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Abstract. The intensity, duration and frequency of coastal
hypoxia (oxygen concentration<63µM) are increasing due
to human alteration of coastal ecosystems and changes in
oceanographic conditions due to global warming. Here we
provide a concise review of the consequences of coastal hy-
poxia for sediment biogeochemistry. Changes in bottom-
water oxygen levels have consequences for early diagenetic
pathways (more anaerobic at expense of aerobic pathways),
the efficiency of re-oxidation of reduced metabolites and the
nature, direction and magnitude of sediment-water exchange
fluxes. Hypoxia may also lead to more organic matter accu-
mulation and burial and the organic matter eventually buried
is also of higher quality, i.e. less degraded. Bottom-water
oxygen levels also affect the organisms involved in organic
matter processing with the contribution of metazoans de-
creasing as oxygen levels drop. Hypoxia has a significant
effect on benthic animals with the consequences that ecosys-
tem functions related to macrofauna such as bio-irrigation
and bioturbation are significantly affected by hypoxia as
well. Since many microbes and microbial-mediated biogeo-
chemical processes depend on animal-induced transport pro-
cesses (e.g. re-oxidation of particulate reduced sulphur and
denitrification), there are indirect hypoxia effects on biogeo-
chemistry via the benthos. Severe long-lasting hypoxia and
anoxia may result in the accumulation of reduced compounds
in sediments and elimination of macrobenthic communities
with the consequences that biogeochemical properties dur-
ing trajectories of decreasing and increasing oxygen may be
different (hysteresis) with consequences for coastal ecosys-
tem dynamics.
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1 Introduction

Dissolved oxygen concentrations in natural water bodies
are governed by the delicate balance between the processes
of oxygen supply (mainly regulated by physical transport)
and removal (primarily through biological consumption).
The occurrence of coastal hypoxia can be natural, human
influenced, or result from the interactions of natural and
anthropogenically-induced processes. Naturally occurring
hypoxia is found in bottom waters of silled basins and fjords
with restricted circulation (e.g. Black Sea, Cariaco Basin,
Kau Bay, Anderson and Devol, 1987; Middelburg et al.,
1991), as a result of natural intrusions or upwelling of sub-
surface oxygen-depleted waters on shelf systems (northern
Chile, Morales et al., 1999; northeast Pacific, Grantham et
al., 2004; Costa Rica, Thamdrup et al., 1996; Namibian shelf,
Monteiro et al., 2006, 2008; Lavik et al., 2009; Indian shelf,
Naqvi et al., 2000), or in coastal embayments such as estu-
aries from the heterotrophic status sustained by the delivery
of terrestrial and riverine organic matter (Heip et al., 1995).
Human influences on coastal hypoxia are multiple and can
operate on local and regional scales (e.g. cultural eutrophi-
cation, river runoff) as well as the global scale (e.g. warm-
ing). Global warming will lead to reduced oxygen solubility
and degassing of oxygen, increased stratification and changes
in wind patterns affecting transport and mixing of oxygen.
Modifications in hydrology may influence the delivery of nu-
trients and organic matter from land to coastal systems and
thus the consumption of oxygen in coastal systems (Rabalais
et al., 2004; Turner et al., 2008). Hydrological changes can
also result in enhanced stratification due to either elevated
evapotranspiration in arid zones or freshwater lenses result-
ing from excessive rain or runoff from land. These natural
and human-influenced processes influencing the oxygen bal-
ance in coastal waters interact and together govern dissolved
oxygen dynamics.
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There is accumulating evidence and growing concern that
low oxygen (i.e. hypoxic) conditions are proliferating in ma-
rine coastal environments worldwide (Diaz, 2001; Gray et
al., 2002; Rabalais et al., 2001a, b; Diaz and Rosenberg,
2008). Hypoxia can have direct and indirect effects on
the functioning and survival of organisms. The vulnerabil-
ity to low oxygen varies widely across marine organisms.
Changes in organism behaviour and functioning are gener-
ally observed at higher dissolved oxygen levels than lethal
oxygen thresholds (Diaz and Rosenberg, 1995; Gray et al.,
2002; Vaquer-Sunyer and Duarte, 2008). Moreover, anoxic
conditions with or without sulphide may have different con-
sequences because of the toxicity of sulphides for many or-
ganisms, in particular metazoans (Bagarinao, 1992). Another
important factor governing the sensitivity of organisms to hy-
poxia is the duration of hypoxic conditions, as short-lived
events can be survived or avoided by migration (Levin et al.,
2009a). It is the combination of sensitivity to oxygen lev-
els and the duration and intensity of hypoxia that governs
the survival and functioning of organisms under conditions
of coastal hypoxia. Oxygen thresholds should therefore be
considered in a dynamic context.

Coastal hypoxia may be an incidental or episodic event
(e.g. storm causing entrainment of sulphidic subsurface wa-
ters into surface waters), a recurrent seasonal phenomena
(due to seasonality in algal growth and thus oxygen con-
sumption or due to seasonal winds and upwelling), or a more
permanent phenomena lasting for years to millennia. This
distinction among short-lived, recurrent seasonal and long-
lived hypoxia is critical when studying the benthos and sed-
iment biogeochemistry. Organisms that have evolved in per-
manently hypoxic setting such as oxygen-minimum zones
appear to thrive at very low levels of dissolved oxygen (Chil-
dress and Siebel, 1998; Levin, 2003). The effect of oxygen
on sediment biogeochemistry depends on the history of the
system, as large stocks of reactive components in sediments
may delay and attenuate responses to higher or lower oxygen
levels (Soetaert et al., 2000). For instance, coastal sediments
with active faunal communities and iron and manganese cy-
cles respond differently to low-oxygen conditions than do
sediments rich in sulphide and lacking oxidants other than
sulphate.

This review aims to synthesize the understanding of bio-
geochemical processes affected by coastal hypoxia. We will
discuss the direct and indirect effects of hypoxia on sediment
biogeochemistry and sediment-water exchange fluxes. These
processes have been studied extensively and it is beyond the
scope of this review paper to cover the entire literature or
all aspects. Our goals are (1) to provide a systematic and
concise overview of the effect of oxygen on sediment bio-
geochemistry, both direct and indirect via its effect on ben-
thic faunal communities, and (2) to explore the dynamics and
response of sediment biogeochemistry both in terms of sen-
sitivity to and resilience to (recovery from) hypoxic events.
We will not cover the consequences of hypoxia on benthic

primary producers because our overview is restricted to sed-
iments not receiving sunlight (Larson and Sundbäck, 2008;
Montserrat et al., 2008). Gooday et al. (2009) discuss the
formation, preservation and use of proxies in hypoxia re-
search and cover in detail the effect of hypoxia on trace el-
ement sediment geochemistry. Naqvi et al. (2009) discuss
the production and emission of radiatively active gases from
hypoxic areas. Levin et al. (2009) review the effect of natu-
ral and human-induced hypoxia on benthic communities and
Kemp et al. (2009) discuss coastal-hypoxia responses to re-
mediation. These complementary issues will not be repeated
here. Rather, we present the direct effect of bottom-water
oxygen concentrations on sediment biogeochemistry and or-
ganic matter, the indirect effect of oxygen on sediment bio-
geochemistry via the influence of hypoxia on animals and the
implications for sediment and coastal ecosystem dynamics.

2 Bottom-water oxygen controls on sediment
biogeochemistry

2.1 Sediment biogeochemistry in oxic settings

Biogeochemical processes in marine sediments are inti-
mately linked to processes and conditions in the water col-
umn: they are fueled by deposition of materials from the wa-
ter column (e.g. labile organic matter) and are affected by
the composition of bottom waters (Berner, 1980; Soetaert et
al., 2000; Burdige, 2006). Biogeochemical conditions and
processes in coastal sediments differ from those in the water
column because of differences in transport processes (molec-
ular versus eddy diffusion and particle settling versus biotur-
bational mixing), relevant time scales and availability of par-
ticulate and dissolved substances. Deposition of labile and
reactive materials from the water column provides energy
and nutrients for heterotrophic consumers inhabiting marine
sediments. The majority of the organic matter deposited is
processed by a diverse community of microbes, protozoans
and metazoans and only a small part is eventually buried due
to sediment accretion (Hedges and Keil, 1995; Middelburg
and Meysman, 2008).

The organic material processed is assimilated by het-
erotrophic organisms (secondary production) or respired and
mineralized. As a consequence of high oxygen consump-
tion rates and slow transport of oxygen by molecular dif-
fusion or bio-irrigation (Meysman et al., 2006), oxygen
penetration depths are very limited, varying from less than
1 mm in active, muddy sediments to a few cm in perme-
able, sandy sediments (Glud, 2008). Hypoxic and anoxic
conditions are thus the norm for the biologically-active up-
per decimeter(s) of sediments. Oxygen limitation initiates
a cascade of alternative electron acceptor use by anaerobic
organisms (mainly microbes). Following oxygen depletion,
anaerobic respiration is sequentially based on nitrate, man-
ganese and iron (hydr)oxides and sulphates (Fig. 1). This
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Fig. 1. Conceptual model of organic matter (OM) degradation pathways and re-oxidation pathways in marine sediments. Organic matter
degradation involves hydrolysis of macromolecular organic matter and fermentation to smaller compounds. These fermentation products are
used by respiring micro-organisms and methanogens. Oxidants are utilized sequentially, first oxygen, then nitrate, metal oxides and sulphate.
Dissolved reduced products (methane, sulphide, manganese (II) and iron (II)) diffuse upwards and are then oxidized. Some anaerobic re-
oxidation pathways may not yet have been documented or unequivocally shown to be microbial mediated. However, anaerobic oxidation of
methane by sulphate (Boetius et al., 2000) and nitrate (Raghoebarsing et al., 2006), and sulphide by metal oxides (Aller and Rude, 1988) and
nitrate (Jørgensen, 2006) has been reported.

sequence is ultimately governed by thermodynamic energy
yield, but it also depends on reaction kinetics and physiology
of the micro-organisms involved (Burdige, 2006). If all ox-
idants have been consumed, organic matter is anaerobically
respired and fermented with the result that methane is gener-
ated.

Mineralization of organic matter, in particular anaerobic
respiration, results in the formation of various reduced sub-
stance such as ammonium, iron (II), manganese (II), hy-
drogen sulphide and methane (Fig. 1). These reduced sub-
stances are normally efficiently re-oxidized within sediments
because they contain a substantial amount of energy that
was originally contained in the organic matter (Jørgensen,
1982). This guarantees optimal use of energy resources at the
ecosystem level. Ammonium production from organic nitro-
gen mineralization can be oxidized aerobically by bacteria
and archaea (Ẅuchter et al., 2006) or anaerobically by bac-
teria (Anammox; Strous and Jetten, 2004). Dissimilatory re-
duction of particulate metal oxides causes release of reduced
iron and manganese in dissolved form. These are in turn
efficiently oxidized by microbes using oxygen or nitrate as
electron acceptors. Sulphate is the second most abundant an-
ion in seawater and sulphate reduction thus accounts for the
majority of (anaerobic) mineralization in coastal sediments
(Jørgensen, 1977, 1982, 2006; Soetaert et al., 1996). The

sulphide generated partly reacts with reactive iron (dissolved
or particulate) to form iron sulphide (initially acid volatile
forms and eventually pyrite). Another part of the sulphide
generated will react with organic matter (Ferdelman et al.,
1991; Br̈uchert, 1998; Werne et al., 2008) or will end-up in
the oxidative S-cycle. This involves multiple steps of partial
oxidation to intermediates, some of which are disproportion-
ated, i.e. splitting of inorganic molecules into a more reduced
and oxidized compounds (Jørgensen, 2006). These interme-
diate sulfur compounds will stimulate pyrite formation or re-
act with sedimentary organic matter (Damsté and de Leeuw,
1990; Werne et al., 2008). Normally, the iron sulphide min-
erals and organic sulphur formed in coastal sediments are
also oxidized efficiently and then integrated into the oxida-
tive sedimentary S cycle (Jørgensen, 1977). The efficiency
of this part of the sulphur cycle depends on bioturbation (fau-
nal mixing) of reduced particulate sulphur and non-steady
state diagenetic processes stimulating contact between re-
duced and oxidized compounds (Berner and Westrich, 1985).
Re-oxidation of reduced sulphur compounds may involve
oxygen, nitrate, metal oxides or more oxidized sulphur com-
pounds (Jørgensen, 2006). Finally, the methane produced
in sediments can be oxidized aerobically, but the majority
is oxidized anaerobically involving consortia of bacteria and
archaea (Boetius et al., 2000).
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Fig. 2. Partitioning of community respiration among araerobic res-
piration (blue), denitrification (yellow) and anaerobic respiration
(red) as function of bottom-water oxygen. Based on model sim-
ulation of Middelburg et al. (1996).

Anaerobic mineralization dominates in most coastal sedi-
ments because of high carbon loading, creating oxygen de-
mands that are not balanced by oxygen supply (Soetaert
et al., 1996). The associated high production rate of re-
duced compounds implies a high demand of oxygen for re-
oxidation processes. In fact, most of the oxygen consumption
in coastal sediments can be attributed to re-oxidation pro-
cesses with typically less than 25% of the oxygen consump-
tion being due to aerobic respiration processes (Jørgensen,
1982; Heip et al., 1995; Soetaert et al., 1996; Glud, 2008).
This limited importance of aerobic respiration processes for
organic matter mineralization does not imply that bottom-
water oxygen, and thus hypoxia, have limited impact on di-
agenetic pathways (Fig. 2). In fact bottom-water oxygen
availability is one of the main factors governing diagenetic
pathways, sediment biogeochemistry and sediment-water ex-
change fluxes, as well as the animal communities that influ-
ence these processes.

2.2 The effect of oxygen on diagenetic pathways and
sediment-water exchanges

While discussing the effect of bottom-water oxygen concen-
tration on diagenetic pathways, it is instructive to distinguish
among oxic, hypoxic and anoxic settings (Fig. 3) and be-
tween hypoxic settings with low and high nitrate. Oxic set-
tings, i.e. coastal sediments underlying oxic (>63µM O2;
>2 mg O2/l; >1.4 ml O2/l) bottom waters, are character-
ized by aerobic respiration by microbes and metazoans
and re-oxidation of reduced components by oxygen as well
as alternative oxidants. In hypoxic settings (<63µ M O2;
<2 mg O2/l; <1.4 ml O2/l) aerobic respiration and aerobic
re-oxidation processes are diminished, but anaerobic re-
oxidation processes still operate based on nitrate and sulphate
influxes and sedimentary stocks of metal oxides. In perma-
nently anoxic settings (zero oxygen) and sulphidic settings

(zero oxygen and measurable free sulphide), sulphate reduc-
tion and methanogenesis dominate mineralization because
stocks of particulate oxidants have been exhausted (see be-
low for an explanation) and anaerobic oxidation of methane
coupled to sulphate reduction is the only major re-oxidation
processes (Fig. 3).

Bottom-water oxygen levels have a direct influence on
rates of sediment oxygen consumption, aerobic respiration
and re-oxidation reactions because oxygen gradients across
the sediment-water interface are smaller at low oxygen con-
centrations (Fig. 4a). This dependence of sediment oxy-
gen uptake on sediment oxygen concentrations has been ob-
served on the Louisiana shelf (Rowe et al., 2002, 2008), in
the Black Sea (Friedl et al., 1998) and along the ocean mar-
gin off Washington State and Mexico (Hartnett and Devol,
2003) although the overriding control of carbon deposition
may mask oxygen dependencies. Moreover, an oxygen de-
pendency is also consistent with global-scale empirical re-
lations (Cai and Reimers, 1995) and theoretical predictions
based on the simple models incorporating zero-order uptake
kinetics and diffusive transport (Bouldin, 1968).

The contribution of denitrification to organic matter min-
eralization is rather constant among oxic, hypoxic and anoxic
settings (Fig. 2), but the individual nitrogen species do
show a significant dependence on bottom-water oxygen lev-
els. Ammonium effluxes increase significantly when oxygen
concentrations decline (Fig. 4c), because less of the ammo-
nium produced is re-oxidized (i.e. nitrified). Higher ammo-
nium effluxes under hypoxic conditions have been reported
for a number of settings; e.g. Chesapeake Bay (Kemp et al.,
1990, 2005), the Louisiana shelf (Childs et al., 2002; Mc-
Carthy et al., 2008) and Danish coastal systems (Conley et
al., 2007). These higher ammonium effluxes are not only due
to less efficient nitrification due to hypoxia, but may also be
related to higher mineralization rates and elevated levels of
dissimilatory nitrate reduction to ammonium (DNRA; Mc-
Carthy et al., 2008). Bottom-water oxygen also has a sig-
nificant effect on nitrate fluxes, but it depends on the bottom-
water nitrate concentration (Fig. 4b; Middelburg et al., 1996).
In some hypoxic settings low oxygen bottom-waters are ac-
companied by high nitrate concentrations (e.g. eastern Pa-
cific borderland basins and shelves), whereas in some other
settings low-oxygen bottom waters are also low in nitrate be-
cause it has been consumed already. While most sediments in
oxic settings are a source of nitrate to overlying water, they
turn into nitrate sinks at low oxygen levels (Fig. 4b). Hy-
poxic settings with high-nitrate bottom waters are a stronger
sink than those with low-nitrate bottom waters. This oxygen-
dependent switch between sediments acting as a sink and
source for bottom-water nitrate is a clear example of how
ecosystem functions may respond non-linearly to changing
bottom-water conditions.

Rates of denitrification either show a limited dependence
on bottom-water oxygen or decrease with decreasing oxy-
gen levels (Fig. 4d). This decrease in sedimentary dinitrogen
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Fig. 3. Conceptual picture of organic matter degradation and re-oxidation pathways in oxic, hypoxic and anoxic marine sediments. Sediments
underlying oxic bottom waters support aerobic respiration and re-oxidation of Mn (II), Fe (II), H2S and CH4 by oxygen; these processes do
not occur in hypoxic and anoxic sediments. In sediments underlying permanently anoxic bottom waters reactive manganese and iron oxides
stocks have been exhausted and organic matter degradation occurs by sulphate reduction and methane formation. While most of the methane
formed is oxidized anaerobically, hydrogen sulphide may escape the sediments and enter the water column as has been reported in some
systems.

production at low bottom-water nitrate levels can be at-
tributed to a decrease in aerobic nitrification that can only
be partly compensated by nitrate influxes (Fig. 4b). Conse-
quently, in hypoxic systems where bottom-water nitrate con-
centrations are very low, nitrate influxes can not compensate
for decreases in aerobic nitrification and sedimentary denitri-
fication may become very low (Kemp et al., 1990, 2005). In
anoxic systems with no nitrate in the bottom-water, denitrifi-
cation is consequently absent and most nitrogen is recycled
in the form of ammonium. This ammonium is then oxidized
aerobically or anaerobically at redox boundaries in the wa-
ter column. Lam et al. (2007) reported anaerobic ammonium
oxidation (anammox) coupled to archaeal and bacterial nitri-
fication in the Black Sea basin.

The contribution of particulate oxidants such as
manganese- and iron-oxides to organic matter mineral-
ization depends in a complex way on sediment organic
carbon loading, rates of particle mixing (bioturbation) and
bottom-water oxygen levels (Thamdrup, 2000; Burdige,
2006). As oxygen concentrations in the bottom water
decrease, the thin oxygenated surface layer of sediment
decreases in thickness with the result that manganese (II)
and iron (II) diffusing from more reduced layers at depth are
less efficiently oxidized in oxygenated surface layers. Con-
sequently, a large proportion of dissolved manganese and
iron can escape to bottom waters (Sundby and Silverberg,
1985; Konovalov et al., 2007; Pakhornova et al., 2007).
Less re-oxidation, hence less precipitation of manganese
and iron oxides, lowers the recycling efficiency and thus

the contribution of metal oxides to organic matter degra-
dation. Moreover, the escape of dissolved manganese (II)
and iron (II) eventually results in sediments in hypoxic
settings that are depleted in manganese and iron relative to
sediments in oxic settings (Wijsman et al., 2001; Konovalov
et al., 2007). Manganese-oxides are utilized at higher
redox levels than iron-oxides (because of thermodynamics);
manganese (II) is chemically oxidized less efficiently than
iron (II) (because of kinetics) and manganese oxidation
requires microbial mediation (Burdige, 2006). As a conse-
quence of these differences in basic chemistry, manganese
effluxes and depletion of sedimentary manganese stocks oc-
cur at higher bottom-water oxygen levels than those of iron
(Kristensen et al., 2003; Kristiansen et al., 2002). Another
difference between sedimentary iron and manganese cycling
and their dependence on oxygen relates to interactions with
the sulphur cycle; these interactions are strong for iron and
weak for manganese. Manganese oxide reduction can be
coupled to oxidation of reduced sulphur compounds (Aller
and Rude, 1988), but precipitation of manganese sulphides is
unusual (e.g. Suess, 1979), whereas iron sulphide formation
is one of the most common and important biogeochemical
processes in sediments (Berner, 1984).

Sulphate reduction generates sulphide that can react with
reactive iron compounds to form insoluble iron sulphides
such as pyrite. Incorporation of reduced iron in pyrite and
other sulphide minerals results in less efficient iron recycling.
The dependence of iron effluxes and recycling efficiencies
on bottom-water oxygen is non-linear (Fig. 5). Under anoxic
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Fig. 4. Fluxes of oxygen(A), nitrate(B) and ammonium(C) and rates of denitrification(D) as a function of bottom water oxygen concen-
trations for coastal sediments in low (10µM) and high (30µM) bottom-water nitrate settings. Positive fluxes indicate uptake and negative
fluxes release from sediments (Middelburg et al., 1996).

bottom waters, iron recycling is limited because of trapped
iron in sulphide minerals. Increasing levels of oxygen in bot-
tom waters increases iron recycling efficiencies from about
0.5 in anoxic systems (each mole of iron oxides arriving at
sediment surface is used only once) to 0.9 in fully oxic sys-
tems, where each iron molecule is cycled many times be-
tween the zone of iron reduction at depth and iron oxida-
tion in the surface layer (Fig. 5). This recycling efficiency
primarily depends on bottom-water oxygen levels (Wijsman
et al., 2001) and rates of bioturbation (Sundby and Silver-
berg, 1985; Canfield et al., 1993; Thamdrup, 2000). Iron
effluxes are maximal under hypoxic conditions because iron
is trapped at lower oxygen levels and efficiently recycled and
retained within sediments at higher oxygen levels (Pakho-
mova et al., 2007). The manganese and iron mobilized from
hypoxic sediments are often transported laterally to either
more oxic settings where oxidation, precipitation and thus
settling occurs or to fully anoxic settings where iron can be
trapped by reaction with dissolved sulphide (Sundby and Sil-
verberg, 1985; Wijsman et al., 2001; Severmann et al., 2008).
This shuttle of iron and manganese from hypoxic to oxic or
anoxic settings results not only in iron and manganese deple-
tion of hypoxic sediments, but also in manganese enrichment
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Fig. 5. Sediment iron efflux (blue line with triangles) and recycling
efficiency (red dashed line with squares) as a function of bottom-
water oxygen for coastal sediments (based on Wijsman et al., 2001).

in oxic settings (Sundby and Silverberg, 1985) and iron en-
richment in anoxic settings (Wijsman et al., 2001; Anderson
and Raiswell, 2004; Severmann et al., 2008).

Phosphate and trace elements such as arsenic that are inti-
mately linked to iron oxides are consequently also sensitive
to bottom-water oxygen levels. The sedimentary phosphorus
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cycle involves degradation of organic phosphorus, interac-
tion of phosphate with sedimentary iron oxides, dissolution
of fish debris and formation of authigenic apatite (Sundby et
al., 1992; Slomp et al., 1996). The recycling efficiency of
phosphate within sediments depends strongly on the avail-
ability and cycling of iron oxides. Since the iron oxides with
which phosphorus is associated show a strong dependence on
bottom-water oxygen levels, a similar strong dependence is
observed for phosphate. High fluxes of phosphate usually oc-
cur concurrently with high fluxes of iron, either naturally or
experimentally induced (Sundby et al., 1986), but not always
because of iron trapping by sulphides. High phosphate fluxes
under hypoxic and anoxic conditions have been reported for
ocean-margin settings (Ingall and Jahnke, 1997), large to in-
termediate coastal hypoxia such as found in the Chesapeake
Bay (Kemp et al., 2005; Jordan et al., 2008), the Baltic Sea
(Conley et al., 2003, 2009) and in smaller coastal systems
(Rozan et al., 2002). This oxygen dependency of phosphorus
cycling has received much attention since the 1940’s (Mor-
timer, 1941) because of its implication for eutrophication and
Earth System dynamics (Wallmann, 2003; Slomp and van
Cappellen, 2007).

The effect of bottom-water oxygen on sulphur cycling is
primarily related to the oxidative part of the sedimentary S-
cycle because sulphate reduction dominates anaerobic miner-
alization in most coastal sediments (Fig. 2; Jørgensen, 1982;
Soetaert et al., 1996; Burdige, 2006). Lower bottom-water
oxygen levels result in less oxidation of particulate and dis-
solved reduced sulphur compounds with the result that more
reduced sulphur is buried (high sulphide retention efficiency;
Canfield, 1994; Passier et al., 1997) and that sulphide may es-
cape from the sediments to the water column (Brüchert et al.,
2003; Lavik et al., 2009). Hydrogen sulphide release from
anoxic sediments has been reported for permanently anoxic
systems such as the Black Sea and Cariaco basin as well as
for more dynamic settings experiencing hydrogen-sulphide
release events (Namibian coastal upwelling, Brüchert et al.,
2003, Lavik et al., 2009; the Indian shelf, Naqvi et al., 2006).
Recently, Lavik et al. (2009) reported detoxification of sul-
phidic waters from the Namibian shelf by chemolithotrophs
(of the γ - and β-proteobacteria) in the water column that
completely consumed the sulphide and created a buffer zone
between toxic, sulphidic subsurface waters and oxic sur-
face waters. Sediment underlying hypoxic waters with high
nitrate concentrations may support microbial communities
comprised of large, nitrate-storing bacteria such asBeggia-
toa spp. Thiomargarita spp. andThioploca spp. that cou-
ple nitrate reduction to reduced sulphur oxidation (Schulz
and Jørgensen, 2001; Brüchert et al., 2003) These sulphur
oxidizing, nitrate-storing bacteria often occur at high densi-
ties forming thick mats that blanket the sediments. These
mats represent specific hypoxic ecosystems that reduce sul-
phide effluxes and host specialized protozoan and metazoan
fauna (Br̈uchert et al., 2003; Bernhard et al., 2000). More-
over, these giant bacteria also appear to a play a major role

in phosphorus cycling as they facilitate formation of authi-
genic apatites in hypoxic and anoxic sediments (Schulz and
Schulz, 2005).

3 The effect of bottom-water oxygen on sedimentary or-
ganic matter

The question of whether organic matter is better preserved
under conditions of anoxic bottom water has been much de-
bated in geosciences because of its relevance for understand-
ing the functioning of Earth system in the past and the forma-
tion of oil source rocks (DeMaison and Moore, 1980; Ped-
ersen and Calvert, 1990). Much of the discussion has fo-
cused on unraveling and assessing the relative importance of
bottom-water oxygen levels and high carbon inputs (i.e. pri-
mary production) to organic carbon burial in marine sedi-
ments (Tyson, 1995). These two governing factors are often
difficult, if not impossible, to disentangle, because high or-
ganic matter loadings usually induce hypoxic or anoxic con-
ditions in bottom waters and hypoxia induces enhanced am-
monium and phosphate effluxes (see Sect. 2.2) that may sus-
tain high rates of primary production. The intense debate
and many studies have resulted in a large body of knowledge
and much correlative, but unfortunately often inconclusive,
evidence. However, the accumulated evidence appears to fa-
vor enhanced preservation potential under hypoxic to anoxic
bottom waters (Moodley et al., 2005).

Organic matter burial efficiencies (fraction of organic mat-
ter buried relative to organic matter delivery to sediments)
correlate strongly with sediment accumulation rates but at
low to intermediate sediment-accumulation rates burial effi-
ciencies are often higher in anoxic and hypoxic than in oxic
settings (Canfield, 1989, 1994; Middelburg, 1991; Middel-
burg et al., 1993; Hedges and Keil, 1995), but not always
(Cowie et al., 1991). Similarly, the organic-matter burial
efficiency correlates strongly with oxygen-exposure time, a
measure of the depth of oxygen penetration normalized to
sediment- accumulation rates (Hartnett et al., 1998; Hedges
et al., 1999). Oxygen exposure scales linearly with bottom-
water oxygen concentrations and organic matter burial effi-
ciency thus depends on bottom-water oxygen. Organic mat-
ter content of marine sediments depends strongly on sedi-
ment texture (i.e. fine grained sediments have higher organic
matter contents). Comparison of sedimentary organic matter
across gradients and systems (e.g. along the continental mar-
gin and river-ocean continuum) therefore requires normaliza-
tion (Mayer, 1994). The most common method is to express
the organic content per unit specific surface area (OC/SS;
Mayer, 1994; Hedges and Keil, 1995; Hedges et al., 1999).
The rationale is that organic carbon contents correlate with
specific surface area in sediments underlying oxic bottom
waters and that additional organic carbon, i.e. organic car-
bon above the mono-layer equivalence (∼0.5 to 1 mg C m−2;
Mayer, 1994), reflects enhanced preservation. In a detailed
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Fig. 6. The effect of oxygen on organic carbon to specific surface
areas(A) and organic matter quality as reflected in the amino acid
based degradation index(B). These data are based on sediment sam-
ples collected above, within and below the ocean minimum zone of
the Arabian Sea (Vandewiele et al., 2009).

study of changes in sediment organic matter across the Pak-
istan margin oxygen minimum zone (OMZ: 140–3200 m),
Vandewiele et al. (2009) reported higher organic carbon con-
tents per unit surface area in sediments underlying hypoxic
and anoxic bottom water (Fig. 6a). Moreover, organic carbon
contents were not correlated with surface areas as observed
in oxic settings (Vandewiele et al., 2009). However, for the
same sediments, Cowie et al. (2009) demonstrated variabil-
ity in organic carbon content that was unrelated to oxygen,
with the occurrence of maximal organic carbon contents un-
der relatively oxidizing conditions towards the lower OMZ
boundary (rather than at the OMZ core). These results indi-
cate that factors other than oxygen contribute significantly as
controls on organic carbon preservation (Cowie, 2005).

Such elevated OC/SS ratios in hypoxic and anoxic settings
(Fig. 6a) imply a somewhat lower organic matter processing

efficiency at low oxygen levels. First-order degradation rate
constants for oxic and anoxic degradation both show a sig-
nificant relationship with the square of sediment accumu-
lation rates (Toth and Lerman, 1977; Reimers and Suess,
1983), but with an offset between oxic and anoxic degrada-
tion. This offset might suggest more efficient mineraliza-
tion under oxic conditions, but this interpretation has been
questioned because of differences in methodology and dif-
ferences in the age of the material degraded (Middelburg et
al., 1993). Anaerobic mineralization normally occurs after
aerobic mineralization and thus involves the less labile com-
pounds remaining. There have been many laboratory inves-
tigations in which the same organic material has been sub-
jected to oxic and anoxic conditions. Most of these studies
observed that degradation rates of labile organic matter are
similar under oxic and anoxic conditions (e.g. Lee, 1992;
Westrich and Berner, 1984). However, there is convincing
evidence that refractory compounds require oxygen to be de-
graded (e.g. Kristensen et al., 1995). Hulthe et al. (1998)
incubated surface and subsurface sediments from a deposi-
tional coastal environment and found that more refractory,
older material may degrade faster when exposed to oxygen,
in particular at low overall mineralization rates (Dauwe et al.,
2001). Moodley et al. (2005) confirmed this oxygen depen-
dence for ancient organic-rich layers from the Mediterranean
and also showed that sulphide accumulation may inhibit min-
eralization. Moreover, reaction of sulphide (or intermedi-
ate sulphur compounds) with organic matter may enhance
the preservation potential of organic matter (Damsté and de
Leeuw, 1990). Aller (1994) and Aller and Aller (1998)
provided convincing evidence that alternating oxic-anoxic
conditions result in more extensive mineralization than per-
manently anoxic conditions. Intermittent oxygen exposure
may result from alternating bottom-water conditions and an-
imal activities within sediments, including intermittent bio-
irrigation and particle transport from subsurface to surface
layers.

Laboratory investigations of oxygen influence on degrada-
tion are typically of limited duration (i.e. incubations lasting
from days to few months) and involve modification of in situ
conditions (slurry of plug incubations). Nature has provided
us with a few natural experiments in the deep sea that have
revealed convincing evidence for a major effect of bottom-
water oxygen on organic matter preservation. Wilson et
al. (1985) reported that organic matter in a relict deep-sea tur-
bidite from the Madeira abyssal plain exhibited little degra-
dation over a 140 000 yr period when exposed to sulphate,
but that 80% of the carbon was respired within 10 000 yr in
the presence of oxygen. Similarly, Mediterranean sapropels
that have been deposited during periods with lower bottom-
water oxygen concentrations showed rapid post-depositional
degradation of organic matter once normoxic bottom-waters
were re-established (Thomson et al., 1999; Moodley et al.,
2005).
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Woulds et al. (2007, 2009) and Andersson et al. (2008)
experimentally investigated the dependence of carbon pro-
cessing, including respiration, on bottom-water oxygen con-
centrations across an oxygen-minimum zone. They added
13C labeled phytodetritus to intact Pakistan margin sediments
containing live benthos (140 m to 1800 m) and traced the
transfer of 13C to dissolved inorganic carbon, a measure
of respiration, and to heterotrophs (bacteria, foraminifera
and macrobenthic invertebrates). Phytodetritus processing
was observed at all oxygen levels, but respiration rates were
somewhat lower under hypoxic than oxic conditions. How-
ever, this oxygen effect on respiration (based on dissolved
inorganic carbon release) was secondary to the effect of tem-
perature on respiration (Andersson et al., 2008). Bottom-
water oxygen however, had a strong effect on the identity
of the organisms involved in carbon processing, with di-
minished metazoan contributions and greater foraminiferal
contributions to carbon assimilation at reduced oxygen con-
centrations (Woulds et al., 2007). Based on faunal re-
sponses to oxygen shifts in time and space, they suggested
an oxygen threshold between 5 and 7µM for the shift from
foraminiferan/bacterial dominance of carbon processing to a
significant macrofaunal contribution.

Most research on the effect of oxygen on sediment organic
matter has focused on the quantity of organic matter buried,
but there are also significant effects on the nature and qual-
ity of the organic matter preserved. Geologists have studied
the hydrogen index as a measure for preservation of organic
material and have reported elevated hydrogen indices in sed-
iments underlying hypoxic or anoxic waters (Cowie, 2005).
Most biomarkers (organic molecules that serve as a proxy for
environmental conditions or biogeochemical processes in the
past) are better preserved under anoxic than oxic bottom wa-
ters, implying enhanced preservation (Hoefs et al., 2002; Sin-
ninghe Damst́e et al., 2002). Vandewiele et al. (2009) studied
the amino-acid composition of sediments across the oxygen-
minimum zone of the Pakistan margin in the Arabian Sea and
used the degradation index (Dauwe et al., 1999) to quantify
organic matter quality. Sediments deposited under hypoxic
conditions were characterized by higher DI values than those
deposited under oxic conditions on the shelf and in the deep
sea (Fig. 6b). Vandewiele et al. (2009) attributed this differ-
ence in organic matter quality to differences in preservation
and bacterial processing. Accordingly, sediments deposited
under low-oxygen bottom waters are characterized by higher
amounts of organic matter that is also of higher quality. How-
ever, most examples presented in this section are from ocean-
margin and deep-sea environments, i.e. more stable depo-
sition regimes, and it remains to be seen whether bottom-
water oxygen concentrations play such a prominent role in
dynamic, alternating oxic-anoxic settings (Aller, 1994). For
instance, Hartnett et al. (1998) have shown very high vari-
ability (from near zero to>60%) in burial efficiencies of
coastal sediments with short oxygen- exposure times.

4 Bottom-water oxygen, macrobenthos and sediment
biogeochemistry

4.1 Macrobenthos and sediment biogeochemistry

Animals living at or in the sediments not only depend on the
resources and conditions above and within the sediments, but
also modify the texture and geochemistry of their environ-
ment (Meysman et al., 2006). Suspension-feeding animals
capture food particles from the water column; the labile frac-
tion is used for growth and respiration and a more refrac-
tory fraction is deposited in the form of faeces or pseudofae-
ces. This biodeposition flux of carbon to the seafloor varies
spatially due to patchiness in suspension-feeder distributions,
can locally dominate carbon delivery to the seafloor and con-
stitutes an efficient coupling of benthic and pelagic processes
(Herman et al., 1999). Animals feeding on resources at the
sediment surface (surface-deposit feeders) or within the sed-
iment (surface- and subsurface-deposit feeders) have signif-
icant effects not only on organic carbon (by consuming it)
and other organisms (by grazing and predation), but also via
modification of sediment texture and structure, bio-irrigation
and particle mixing (Aller and Aller, 1998; Herman et al.,
1999; Meysman et al., 2006; van Nugteren et al., 2009).
Animals in and on the seabed influence sediment and solute
properties. Animals can alter sediment porosity, permeabil-
ity, particle size, cohesion, and organic content and, perhaps
more importantly, their spatial heterogeneity and thus gen-
erate niches for smaller organisms (microbes, micro-, meio-
and macrobenthos) (Aller, 1984; Reise, 1985; Levin et al.,
1997; van Nugteren et al., 2009).

Bio-irrigation, the enhanced exchange between pore wa-
ters and overlying water column, is the result of active or pas-
sive burrow flushing as well as pumping to fluidize sediments
to facilitate peristaltic burrowing. Animals living in tubes
and burrows flush their burrows to obtain oxygen for respira-
tion (Aller, 2001). Bio-irrigation has many biogeochemical
consequences; it results in the enhanced transport of oxygen
into the sediments and consequently enhanced rates of aero-
bic respiration (Archer and Devol, 1992). It also causes en-
hanced exchange of nutrients and other metabolites, although
the actual sign and magnitude depends on a complex num-
ber of interacting factors, including the identity, density, and
depth distribution of animals (Aller, 2001). For instance, bio-
irrigation may stimulate nitrification by supply of oxygen,
but may also stimulate effluxes of ammonium and nitrate
with the result that the net effect on nitrogen cycling (nitrifi-
cation, denitrification and anammox) depends in a complex
way on bio-irrigation (Aller, 2001). Bioirrigation also stim-
ulates patchiness in geochemical conditions and thus can act
to maintain biodiversity within the sediment by creating a
mosaic of biogeochemical habitats and rate processes (Wald-
busser et al., 2004; Waldbusser and Marinelli, 2006).
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Bioturbation, the enhanced dispersal of particles result-
ing from sediment reworking by burrowing animals, is due
to tube construction, burrowing, feeding and relocation of
animals (Meysman et al., 2005, 2008). Particle displace-
ment has many consequences for sediment biogeochemistry:
e.g. labile organic matter is transported downward and di-
luted into a larger pool of refractory carbon and metal ox-
ides delivered to or formed in the surface layer may be trans-
ported downward to more reduced layers (Sundby and Silver-
berg, 1985; Thamdrup et al., 1994; Ferro et al., 2003; Bur-
dige, 2006). Conversely, reduced products such as iron sul-
phide (pyrite) may be mixed from subsurface to surface lay-
ers where they are then oxidized by oxygen, nitrate or other
oxidants (Berner and Westrich, 1985; Aller and Rude, 1988;
Meysman and Middelburg, 2005). Accordingly, sedimentary
iron and manganese cycling depend strongly on particle mix-
ing as particulate metal oxides are transferred downwards to
more reduced layers and particulate reduced forms (pyrite,
manganese carbonates) are mixed upwards to zones of re-
oxidation (Thamdrup, 2000; Burdige, 2006). Sedimentary
sulphur and phosphorus cycles also depend strongly on bio-
turbation because they are tightly linked to particulate iron
phases (see Sect. 2).

Other effects of sediment-dwelling animals include the en-
hancement of surface biofilms and mucous deposition, which
may alter biogeochemical fluxes and create highly reactive
substrates. The potential of animals, their exudates and their
structures to alter surface roughness, critical erosion veloci-
ties and other stability properties (Widdows et al., 2004) all
feed back to many of the properties discussed above.

4.2 Effect of oxygen on macrobenthos and conse-
quences for sediment biogeochemistry

Hypoxia affects the behavior, physiology, and ecology of
soft-bottom invertebrate communities in ways that translate
ultimately to reduced bioirrigation and bioturbation and loss
of structural spatial heterogeneity and surface roughness.
While standard definitions of hypoxia are often given, thresh-
old effects vary among taxa, life stages, and settings, and
sublethal effects often occur at much higher oxygen lev-
els (e.g. 100µM) (Vaquer-Sunyer and Duarte, 2008; Levin
et al., 2009a, b). At the most fundamental levels, a shift
from normoxia to hypoxia will result in migration (away)
of large, mobile invertebrates, mortality of selected taxa,
emergence and a shallowing of infaunal activities within the
sediment column of all but the most hypoxia-tolerant taxa
(Pihl et al., 1992; Rabalais et al., 2001a, b; see also Levin
et al., 2009). Hypoxia lowers the density and biomass of
megafaunal- and selected macrofaunal-size organisms, lead-
ing to a smaller community body-size structure (Levin 2003;
Quiroga et al., 2005). Echinoderms and most crustaceans
are particularly affected by oxygen depletion, while annelids,
mollusks and cnidarians are typically more tolerant (Rosen-
berg et al., 1991; Diaz and Rosenberg, 1995). Because

respiration and re-oxidation of reduced compounds typically
drives pH down at the same time it drives oxygen down, an-
imals with carbonate skeletons or shells (e.g. echinoderms
and many mollusks) may be negatively affected. Depend-
ing on the severity and duration of hypoxia, nearly complete
mortality of the benthic fauna can occur in coastal settings
seasonally (e.g. Mountford, 1977). However, commonly
small macrofauna and meiofauna will persist (Levin, 2003;
Neira et al., 2001; Sellanes et al., 2003; Sellanes and Neira,
2006; Sellanes et al., 2007); often these are opportunistic
taxa with short generation times (Dauer et al., 1992). Under
severe dysoxia or anoxia, filamentous, mat-forming bacte-
ria (Jørgensen and Gallardo, 1999), calcareous foraminifera,
nematodes and branchiate, and soft-bodied annelids are typ-
ically favored (reviewed in Levin, 2003; Guttierez et al.,
2008). High surface area to volume ratios enhance oxygen
diffusion; such ratios are imparted by long thin morpholo-
gies and masses of tentacles, palps or branchiae (Lamont and
Gage, 2000).

Species and functional diversity of benthic faunas are re-
duced under hypoxic conditions. Reduced species rich-
ness is accompanied by high dominance; communities may
be comprised of a very few, but highly abundant species.
Usually surface-deposit feeders are favored over subsurface
or suspension feeders (e.g. Gutierrez et al., 2000; Levin
et al., 2000), although some carnivorous, epifaunal species
such as polynoid polychaetes may persist. Large sediment-
dwelling megafauna such as thalassinid shrimp, echiurans,
enteropneusts, and burrowing bivalves and sipunculans are
important sources of hetereogeneity, creating multiple micro-
niches for smaller taxa (Reise, 1985). They are lost at
reduced oxygen levels and sediment assemblages become
much more homogeneous (Levin et al., 2000). Loss of struc-
tures formed by foundation species such as seagrass beds
(Duarte, 1995; Burkholder et al., 2007), oyster reefs (Bre-
itburg et al., 2001) or mussel beds (Mee et al., 2005) also
reduces heterogeneity, curtails benthic-pelagic coupling and
exacerbates hypoxia-induced species loss.

The above changes described for sediment communities
correspond to reduced rates of solute pumping and particle
mixing and a shallowing of irrigation and particle-mixing
activities within the sediment column (Aller, 1980; Rhoads
and Boyer, 1982; Nilsson and Rosenberg, 2000). At shelf
and upper bathyal depths, tube builders often predominate
over deep burrowers under hypoxic conditions (Pearson and
Rosenberg 1978; Wheatcroft, 1989), but this is not always
the case. Animal activities in tubes can aerate the tube in-
terior and surrounding sediments, but surface-deposit feed-
ers dwelling in tubes typically defecate on the surface and
carry out less vertical bioturbation than mobile burrowers.
Despite the inhibition of burrowers in many hypoxic settings
(Pearson and Rosenberg, 1978; Gutierrez et al., 2000), under
nearly anoxic conditions, symbiosis allows gutless, burrow-
ing oligochaetes to persist and bioturbate sediments on the
Peru margin (Levin et al., 2003). At the extreme, anoxia
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involves a complete halt of bioturbation and the formation
of sediment laminae (Rhoads and Boyer, 1982; Schaffner
et al., 1992). The palaeo literature is replete with discus-
sion of oxygen effects on trace (ichno) fossils and lamination
(Rhoads and Morse, 1971; Savrda et al., 1984; Savrda and
Bottjer, 1987, 1991). Trends in abundance, size, diversity
and vertical distribution mirror those discussed for modern
faunas (see Gooday et al., 2009). Loss of fauna combined
with development of thick bacterial mats that inhibit diffu-
sion of oxygen from the overlying water can lead to more
stagnant conditions and buildup of microbial wastes (ammo-
nium, sulphide), creating an environment inhospitable to aer-
obic eukaryotes. However the interplay of oxygen, tempera-
ture, sulphide buildup and food availability appears to modu-
late the responses of benthic communities to specific oxygen
conditions (Olenin, 1997; Levin et al., 2009a; Vaquer-Sunyer
and Duarte, 2008).

The hypoxia-induced changes in benthic community
structure and functioning have major consequences for sed-
iment biogeochemistry via their effects on the intensity and
depth distribution of bio-irrigation and particle mixing, and
changes in flow dynamics at the sediment-water interface.
These interactions among hypoxia, benthos and biogeochem-
istry are complex and often non-linear (e.g. Aller, 2001).
In shallow waters, interface and surface-deposit feeders are
generally favored over subsurface-deposit feeders if bottom-
water oxygen levels decline (Pearson and Rosenberg, 1978;
Levin et al., 2009b). Particle mixing and bio-irrigation are
consequently restricted to surface layers of sediment. Con-
sequently, less organic matter is mixed downward and more
labile organic matter is degraded at the surface, i.e. within the
zone in diffusional exchange with the overlying water. This
shortening of diffusion distances implies more efficient re-
generation of nutrients (Aller and Aller, 1998). Shallower
particle mixing also implies less efficient re-oxidation of
iron sulphide formed at depth in the sediment. Sulphide
burial and retention efficiencies increase at the expense of re-
oxidation because the latter requires particle transport from
the reduced, deeper to oxygenated, surface layers (Berner
and Westrich, 1985). Loss of irrigating animals likely low-
ers oxygen uptake because their consumption rates are often
transport limited in coastal systems with abundant quantities
of labile organic matter (Glud, 2008). Whether the loss of
bioirrigation activity results in an increase or decrease of am-
monium, manganese and iron effluxes is largely unknown
and is system-specific because it depends on the balance
between reduced re-oxidation (due to reduced oxygen sup-
ply) and reduced removal of metabolites by burrow flushing
(Aller, 2001). Metabolites may accumulate in pore-waters
if bio-irrigation is less or shallower due to hypoxia. Accu-
mulation of metabolites in pore-water may prevent settling
of other organisms and in this way have consequences for
population dynamics, ecosystem functioning and sediment
biogeochemistry (Marinelli and Woodin, 2002).

The consequences of hypoxia-induced macrofauna diver-
sity loss on biogeochemistry are multiple but poorly docu-
mented. Many studies have examined the relationship be-
tween macrofauna diversity and sediment metabolism or
sediment-water exchange fluxes These studies showed that
animal-diversity-biogeochemistry relationships are highly
complex. They can be linear or non-linear (Mermillod-
Blondin et al., 2005; Norling and Kautsky, 2007), idiosyn-
cratic and depend on the context (Emmerson et al., 2001;
Rossi et al., 2008), and vary with species identity, biomass
and density (e.g. Aller and Yingst, 1985; Ieno et al., 2006;
Waldbusser and Marinelli, 2006; Marinelli and Williams,
2003). Most of these studies were based on analyses of sin-
gle species or artificially constructed assemblages of species.
Recently, Rossi et al. (2008) investigated diversity – biogeo-
chemistry relationships during macrofaunal recovery after
deliberately induced anoxia. They showed that differences
in diversity due to hypoxia result in differences in sediment-
water exchange fluxes of nutrients. Sediment-water ex-
change fluxes are governed by the balance between fauna-
generated transport processes and microbe-mediated trans-
formation processes (Meysman et al., 2005, 2006). To under-
stand faunal diversity effects on sediment biogeochemistry
therefore requires unraveling the effect of fauna on microbes
via transport processes and food-web interactions (bacterial
grazing), and understanding the feedback of microbes on fau-
nal functioning. For instance, sulphate-reducing microbes
generate sulphide that is toxic for many animals or that may
impede their functioning (Hargraves et al., 2008), while re-
duced sulphur oxidizing or sulphur disproportionating bac-
teria detoxify the sediment so that is habitable for animals
(Pearson and Rosenberg, 1978; Levin et al., 2009). Before
we can understand the effect of oxygen via metazoan diver-
sity on sediment biogeochemistry, it is necessary to elucidate
the many trophic, competitive and non-competitive interac-
tions between fauna and microbes (e.g. competition for labile
organic matter, facilitation of transport via bioturbation, cre-
ation of niches via burrow construction, grazing etc.; Levin
et al., 1997; Meysman et al., 2005, 2006; Rossi et al., 2008,
2009).

5 Dynamics of sediment biogeochemistry and coastal
hypoxia

5.1 Pelagic-benthic coupling and coastal hypoxia

Coastal systems are characterized by the presence of an ac-
tive benthic component interacting closely with the pelagic
compartment (Soetaert et al., 2000). Understanding coastal
hypoxia therefore requires not only consideration of sedi-
ment and water column biogeochemical processes but also
how their coupling changes as a function of bottom-water
oxygen conditions. In Sect. 2 we have seen that as
bottom-water oxygen levels decrease, aerobic degradation
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and re-oxidation reactions become less important and even-
tually may take place only in the water column. Initially ni-
trate may accumulate in hypoxic bottom waters (as observed
in low-oxygen waters of the Eastern Pacific Basin) because
nitrification in bottom waters (rather than sediments) outbal-
ances enhanced nitrate uptake by the sediments (Soetaert and
Middelburg, 2009). However, during prolonged periods of
hypoxia, nitrification shallows in the water column and bot-
tom waters become low in nitrate with the consequence that
sediment denitrification decreases (Kemp et al., 1990, 2005;
Childs et al., 2002). This loss of denitrification implies a
higher recycling efficiency of nitrogen at the ecosystem level
and may sustain or enhance algal blooms (Kemp et al., 2005).
Hypoxia also results in release of manganese (II), iron (II)
and elements such as phosphorus that are intimately linked
to metal oxides in the water column. These reduced metals
are transported to the redoxcline in the water column where
(microbial) oxidation occurs (e.g. Black Sea; Konavalov et
al., 2006; Lewis et al., 2007; Cariaco Basin; Percy et al.,
2008). Part of the phosphate released from sediments will
attach to the newly formed iron oxides (Shaffer, 1986), an-
other part may sustain or enhance algal blooms (Rozan et al.,
2002; Kemp et al., 2005). This enhanced recycling of am-
monium and phosphate under hypoxic bottom-waters may
lead to secondary eutrophication phenomena (Cloern, 2001;
Kemp et al., 2005), including harmful algal blooms (Ma et
al., 2006). This hypoxia-related enhanced regeneration of
nutrients, in particular phosphorus, and basin-wide conse-
quences for plankton communities and biogeochemical pro-
cesses have been very well been documented in the Baltic
Sea (Conley et al., 2009).

Little oxidation of reduced sulphur occurs in sediment
underlying anoxic bottom waters and part of the hydrogen
sulphide escapes sediments and is then oxidized in the wa-
ter column (Black Sea; Konovalov et al., 2006; Cariaco
Basin; Taylor et al., 2001; Delaware Inland Basins; Luther
et al., 2004; Mariager Fjord; Zopfi et al., 2001; Namibian
shelf; Lavik et al., 2009). This oxidation of reduced sulphur
may occur aerobically or anaerobically with nitrate, resulting
in an anoxic layer that separates oxic and sulphidic waters
(Lavik et al., 2009). Moreover, Konovalov et al. (2003) have
reported catalytic manganese oxide cycles in suboxic zones
that are important to oxidation of sulphide. These oxidation
processes can take place below and in the photic zone. Green
pigmented sulphur oxidizing bacteria require light and hy-
drogen sulphide and are often found in the lower part of the
photic zone where hydrogen sulphide diffuses from below
(e.g. Black Sea; Overmann et al., 1992; Damsté et al., 1993).

This temporal evolution from oxic, via hypoxic, to anoxic
bottom-water conditions and the associated transition of
anaerobic respiration and re-oxidation reactions from sed-
iments to the water column can develop over very long
times. It eventually results in permanent anoxia as seen in
the Black Sea and Cariaco Basin (Damsté et al., 2003), but
can also be interrupted by natural (e.g. Baltic Sea; Conley

et al., 2002; Peru shelf; Gutierrez et al., 2008; Santa Bar-
bara basin; Sholkovitz and Gieskes, 1971) or deliberately
induced oxidation events (Luther et al., 2004). Each inter-
ruption of the longer-term evolution to anoxic bottom water
results in re-introduction of biogeochemical processes occur-
ring at higher oxidation levels. For instance, advection of
oxygenated North Sea water into the Baltic sea anoxic basins
results in a cascade of reactions with consequences for nitro-
gen cycles (Voss et al., 1998), formation of particulate man-
ganese and iron oxides and cycling of phosphorus and sul-
phur (Yakushev et al., 2007). Similar, responses have been
reported for intrusions of Mediterranean water into the upper
part of the Black Sea (Glazer et al., 2006). Temporal vari-
ability in bottom-water oxygen levels can have major con-
sequences for iron and manganese biogeochemistry of sedi-
ments (Lyons et al., 1993; Wijsman et al., 2001; Kristensen
et al., 2003), but the nature of the response depends strongly
on previous exposure time to hypoxic or anoxic bottom wa-
ters.

5.2 Duration of exposure to hypoxia matters for biogeo-
chemical response

The effect of bottom-water oxygen on sediment biogeochem-
istry has so far been discussed based on a steady-state con-
cept. However, hypoxia may last from hourly events to cen-
turies and the governing sedimentary biogeochemical pro-
cesses will be different. Moreover, the response to decreas-
ing or increasing oxygen levels may depend on the initial
condition and history of bottom-water oxygen contents. The
temporal response to bottom-water hypoxia is similar to the
biogeochemical depth distribution observed in sediments un-
derlying oxic bottom waters (Fig. 1). Kristensen et al. (2003)
and Kristiansen et al. (2002) studied the response of sandy
coastal sediments to hypoxia and observed first manganese
reduction and gradual disappearance of manganese oxides,
then iron reduction and disappearance of iron oxides and
finally release of hydrogen sulphide from the sediments.
These controlled laboratory experiments were limited to a
one month period. The development of hypoxia in many
coastal systems is seasonal, i.e. oxygen concentrations grad-
ually decline after a spring/early summer plankton bloom,
remain low for several months and then increase again (Dan-
ish coastal systems; Conley et al., 2007; coastal lagoons;
Ritter and Montagna, 1999, Rozan et al., 2002; Chesapeake
Bay; Officer et al., 1994; Kemp et al., 1990, 2005; Louisiana
Shelf; Rabalais et al., 1994, 2001, Eldridge and Morse, 2008;
Indian shelf; Naqvi et al., 2000). The decrease in bottom-
water oxygen levels may cause a switch from nitrate effluxes
to influxes (Kemp et al., 1990; Cowan and Boynton, 1996),
a decrease in denitrification during summer because of low
nitrate levels in bottom waters (Kemp et al., 1990; Con-
ley et al., 2007), enhanced release of ammonium and phos-
phate (Cowan and Boynton, 1996; Rozan et al., 2002; El-
dridge and Morse, 2008) and eventually hydrogen sulphide
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Fig. 7. (a)Conceptual model of benthic community response to hypoxia (based on Diaz and Rosenberg, 2008). Trajectory I occurs when
benthos is exposed to moderate hypoxia, trajectory II occurs when animals die upon increasing hypoxia and trajectory III represent the return
path from anoxia and involves successional dynamics of fauna.(b) Conceptual model of ecosystem functioning/biogeochemical process
recovery following anoxia and associated mortality of organisms.

accumulation in bottom waters (Luther et al., 2004). The
duration, intensity and frequency of hypoxia play a major
role as coupled nitrification-denitrification can be restored to
previous levels during seasonal hypoxia, while after a long
period of anoxia (with loss of faunal groups) denitrification
will remain low following re-oxygenation of the water col-
umn (Hietanen and Lukkari, 2007; Conley et al., 2009).

Katsev et al. (2007) studied the response of St. Lawrence
River estuary sediment to progressive oxygen depletion over
a decadal timescale. They calibrated a dynamic diagenetic
model with data acquired over the last 30 years and then
made model projections for the next 80 years (i.e. the period
remaining before the system will turn anoxic given present-
day decreases in oxygen concentrations). Consistent with
short-term and seasonal responses to oxygen depletion, they
predicted enhanced accumulation of iron sulphides, effluxes
of iron (II) and manganese (II) and rather uniform levels
of denitrification (consistent with Figs. 2 and 4). However,
model-predicted phosphate effluxes were also rather con-
stant because the seasonal iron-phosphate buffer is not effec-
tive and phosphate effluxes balance the differences between
phosphorus deposition and burial (Katsev et al., 2007).

This study also highlighted another aspect of sediment bio-
geochemical response to slowly decreasing oxygen levels in
bottom waters; i.e. the time required to reach steady-state
is much longer than the actual period of decreasing oxygen
levels. This indicates that steady-state approaches should be
adopted with some reservation and that diagenetic history in-
fluences the actual response. Because of its storage capac-
ity for particulate and dissolved components, sediment is an
important reservoir and by slowly exchanging material with

the overlying water, may influence long-term system behav-
ior. Soetaert and Middelburg (2009) explored the response
of hypoxic coastal systems to lowered nitrogen loadings and
concluded that internal nitrogen loading (sediment nitrogen
release) delays nitrogen restoration. Similar delays in system
recovery to reduced-phosphorus loadings by internal loading
in the sediment have been shown for certain lakes (Jeppesen
et al., 2005). Turner et al. (2008) investigated the sensitiv-
ity of Gulf of Mexico hypoxia to nitrogen loading and ob-
served that organic matter and nitrogen accumulated in sedi-
ment from previous years had increased the potential hypoxia
development for a given nitrogen input to the system. A simi-
lar legacy of eutrophication has been reported for phosphorus
loadings in the Baltic Sea (Conley et al., 2002).

5.3 Dynamics of faunal response to hypoxia and sedi-
ment biogeochemistry

There is an extensive literature on the dynamical response of
fauna to hypoxia (Diaz and Rosenberg, 1995, 2008; Levin
et al., 2009a), which is beyond the scope of this paper fo-
cusing on the consequences for biogeochemistry. However,
it is important to recognize and discuss the essential differ-
ences in trajectories of benthic communities going from oxic
to anoxic conditions and those shifting from anoxia and hy-
poxia to normoxia. Figure 7a shows a conceptual model
based on Diaz and Rosenberg (2008) for the response of ben-
thic communities to increasing hypoxia. Benthic communi-
ties exposed to hypoxia of moderate intensity do show signs
of community structure change, but upon return of normal
oxygenated bottom waters the benthic community returns to
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its initial state (trajectory I in Fig. 7a). This resilience of
benthic communities depends not only on the intensity of hy-
poxia, but also on the temporal and spatial scales of hypoxia.
Recovery from small-scale hypoxic events is usually fast be-
cause of animal migration (as adults or larvae) from adjacent
areas (Norkko et al., 2006). Long-term exposure to severe
hypoxia and anoxia causes mortality of animals (trajectory II
in Fig. 7a) and most metazoans are eventually eliminated. If
the areal cover is extensive, the surroundings can no longer
provide source propagules. The recovery trajectory (III in
Fig. 7a) from severe hypoxia or anoxia is different than the
decline path because the recovery involves successional dy-
namics (colonizing opportunistic species are eventually re-
placed by equilibrium species; van Colen et al., 2008; Rossi
et al. 2008, 2009). This hysteresis due to macrobenthos mor-
tality and recovery involving succession occurs when the du-
ration and/or intensity of hypoxia is high (Rosenberg et al.,
2002). There is thus an oxygen threshold below which hys-
teresis in macrofauna community recovery occurs. Depend-
ing on the system, the duration and intensity of hypoxia, the
recovery may take many years (Diaz and Rosenberg, 2008).

During initial stage of hypoxia there are behavioural and
physiological adaptations of organism such as shallowing of
deposit-feeding organisms (Pearson and Rosenberg, 1995)
and enhancement of pore-water ventilation rates to main-
tain oxygen in the burrows (Forster et al., 1995). These be-
havioural changes have consequences for bioturbation and
bio-irrigation modes, intensities and depth-distribution pat-
terns. However, when the hypoxia threshold has been passed
and animals experience mortality, then biologically-induced
particle mixing and solute transport rates become zero, with
major consequences for sediment biogeochemistry. The re-
installment of bioturbation and bioirrigation during macro-
fauna recovery has not been studied but these fauna-mediated
transport modes will depend on the system-specific succes-
sional dynamics. The first colonizers are often small-sized,
interface/surface deposit feeders (Rhoads, 1994; van Colen
et al., 2008) and bioturbation will consequently be shallow
and limited (bioturbation intensity scales with size squared;
Meysman et al., 2003). Subsurface- deposit feeders and
large, deep-burrowing animals appear later in the recovery
trajectory and then bioturbation and bio-irrigation activities
are expected to increase. Biogeochemical modellers have
employed linear and highly non-linear dependencies of bio-
irrigation and bioturbation depth and intensities on bottom-
water oxygen levels (Morse and Eldridge, 2007; Soetaert and
Middelburg, 2009). Katsev et al. (2007) showed that ad-
ditional knowledge about the response of bioturbation and
bio-irrigation to hypoxia is necessary to further our predic-
tive capabilities concerning the effect of oxygen on sediment
biogeochemistry.

Biogeochemical dynamics during recovery from severe
hypoxia is complicated by a basic lack of knowledge on the
return of bioturbation and bioirrigation transport patterns,
and on the interaction of fauna with the stock of reduced

(sulphur) compounds that have accumulated during anoxic
periods. Complete elimination of fauna results in enhanced
accumulation and retention of reduced sulphur in sediments.
Initial colonizers have to deal with high sulphide concen-
trations that are toxic to many species and appearance of
other species may in part depend on the detoxification of
strongly reduced sediments by shallow bioturbators (Pear-
son and Rosenberg, 1978; Rhoads, 1974) or by sulphide-
oxidizing microbes. Figure 7b shows a conceptual model
for recovery of biogeochemical processes following a pe-
riod of severe hypoxia or anoxia with elimination of animals.
Biogeochemical processes that primarily depend on molec-
ular diffusion of dissolved oxidants such as oxygen are ex-
pected to become established within one-two days depending
on the diffusion distance and the dynamics of the microbes
involved. Montserrat et al. (2008) showed that benthic mi-
croalgal communities were reestablished within two weeks
following anoxia for more than 6 weeks. Biogeochemical
processes that depend on interface feeders and shallow bio-
turbators are expected to recover on time scales of weeks to
months, while microbial processes that depend on particle
mixing or pore-ventilation by large, deep living animals may
need years to fully recover (Fig. 7b). While there are very
few data to support or falsify this conceptual model for re-
covery of biogeochemical processes, it is clear that microbial
recovery, despite the inherent fast turnover of microbial pop-
ulations, may take months because their recovery depends on
the return of animal-induced transport processes.

While biogeochemical processes in hypoxic waters and
sediments of the coastal zone are complex, they hold great
significance for many large-scale phenomenon of concern.
On short time scales, cycles of nutrient regeneration, pri-
mary, secondary and fisheries production are all affected
by biogeochemical pathways. On longer times scales, car-
bon sequestration and burial and even the formation of en-
ergy reservoirs are under biogeochemical control, with mi-
crobes as the primary agents of change. As global change
brings declining oxygen concentrations in coastal and shelf
waters, greater understanding of animal-microbe interactions
and feedbacks under different oxygen scenarios, and their
mediation of biogeochemical processes, will facilitate pre-
dictions, conservation and management of coastal resources.
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Sinninghe Damsté, J. S., Op den Camp, H. J. M., Jetten, M.

S. M., and Strous, M.: A microbial consortium couples anaer-
obic methane oxidation to denitrification, Nature, 440, 918–921,
2006.

Reimers, C. E. and Suess, E.: The partitioning of organic-carbon
fluxes and sedimentary organic matter decomposition rates in the
ocean, Mar. Chem., 13, 141–168, 1983.

Reise, K.: Tidal Flat Ecology: An experimental approach to species
interactions, Ecological Studies 54, Springer-Verlag, Berlin,
191pp., 1985.

Rhoads, D. C. and Boyer, L. F.: The effects of marine benthos on
physical properties of sediments: a successional perspective, In:
Animal-sediment relations, edited by: McCall, P. L. and Tevesz,
M. J. S., Plenum Press, New York, pp.3–52, 1982.

Rhoads, D. C. and Morse, J. W.: Evolutionary and ecological signif-
icance of oxygen-deficient marine basins, Lethaia, 4, 413–428,
1971.

Rhoads D. C.: Organism sediment relations on the muddy sea floor,
Ann. Rev. Ocean. Mar. Biol., 12, 263–300, 1974.

Ritter, C. and Montagna, P. A.: Seasonal hypoxia and models of
benthic response in a Texas bay, Estuaries, 22, 7–20, 1999.

Rosenberg, R., Hellman, B., and Johansson, B.: Hypoxic tolerance
of marine benthic fauna, Mar. Ecol.-Prog. Ser., 79, 127–131,
1991.

Rosenberg, R., Agrenius, S., Hellman, B., Nilsson, H. C., and
Norling, K.: Recovery of marine benthic habitats and fauna in
a Swedish fjord following improved oxygen conditions, Mar.
Ecol.-Prog. Ser., 234, 43–53, 2002.

Rossi, F., Gribsholt, B., Middelburg, J. J., and Heip, C.: Context-
dependent effects of suspension feeding on intertidal ecosystem
functioning, Mar. Ecol.-Prog. Ser., 354, 47–57, 2008.

Rossi, F., Vos, M., Middelburg, J. J.: Species identity, diversity and
microbial carbon flow in reassembling macrobenthic communi-
ties, Oikos, 118, 503–512, 2009.

Rozan, T. F., Taillefert, M., Trouwborst, R. E., Glazer, B. T., Ma,
S. F., Herszage, J., Valdes, L. M., Price, K. S., and Luther, G.
W.: Iron-sulphur-phosphorus cycling in the sediments of a shal-
low coastal bay: Implications for sediment nutrient release and
benthic macroalgal blooms, Limnol. Oceanogr., 47, 1346–1354,
2002.

Rowe, G. T., Kaegi, M. E. C., Morse, J. W., Boland, G. S., and
Briones, E. G. E.: Sediment community metabolism associated
with continental shelf hypoxia, Northern Gulf of Mexico, Estu-
aries, 25, 1097–1106, 2002.

Rowe, G. T., Morse, J., Nunnally, C., and Boland, G. S.: Sedi-
ment community oxygen consumption in the deep Gulf of Mex-
ico, Deep-Sea Res. Pt. II, 55, 2686–2691, 2008.

Savrda, C. E. and Bottjer, D. J.: The exaerobic zone, a new oxygen
deficient marine biofacies, Nature, 327, 54–56, 1987.

Savrda, C. E. and Bottjer, D. J.: Oxygen-related biofacies in marine
strata: an overview and update, in: Modern and ancient conti-
nental shelf anoxia, edited by: Tyson, R. V. and Pearson, T. H.,
Geol. Soc. Spec. Publ., 58, 201–219, 1991

Savrda, C. E., Bottjer, D. J., and Gorsline, D. S.: Development of
a comprehensive oxygen-deficient marine biofacies model; evi-
dence from Santa Monica, San Pedro, and Santa Barbara basins,
California continental borderland, AAPG Bull., 58, 1179–1192,
1984.

Schaffner L. C., Jonsson P., Diaz R. J., Rosenberg R., and Gapcyn-
ski P.: Benthic communities and bioturbation history of estuar-

www.biogeosciences.net/6/1273/2009/ Biogeosciences, 6, 1273–1293, 2009



1292 J. J. Middelburg and L. A. Levin: Coastal hypoxia and sediment biogeochemistry

ine and coastal systems: effects of hypoxia and anoxia, Sci. Total
Environ. (supplement), 1001–1017, 1992.

Schulz, H. N. and Jorgensen, B. B.: Big bacteria, Annu. Rev. Mi-
crobiol., 55, 105–137, 2001.

Schulz, H. N. and Schulz, H. D.: Large sulphur bacteria and the
formation of phosphorite, Science, 307, 416–418, 2005.

Sellanes, J. and Neira, C.: ENSO as a natural experiment to under-
stand environmental control of meiofaunal community structure,
Mar. Ecol.-Evol. Persp., 27, 31–43, 2006.

Sellanes, J., Neira, C., and Quiroga, E.: Composition, structure and
energy flux of the meiobenthos off central Chile, Rev. Chil. Hist.
Nat., 76, 401–415, 2003.

Sellanes, J., Quiroga, E., Neira, C., and Gutierrez, D.: Changes of
macrobenthos composition under different ENSO cycle condi-
tions on the continental shelf off central Chile, Cont. Shelf Res.,
27, 1002–1016, 2007.

Severmann, S., Lyons, T. W., Anbar, A., McManus, J., and Gordon,
G.: Modern iron isotope perspective on the benthic iron shuttle
and the redox evolution of ancient oceans, Geology, 36, 487–490,
2008.

Shaffer, G.: Phosphate Pumps and Shuttles in the Black-Sea, Na-
ture, 321, 515–517, 1986.

Sholkovitz, E. R. and Gieskes J. M.: A physical chemical study of
the flushing of the Santa Barbara Basin, Limnol. Oceanogr., 16,
479–489, 1971.

Slomp, C. P., Epping, E. H. G., Helder, W., and Van Raaphorst,
W.: A key role for iron-bound phosphorus in authigenic apatite
formation in North Atlantic continental platform sediments, J.
Mar. Res., 54, 1179–1205, 1996.

Slomp, C. P. and Van Cappellen, P.: The global marine phosphorus
cycle: sensitivity to oceanic circulation, Biogeosciences, 4, 155–
171, 2007,
http://www.biogeosciences.net/4/155/2007/.

Soetaert, K. and Middelburg, J. J.: Modeling eutrophication and
oligotrophication of shallow-water marine systems: the impor-
tance of sediments under stratified and well mixed conditions,
Hydrobiologia, 629, 239–254, 2009.

Soetaert, K., Herman, P. M. J., and Middelburg, J. J.: A model
of early diagenetic processes from the shelf to abyssal depths,
Geochim. Cosmochim. Ac., 60, 1019–1040, 1996.

Soetaert, K., Middelburg, J. J., Herman, P. M. J., and Buis, K.:
On the coupling of benthic and pelagic biogeochemical models,
Earth-Sci. Rev., 51, 173–201, 2000.

Strous, M. and Jetten, M. S. M.: Anaerobic oxidation of methane
and ammonium, Annu. Rev. Microbiol., 58, 99–117, 2004.

Suess, E.: Mineral phases formed in anoxic sediments by microbial
decomposition of organic matter, Geochim. Cosmochim. Ac., 43,
339–352, 1979.

Sundby, B., Gobeil, C., Silverberg, N., and Mucci, A.: The phos-
phorus cycle in coastal marine sediments, Limnol. Oceanogr., 37,
1129–1145, 1992.

Sundby, B., Anderson, L. G., Hall, P. O. J., Iverfeldt, A., Vander-
loeff, M. M. R., and Westerlund, S. F. G.: The effect of oxygen
on release and uptake of cobalt, manganese, iron and phosphate
at the sediment-water interface, Geochim. Cosmochim. Ac., 50,
1281–1288, 1986.

Sundby, B. and Silverberg, N.: Manganese fluxes in the benthic
boundary layer, Limnol. Oceanogr., 30, 372–381, 1985.

Taylor, G. T., Labichella, M., Ho, T. Y., Scranton, M. I., Thunell, R.

C., Muller-Karger, F., and Varela, R.: Chemoautotrophy in the
redox transition zone of the Cariaco Basin: A significant midwa-
ter source of organic carbon production, Limnol. Oceanogr., 46,
148–163, 2001.

Thamdrup, B.: Bacterial manganese and iron reduction in aquatic
sediments, Adv. Microb. Ecol., 16, 41–84, 2000.

Thamdrup, B., Canfield D. E., Ferdelman T. G., Glud R. N., and
Gundersen J. K.: A biogeochemical survey of the anoxic basin
Golfo Dulce, Costa Rica, Rev. Biol. Trop., 44 Suppl., 3, 19–33,
1996.

Thamdrup, B., Fossing, H., and Jorgensen, B. B.: Manganese, iron,
and sulphur cycling in a coastal marine sediment, Aarhus Bay,
Denmark, Geochim. Cosmochim. Ac., 58, 5115–5129, 1994.

Thomson, J., Mercone, D., de Lange, G. J., and van Santvoort, P.
J. M.: Review of recent advances in the interpretation of east-
ern Mediterranean sapropel S1 from geochemical evidence, Mar.
Geol., 153, 77–89, 1999.

Toth, D. J. and Lerman, A.: Organic matter reactivity and sedimen-
tation rates in ocean, Am. J. Sci., 277, 465–485, 1977.

Turner, R. E., Rabalais, N. N., and Justic, D.: Gulf of Mexico hy-
poxia: Alternate states and a legacy, Environ. Sci. Technol., 42,
2323–2327, 2008.

Tyson, R. V.: Sedimentary Organic matter, Chapman and Hall,
1995.

Vaquer-Sunyer, R. and Duarte, C. M.: Thresholds of hypoxia for
marine biodiversity, P. Natl. Acad. Sci. USA, 105, 15452–15457,
2008.

Van Colen, C., Montserrat, F., Vincx, M., Herman, P. M. J., Yse-
baert, T., and Degraer, S.: Macrobenthic recovery from hypoxia
in an estuarine tidal mudflat, Mar. Ecol.-Prog. Ser., 372, 31–42,
2008.

Vandewiele, S., Cowie, G., Soetaert, K., and Middelburg, J. J.:
Amino acid biogeochemistry and organic matter degradation
state accross the Pakistan Margin Oxygen minimum zone, Deep-
Sea Res. Pt. II, 56, 376–392, 2009.

van Nugteren, P., Herman, P. M. J., Moodley, L., Middelburg, J.
J., Vos, M., and Heip C. H. R.: Spatial distribution of detrital
resources determines the outcome of competition between bacte-
ria and a facultative detritivorous worm, Limnol. Oceanogr., 54,
1413–1419, 2009.

Voss, M., Nausch, G., and Montoya, J. P.: Nitrogen stable isotope
dynamics in the central Baltic Sea: influence of deep-water re-
newal on the N-cycle changes, Mar. Ecol.-Prog. Ser., 158, 11–21,
1997.

Waldbusser, G. G. and Marinelli, R. L.: Macrofaunal modification
of porewater advection: role of species function, species interac-
tion, and kinetics, Mar. Ecol.-Prog. Ser., 311, 217–231, 2006.

Waldbusser, G. G., Marinelli, R. L., Whitlatch, R. B., and Visscher,
P. T.: The effects of infaunal biodiversity on biogeochemistry of
coastal marine sediments, Limnol. Oceanogr., 49, 1482–1492,
2004.

Wallmann, K.: Feedbacks between oceanic redox states and ma-
rine productivity: A model perspective focused on benthic
phosphorus cycling, Global Biogeochem. Cy., 17(3), 1084,
doi:10.1029/2002GB001968.doi, 2003.

Werne, J. P., Lyons, T. W., Hollander, D. J., Schouten, S., Hopmans,
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