
Biogeosciences, 6, 1089–1102, 2009
www.biogeosciences.net/6/1089/2009/
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

Biogeosciences

Structure of the transport uncertainty in mesoscale inversions of
CO2 sources and sinks using ensemble model simulations

T. Lauvaux1,2, O. Pannekoucke2, C. Sarrat2, F. Chevallier1, P. Ciais1, J. Noilhan2, and P. J. Rayner1

1Laboratoire des Sciences du Climat et de l’Environnement/IPSL,CEA-CNRS-UVSQ, Gif-sur-Yvette, France
2Centre Nationale des recherches Mét́eorologiques, Toulouse, France

Received: 30 September 2008 – Published in Biogeosciences Discuss.: 9 December 2008
Revised: 26 March 2009 – Accepted: 2 June 2009 – Published: 19 June 2009

Abstract. We study the characteristics of a statistical ensem-
ble of mesoscale simulations in order to estimate the model
error in the simulation of CO2 concentrations. The ensem-
ble consists of ten members and the reference simulation us-
ing the operationnal short range forecast PEARP, perturbed
using the Singular Vector technique. We then used this en-
semble of simulations as the initial and boundary conditions
for the meso scale model (Ḿeso-NH) simulations, which
uses CO2 fluxes from the ISBA-A-gs land surface model.
The final ensemble represents the model dependence to the
boundary conditions, conserving the physical properties of
the dynamical schemes, but excluding the intrinsic error of
the model.

First, the variance of our ensemble is estimated over the
domain, with associated spatial and temporal correlations.
Second, we extract the signal from noisy horizontal correla-
tions, due to the limited size ensemble, using diffusion equa-
tion modelling. The computational cost of such ensemble
limits the number of members (simulations) especially when
running online the carbon flux and the atmospheric models.
In the theory, 50 to 100 members would be required to ex-
plore the overall sensitivity of the ensemble. The present
diffusion model allows us to extract a significant part of the
noisy error, and makes this study feasable with a limited
number of simulations. Finally, we compute the diagonal
and non-diagonal terms of the observation error covariance
matrix and introduced it into our CO2 flux matrix inversion
for 18 days of the 2005 intensive campaign CERES over the
South West of France. Variances are based on model-data
mismatch to ensure we treat model bias as well as ensem-
ble dispersion, whereas spatial and temporal covariances are
estimated with our method.

The horizontal structure of the ensemble variance mani-

Correspondence to:T. Lauvaux
(thomas.lauvaux@lsce.ipsl.fr)

fests the discontinuities of the mesoscale structures during
the day, but remains locally driven during the night. On the
vertical, surface layer variance shows large correlations with
the upper levels in the boundary layer (> 0.6), dropping to
0.4 with the lower levels of the free troposphere. Large tem-
poral correlations were found during the afternoon (> 0.5 for
several hours), reduced during the night. The diffusion equa-
tion model extracted relevant error covariance signals hori-
zontally, with reduced correlations over mountain areas and
during the night over the continent. The posterior error re-
duction on the inverted CO2 fluxes accounting for the model
error correlations illustrates the predominance of the tempo-
ral over the spatial correlations when using tower-based CO2
concentration observations.

1 Introduction

Atmospheric inversions are a widely-used tool for the quan-
tification of surface sources for CO2 (e.g.Gurney et al., 2002;
Rayner et al., 2008), for CH4 (Bousquet et al., 2006) and for
CO (Petron et al., 2002). The theory and applications are
described inEnting (2002). In the most common approach,
Bayesian Synthesis Inversion, one starts with a prior distri-
bution of surface fluxes. These are used as inputs to an atmo-
spheric transport model (possibly including chemical modi-
fication). The transport model simulates concentrations at a
set of observing locations. The fluxes are adjusted to opti-
mize consistency with both the observed concentrations and
a priori flux information. Under the usual assumption of mul-
tivariate normal probabilities, the required degree of consis-
tency is described by covariance functions for the prior fluxes
and the model-data mismatch.

The proper specification of these covariances is as impor-
tant as the prior and data values themselves. In the underly-
ing statistical formulation, the uncertainties normalise quan-
tities such as the model-data mismatch so their specification
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is vital for a correct solution. In theory, the prior flux er-
ror covariances can be estimated more directly than the ob-
servation error covariances, since the error flux covariances
should represent the statistics of the difference between the
true fluxes and our chosen flux prior. Nevertheless, its char-
acterization is limited by the number of flux observations for
each ecosystem in the domain. This requires some indepen-
dent knowledge of the truth which should, in turn, not be
used in our later inversion. SeeChevallier et al.(2006) for
an example of using eddy covariance flux measurements as
truth estimations.

This paper concerns the estimation of the model-data mis-
match covariance. In the full theory (seeTarantola, 2005,
ch.1.) there are separate covariances describing both the
model and measurement parts. The measurement covariance
describes the statistics of the difference between a measure-
ment and the true value. As with the prior this can often
be assessed with independent measurement and one has ac-
cess to a well-developed discipline of metrology. The model
uncertainty describes the statistics of the difference between
a simulation and the true value that would be observed if
the real atmosphere was forced with the same fluxes as the
model. We see immediately that this error is much harder to
characterize since there are few cases in which we know what
fluxes influenced the real atmosphere. In atmospheric trans-
port inversions the model contribution usually dominates the
measurement error (Gerbig et al., 2003; Stephens et al., 2007;
Law et al., 2008) and this model error is our focus here.

There are many contributions to the model error. Trans-
port models are mesh-based. Thus there is likely to be a mis-
match between a point measurement and the average value
over a model grid box. The importance of this depends on
the magnitude and structure of concentration variability in
the atmosphere and we can attempt to quantify it with high-
resolution models (e.g.Corbin and Denning, 2006; Corbin
et al., 2008) or with spatially dense measurements (e.g.Ger-
big et al., 2003). Such direct comparison using radiosonde’s
was performed at larger scale (Gerbig et al., 2008) but re-
quires a sufficiently large number of observations over the
domain. Finite resolution equally confounds accurate de-
scription of the input fluxes leading to so-called aggregation
error (Kaminski et al., 2001). Next the formulation of the
model can be incorrect. In the absence of further data to
demonstrate this we are forced to treat the statistics of an en-
semble of models as if they are the statistics of the difference
between the model and the truth. This is the assumption un-
derlying the series of Transcom studies (e.g.Gurney et al.,
2002; Baker et al., 2007; Law et al., 2008). This approach
can hide bias in the model ensemble and is commonly crit-
icized for understating model error althoughStephens et al.
(2007) noted that screening models against available inde-
pendent data can actually reduce the dispersion of the en-
semble.

Finally, even if the physical formulation of the model is
close to the truth, uncertainties in the analyses with which

it is constrained means that our transport fields are only one
realisation of an ensemble consistent with available meteo-
rological information. In the case of mesoscale modelling
using meteorological analyses, forecast error growth (e.g.
Lorenz, 1982) affecting the spread of the ensemble in addi-
tion to analysis uncertainties remains negligible. The impact
on atmospheric inversions of the dispersion of this ensem-
ble, and particularly the strong likelihood of correlations in
this dispersion has not been previously investigated. A direct
estimate of the ensemble statistics is fraught with difficulty
since a sufficiently large ensemble is prohibitively expen-
sive to compute. Instead, where available, we use a physical
model of error growth and propagation previously applied to
the numerical weather prediction problem (short range en-
semble prediction system PEARP1).

We apply our approach to an inversion of CO2 surface
fluxes in a limited domain although we stress in the discus-
sion that it is applicable to global problems. We calculate the
ensemble statistics of transport error on the domain of the
CarboEurope Regional Experiment Strategy (CERES) (Dol-
man et al., 2006; Lauvaux et al., 2008). At this scale we
can compare the ensemble behaviour with other measures
of the model-data mismatch such as the variability in mea-
sured concentrations (Gerbig et al., 2003). Also, mesoscale
inversions are heavily reliant on the ability of transport mod-
els to simulate details of concentration variations usually ig-
nored in global inversions. The improvement of atmospheric
models now allows the use of high frequency data on lim-
ited domains (Sarrat et al., 2007). Although model errors
should decrease with increasing spatial and temporal resolu-
tion, the complexity of dynamical processes at the mesoscale
are likely to produce a complex uncertainty structure. Dis-
continuities in the dynamical flow at higher resolution in-
duced by the surface properties also suggest complex struc-
tures of the model error.

In this study, we propose to assess the structure of the
model error by perturbing the synoptic conditions, that af-
fect the mesoscale dynamical structures, using an ensemble
of simulations at a larger scale. The ensemble presented in
this study remains physically consistent, thanks to the two-
step perturbation method that allows us to keep the original
dynamical schemes of the meso scale model, here Méso-NH
(Lafore et al., 1998). The sensitivity to the model parameters
that affect the vertical transport for example, and is of major
importance in the transport error, implies to use an ensemble
of transport models (changing a parameter is similar to a dif-
ferent model) that limits the interpretation of the ensemble
spread and the error structures. Here, we restricted ourselves
to the boundary influence which is surely affecting the model
we use in the inversion. Previous studies attempted to disturb
the model stability by perturbing directly the modelled wind
fields (Law et al., 2003), or by exploring the physical param-
eters of the model (Annan et al., 2005). It is impossible to tell
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whether a given perturbation of wind fields or parameters is
physically realisable while the perturbations we use are gen-
erated from an ensemble forecast system designed to explore
the plausible range of synoptic variations.

The outline of the paper is as follows: Starting from the
mesoscale ensemble of simulations, (i) we estimated the vari-
ance with its spatio-temporal correlations; (ii) we modelled
the horizontal correlations by using the diffusion equation
to filter the noise of our limited size ensemble; and (iii) we
tested the combined spatio-temporal observation covariance
matrix in our CO2 flux matrix inversion. We also discuss
the implications for network design, and optimal spatial and
temporal densities of measurements.

2 Models and diffusion equation filtering

The major task of this work is to estimate the spatial and
temporal correlations in the model-data mismatch using an
ensemble of regional CO2 simulations. In this section we
first describe the underlying physical models, the generation
of the ensemble and finally the calculation of the various cor-
relation terms, focusing on horizontal correlations. The role
of the resulting correlation matrix in the subsequent flux in-
versions is treated inLauvaux et al.(2008) and only briefly
reviewed here.

2.1 Models

The ensemble is based on the global spectral ARPEGE
model (Courtier et al., 1991) used with the nominal spec-
tral truncature T358 and a stretching coefficient of 2.4, cor-
responding roughly to 20 km resolution over France. On the
vertical axis, 41 levels describe the atmosphere from the sur-
face to 1 hPa. The model is coupled with a four dimensional
variationnal assimilation system (4DVAR) including classi-
cal meteorological observations and satellite data. The 11
ARPEGE simulations are run over 102 h, from 6 p.m. the 23
of May, to 12 p.m. the 27 of May 2005. In the Sect.3.3, we
discuss the temporal evolution of the error structures over the
102 h of simulation to verify that no significant increase (or
decrease) affected the error correlations. The same calcula-
tion was done on the correlation lengths in the Sect.3.4 to
confirm the absence of trends.

The non-hydrostatic atmospheric mesoscale model Méso-
NH (Lafore et al., 1998) was used to simulate the atmo-
spheric dynamics during the same period (23 to 27 of May
2005), over the limited domain of the CERES campaign,
a 300*300 km2 of South western France, (Dolman et al.,
2006) at 8 km resolution. 65 vertical levels describe the at-
mospheric column up to 13 km. The boundary conditions
from the ARPEGE ensemble simulations are coupled each
3 h to constrain the meso scale model, following the Som-
merfield equation for the normal wind velocity components
at the boundaries with a constant phase speed (relaxation

term) of 20 m s−1. The reference simulation and the ten dif-
ferent members run over 102 h, on the same period as the
ARPEGE simulations.

The land surface scheme ISBA-A-gs (Calvet et al., 1998)
was coupled on-line to the atmospheric model Méso-NH to
simulate the surface fluxes for water, heat, and CO2 (Sar-
rat et al., 2007, 2008). The land cover map describes the
vegetation cover at 250 m resolution from the ECOCLIMAP
database to calculate the biogenic CO2 surface fluxes. The
anthropogenic emissions are prescribed by the 10 km resolu-
tion inventory from the University of Stuttgart (IER), and the
air-sea fluxes byTakahashi et al.(1997). The three-week
simulation was run over the CERES domain of 61 points
east-west by 51 points north-south at 8 km resolution. The
interaction at each timestep between the atmospheric model
and the surface scheme implies that the surface energy fluxes
are slightly different in each member, amplifying the differ-
ences in boundary layer dynamics. Nevertheless the initial
ground water content remains identical for all the different
simulations limiting the surface flux differences for the dif-
ferent members.

The mesoscale inversion we used to estimate the impact
of the observation error structure requires the computation
of the adjoint transport. This tracer backward transport
was simulated here by the Lagrangian Particle Dispersion
Model (LPDM) described byUliasz (1994). Particles are
released from the receptors in a “backward in time” mode
with the wind fields generated by the eulerian model Méso-
NH. The dynamical fields in LPDM are forced by mean
winds (u,v, w), potential temperature, and turbulent kinetic
energy (TKE).

2.2 Generation of the ensemble

The perturbations represented here by singular vectors are
added to the large scale simulations with the global spectral
model ARPEGE (Courtier et al., 1991) over the whole pe-
riod and the resulting ARPEGE fields used as boundary con-
ditions for Méso-NH. The optimal perturbations are defined
by the maximisation of the following ratio

Ropt =

√
< PM∗Mx(t0), P x(t0) >

< x(t0), x(t0) >
(1)

with M the tangent-linear propagator,M∗ the propagator of
the adjoint model,<> the scalar product of the different en-
ergy terms,x(t0) the perturbation, andP the projection op-
erator to select the zones of interest. The solutions of the
maximisation are the singular vectors of the operator, which
consist of an orthonormal basis describing the most unsta-
ble directions of the initial state. The projection operator
used in our study is limited to the Eastern Atlantic Ocean
and Western Europe to extract the maximum growth rate of
the errors around the final nested domain (Western Europe).
In the actual ensemble prediction system, 16 singular vec-
tors are computed and added gradually during the first 48 h
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of simulation. The 16 singular vectors are combined linearly
to generate the 10 perturbed simulations.

Our approach to generating the ensemble maintains the
physical and thermodynamic consistency of the coupled
higher resolution model Ḿeso-NH. Even though the param-
eters of the numerical scheme play a certain role in the mis-
match between modeled and observed concentrations at fine
scale, the atmosphere shows relevant spatial patterns depend-
ing on the meso scale structures rather than the length-scales
of the perturbations. The perturbation approach has been
demonstrated for the ozone air quality models (Carvalho
et al., 2007). We modelled the spatial correlations on the
horizontal plane based on the local structure of the variance,
to filter at each grid point the noise and extract the significant
correlations. This method allows then anisotropic structures
on the plane.

2.3 Observation error covariance estimation by
diffusion equation modelling

We separately estimate the horizontal, vertical and temporal
components of the error correlation. In this section, we detail
the methodology ofPannekoucke and Massart(2008) applied
for the horizontal component only. The structural properties
of the ensemble variability are estimated by using a diffusion
operator based on a local diffusion tensor.

Our starting point is the 11 (1 reference and 10 perturba-
tions) CO2 fields from MésoNH at 1 h resolution. The esti-
mation of the correlation tensorC is computed in the model
space from the ensemble, then mapped to the observation
space by the operatorP , and weighted by the variances6,
estimated independently by data comparison, as follows:

R = 6PCP T 6T (2)

As the ensemble is of finite size, the estimation is affected
by sampling noise (Lorenc, 2003). Thus, the estimation of
the local observation error has to be done carefully by ex-
tracting the signal and filtering the noise. We do this by as-
suming some simple model of the spread of the differences
among ensemble members and estimating the parameters of
this model from the raw correlations calculated from the en-
semble.

This is done following the work ofPannekoucke and Mas-
sart(2008): the local correlation function is derived through
the estimation of the local anisotropy tensorν(x) under a
local Gaussian approximation, and then the correlation func-
tion is modelled around eachx with the formulation based
on the diffusion equation (Weaver and Courtier, 2001). In
that framework, the anisotropy tensor is no more than the lo-
cal diffusion tensor. The idea of such an error model derives
from the particular solution of the homogeneous diffusion
equation: if the local diffusion tensorν(x) is constant over
the domain (which is assumed to be the plane), then the so-
lution of the diffusion equation

∂tη = ∇ · (ν∇η), (3)

with initial stateη(x, t = 0) = δx′(x) whereδ, the Dirac
distribution, is

η(x, t) =
1

2π |0|1/2
exp

(
−

1

2
(x − x′)T 0−1(x − x′)

)
, (4)

with x′ the surrounding points ofx, and with

0 = 2tν, (5)

and |0| is the determinant of0. The inverse of0 can be
written as

0−1
=

( 1
L2

x

1
Lxy

1
Lxy

1
L2

y

)
. (6)

The scalesLx and Ly correspond to the one-dimensional
differential length-scale along the directionx andy (Daley,
1991; Pannekoucke et al., 2008).

This particular heat kernel Eq. (4) can be seen as a Gaus-
sian correlation function on the plane (except for the normal-
ization term). Thus, it is possible to construct quasi-Gaussian
correlation functions as the result of time integration of the
diffusion equation. In the more general case, the local dif-
fusion tensorν(x) is non constant, and it can be approxi-
mated locally, under some local homogeneous assumption.
This approximation is based on the estimation of the local
matrix0−1(x) from the estimation of the local length-scales
Lx(x), Ly(x) and 1/Lxy(x). From our ensemble of simula-
tions, we estimate the length-scalesLx(x) andLy(x) at each
pixel based on the gaussian approximation of the correlations
for each surrounding pixel on the two axisx andy, and the
terms 1/Lxy(x) of the local tensor with a Gaussian function,
averaged on the four diagonal directions. Then the local dif-
fusion tensorν(x) is computed from Eq. (5) as half the local
tensor0 (for the particular time integrationt = 1).

Correlation matrix modelling constructed with the diffu-
sion equation results from the product of operatorC̃ =

L1/2W−1L1/2, where L1/2 is the propagator that corre-
sponds to the time integration of Eq. (3) from time t=0 to
time t=1/2, andW−1 is a metric tensor.

The diagnosis of the correlation is then achieved through
a randomization method (Weaver and Courtier, 2001; Fisher
and Courtier, 1995): Ns independent realizations(ζk)k∈[1,Ns]

of Gaussian vectorsζ with zero mean and the idendity as a
covariance matrix are diffused from time t=0 to time t=1/2,
using the heterogeneous diffusion equation with the local dif-
fusion tensor. The result of this time integration is an ensem-
ble of error vectorsεk = L1/2W−1/2ζk so that the covariance
matrix of this ensemble is̃C = (εεT ).

The assumed Gaussian correlation functions imply that the
estimated correlations are positive. However, with the dy-
namics and the sampling noise, negative correlations can oc-
cur. In such a case, the points associated with negative cor-
relations are not taken into account. Negative correlations
affect less than 10% of the estimated correlations. They oc-
cur depending on the size of the ensemble, which suggests
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that they are mainly associated with sampling noise. How-
ever, some negative correlations could be attributed to the
dynamics. The original domain was duplicated two times,
equivalent to four symetric domains, to avoid boundary is-
sues.

Note that the covariance tensorC̃ modelled with the dif-
fusion equation has to be normalized in order to obtain a
correlation tensorC=3C̃3T , where3 is the diagonal ma-
trix of inverse standard deviations of̃C. This is a reap-
pearance of the normalization term 2π |0|

1/2 that occurs in
Eq. (4). In the heterogeneous case, the normalization is not
constant but it can be either estimated through the random-
ization method, or it can be approximated by the local nor-
malization as32(x) = 2π |0(x)|1/2 (when this estimation is
accurate enough). Finally, the above development generates
the horizontal correlation for all points in the domain. We
need simply to choose points corresponding to the locations
of measurements to generate the observation correlation ma-
trix we need.

2.4 Vertical and temporal correlations

Unfortunately, there is no theory for vertical and temporal
error correlations as well developed as that used in the pre-
vious section for horizontal correlation. We therefore calcu-
late vertical and temporal correlations directly using the 11
ensemble members at our disposal. These correlations are
hence more subject to sampling noise than the horizontal.

2.5 Pseudo-flux inversion and spatial error correlations

The models used in this study and the inversion framework
that illustrates the impact of the filtered correlation lengths
are described inLauvaux et al.(2008). Empirical analysis
will be based on the error reductionErr that depends only
on the observation and the prior flux uncertainties, but not on
the prior CO2 flux nor concentration data:

Err = 1 −
σA

σB

(7)

with σ the error associated withB the background error co-
variance matrix, and toA the posterior flux error covariance
matrix estimated by the following equation:

A−1
= B−1

+ HT R−1H (8)

with H the jacobian of the transport matrix, andR the obser-
vation error covariance matrix. The error reduction presented
here corresponds to the optimization of the 6-day flux aver-
ages over 18 days for nighttime and daytime. Due to the lim-
ited number of observations (two towers observing hourly
CO2 concentrations, ie 2∗ 144 observations) and the large
number of unknowns (2∗ 61∗ 51), the 6-day average inver-
sion ameliorates the problem of under-constraint but implies
complete temporal correlation of the fluxes over the period,
consistent with the study ofChevallier et al.(2006).

The covariance matrix of model-data mismatchR com-
bines spatial and temporal correlations that we extract sepa-
rately from the ensemble simulations. The spatial correlation
between the two tower locations is computed after the dif-
fusion modelling step described in the Sect.2.3, using 400
independent realizations.

2.6 Combining temporal and spatial correlations

We calculate temporal correlations from the first three days
of the simulation period, averaged over the continental part
of the domain. At each hour h, the temporal correlation is
estimated with each following hourt + n with 1 < n < 24.
For each hour, results are averaged for the three possible days
to produce an average diurnal cycle.

The correlation matrices,Ct for the temporal component
andCs for the spatial component, are combined intoC′ the
correlation matrix in the observation space via:

C′
= (C

1/2
t C

1/2
s )(C

1/2
t C

1/2
s )T (9)

This implies similar weights for the two components, which
seems reasonable without extra information. The finalR ob-
servation error covariance matrix is then constructed as de-
fined in the Eq. (2) by R = 6C′6T with 6 the diagonal
matrix of standard deviations estimated from the model-data
mismatch.

3 Results

In this section we first study the structure and magnitude of
the covariances derived from our ensemble. Then we inves-
tigate the effect of these, separately and in combination, on
an inversion.

3.1 Atmospheric CO2 variability over the domain

Considering the 11 simulations at the two measurement lo-
cations of the 2005 CERES campaign (Biscarosse and Mar-
mande towers), we estimated the variability of the different
members compared to the observed CO2 concentrations. In
Fig. 1b, at the Marmande site, the ensemble spread shows a
large diurnal cycle corresponding to different stability condi-
tions during the nights between the different members of the
ensemble, and similar modelled CO2 concentrations due to
well-developed convective boundary layers during the day.
Maximum values of CO2 during the night correspond to
larger spread of the ensemble, but the largest modeled con-
centrations are smaller than the observed peaks.

At the Biscarosse location (Fig.1a), the first two days
show little spread in diurnal variability, but the last two
days correspond to a large range of simulated concentrations,
without any diurnal cycle. Figure2a shows the spatial pattern
of the larger CO2 variability region including the location
of the Biscarosse tower. This well-defined structure mirrors
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(a) (b)

Fig. 1. Simulated CO2 (dotted lines) from the 11 simulations over the four days at Biscarosse (a) and Marmande (b) towers, compared to
the observed concentration (solid lines)

(a) (b)

Fig. 2. CO2 variability (standard deviation of the ensemble, in ppm) over the domain during the afternoon of the 26th of May 2005 (a) and
during the night between the 26th to the 27th of May (b) (Marmande: diamond, Biscarosse: triangle)

3.5 Impact of the modelled covariances on the inversion

After the diffusion modelling of the length-scales and the es-
timation of the temporal correlations, we construct the error
covariance matrix R in two steps. The spatial component
called CS (chap. 2.5) is a tri-diagonal matrix formed by ones
on the diagonal (full auto-correlation) and the two correlation
coefficients for nighttime and daytime periods. These coef-
ficients appear on two diagonals corresponding to the corre-
lation between Biscarosse (index i) and Marmande (i + n)
for each time step. The temporal component called CT cor-

relates one observation with the following ones. The tem-
poral correlations are averaged over the four days for each
hour, resulting in 24 correlation functions. Depending on the
reference hour, the function correlates the next five to ten
following hours, always decreasing from 1 to 0. No neg-
ative correlation is taken into account, and the correlation
functions are strictly decreasing. We estimated the variances
independently to the covariances, by comparison of the ref-
erence simulation to the aircraft and tower data, giving about
5ppm during the day, up to 50ppm for the Marmande tower
during the night. The standard diagonal matrix (i.e. no cor-
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Fig. 2. CO2 variability (standard deviation of the ensemble, in ppm) over the domain during the afternoon of the 26 of May 2005(a) and
during the night between the 26 to the 27 of May(b) (Marmande: diamond, Biscarosse: triangle)

the location of the sea breeze which occurs during the after-
noons of the campaign along the Atlantic coast and over the
ocean. The Biscarosse tower is located close to the front of
the breeze, influenced by air masses coming from the ocean
or from the continent depending on the ensemble member.

During the day, the spatial structure of CO2 variance is in-
duced by meso scale processes like the changing of the direc-
tion of the “Autan wind” over the Mediterranean sea. During
the night (Fig.2b), the CO2 spatial patterns reflect the topog-
raphy of the river valleys or mountain ranges in addition to
the local flux variability. The nighttime standard deviations
are larger compared to the daytime, up to 20 ppm over the
continent (9 ppm during the day).

3.2 Vertical structure of the error covariances

For each level we computed the ensemble variability and the
correlation with the lowest level. Both show clear diurnal
patterns (Fig.3). During daytime, the ensemble standard de-
viation of CO2 decreases linearly up to 1500 m from 2 ppm
to 1 ppm, then remains constant until 3000 m, and decreases
again in the mid troposphere. The associated correlation co-
efficients show a similar vertical profile, decreasing linearly
up to 1000 m from 1 to 0.5–0.6, then constant until 3000 m
about 0.5, and finally decrease to insignificant values in the
upper troposphere. At night, the vertical profile of the stan-
dard deviation shows a different shape, decreasing rapidly
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Fig. 3. Vertical CO2 variances (left side) and associated vertical cor-
relations (right side) over the domain during nighttime (solid line)
and daytime (dashed line)

in the first 500 m from 5 ppm to 1.5 ppm. Between 1000 m
to 3000 m, the profile is constant around 1 ppm, and then
decreases in the mid troposphere. Contrary to the daytime
profiles, the vertical correlations decrease from 1 to 0.6 in
less than 200 m, and remain constant (0.4–0.5) up to 3000 m.
Compared to the nighttime standard deviation, the shape of
the correlation profile suggests some residual variability in
the lower troposphere from the daytime, but the surface layer
is mostly influenced by the CO2 surface flux variability and
not by the lower troposphere, which is more correlated dur-
ing daytime. The implication of such correlations for future
inversions will be discussed in Sect.4.

3.3 Temporal error correlations

We estimated the temporal evolution of the error structures
during the 102h of simulation to avoid any trend due to the
perturbation method. During the four days of simulation,
temporal correlations for each day were similar in spite of
ponctual differences due to specific daily conditions. Then
we estimated the spatially averaged temporal correlation with
the next 24 h over the whole domain. Figure4 illustrates the
temporal correlations between different reference hours with
the next 24 h, starting from midday to 9 p.m. in Fig.4a, and
from midnight to 9 a.m. in Fig.4b. The two figures show
basically similar 24-h variations, with negative correlation
values between the day and the night. The case starting at
midday (Fig.4a) shows non-significant correlation with the
rest of the afternoon (about 0.2) whereas the later starting
cases show correlation values greater than 0.5. For correla-
tions with the next day, the strongest correlation reached 0.4,
for the 9 p.m. starting case. The nighttime cases (Fig.4b)
decrease to negative values faster, in less than five hours for
midnight and 1 a.m. starting cases. The nocturnal stability
is reached later, from 4 a.m. to 9 a.m. cases showing larger

values during the first hours (more than 0.4). As with the day-
time cases, the next night shows small values of correlations
(maximum 0.4). Even though nighttime error structures are
inferred by more static parameters (orography, surface prop-
erties), the sensitivity to perturbations is much larger and im-
plies noticeable differences from night-to-night induced by
small variations of the conditions.

3.4 Estimation of the correlation lengths over the
domain

The diurnal variability of the ensemble variance gives rise
to two separate sub-ensembles corresponding to the diur-
nal length-scales (from midday to 9 p.m.), and the noctur-
nal length-scales (from 10 p.m. to 7 a.m.). As for the tem-
poral correlations, we compared the estimated correlation
lengths for each day and verified that no trend affected the
error structures, showing the independence of the structures
to the perturbations. We then modelled the spatial length-
scales of the two sub-ensembles using the diffusion equa-
tion described in Sect.2.3. The raw diurnal length-scales
(Fig. 5a) show high values over the Mediterranean sea and
the Atlantic ocean, up to 150 km, but no clear signature over
the continent. After the diffusion modelling (Fig.5b), the
low length scale values map the mountain areas (Pyrenees,
and Massif Central) more clearly. Higher values over the sea
and the ocean remain but low values along the sea shores
were filtered. In the Golfe du Lyon (between the Eastern
Pyrenees to the Rhone river Estuary), the length-scales orig-
inally about 50 km decrease to 30 km. On the average, the
highest values over the continent are smaller after the dif-
fusion modelling, decreasing from 80 km to 60 km. For the
nocturnal length-scales, averaged initial values are smaller
than nocturnal values (Fig.5c), about 20 to 30 km over the
continent, whereas oceanic length-scales are similar to diur-
nal values (Fig.5d). We notice similar effects concerning
mountain areas with lower values after diffusion modelling
(Pyrenees). The noise over the continent is reduced after the
diffusion modelling, between 0 to 10 km. On the contrary, to
the North of Bordeaux, length-scales are higher than initially.
We compute the correlation coefficients between Marmande
and Biscarosse towers during the day and the night. The di-
urnal correlation is about 0.14 and the nocturnal correlation
0.05, corresponding to the length-scales of 40 to 50 km dur-
ing the day, and 20 to 30 km during the night in Fig.5.

3.5 Impact of the modelled covariances on the inversion

After the diffusion modelling of the length-scales and the es-
timation of the temporal correlations, we construct the er-
ror covariance matrixR in two steps. The spatial compo-
nent calledCS (Sect.2.5) is a tri-diagonal matrix formed
by ones on the diagonal (full auto-correlation) and the two
correlation coefficients for nighttime and daytime periods.
These coefficients appear on two diagonals corresponding to
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(a) (b)

Fig. 4. Temporal correlation (averaged over the whole domain and the first 3 days of the simulation) between midday to 9pm with the next 24
hours (a) and between midnight to 9am with the next 24 hours (b). Starting hours are indicated on the different lines, describing the temporal
correlation averages of the first three days for each of the 24 different hours.

simulations, the operational ensemble forecast perturbs the
critical regions controlling the synoptic conditions. The un-
der estimation of the variance remains but the covariances
are well-structured as shown in figure 5 after diffusion mod-
elling.

The error correlation length-scale used in the paper does
not correspond to the classical definition used in trace gas
inversions, i.e. the distance at which the correlation reaches
1/e. Here we use the differential length-scale (Daley , 1991,
p110), related to the curvature of the correlation function at
the origin. The estimation of this length-scale is simple in
the isotropic case as it is related to the power spectrum of
the auto-correlation (with the help of the Wiener-Kintchine
theorem). Directional approximations of this length-scale,
with emphasis on there sampling distributions, exist (Pan-
nekoucke et al., 2008). The estimation is slightly biased with
an over-estimation of the truth (Pannekoucke et al., 2008).
The sampling distribution has an heavy tail with a positive
skewness. It results that, in average, the sampling noise leads
to an estimation larger than the truth (see e.g. Pannekoucke
et al. (2008), Fig. 7). That is, the smooth of the raw length-
scales modeled with the diffusion operator appeared as ben-
eficial revealing clearly the initial true correlation structures
(Pannekoucke and Massart, 2008).

Two sub-ensembles were derived from the temporal corre-
lations, corresponding roughly to nocturnal and diurnal peri-
ods (each of them limited to a few hours). The length-scales
(Lx and Ly) of the correlations are then associated with el-
liptic functions on the horizontal plane. The ellipse is de-
fined by its longer axis denoted L, the smaller axis denoted l,
with the anisotropy 1− l

L , and the angle of the anisotropy θ.
As the ensemble variations are flow dependent, preferential

directions of anisotropy are expected over the domain. For
example, diurnal circulation dominated by advection or lo-
cal thermal gradients constrains the orientation of the largest
correlations.

We have calculated the correlations using the whole pe-
riod. This represents a trade-off. We need a correlation
model which is stable and represents the internal dynamics
of the model (suggesting longer periods of integration) but on
the other hand the correlation structure really should depend
on flow regime. Our approach averages over several regimes
and hence averages several directions of anisotropy (fig. 8
(a)), and makes the magnitude of anisotropy spatially homo-
geneous (fig. 8 (b) ). When comparing the length-scales Ly

(North-South) at the tower locations, the values are smaller
(less than 30km during the day), which corresponds to an
East-West orientation of the anisotropy. In this region, the
Atlantic ocean forces the error structure at Biscarosse, and
the Garonne river valley does likewise at Marmande.

The above results have a range of impacts on current and
future inversions. Recall that the errors we assign to an obser-
vation in an inversion are implicitly dependent on our ability
to model that observation. We have shown that a part of such
model errors shows a complex structure of correlations. In
general, the existence of positive correlations in the model-
data mismatch reduces the amount of information available
from those observations (Section 3.5). This is not universal
however. A correlation in the model-data mismatch implies a
set of preferred directions for this mismatch. Mismatches in
that direction will be deweighted (reducing available infor-
maion) however those in orthogonal directions will be high-
lighted. This explains the mixed patterns in Fig. 8 (b).

The spatial correlation lengths we obtained do not suggest
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Fig. 4. Temporal correlation (averaged over the whole domain and the first 3 days of the simulation) between midday to 9 p.m. with the next
24 h (a) and between midnight to 9 a.m. with the next 24 h(b). Starting hours are indicated on the different lines, describing the temporal
correlation averages of the first three days for each of the 24 different hours.

the correlation between Biscarosse (indexi) and Marmande
(i+n) for each time step. The temporal component calledCT

correlates one observation with the following ones. The tem-
poral correlations are averaged over the four days for each
hour, resulting in 24 correlation functions. Depending on the
reference hour, the function correlates the next five to ten
following hours, always decreasing from 1 to 0. No neg-
ative correlation is taken into account, and the correlation
functions are strictly decreasing. We estimated the variances
independently to the covariances, by comparison of the ref-
erence simulation to the aircraft and tower data, giving about
5 ppm during the day, up to 50 ppm for the Marmande tower
during the night. The standard diagonal matrix (i.e. no cor-
relation) is compared to the “spatial only” and the “tempo-
ral only” correlation cases. The complete correlation (spatial
and temporal) is finally applied to the three inversion seg-
ments. On the first period, the three different matrices are
applied, and compared to the diagonal matrix case. Figure6
shows the error reduction for daytime fluxes in the period
(from 24 May to 30 May) (Fig.6a) compared to the three
different correlation cases (Fig.6b, c, and d). The “spatial
only” set-up weakens the error reduction from 0% to 10%,
from the original value of the error reduction (Fig.6b). For
the “temporal only” set-up (Fig.6c), we observe the decrease
of the error reduction around Marmande tower, but also in-
creases and decreases over the rest of the domain. We dis-
cuss in Sect.4 the origin of the positive and negative im-
pacts. Finally, the impact of the full spatio-temporal covari-
ance matrix is shown on Fig.6d, highly similar to the “tem-
poral only” case. This similarity is explained by the larger
temporal correlations (up to 0.9) compared to the spatial cor-
relations (0.05 to 0.15).

The combined correlation matrix is then used for the two
other periods. Figure7 shows the error reduction for the two
periods (from 30 May to 5 June, and 5 to 10 June). We see
that the third period shows a different surface response com-
pared to the two first periods, dominated by northern winds.
We suppose here that spatial correlations established over the
first four day period are the same for the three periods (18
days in total), even though atmospheric dynamics changes.
This assumption has limited impact considering the small
spatial correlations compared to the temporal component.
The two periods show the increase of the error reduction over
the Atlantic Ocean, corresponding to the sea breeze circula-
tion of the afternoons and the northern coastal winds. On
the contrary, local influence around the towers shows smaller
error reductions for the two later periods.

4 Discussion

It is likely that our estimates of by the model variability of
the ensemble are too low. Our perturbations were limited to
the boundary conditions for Ḿeso-NH. Our realisations used
the same internal dynamical schemes. Larger variability is
expected if we explored the full space of input parameters
and formulations. The existing biases peculiar to our meso
scale model affect the whole ensemble of simulations. Sys-
tematic errors in the models affecting the nighttime build-up
for example are due to different problems. First, the vertical
resolution should be the first limitation to investigate. Sec-
ond, nocturnal boundary layer conditions usually neutral are
not well parameterized. An ensemble of simulations consid-
ering this issue could study its sensitivity. Finally, the surface
conditions are also affecting the energy budget that drives the
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Raw ensemble Diffusion model

Day
(a) (b)

Night
(c) (d)

Fig. 5. Spatial length-scales (in km) over the domain during the day and night, computed from the raw ensemble (a and c respectively)) and
modelled using the diffusion equation (b and d respectively) .

a large impact on most current observing networks since it
is rare to have observations spaced less than 100km apart.
An immediate exception is measurements from aircraft. It
appears that, even if the transport model we use for the inver-
sion allows sampling at the resolution of a few km, spatial
error correlation may reduce the effective sampling density.
We cannot know the true import of this until we calculate the
impact of horizontal correlations for various observational
densities.

A less immediate but stronger consequence is the inver-
sion of data retrieved from upcoming satellite missions (e.g.
Crisp et al., 2004; Hamazaki et al., 2004). The spatial den-
sity of these measurements is likely to impinge on the corre-
lation lengh-scales of model error. Again, we need to under-
stand how the ensemble variability projects into the column-
integral that will be measured by these instruments.

Considering tall tower based measurements with sev-
eral levels, the vertical covariances we described here (see

sec. 3.2) show significant correlation between the first model
level with the higher levels, up to 0.5 during the day and
about 0.4 during the night. The use of several observation
levels implies then model covariances that reduce the inde-
pendence of the data, and so the constraint on the fluxes,
but which we need to defined properly to avoid unrealistic
corrections. Incorrect representation of the boundary layer
height, for example, could lead to opposite increments be-
tween two levels. The same arguments hold for airborne pro-
file data (Lauvaux et al., 2008).

For the limited observing network used here, temporal er-
ror correlations dominate spatial correlations. With the trend
towards increasing numbers of continuous measurement sites
this will remain the case for the surface network. It is already
clear that models at coarse resolution perform poorly when
simulating high-frequency observations over continents (e.g.
Geels et al., 2007; Law et al., 2008). High resolution models
(e.g. Lauvaux et al., 2008; Law et al., 2008) perform better.
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Fig. 5. Spatial length-scales (in km) over the domain during the day and night, computed from the raw ensemble (a andc, respectively) and
modelled using the diffusion equation (b andd, respectively).

dynamics, especially in our case where the surface model is
coupled online to the atmospheric model. The ground water
content and vegetation description errors induce an impor-
tant part of the nocturnal transport error. Two main difficul-
ties remain to explore these error contributors. First of all,
perturbing the internal parameters means exploring different
transport models. Generating such an ensemble, while main-
taining the physical realism of the simulation, is a difficult
task indeed. Second, modelled CO2 concentrations are af-
fected by flux model errors. Variance is under-estimated in
this context. However our chief aim in the ensemble mod-
elling is the correlation structure and this seems more ro-
bust than the modelled variances. As an illustration, after 18
hours of simulation, the length-scales are about 50 km and re-
main constant during the next three afternoons. At the same
time, the initial perturbations included in the boundary con-
ditions are growing throughout the first 48 h. The identified
length-scales are oriented differently depending on the me-
teorological situation but the norm of the error is constant in
time. Additionally to these aspects, we defined the prior er-

ror covariance matrix as uncorrelated and homogeneous over
the domain, that is an over simplification of the truth, but
would perturb the interpretation of the results if more re-
alistic. Forthcoming inverse systems using CO2 concentra-
tions (not pseudo-data experiment) have to include the error
flux correlations that could, for example, limit the impact of
transport error correlations over the oceans (oceanic flux un-
certainty is reduced compared to land fluxes).

The limited size of the ensemble could also act as a reduc-
tion of the true variance. The study ofTalagrand et al.(1997)
showed the linear decrease of the Brier Skill Score due to
the finite size of the ensemble. Considering the correlation
space, the number of singular vectors determines the estima-
tion of the sensitivity. In our study, the 16 singular vectors se-
lected over Western Europe are designed for short range fore-
casts over France. Even though we used a limited number of
simulations, the operational ensemble forecast perturbs the
critical regions controlling the synoptic conditions. The un-
der estimation of the variance remains but the covariances are
well-structured as shown in Fig.5 after diffusion modelling.
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(a) (b)

(c) (d)

Fig. 6. Error reduction (in %) for the first 6-day inversion period (24 May to 30 May) using the uncorrelated covariance matrix (a) and the
difference with the ’spatial only’ (b), ’temporal only’ (c), and combined (d) cases

Even here, however, it appears that in such models errors are
highly correlated in time.

Finally the totality of these results has serious implica-
tions for quantitative network design such as that described
by Kaminski and Rayner (2008). The model-data mismatch
covariance matrix is a key input into such studies (see, e.g.
Gloor et al., 2000). Our results suggest a minimum separa-
tion of surface measurements of about 50km before correla-
tions reduce the marginal benefit of new observations. This
is neither a function of model resolution nor of the footprint
of measurements but of limitations in the simulation of trans-
port.

This work hints at a promising partnership between studies
in Numerical Weather Prediction and in atmospheric inver-
sion. In general the characterisation of model error in NWP
is much more advanced than in the field of inversions. It
would be interesting to see how these errors appear at larger
scales, both in space and time. We also need, as already

noted, analogous developments for vertical and temporal cor-
relations.

5 Conclusions

We have used an an ensemble prediction system coupled to
a mesoscale transport model to estimate spatial and temporal
correlations in the model-data mismatch for CO2 inversions.
Horizontal correlation lengths are of order 50km. There are
strong vertical correlations in the boundary layer, particularly
during the day. Temporal correlations are stronger than spa-
tial and can last for most of a day. Taking account of these
correlations reduces the effective information content of the
mesoscale observations we use. The correlations also imply
limits on the useful density of future observations.

Acknowledgements. Thanks to Jean Nicolau for the Arpege
simulations using the PEARP operationnal system of Météo
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Fig. 6. Error reduction (in %) for the first 6-day inversion period (24 May to 30 May) using the uncorrelated covariance matrix(a) and the
difference with the “spatial only”(b), “temporal only”(c), and combined(d) cases

The error correlation length-scale used in the paper does
not correspond to the classical definition used in trace gas
inversions, i.e. the distance at which the correlation reaches
1/e. Here we use the differential length-scale (Daley, 1991,
p110), related to the curvature of the correlation function at
the origin. The estimation of this length-scale is simple in
the isotropic case as it is related to the power spectrum of
the auto-correlation (with the help of the Wiener-Kintchine
theorem). Directional approximations of this length-scale,
with emphasis on there sampling distributions, exist (Pan-
nekoucke et al., 2008). The estimation is slightly biased with
an over-estimation of the truth (Pannekoucke et al., 2008).
The sampling distribution has an heavy tail with a positive
skewness. It results that, in average, the sampling noise leads
to an estimation larger than the truth (see e.g.Pannekoucke
et al.(2008), Fig. 7). That is, the smooth of the raw length-
scales modeled with the diffusion operator appeared as ben-
eficial revealing clearly the initial true correlation structures
(Pannekoucke and Massart, 2008).

Two sub-ensembles were derived from the temporal corre-
lations, corresponding roughly to nocturnal and diurnal peri-
ods (each of them limited to a few hours). The length-scales
(Lx andLy) of the correlations are then associated with el-

liptic functions on the horizontal plane. The ellipse is de-
fined by its longer axis denotedL, the smaller axis denotedl,
with the anisotropy 1− l

L
, and the angle of the anisotropyθ .

As the ensemble variations are flow dependent, preferential
directions of anisotropy are expected over the domain. For
example, diurnal circulation dominated by advection or lo-
cal thermal gradients constrains the orientation of the largest
correlations.

We have calculated the correlations using the whole pe-
riod. This represents a trade-off. We need a correlation
model which is stable and represents the internal dynamics
of the model (suggesting longer periods of integration) but on
the other hand the correlation structure really should depend
on flow regime. Our approach averages over several regimes
and hence averages several directions of anisotropy (Fig.8a),
and makes the magnitude of anisotropy spatially homoge-
neous (Fig.8b). When comparing the length-scalesLy

(North-South) at the tower locations, the values are smaller
(less than 30 km during the day), which corresponds to an
East-West orientation of the anisotropy. In this region, the
Atlantic ocean forces the error structure at Biscarosse, and
the Garonne river valley does likewise at Marmande.

The above results have a range of impacts on current and
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(a) (b)

(c) (d)

Fig. 7. Error reduction (in %) for the periods (30 May to 5 June, and 5 June to 10 June) using the uncorrelated covariance matrix (a) and (c),
and their differences compared to the fully correlated matrix (b) and (d)
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study was co-funded by the European Commission under projects
FP6 CarboEurope and FP7 COCOS.

References

Annan, J. D., Lunt, D. J., Hargreaves, J. C., and Valdes, P. J.: Pa-
rameter estimation in an atmospheric GCM using the Ensemble
Kalman Filter, Nonlinear Processes in Geophysics, 12 (3), 363-
371, 2005.

Baker, D. F., Law, R. M., Gurney, K. R., Rayner, P., Peylin,
P., Denning, A. S., Bousquet, P., Bruhwiler, L., Chen, Y.-
H., Ciais, P., Fung, I. Y., Heimann, M., John, J., Maki, T.,
Maksyutov, S., Masarie, K., Prather, M., Pak, B., Taguchi, S.,
and Zhu, Z.: TransCom 3 inversion intercomparison: Impact

of transport model errors on the interannual variability of re-
gional CO2 fluxes, 1988-2003, Global Biogeochem. Cycles, 20,
doi:10.1029/2004GB002 439, 2007.

P. J. Berre, L., Pannekoucke, O., Desroziers, G., Stefanescu, S. E.,
Chapnik, B., and Raynaud, L.: A variational assimilation ensem-
ble and the spatial filtering of its error covariances : increase
of sample size by local spatial averaging. Proceedings of the
ECMWF Workshop on Flow-dependent aspects of data assim-
ilation, 11-13 June 2007, 151-168.

Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J., Hauglus-
taine, D. A., Prigent, C., Van der Werf, G. R., Peylin, P.,
Brunke, E.-G., Carouge, C., Langenfelds, R. L., Lathire, J.,
Papa, F., Ramonet, M., Schmidt, M., Steele, L. P., Tyler,
S. C., and White, J.: Contribution of anthropogenic and natu-
ral sources to atmospheric methane variability, Nature, 443, 439-
443, doi:10.1038/nature05132, 2006.

Calvet, J. C., Noilhan, J., Roujean, J. L., Bessemoulin, P., Ca-
belguenne, M., Olioso, A., and Wigneron, J. P.: An interactive
vegetation svat model tested against data from six contrasting
sites, Agri. and Forest Met., 92:73–95, 1998.

Biogeosciences, 0000, 0001–15, 2009 www.biogeosciences.net/bg/0000/0001/

Fig. 7. Error reduction (in %) for the periods (30 May to 5 June, and 5 June to 10 June) using the uncorrelated covariance matrix(a) and(c),
and their differences compared to the fully correlated matrix(b) and(d).T. Lauvaux et al.: Atmospheric CO2 modelling: error correlations 13

(a) (b)
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Fig. 8. Angle (θ ) showing the main direction of the error correlation(a) and the norm representing the ratio between the long and the short
axis of the ellipse (1− l

L
) (b) of the anisotropy modelled with the diffusion operator. The two towers are the red circles on the maps.

future inversions. Recall that the errors we assign to an obser-
vation in an inversion are implicitly dependent on our ability
to model that observation. We have shown that a part of such

model errors shows a complex structure of correlations. In
general, the existence of positive correlations in the model-
data mismatch reduces the amount of information available
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from those observations (Sect.3.5). This is not universal
however. A correlation in the model-data mismatch implies a
set of preferred directions for this mismatch. Mismatches in
that direction will be deweighted (reducing available infor-
mation) however those in orthogonal directions will be high-
lighted. This explains the mixed patterns in Fig.8b.

The spatial correlation lengths we obtained do not suggest
a large impact on most current observing networks since it
is rare to have observations spaced less than 100 km apart.
An immediate exception is measurements from aircraft. It
appears that, even if the transport model we use for the inver-
sion allows sampling at the resolution of a few km, spatial
error correlation may reduce the effective sampling density.
We cannot know the true import of this until we calculate the
impact of horizontal correlations for various observational
densities.

A less immediate but stronger consequence is the inver-
sion of data retrieved from upcoming satellite missions (e.g.
Crisp et al., 2004; Hamazaki et al., 2004). The spatial den-
sity of these measurements is likely to impinge on the corre-
lation lengh-scales of model error. Again, we need to under-
stand how the ensemble variability projects into the column-
integral that will be measured by these instruments.

Considering tall tower based measurements with sev-
eral levels, the vertical covariances we described here (see
Sect. 3.2) show significant correlation between the first
model level with the higher levels, up to 0.5 during the day
and about 0.4 during the night. The use of several obser-
vation levels implies then model covariances that reduce the
independence of the data, and so the constraint on the fluxes,
but which we need to defined properly to avoid unrealistic
corrections. Incorrect representation of the boundary layer
height, for example, could lead to opposite increments be-
tween two levels. The same arguments hold for airborne pro-
file data (Lauvaux et al., 2008).

For the limited observing network used here, temporal er-
ror correlations dominate spatial correlations. With the trend
towards increasing numbers of continuous measurement sites
this will remain the case for the surface network. It is already
clear that models at coarse resolution perform poorly when
simulating high-frequency observations over continents (e.g.
Geels et al., 2007; Law et al., 2008). High resolution models
(e.g.Lauvaux et al., 2008; Law et al., 2008) perform better.
Even here, however, it appears that in such models errors are
highly correlated in time.

Finally the totality of these results has serious implica-
tions for quantitative network design such as that described
by Kaminski and Rayner(2008). The model-data mismatch
covariance matrix is a key input into such studies (see, e.g.
Gloor et al., 2000). Our results suggest a minimum separa-
tion of surface measurements of about 50 km before correla-
tions reduce the marginal benefit of new observations. This
is neither a function of model resolution nor of the footprint
of measurements but of limitations in the simulation of trans-
port.

This work hints at a promising partnership between studies
in Numerical Weather Prediction and in atmospheric inver-
sion. In general the characterisation of model error in NWP
is much more advanced than in the field of inversions. It
would be interesting to see how these errors appear at larger
scales, both in space and time. We also need, as already
noted, analogous developments for vertical and temporal cor-
relations.

5 Conclusions

We have used an an ensemble prediction system coupled to
a mesoscale transport model to estimate spatial and temporal
correlations in the model-data mismatch for CO2 inversions.
Horizontal correlation lengths are of order 50 km. There are
strong vertical correlations in the boundary layer, particularly
during the day. Temporal correlations are stronger than spa-
tial and can last for most of a day. Taking account of these
correlations reduces the effective information content of the
mesoscale observations we use. The correlations also imply
limits on the useful density of future observations.
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