isotopic differences for each porphyrin relative to(a) 17-nor-DPEP and(b) DPEP. The isotopic signatures
from different horizons reflect temporal variations in environmental factors such as theδ13C of DIC or theδ15N of upwelled nitrate.115N
and113C are expected to extract signatures solely attributed to variations in physiology within the photoautotrophic community by cancelling
environmental factors, assuming that the isotopic signature of DPEP represents that of the entire community.

were derived from chloropigments with different biological
sources.

3-nor-DPEP (1c) tends to be slightly depleted in
13C relative to 17-nor-DPEP (1e; 113C=–0.5±0.4‰;
1σ ; n=5; see statistical tests in Table S1 in Sup-
plementary Materialshttp://www.biogeosciences.net/5/797/
2008/bg-5-797-2008-supplement.pdf), but is isotopically
indistinguishable from DPEP (1a; 115N=–0.1±0.6‰;
113C=+0.3±0.4‰; 1σ ; n=5; Fig. 4a; Table S1 in Sup-
plementary Materialshttp://www.biogeosciences.net/5/797/
2008/bg-5-797-2008-supplement.pdf). 3-nor-DPEP has
been identified in many geological samples (Fookes, 1983;
Sundararaman and Boreham, 1991, 1993; Sundararaman et
al., 1994). Loss of the ethyl group at the C-3 position has
been attributed either to Schumm-reaction-like devinylation
under acidic conditions (Di Nello and Dolphin, 1981; Sun-
dararaman and Boreham, 1991) or cleaving of the C3–C31

bond after the formation of a Diels–Alder adduct of the
vinyl-substituted pyrrole units of two chlorophyllides (Ko-
zono et al., 2002). Therefore, the origins of 3-nor-DPEP and
DPEP are probably identical and are differentiated because
of the variable fates of the vinyl group at the C-3 position
(Sundararaman and Boreham, 1991; Chicarelli et al., 1993),
thereby supporting the above reasoning based on structure.
Alternatively, chlorophyll-d (6e) could also be a precursor
of 3-nor-DPEP because the formyl group at the C-3 position
of chlorophyll-d can be lost by oxidation followed by decar-
boxylation. Chlorophyll-d is a major pigment ofAcaryochlo-
ris marina, a cyanobacterium that has been reported in asso-
ciation with reef organisms and red macroalgae (Miyashita et

al., 1996, 2003; K̈uhl et al., 2005; Miller et al., 2005); how-
ever, the contribution of chlorophyll-d-producing cyanobac-
teria to pelagic primary production is probably only minor.

8-nor-DPEP (1d), first reported in our samples
(Kashiyama et al., 2007b), shows unique and widely
variable isotopic compositions (Fig. 4a); namely,115N and
113C values relative to 17-nor DPEP (1e) are +1.7±2.8‰
and –3.6±1.3‰, respectively (1σ ; n=5). Only limited
types of chloropigments readily lose the substituent at the
C-8 position under a mild thermal condition; devinylation
at the C-8 position of chlorophylls-c2 and c3 (7b and 7c,
respectively) is one possibility. Considering the significant
deviation in both the nitrogen and carbon isotopic composi-
tions of 8-nor-DPEP from those of DPEP and 17-nor-DPEP,
however, 8-nor-DPEP probably originated from a unique
group(s) of photoautotrophs. The devinylation at the C-8 po-
sition of chlorophylls-a2 (6b) andb2 (6d) may better explain
the unique isotopic signatures, because these pigments are
known to be produced only by a unique group of cyanobac-
terium, Prochlorococcus(Chisholm et al., 1988; Goericke
and Repeta, 1992; Ting et al., 2002). BecauseProchlorococ-
cusadapts to relatively deeper water enriched with blue light
(400–500 nm; Ting et al., 2002), their isotopic signature
could reflect that of the deep water nitrate/anmonium and
thus differentiated from the majority of photoautotrophs
dwelling in the shallower environment. Alternatively,
8-nor-DPEP could originate from bacteriochlorophyll-a (8),
because relative to the aromatic pyrrole ring of the chlorin
structure of other chloropigments, the pyrroline ring of the
bacteriochlorin structure of bacteriochlorophyll-a is liable to
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cleavage of the ethyl group at the C-8 position (Kashiyama
et al., 2007b).

4.1.3 Origin of cycloheptanoDPEP (13,15-ethano-132,17-
propanoporphyrin)

Figure 4b shows clear differences in the isotopic compo-
sitions of cycloheptanoDPEP (2) and DPEP (1a). The
mean115N and113C values for cycloheptanoDPEP were
–0.9±0.6‰ and –2.3±0.5‰, respectively (1σ ; n=7). Deple-
tion in 13C characterizes the isotopic composition of cyclo-
heptanoDPEP. The observed discrepancy in carbon isotopic
composition requires a depletion in13C of more than 50‰ in
the additional carbon at the C-173 position of C33 cyclohep-
tanoDPEP in the case that it originates from the same source
as that for DPEP; such a depletion is considered highly un-
likely.

CycloheptanoDPEP (2) was also depleted in15N. Because
all varieties of chlorophyllides are biosynthesized after 3,8-
divinylprotochlorophyllide (10), chloropigments and sedi-
mentary porphyrins from a single source should have an
identicalδ15N value. Indeed, in a study of single plant leaves,
Chikaraishi et al. (2005a) reported no difference in theδ15N
values of chlorophylls-a andb (6a and6b). Moreover, the
nitrogen isotopic signature is not expected to be altered dur-
ing the degradation of chloropigments, because (1) nitrogen
atoms are not exchangeable during degradation, and (2) no
substantial isotopic discrimination of nitrogen has been ob-
served during the demetallation of chlorophyllides (loss of
magnesium) in a modern meromictic lake (Ohkouchi et al.,
2005) and during the insertion of metal into octaethylpor-
phyrin (Ni chelation) in a laboratory experiment (Kashiyama,
2006). We therefore conclude that cycloheptanoDPEP and
DPEP (1a) in our samples originated from different photoau-
totrophic biomasses, although not necessarily from different
compounds.

CycloheptanoDPEP (2) was first identified by Prowse et
al. (1987). CycloheptanoDPEP and other bicycloalkanopor-
phyrins are commonly observed as the major components of
vanadyl alkylporphyrins in many geological samples (Verne-
Mismer et al., 1990; Sundararaman and Boreham, 1993;
Sundararaman et al., 1994). Boreham et al. (1990) re-
ported the carbon isotopic compositions of both vanadyl
and nickel porphyrins from the Cretaceous Julia Creek oil
shale, finding that vanadyl-chelated cycloheptanoDPEP and
its potential analogs (i.e., 15,17-cycloheptanoporphyrin;3a)
were enriched in13C by 0.9–1.7‰ relative to vanadyl
DPEP (1a), whereas the nickel-chelated equivalents were en-
riched in 13C by 3.6‰ relative to nickel DPEP. Based on
these isotopic data and the nature of their chemical struc-
tures, the authors concluded that chlorophylls-c1−3 was the
most likely source of cycloheptanoDPEP and other 15,17-
cycloheptanoporphyrins. In our datasets, however, the iso-
topic compositions of cycloheptanoDPEP are clearly differ-
ent from those of 17-nor-DPEP (1e), the porphyrin derived

from chlorophylls-c. This finding suggests that chlorophylls-
c arenot the main source of cycloheptanoDPEP in our sam-
ples.

In the Eocene Messel shale, Germany, and the
Triassic Serpiano oil shale, Switzerland, 15,17-
cycloheptanoporphyrins (3a and3b) are enriched in13C by
3.62‰ and 3.54–3.68‰, respectively, relative to DPEP (1a;
Hayes et al., 1987; Chicarelli et al., 1993). Significantly, the
carbon isotopic composition of cycloheptanoDPEP (2) and
its analogues are distinct from that of DPEP in all studies, al-
though in different senses (i.e., whether depleted or enriched
in 13C). Furthermore, relatively smallδ13C differences
between these compounds have also been reported in other
cases; namely, 15,17-cycloheptanoporphyrins from the
Cretaceous Julia Creek oil shale (Ocampo et al., 1989) and
cycloheptanoDPEP from Late Pliocene lacustrine sediment
(Keely et al., 1994) were 0.4–0.8‰ enriched in13C and
0.4–0.6‰ depleted in13C, respectively, relative to DPEP.
These isotopic differences suggest that these compounds
represent distinct biomasses.

In modern aquatic environments, pheopigments that pos-
sess structures analogous to that of cycloheptanoDPEP (2)
have been reported among the degradation products of
chloropigments. Such pheopigments were first found in
sponges (132,173-cyclopheophorbide-a enol; 5a; Karuso et
al., 1986) and the viscera of macrobenthic suspension feed-
ers (chlorophyllone-a; 4; Sakata et al., 1990; Yamamoto et
al., 1992), and subsequently in marine and lacustrine sur-
face sediments (chlorophyllone-a; 4; Chillier et al., 1993;
Harris et al., 1995; Aydin et al., 2003; and 132,173-
cyclopheophorbidea enol;5; and its analogs; Ocampo et al.,
1997, 1999; Goericke et al., 2000) and sinking particles and
particulate organic matter (chlorophyllone-a; Walker and
Keely, 2004; and 132,173-cyclopheophorbide-a enol; Go-
ericke et al., 2000). Goericke et al. (2000) demonstrated
that (1) 132,173-cyclopheophorbide enol was not detected in
pure algal cultures, but that (2) the fecal materials of vari-
ous micro- and macrozooplanktons in pure cultures contain
a significant amount (40–71% of the total pheopigments).
Taken together, these results suggest that chlorophyllone
and 132,173-cyclopheophorbide enol could be transformed
in significant quantities from virtually all of the chloropig-
ments via diverse herbivorous grazing activities. These com-
pounds would eventually have been preserved in sedimentary
rocks as cycloheptanoDPEP (2) or its analogs after reduction
of the five- and seven-member rings and full aromatization
of the chlorin unit.

If cycloheptanoDPEP (2) was specifically derived from
grazing on photoautotrophs, its isotopic compositions should
reflect those of the photoautotrophs consumed by herbivo-
rous grazers. Therefore, the difference in isotopic composi-
tion between cycloheptanoDPEP and DPEP (1a) recorded in
the present case suggests that grazing activities were not uni-
formly imposed on the entire population of photoautotrophs,
but was biased in favor of a unique sub-population. This bias
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Table 4. Observed and estimated values of various carbon isotopic terms discussed in the text.

δDPEP (‰) δcell (‰) δd (‰) εp (‰)

(observed) (estimated1) (estimated2) (estimated3)

Horizon 1
BA138b –17.1 –18.9 –5.5 ∼ –9 10 ∼ 13

BA140a
III -17.8 –19.6 –5.5 ∼ –9 11 ∼ 14
IV –17.8 –19.6 –5.5 ∼ –9 11 ∼ 14
V –17.9 –19.7 –5.5 ∼ –9 11 ∼ 14

GJ01-7 –15.6 –17.4 –5.5 ∼ –9 8 ∼ 12
GJ01-3 –15.6 –17.4 –5.5 ∼ –9 8 ∼ 12
GJ01-G –15.8 –17.6 –5.5 ∼ –9 9 ∼ 12

The lowest and highest estimated values ofδd , εp are indicated assuming (1) ;SST in the Onnagawa basin
was in the range of 10-20◦C; and (2)δc value approximately 1‰ higher than the modern value
(Kennett, 1986; Woodruff and Savin, 1989, 1991; Hodell and Vayavananda, 1994).

1: δcell = δDPEP- 1.8 (‰)
2: δd = δc + (εb/c + εd/bδ) = δc + ([653.627/(T - 233.45)2] + 0.22) + (24.12-9866/T ) (‰);
after Thode et al. (1965) and Mook et al. (1974).
3: εp = δcell − δd (‰)

may have resulted from spatial and temporal variability in
grazing efficiency. Accordingly, both the taxonomic compo-
sitions of the photoautotrophs and their physiology should
have been differentiated along with physicochemical param-
eters of the ambient sea water. Thus, the isotopic compo-
sitions of photoautotrophic populations would have varied
spatially (i.e., variation along depth) and temporally within
the water column. If grazing activity was more significant
in a particular environment of the water column than others,
it could have resulted in the differentiation of the isotopic
compositions of cycloheptanoDPEP from those of DPEP. Al-
ternatively, such distinct isotopic compositions may reflect
selective grazing on isotopically distinct groups of photoau-
totrophs within a community (Buffan-Dubau et al., 1996;
Nomaki et al., 2006). To determine between these alter-
natives, further investigations are required into the isotopic
compositions of early degradation products in the water col-
umn and surface sediment in the modern environment; the
results of such analyses with clarify the potential use of this
porphyrin as a proxy for paleoecology.

4.2 Nitrogen cycle associated with photosynthetic produc-
tion

The Onnagawa Formation contains DPEP (1a) as the primary
component of vanadyl porphyrins. As discussed above, al-
though chlorophyll-a is expected to be the dominant precur-
sor of DPEP, it is also possible for DPEP to be derived from
most of the other chloropigments. Thus, the isotopic com-
positions of DPEP are likely to reflect the average isotopic
value for the entire photoautotrophic community at the time
that the sediments were deposited. In this section, we dis-

cuss the nitrogen isotopic signature of DPEP with the aim of
interpreting the flow and transformation of nitrogen species
throughout the entire system of photosynthetic primary pro-
duction and hence the nitrogen cycle in the paleo-ocean.

Theoretically, the nitrogen isotopic composition of the
cells of photoautotrophs reflects (1) that of the substrates
(i.e., nitrate, nitrite, ammonia, or dinitrogen), and (2) pro-
cesses associated with nitrogen uptake; namely, which nitro-
gen species were utilized in the growth and reproduction of
the cell and how they were utilized. Thus, any interpretation
of the nitrogen isotopic record of sedimentary porphyrins re-
quires the careful separation of these two signals. Consider-
ing a 4.8‰ depletion of15N in the tetrapyrrole macrocycle
of chlorophylls relative to the whole cell through biosynthe-
sis (Ohkouchi et al., 2006), theδ15N ranges of the photoau-
totrophic community estimated from those of DPEP are –2
to –1‰ in Horizon 1 and –1 to 1‰ in Horizon 2 (Fig. 5; Ta-
ble 4). It should be noted that there are some uncertainty in
these reconstructions due to the natural variation inδ15N dif-
ference between the chlorophylls and the cell (±1.4‰; 1σ ,
n=20); hence, the estimates may be somewhat wider ranges
than these values. Here, we propose three scenarios that po-
tentially explain these findings.

The first scenario involves a lowδ15N value (∼0‰) for ni-
trate in the surface water. In this case, it is also possible that
the assimilated nitrogen has a lowδ15N value (∼0‰) un-
der a nitrate-limited growth condition. In the modern ocean,
however, such a lowδ15N value is rarely found for nitrate
in surface waters, reflecting the relatively highδ15N value of
nitrate in subsurface waters (∼+6‰; Liu and Kaplan, 1989;
Sigman et al., 2000). In general, nitrate in oceanic water
is enriched in15N due to an denitrification process that se-
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lectively consumes14NO−

3 with a large degree of isotopic
fractionation, ranging from –30 to –20‰ (Cline and Kaplan,
1975; Liu and Kaplan, 1989; Brandes et al., 1998; Altabet et
al., 1999; Barford et al., 1999; Voss et al., 2001; Sigman et
al., 2003), leaving15N-enriched nitrate. The occurrence of
relatively15N-enriched nitrate is likely in this case, because
an oxygen-depleted water mass has been suggested for the
Onnagawa Basin based on sedimentological evidence such as
the occurrence of submillimeter-scale laminations in nearly
50% of the siliceous sediments within the Onnagawa Forma-
tion (Tada, 1991; Koshikawa, 2002).

The second scenario involves the limiting of primary pro-
duction by factors other than nitrate availability, such as
the availability of phosphate (Thingstad and Rassoulzadegan,
1995), iron (Martin et al., 1994), or zinc (Morel et al., 1994;
Shaked et al., 2006). In this case, a relatively high degree of
isotopic fractionation during incomplete nitrate consumption
by photoautotrophs would have resulted in significant15N
depletion by –4 to –10‰ for photoautotrophic cells relative
to the source nitrate, which presumably had a positiveδ15N
value. As discussed below, however, this scenario is incon-
sistent with inferences based on the carbon isotopic compo-
sitions of the porphyrins.

In the third scenario, the main source of nitrogen intro-
duced into the net photosynthetic system is derived from an
in situ N2-fixation process, with the result that the average
δ15N values of the photoautotrophs (–2 to +1‰) largely over-
lap with the expectedδ15N value of nitrogen assimilated via
N2-fixation (–2 to 0‰; Wada and Hattori, 1991). The fol-
lowing two factors indicate that quantitatively significant di-
azotrophs in the surface ocean would have been cyanobac-
teria: (1) the structure of DPEP suggests that it primar-
ily originated from chlorophylls rather than bacteriochloro-
phylls, and (2) diazotrophic photoautotrophs that produce
chlorophylls are only found among cyanobacteria. The di-

azotrophic cyanobacteriumTrichodesmiumforms blooms in
oligotrophic open oceans, being a major source of new nitro-
gen in the modern tropical and subtropical oceans (Capone
et al., 1997, 2005; Carpenter et al., 1997; Karl et al., 1997;
Davis and McGillicuddy et al., 2006). Furthermore, uni-
cellular cyanobacteria recognized in the open ocean play a
potentially significant role in N2-fixation within oligotrophic
environments (Zehr et al., 2001; Montoya et al., 2004).

Further constraints upon the ecology of photoautotrophs
and the associated nitrogen cycle can be derived from the
δ13C values of porphyrins, which reflect the physiology of
photoautotrophs in terms of photosynthesis. Considering an
approximately 1.8‰ enrichment of13C in the tetrapyrrole
macrocycle of chlorophylls relative to the whole cell through
biosynthesis (Ohkouchi et al., 2008), theδ13C ranges of the
photoautotrophic community estimated from those of DPEP
are –20 to –19‰ in Horizon 1 and –18 to –17‰ in Hori-
zon 2. These ranges are somewhat less negative than those
of modern marine suspended particulate organic matter (typ-
ically –25 to –20‰ in the mid-latitudes; Rau et al., 1982;
Goericke and Fry, 1994).

Following the procedure of Kashiyama et al. (2008), we
estimated the degree of overall isotopic fractionation during
photosynthesis (εp value) to be 10 to 14‰ for Horizon 1
and 8 to 12‰ for Horizons 2 (Table 4). In contrast, the likely
range inεp values for the middle Miocene was probably sim-
ilar to that observed in the modern ocean (i.e., 14 to 20‰ in
temperate oceanic water), given that atmosphericpCO2 for
the middle Miocene (∼260 ppmv; Pagani et al., 1999) was
similar to modern pre-industrial values.

The smallεp value calculated above for the Onnagawa
Basin is incompatible with the occurrence of surface water
with excess nitrate (the second scenario listed above). In-
deed, elevatedεp values are observed in modern oceanic
surface water with excess nitrate, such as in the Southern
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Ocean (south of the polar front; 55–65◦S), due in part to
the ecological requirements of photoautotrophs (Popp et al.,
1998, 1999). In contrast, smallεp values have been proposed
for diazotrophic photoautotrophs in the modern oligotrophic
oceans (the third scenario). The carbon isotopic composi-
tion of field-collectedTrichodesmium, a colonial and bloom-
forming marine diazotrophic cyanobacterium, tends to be
less negative than that of other photoautotrophs (Calder and
Parker, 1973; Minagawa and Wada, 1986; Wada and Hattori,
1991). In a unique case, Carpenter et al. (1997) reported a
δ13C value of –12.9±1.1‰ (1σ , n=10; range from –15.2 to –
11.9‰) forTrichodesmiumcells from stratified oligotrophic
surface waters of the southeast North Atlantic Ocean and the
northwestern Caribbean Sea, indicating aεp value of<10‰.
These values invoke special mechanisms associated with car-
boxylation that express characteristically low degrees of car-
bon isotopic fractionation (Carpenter et al., 1997).

Kashiyama et al. (2008) discussed the enzymatically cat-
alyzed active transport of CO2(aq)/HCO−

3 into the cell,
and the manifestation of an alternative carboxylation en-
zyme, phosphoenolpyruvate carboxylase (PEPC; i.e.,β-
carboxylation), as the processes responsible for the small
εp value described above, as these processes are common
among cyanobacteria. It is recognized that numerous al-
gal species are capable of active transport (Badger, 1987),
and it is known to be ubiquitous among cyanobacteria (Ka-
plan et al., 1993; Ogawa and Kaplan, 2003 and references
therein). With active transport, much of the CO2(aq)/HCO−

3
pulled into the cell would be committed to carboxylation. In
such a case, the degree of isotopic fractionation should gen-
erally become significantly small (∼5‰; Sharkey and Berry,
1985;, being controlled largely by the isotopic effect asso-
ciated with the enzyme responsible for active transport and
the proportion of CO2(aq) leaked from the cell (Hayes et al.,
1993). PEPC is known to be an important enzyme among
cyanobacteria, as it facilitates theβ-carboxylation of phos-
phoenolpyruvate to produce oxaloacetate, a precursor of glu-
tamate in the tricarboxylic acid cycle (Colman, 1989; Tabita,
1994). Theβ-carboxylation process uses isotopically heavy
HCO−

3 as a substrate, resulting in smallεf values (∼5‰;
Raven, 1997).

In conclusion, diazotrophic cyanobacteria are likely to
have made a substantial contribution to primary production
in the middle Miocene Onnagawa Basin; thus, the nitrogen
utilized in photosynthetic primary production was supplied
mostly via in situ N2-fixation by diazotrophic cyanobacte-
ria.

4.3 Oceanographic implications

The prevalence of the N2-fixation process in the photo-
synthetic system strongly suggests the presence of nitrate-
deficient, oligotrophic surface waters in the middle Miocene
Onnagawa Basin. The high energy demands of N2-fixation
(Tyrrell, 1999) mean that diazotrophic cyanobacteria are only

able to out-compete non-diazotrophic algae when nitrate is
highly limited. In the modern environment, diazotrophic
cyanobacteria (Trichodesmiumin particular) are distributed
throughout the tropical and subtropical Atlantic, Pacific, and
Indian Oceans, and the Caribbean and South China Seas
(Capone et al., 1997). In these regions the surface water is
density stratified, thereby preventing access to nitrate from
the deep ocean. In fact, the periodic occurrence of well-
preserved fine-scaled laminations within the Onnagawa For-
mation suggests the intermittent development of an anaero-
bic environment in the bottom water of the Onnagawa Basin
(Tada, 1991; Koshikawa, 2002).

These characteristics of the middle Miocene Onnagawa
Formation are similar to those of Pleistocene Mediterranean
sapropels. The origin of this organic-rich anaerobic sedi-
ment has been explained in terms of extensive N2-fixation
by diazotrophic cyanobacteria and the production of olig-
otrophic diatom species in stratified surface water (Kemp
et al., 1999; Sachs and Repeta, 1999). Furthermore, in the
study of the Cretaceous ocean anoxic events, Kashiyama
et al. (2008) suggested significance of N2-fixation by dia-
zotrophic cyanobacteria in stratified anoxic basins during for-
mation of the organic-rich black shales based on the isotopic
signatures of DPEP. These three examples commonly cor-
relate N2-fixation by diazotrophic cyanobacteria and forma-
tion of highly organic-rich anaerobic sediments despite dif-
ferences in ages and basin scales. Although it is not observed
in modern oceans, the diazotrophic cyanobacteria-promoted
production may have been one of the major biogeochemical
processes leading mass sequestration of organic carbon into
the sediments in geological pasts.

4.4 Ecological implications

The Onnagawa Formation is characterized by relatively
abundant 17-nor-DPEP (1e; 8.6–16.7%; Fig. 3), presumably
a derivative of chlorophylls-c1−3 (7a–c). Considering the
chlorophyll-a:c molar ratio in chlorophylls-c-producing al-
gae (ranging from 2.5:1 to 4:1; Boczar and Prezelin, 1987),
a large proportion (30–80%) of porphyrins may have been
derived from chlorophylls-c-producing algae; however, this
range may be an overestimate because the fully aromatic
tetrapyrrole macrocycles of chlorophylls-c (i.e., porphyrin)
have a higher preservation potential than chlorophyll-a,
which is a partially saturated equivalent (i.e., chlorin).
This suggests a significant contribution of chlorophylls-c-
producing algae to photosynthetic production, consistent
with previous works that propose the predominance of di-
atoms in terms of primary production during the deposi-
tion of the Onnagawa Formation (Tada, 1991; Koshikawa,
2002). The Onnagawa Formation is dominated by biogenic
silica derived from diatoms (20–60%; Table 1; Tada, 1991),
which are the representative chlorophyll-c-producing marine
algae. Furthermore, Suzuki (1993) reported abnormally high
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concentration of 24-norcholestane in this formation and sug-
gested the dominance of diatoms in primary production.

Our data, however, also suggest the presence of other non-
chlorophyll-c-producing photoautotrophs. If diatoms (or
other chlorophyll-c-producing algae) had been the sole dom-
inant primary producer, DPEP (1a) would also have been de-
rived from the chlorophylls of these algae; hence, the iso-
topic compositions of DPEP and 17-nor-DPEP would have
been identical. However, the obtainedδ13C values of DPEP
and 17-nor-DPEP demonstrated slight but statistically sig-
nificant differences (Fig. 4). In addition, other quantitatively
important porphyrins, such as 8-nor DPEP and cycloheptan-
oDPEP, have isotopic compositions distinct from those of
17-nor-DPEP (Fig. 4). These findings suggest that the pho-
totrophic community at the time of sediment deposition con-
sisted of various groups, including chlorophylls-c-producing
algae. Indeed, as discussed above, the obtained isotopic sig-
natures of DPEP suggest a substantial component of dia-
zotrophic cyanobacteria in the photoautotrophic community.

It is noteworthy that the nitrogen isotopic composition of
chlorophylls-c-producing algae (–3 to +1‰ for Horizon 1
and –1 to +3‰ for Horizon 2; Table 4) reconstructed from
that of 17-nor-DPEP (1e) is close to or overlaps with that of
typical diazotrophs. Because biological N2-fixation is an ex-
clusively prokaryotic metabolic process (Postgate, 1998), it
could be proposed that the growth of such non-diazotrophic
photoautotrophs was supported chiefly by regenerated nitro-
gen that was ultimately derived from diazotrophs. The recon-
structedδ15N values of chlorophylls-c-producing algae are
more variable than those calculated for the entire photoau-
totrophic community (Fig. 5), and the reconstructedδ15N
value of algae for sample GJ01-7 from Horizon 2 is∼+2.5‰,
falling outside of the range for diazotrophs-derived fixed ni-
trogen. The slightly elevatedδ15N value of 17-nor-DPEP can
be attributed to the partial and variable utilization of the ad-
vected nitrate during algal growth.

The source of new nitrogen entering the photosynthetic
system in the modern oligotrophic ocean is largely cyanobac-
terial N2-fixation, with a lesser contribution from nitrate flux
from the deep sea (e.g., Capone et al., 2005; Davis and
McGillicuddy, 2006). The nitrogen derived from N2-fixation
is accumulated and recycled in the surface water, resulting
in isotopically light nitrogen pools of particulate organic ni-
trogen (typically 0 to +2‰; Capone et al., 1997 and ref-
erences therein; Mino et al., 2003; Meador et al., 2007)
or reactive high-molecular-weight dissolved organic nitro-
gen (2.5‰; Meador et al., 2007). Furthermore, algal blooms
commonly co-exist with diazotrophic cyanobacteria such as
Trichodesmiumspp. andRichelia intracellularisin modern
oligotrophic surface water (e.g., Scharek et al., 1999; Foster
et al., 2007). These findings indicate that algal communities
that include chlorophyll-c-producing groups depend on the
bioavailable nitrogen (e.g., ammonium and nitrate) with low
δ15N values that is supplied into the system by diazotrophic
cyanobacteria (e.g., Venrick, 1974).

We further suggest that diatoms and associated symbiotic
cyanobacteria might have been responsible for the forma-
tion of the biogenic-silica-rich Onnagawa Formation. Sym-
bioses between cyanobacteria and various marine algae are
widespread in modern oligotrophic oceans, whereby N2-
fixation by symbionts benefits the host organism (Taylor,
1982; Martinez et al., 1983; Villareal, 1992; Buck and Ben-
tham, 1998; Scharek et al., 1999; Carpenter and Janson,
2000; Carpenter, 2002; Gomez et al., 2005). In partic-
ular, diatoms such asRhizosoleniaand Hemiaulus(which
host the endosymbiotic cyanobacteriaRichelia intracellu-
laris) form blooms in modern oligotrophic oceans, possi-
bly playing a major role in the nitrogen cycle in the surface
ocean (Carpenter et al., 1999; Foster et al., 2007; White et
al., 2007). For example, an extensive bloom of theHemi-
aulus/Richeliaassociation was observed off the northeast
coast of South America in the autumn of 1996, with an N2-
fixation rate as high as 3110µmol N m−2d−1 (Carpenter et
al., 1999). This rate is much higher than that of theTri-
chodesmiumbloom in the North Atlantic Ocean (239µmol
N m−2d−1; Capone et al., 2005). The averageδ15N value
of theHemiaulus/Richeliaassociation was –1.24‰, a typical
value for diazotrophic photoautotrophs. Furthermore, Pan-
cost et al. (1997) reported that diatoms experiencing such
a high growth rate employ active transport for the acquisi-
tion of inorganic carbon and exhibit exceptionally low de-
grees of carbon fractionation, resulting in elevatedδ13C val-
ues in their cells. Although diatom tissues were completely
recrystallized in the section analyzed in the present study, di-
atoms reported from other parts of the Onnagawa Formation
and its equivalent formations in adjacent areas includeRhi-
zosolenaandCoscinodiscus(Uemura and Sawamura, 1973;
Koizumi and Matoba, 1989), of which modern species are
known to contain symbiotic cyanobacteria in their cells (Vil-
lareal, 1992; Carpenter, 2002).

5 Conclusions

In the present study, the nitrogen and carbon isotopic com-
positions of DPEP (1a) provide evidence that new nitrogen
in the system of photoautotrophic primary production was
mainly supplied via biological N2-fixation by diazotrophic
cyanobacteria. Theδ15N value of DPEP (1a) indicates that
theδ15N value of the entire photoautotrophic community was
–2 to +1‰, which is close to or within the range ofδ15N val-
ues for organic matter produced by diazotrophs. Based on
theδ13C value of DPEP, we estimated the degree of isotopic
fractionation associated with carbon fixation by the photoau-
totrophic community to be 8 to 14%, indicating elevated rates
of β-carboxylation and/or active transport of the carbon sub-
strates, which is typical of cyanobacteria. Both the nitro-
gen and carbon isotopic compositions of DPEP are therefore
consistent with the proposal that diazotrophic cyanobacte-
ria made a substantial contribution to primary production.
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Fig. A1. Chemical Structures

This suggests in turn that the surface water of the middle
Miocene Onnagawa Basin received only a minor supply of
nitrate from deep water because of thermohaline stratifica-
tion.

The nitrogen isotopic composition of 17-nor-porphyrin
indicates that chlorophyll-c-producing algae, the presumed
sole source of this compound, thrived on the regenerated am-
monium and/or nitrate sourced from co-existing diazotrophic
cyanobacteria. Considering the great abundance of biogenic
silica in the Onnagawa Formation, diatoms probably consti-
tuted the majority of the chlorophyll-c-producing algae at the
time of deposition. Thus, we infer that the diatoms may have
hosted diazotrophic cyanobacteria (i.e.,Richelia intracellu-
laris), as commonly observed in modern oligotrophic oceans.

Our results also demonstrate that the isotopic signatures
of two other sedimentary porphyrins, cycloheptanoDPEP (2)
and 8-nor-DPEP (1d), provide information on specific bio-
geochemical/ecological processes that operated during depo-
sition of the sediments. The isotopic compositions of cyclo-
heptanoDPEP (2), the probable products of herbivorous graz-
ing of chlorophylls, are distinct from those of DPEP (1a),
despite their presumed common origin. This finding indi-
cates that cycloheptanoDPEP are likely to represent a spe-
cific population within the phototrophic community, possibly
selective grazing on specific photoautotrophs by herbivores.

In general, the occurrence of isotopic discrepancies between
two porphyrins with presumably identical precursors sug-
gests that the isotopic signatures of the sedimentary por-
phyrins might reflect pre-depositional (or syn-depositional?)
oceanic processes in addition to source information.

Although 8-nor-DPEP (1d) is potentially a unique
biomarker, it is currently difficult to further constrain its
origin (i.e.,Prochlorococcusvs. aerobic photoheterotrophic
bacteria) because the ecology and isotopic signatures of
these potential source organisms are poorly understood.
Prochlorococcusis a quantitatively important primary pro-
ducer that dwells in deeper parts of the photic zone in
the oligotrophic ocean (100–200 m; Campbell et al., 1994;
Partensky et al., 1999), being peculiar in that it is incapable
of growing on nitrate (Ting et al., 2002). Aerobic photo-
heterotrophic bacteria are potentially an important producer
in the upper open ocean (Kolber et al., 2001); however, their
ecology in the marine environment is poorly understood.
Thus, the isotopic compositions of both photoautotrophs are
expected to be unique in the natural environment.

The method employed in the present study made use of
the isotopic compositions of individual sedimentary por-
phyrins as proxies for the biogeochemistry and ecology of
the photoautotrophic community of the paleo-ocean (e.g.,
Kashiyama et al., 2008); however, interpretations of isotopic
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data for porphyrins are strongly dependent on our lim-
ited knowledge of the ecology and physiology of individ-
ual groups of photoautotrophs and their isotopic signatures
in natural environments. In fact, the compound-specific iso-
topic analysis of chloropigments from natural samples is an
emerging method in elucidating biogeochemical processes in
the modern aquatic environment (Sachs et al., 1999; Sachs
and Repeta, 1999; Chikaraishi et al., 2005a; Ohkouchi et al.,
2005; York et al., 2007). Such an approach has the potential
to both resolve modern processes related to photosynthetic
primary production and provide a basis for isotopic analyses
of porphyrins with the aim of resolving processes associated
with photosynthetic primary production in the paleo-ocean.

Acknowledgements.We thank S. Nomoto, H. Kawahata, K. Sug-
iura, E. Tajika, Y. Yokoyama, and Y. Chikaraishi for their valuable
advice, T. Koshikawa for kindly providing rock samples, and
H. Suga for technical support. We are deeply indebted to two
anonymous reviewers for their critical reviews and advice. This
study was financially supported by a Grant-in-Aid for Creative
Scientific Research (19GS0211), JOGMEC, and JSPS.

Edited by: J Bijma

References

Altabet, M. A., Pilskaln, C., Thunell, R., Pride, C., Sigman, D.,
Chavez, F., and Francois, R.: The nitrogen isotope biogeochem-
istry of sinking particles from the margin of the eastern North
Pacific, Deep Sea Res. Part I, 46, 655–679, 1999.

Aydin, N., Daher, S., and Gulacar, F.: On the sedimentary occur-
rence of chlorophyllone-a, Chemosphere, 52, 937–942, 2003.

Badger, M. R.: The CO2-concentrating mechanism in aquatic pho-
totrophs, in: The Biochemistry of Plants: A Comprehensive
Treatise, 10, Photosynthesis, Academic Press, New York, 219–
274, 1987.

Baker, E. W. and Louda, J. W.: Porphyrins in the geological record,
in: Biological Markers in Sediments, Meth. Geochem. Geophys.,
24, Elsevier, Amsterdam, 125–225, 1986.

Baker, E. W. and Palmer, S. E.: Geochemistry of porphyrins, in:
The Porphyrins, I, Academic Press, New York, 486–552, 1978.

Barford, C. C., Montoya, J. P., Altabet, M. A., and Mitchell, R.:
Steady-state nitrogen isotope effects of N2 and N2O production
in Paracoccus denitrificans, Appl. Environ. Microbiol., 65, 989–
994, 1999.

Beale, S. I.: Biosynthesis and structures of porphyrins and heme,
in: Anoxygenic Photosynthetic Bacteria, Kluwer Academic Pub-
lishers, Netherland, 153–177, 1995.

Bidigare, R. R., Fluegge, A., Freeman, K. H., Hanson, K. L., Hayes,
J. M., Hollander, D., Jasper, J. P., King, L. L., Laws, E. A.,
Milder, J., Millero, F. J., Pancost, R., Popp, B. N., Steinberg,
P. A., and Wakeham, S. G.: Consistent fractionation of13C in
nature and in the laboratory: Growth-rate effects in some hapto-
phyte algae, Global Biogeochem. Cycles, 11, 279–292, 1997.

Bidigare, R. R., Fluegge, A., Freeman, K. H., Hanson, K. L., Hayes,
J. M., Hollander, D., Jasper, J. P., King, L. L., Laws, E. A.,
Milder, J., Millero, F. J., Pancost, R., Popp, B. N., Steinberg,

P. A., and Wakeham, S. G.: Erratum: “Consistent fractionation
of 13C in nature and in the laboratory: Growth-rate effects in
some haptophyte algae”, Global Biogeochem. Cycles, 13, 251–
252, 1999.

Bidigare, R. R., Kennicutt II, M. C., and Keeney-Kennicutt, W. L.:
Isolation and purification of chlorophylls-a andb for the determi-
nation of stable carbon and nitrogen isotope compositions, Anal.
Chem., 63, 130–133, 1991.

Boczar, B. A. and Prezelin, B. B.: Chlorophyll-protein complexes
from the red-tide dinoflagellate, Gonyaulax polyedra stein, Plant
Physiol., 83, 805–812, 1987.

Boreham, C. J., Fookes, C. J. R., Popp, B. N., and Hayes, J. M.: Ori-
gins of etioporphyrins in sediments: evidence from stable carbon
isotopes, Geochim. Cosmochim. Acta, 53, 2451–2455, 1989.

Boreham, C. J., Fookes, C. J. R., Popp, B. N., and Hayes, J. M.: Ori-
gin of petroporphyrins, 2. Evidence from stable isotopes, Energy
Fuels, 4, 658–661, 1990.

Brandes, J. A., Devol, A. H., Yoshinari, T., Jayakumar, D. A., and
Naqvi, S. W. A.: Isotopic composition of nitrate in the cen-
tral Arabian Sea and eastern tropical North Pacific: a tracer for
mixing and nitrogen cycles, Limnol. Oceanogr., 43, 1680–1689,
1998.

Buck, K. and Bentham, W. N.: A novel symbiosis between a
cyanobacterium,Synechococcussp., an aplastidic protist,Soleni-
cola setigera, and a diatom,Leptocylindrus mediterraneus, in the
open ocean, Mar. Biol., 132, 349–355, 1998.

Buffan-Dubau, E., de Wit, R., and Castel, J.: Feeding selectivity of
the harpacticoid copepodCanuella perplexain benthic muddy
environments demonstrated by HPLC analyses of chlorin and
carotenoid pigments, Mar. Ecol. Prog. Ser., 137, 71–82, 1996.

Calder, J. A. and Parker, P. L.: Geochemical implications of induced
changes in C13 fractionation by blue-green algae, Geochim. Cos-
mochim. Acta, 37, 133–140, 1973.

Callot, H. J. and Ocampo, R.: Geochemistry of porphyrins, in: The
Porphyrin Handbook, 1, Synthetic and Organic Chemistry, Chap.
7, Academic Press, New York, 349–398, 2000.

Campbell, L., Nolla, H. A., and Vaulot, D.: The importance of
Prochlorococcusto community structure in the central North Pa-
cific Ocean, Limnol. Oceanogr., 39, 954–961, 1994.

Capone, D. G., Burns, J. A., Montoya, J. P., Subramaniam, A.,
Mahaffey, C., Gunderson, T., Michaels, A. F., and Carpen-
ter, E. J.: Nitrogen fixation byTrichodesmiumspp.: An im-
portant source of new nitrogen to the tropical and subtropical
North Atlantic Ocean, Global Biogeochem. Cycles, 19, GB2024,
doi:10.1029/2004GB002331, 2005.

Capone, D. G., Zehr, J., Paerl, H., Bergman, B., and Carpenter, E. J.:
Trichodesmium: A globally significant marine cyanobacterium,
Science, 276, 1221–1229, 1997.

Carpenter, E. J.: Marine cyanobacterial symbiosis, Biol. Environ.:
Proc. Royal Irish Acad., 102B, 15–18, 2002.
Carpenter, E. J., Harvey, H. R., Fry, B., and Capone, D.
G.: Biogeochemical tracers of the marine cyanobacteriumTri-
chodesmium, Deep-Sea Res. I, 44, 27–38, 1997.

Carpenter, E. J. and Janson, S.: Intracellular cyanobacterial
symbionts in the marine diatomClimacodium frauenfeldianum
Grunow, J. Phycol., 36, 540–544, 2000.

Carpenter, E. J., Montoya, J. P., Burns, J., Mulholland, M. R., Sub-
ramaniam, A., and Capone, D. G.: Extensive bloom of a N2-
fixing diatom/cyanobacterial association in the tropical Atlantic

www.biogeosciences.net/5/797/2008/ Biogeosciences, 5, 797–816, 2008



812 Y. Kashiyama: N and C isotopes of porphyrins

Ocean, Mar. Ecol. Prog. Ser., 185, 273–283, 1999.
Chamberlain, P. M., McNamara, N. P., Chaplow, J., Stott, A. W.,

and Black, H. I. J.: Translocation of surface litter carbon into
soil byCollembola, Soil Biol. Biochem., 38, 2655–2664, 2006.

Chicarelli, M. I., Hayes, J. M., Popp, B. N., Eckardt, C. B., and
Maxwell, J. R.: Carbon and nitrogen isotopic compositions of
alkyl porphyrins from the Triassic Serpiano oil shale, Geochim.
Cosmochim. Acta, 57, 1307–1311, 1993.

Chikaraishi, Y., Matsumoto, K., Ogawa, N. O., Suga, H., Kitazato,
H., and Ohkouchi, N.: Hydrogen, carbon and nitrogen iso-
topic fractionations during chlorophyll biosynthesis in C3 higher
plants, Phytochem., 66, 911–920, 2005a.

Chikaraishi, Y. and Naraoka, H.:δ13C and δD identification of
sources of lipid biomarkers in sediments of Lake Haruna (Japan),
Geochim. Cosmochim. Acta, 69, 3285–3297, 2005b.

Chillier, X. F. D., Gulacar, F. O., and Buchs, A.: A novel sedimen-
tary lacustrine chlorin: Characterization and geochemical signif-
icance, Chemosphere, 27, 2103–2110, 1993.

Chisholm, S. W., Olson, R. J., Zettler, E. R., Goericke, R., Wa-
terbury, J. B., and Welschmeyer, N. A.: A novel free-living
prochlorophyte occurs at high cell concentrations in the oceanic
euphotic zone, Nature, 334, 340–343, 1988.

Cifuentes, L. A., Fogel, M. L., Pennock, J. R., and Sharp, J. H.:
Biogeochemical factors that influence the stable nitrogen isotope
ratio of dissolved ammonium in the Delaware Estuary, Geochim.
Cosmochim. Acta, 53, 2713–2721, 1989.

Cline, J. D. and Kaplan, I. R.: Isotopic fractionation of dissolved
nitrate during denitrification in the eastern tropical North Pacific
Ocean, Mar. Chem., 3, 271–299, 1975.

Colman, B.: Photosynthetic carbon assimilation and the suppres-
sion of photorespiration in the cyanobacteria, Aquat. Bot., 34,
211–231, 1989.

Davis, C. S. and McGillicuddy, D. J. Jr.: Transatlantic abundance of
the N2-fixing colonial cyanobacteriumTrichodesmium, Science,
312, 1517–1520, 2006.

Delwiche, C. C. and Steyn, P. L.: Nitrogen isotope fractionation in
soils and microbial reactions, Environ. Sci. Technol., 4, 929–935,
1970.

Di Nello, R. K. and Dolphin, D.: Evidence for fast (major) and
slow (minor) pathway in the Schumm devinylation reaction of
vinylporphyrins, J. Org. Chem., 46, 3498–3505, 1981.

Eckardt, C. B., Keely, B. J., Waring, J. R., Chicarelli, M. I., and
Maxwell, J. R. Preservation of chlorophyll-derived pigments in
sedimentary organic matter, Phil. Trans., Loyal Soc. Lond. B,
333, 339–348, 1991.

Farquhar, G. D., Ball, M. C., Von Caemmerer, S., Roksandic, Z.:
Effect of salinity and humidity onδ13C value of halophytes - ev-
idence for diffusional isotope fractionation determined by the ra-
tio of intercellular/atmospheric partial pressure of CO2 under dif-
ferent environmental conditions, Oecologia, 52, 121–124, 1982a.

Farquhar, G. D., O’Leary, M. H., and Berry, J. A.: On the relation-
ship between carbon isotope discrimination and the intercellular
carbon dioxide concentration in leaves, Australian J. Plant Phys-
iol., 9, 121–137, 1982b.

Filer, C. N.: Isotopic fractionation of organic compounds in chro-
matography, J. Labelled Comp. Radiopharm., 42, 169–197,
1999.

Fookes, C. J. R.: Structure determination of nickel(II) deoxophyl-
loerythroetioporphyrin and a C30 homologue from an oil shale:

Evidence that petroporphyrins are derived from chlorophyll, J.
Chem. Soc., Chem. Comm., 1983, 1472–1473, 1983.

Foster, R. A., Subramaniam, A., Mahaffey, C., Carpenter, E. J.,
Capone, D. G., and Zehr, J. P.: Influence of the Amazon River
plume on distributions of free-living and symbiotic cyanobac-
teria in the western tropical north Atlantic Ocean, Limnol.
Oceanogr., 52, 517–532, 2007.

Freeman, K. H. and Hayes, J. M.: Fractionation of carbon isotopes
by phytoplankton and estimates of ancient CO2 levels, Global
Biogeochem. Cycles, 6, 185–198, 1992.

Gibbison, R., Peakman, T. M., and Maxwell, J. R.: Novel por-
phyrins as molecular fossils for anoxygenic photosynthesis.,
Tetrahedron Lett., 36, 9057–9060, 1995.

Goericke, R. and Fry, B.: Variations of marine planktonδ13C with
latitude, temperature, and dissolved CO2 in the world ocean,
Global Biogeochem. Cycles, 8, 85–90, 1994.

Goericke, R. and Repeta, D.: The pigments ofProchlorococcus
marinus: the presence of divinyl chlorophyll-a andb in a ma-
rine prokaryote, Limnol. Oceanogr., 37, 425–434, 1992.

Goericke, R., Strom, S. L., and Bell, M. A.: Distribution and
sources of cyclic pheophorbides in the environment, Limnol.
Oceanogr., 45, 200–211, 2000.
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