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Abstract. Low affinity methanotrophic bacteria consume a
significant quantity of methane in wetland soils in the vicin-
ity of plant roots and at the oxic-anoxic interface. Estimates
of the efficiency of methanotrophy in peat soils vary widely
in part because of differences in approaches employed to
quantify methane cycling. High resolution profiles of dis-
solved methane abundance measured during the summer of
2003 were used to quantity rates of upward methane flux in
four peatlands situated in Wales, UK. Aerobic incubations of
peat from a minerotrophic and an ombrotrophic mire were
used to determine depth distributions of kinetic parameters
associated with methane oxidation. The capacity for methan-
otrophy in a 3 cm thick zone immediately beneath the depth
of nil methane abundance in pore water was significantly
greater than the rate of upward diffusion of methane in all
four peatlands. Rates of methane diffusion in pore water at
the minerotrophic peatlands were small (<10%) compared
to surface emissions during June to August. The proportions
were notably greater in the ombrotrophic bogs because of
their typically low methane emission rates. Methanotrophy
appears to consume entirely methane transported by pore wa-
ter diffusion in the four peatlands with the exception of 4 of
the 33 gas profiles sampled. Flux rates to the atmosphere re-
gardless are high because of gas transport through vascular
plants, in particular, at the minerotrophic sites. Cumulative
rainfall amount 3-days prior to sampling correlated well with
the distance between the water table level and the depth of
0µmol l−1 methane, indicating that precipitation events can
impact methane distributions in pore water. Further work
is needed to characterise the kinetics of methane oxidation
spatially and temporally in different wetland types in order
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to determine generalized relationships for methanotrophy in
peatlands that can be incorporated into process-based models
of methane cycling in peat soils.

1 Introduction

Alpha and gamma Proteobacteria belonging, respectively,
to the Methylocystaceae and Methylococcaceae families are
ubiquitous at oxic-anoxic interfaces in the Earth system
where oxygen (O2) is present and methane (CH4) is trans-
ported in large quantities under the influence of concentration
gradients or ebullition. These microorganisms, also known
as Type I (gamma) and Type II (alpha) methanotrophs, serve
as an efficient filter, removing CH4 that otherwise would en-
ter the troposphere. Collectively low affinity methanotrophs
in such environments annually consume a quantity of CH4
well in excess of the∼600 Tg that does enter the Earth’s at-
mosphere from biological and geological sources (Fletcher
et al., 2004).

The anoxic soils of natural wetlands are one of the main
perennial sources of CH4 flux that help to maintain a low
but significant quantity of this chemically and radiatively ac-
tive organic gas in the Earth’s highly oxidizing atmosphere.
More than three decades of study of methanotrophs in wet-
lands and peatlands has yielded significant insights into their
phylogeny, distribution, kinetics, and preferred growth con-
ditions (e.g., Segers, 1998; Gutknecht, 2006; Chen et al.,
2008). Methanotroph populations in the rhizosphere and
with depth in peat soils have been mapped using molecular
biology techniques, including PCR amplification of DNA ex-
tracts and hybridisation with specific phylogenetic 16S rRNA
and functional gene primers (e.g., Krumholz et al., 1995; Mc-
Donald et al., 1996, 1999; Ritchie et al., 1997; Calhoun and
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King, 1998; Edwards et al., 1998; Dedysh, 2002; Dedysh
et al., 2001, 2003; Wartiainen et al., 2003; Miller et al.,
2004), quantification of membrane phospholipids fatty acids
(PLFA) (Krumholz et al., 1995; Sundh et al., 1995, 1997),
and more recently stable isotope probing techniques involv-
ing 13C-labelling of PLFAs and nucleic acids (Morris et al.
2002; McDonald et al., 2005; Kreuzer-Martin, 2007; Chen
et al., 2008). Both Type I and II methanotrophs occur in
wetland soils, occupying oxic zones immediately adjacent to
plant roots (King, 1994; 1996; Schipper and Reddy, 1996;
Calhoun and King, 1998; van der Nat and Middelburg, 1998;
Popp et al., 2000) and shallow zones within peat soils to
which atmospheric O2 is able to diffuse under edaphic condi-
tions and vegetation groundcover specific to particular types
of wetlands (Krumholz et al., 1995; McDonald et al., 1996;
Watson et al., 1997; Edwards et al., 1998; Beckman and
Lloyd, 2001; Megonigal and Schlesinger, 2002).

The tolerance of methanotrophs to anoxia appears to vary
(Roslev and King, 1996). Greatly diminished levels of
methanotrophic activity have been reported in post-anoxia
incubations of rhizome material (King, 1994) while sediment
and peat from other wetlands upon return to O2-rich con-
ditions have shown CH4 oxidation capacities ranging from
moderately attenuated (e.g., King, 1990) to rapid and vig-
orous (Whalen and Reeburgh, 2000). Methane supply is
most commonly cited as the factor limiting methanotrophy in
peat soils (Boon and Lee, 1997; Megonigal and Schlesinger,
2002; Berestovskaya et al., 2005; Basiliko et al., 2007) al-
though O2 availability also may restrict rates of CH4 uptake
(King, 1990, 1994, 1996; Mikkelä et al., 1995; Beckman and
Lloyd, 2001). Differences in the limiting factors between
peatlands likely results from a combination of soil properties
affecting gas exchange and heat transfer, the abundance and
types of plants present, and water table depth, all of which
impact the potential for CH4 oxidation and production (Ket-
tunen et al., 1996; Kettunen, 2003). Water table level is a
particularly critical parameter because it controls the thick-
ness of the unsaturated zone, which when enlarged enhances
the capacity for methanotrophy, but conversely diminishes
CH4 production at shallow depths in vicinity of the rhizo-
sphere where methanogens benefit from higher temperatures
and an abundant supply of labile substrates from root exuda-
tion (Roulet et al., 1993; Sundh et al., 1994; Kettunen et al.,
1999; Str̈om et al., 2005). Despite the presence of methan-
otrophy in this zone, CH4 flux from wetlands is significantly
enhanced by gas exchange with the atmosphere through the
aerenchyma of vascular plants (Shannon et al., 1996; Joab-
sson et al., 1999; Joabsson and Christensen, 2001; Oquist
and Svensson, 2002; Ström and Christensen, 2007). In the
absence of high temporal resolution measurements of CH4
flux capable of detecting sporadic ebullition events (Baird et
al., 2004; Tokida et al., 2007a, b), estimates of CH4 emission
from wetlands will be dominated by passive or active trans-
port of CH4 through vascular aquatic plants when suitable
plants are present.

Attempts to quantify the efficiency of methanotrophy in
peat soils have yielded a wide range of estimates of CH4 con-
sumption, in part, because of different methods employed
and the limitations associated with specific approaches as
discussed by Pearce and Clymo (2001). Le Mer and Roger
(2001) concluded from a survey of literature that∼60 to 90%
of CH4 produced in wetland soils is oxidized by methan-
otrophs in the rhizosphere or shallow subsurface horizons;
however, other estimates suggest a range of proportions, in-
cluding 20–40% in general for natural wetlands (Whalen,
2005), 15 to 76% of potential diffusive CH4 flux season-
ally and∼43% annually of CH4 entering the oxic zone of
a freshwater marsh (Roslev and King, 1996),∼22% for
conversion of CH4 to CO2 during transport through 10 cm
of acrotelmSphagnum-rich peat (Pearce and Clymo, 2001),
complete consumption within 20 cm of the water table in an
undrained peatland (Roulet et al., 1993), 65±24% of CH4
entering the rhizosphere ofSagittaria lancifolia estimated
by CH3F inhibition and 79±20% by mass balance (Schip-
per and Reddy, 1996), 34.7±20.3% and 16.1±7.9% in the
rhizosphere, respectively, of bulrush and reed wetlands (van
der Nat and Middelburg, 1998), 55% of upward diffusing
CH4 in an Alaskan boreal peatland (Whalen and Reeburgh,
2000), 52±10% and 81±9% in two tidal freshwater wetland
forests (Megonigal and Schlesinger, 2002), 0 to 34% rhizo-
sphere oxidation of CH4 in aCarexfen determined using13C
mass balance (Popp et al., 1999), and 58 to 92% or<20% in
the same peatland depending upon whether CH4 consump-
tion was quantified by subtracting in situ methane emission
rates from CH4 production rates measured in the laboratory
or in situ use of the CH3F inhibitor technique (Popp et al.,
2000). Much of the variability in estimates of CH4 oxidation
efficiency appears to stem from differences in methodology.
As noted by Popp et al. (2000), CH4 production rates deter-
mined in vitro likely lead to an overestimation of CH4 supply
in peat soils, contributing to the calculation of anomalously
high proportions of CH4 removal by methanotroph activity.

We investigated the balance between CH4 supply by pore
water diffusion and the quantity of CH4 emitted to the at-
mosphere in four peatlands situated in Wales, UK during
the summer of 2003 to determine the potential contribution
of CH4 diffusion through pore water to total emissions and
the degree to which methanotrophs may consume CH4 trans-
ported via pore water diffusion. Detailed (cm scale resolu-
tion) in situ profiles of dissolved CH4 concentration were
measured to estimate the supply of CH4 into the methan-
otrophic zone at the sites. Complete attenuation of CH4
transport via pore water diffusion was evident when the abun-
dance of dissolved CH4 was ∼0µmol l−1 within the satu-
rated zone. We compared estimated rates of CH4 transport
by pore water diffusion to total quantites of CH4 emitted to
the atmosphere. We also used aerobic incubations of peat
amended with CH4 to assess differences in CH4 uptake kinet-
ics with depth and between two of the peatlands (a raised bog
and an intermediate fen). In situ CH4 concentration data and
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Table 1. Sites descriptions (after Hornibrook and Bowes, 2007).

Site Wetland Type Altitude pHb Dominant Vegetation

(m a.s.l.)a

Crymlyn Bog intermediate fen 9 5.5±0.5 (n = 20) Juncus squarrosum, Carex elata,
Eriophorum gracile,
Cladium mariscus, Sphagnumspp.

Gors Lwyd upland valley mire 385 4.9±0.6 (n = 20) Erica tetralix, Eriophorum angustifolium,
Sphagnumspp.

Blaen Fign blanket bog 504 4.2±0.3 (n = 20) J. squarrosus, Calluna vulgaris,
Trichophorum cespitosum, Molinia caerulea,
Sphagnumspp.

Cors Caron raised bog 160 4.2±0.1 (n = 20) Rhyncospora alba, T. cespitosum, C. vulgaris,
Narcethium ossifragum, M. caerulea, Sphag-
numspp.

a m a.s.l. = meters above sea level
b Mean pore water pH±standard deviation (1σ ; n = # of measurements) from 5 to 45 cm depth for May to August 2003.

the determinedµm (maximum rates of CH4 oxidation) and
Ks (half saturation concentrations) values were employed to
estimate the capacity for CH4 consumption in relation to the
supply of CH4 by pore water diffusion. Finally, we also in-
vestigated relationships between cumulative rainfall in the
period preceding pore water sampling and the distribution
of CH4 with depth in the peatland soils to determine whether
the timing of sampling impacted our results.

2 Site characterisation

2.1 Peatland descriptions

The locations of the four peatlands investigated in Wales,
UK are shown in Fig. 1 and details about peatland eleva-
tion, pore water pH, and dominant vegetation are provided
in Table 1. Crymlyn Bog (51◦38’11′′ N, 03◦53’18”W) and
Gors Lwyd (52◦15’44′′ N, 03◦34′44′′ W) both receive water
input from surrounding uplands via overland and subsurface
flow and thus have slightly more alkaline pore water than
Blaen Fign (52◦15’44′′ N, 03◦34′ 44′′ W) and Cors Caron
(52◦15′ 24′′ N, 03◦55′ 00′′ W), which are ombrotrophic bogs.
Sphagnumspp. were common at all sites; however, pre-
dictably the abundance of vascular plants was highest at the
two minerotrophic peatlands Crymlyn Bog and Gors Lwyd.
At each peatland, two adjacent stations (∼1 m apart) were
chosen for installation of pore water equilibrators and ground
collars to support flux chambers. At Crymlyn Bog and Blaen
Fign the ground collars enclosed significantly different pro-
portions of bryophytes and vascular plants withSphagnum
moss dominating at station 1 and sedge, grass and rush
species at station 2.

2.2 Weather data

Daily precipitation data for the period January to Decem-
ber 2003 collected at UK Meteorological Office Stations at
Swyddffynnon, Cwmystwyth, Llangurig and Swansea Victo-
ria Park (Fig. 1) were obtained from the British Atmospheric
Data Centre (BADC) archive.

3 Analytical Methods

3.1 Sample collection

Pore water equilibrators and ground collars for flux chambers
were installed at the sites several months prior to the onset
of sampling which began in the spring of 2003. Measure-
ments of in situ concentrations of pore water CH4 and CH4
flux rates to the atmosphere were performed between April
and September 2003 at the four peatlands. One peatland was
sampled each week yielding on average one monthly data set
for each site during the growing season. Peat cores were col-
lected in September 2005 for follow-up experiments investi-
gating differences in methane oxidation kinetics with depth
at Cors Caron and Crymlyn Bog.

3.2 Methane flux

Collection methods and CH4 flux data for all sites were
reported previously in Bowes and Hornibrook (2006) and
Hornibrook and Bowes (2007). Briefly, flux chambers and
ground collars were constructed of polyvinyl chloride (PVC)
and had a combined volume of either 11 or 15 l. The cham-
bers were sealed onto the collars using large neoprene rub-
ber o-rings coated with silicon grease and then covered with
opaque lids also fitted with greased o-rings. Air samples
were collected via a 4-m length of 3-mm OD Tygon tube
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Fig. 1. Locations of peatland study sites and Met Office MIDAS
Land Surface Observation Stations (MOS = Met Office Station) in
Wales, UK. Details of the four peatlands are provided in Table 1,
including map coordinates.

installed in the lid of each chamber. A second identical tube
fitted in the lid was kept open during sampling to prevent
subambient pressures from forming while air samples were
collected. Each chamber contained a small battery operated
fan to mix the headspace. Air samples for CH4 flux measure-
ments were collected at 0 (chamber open), 5, 15 and 30 min
in 60 ml polypropylene syringes fitted with gas-tight valves.
Independent flux determinations were conducted in triplicate
for each station during each sampling trip.

3.3 Pore water methane

Collection methods and pore water CH4 data for Blaen
Fign were reported previously in Bowes and Hornibrook
(2006). The dissolved CH4 abundances for Crymlyn Bog,
Gors Lwyd and Cors Caron are reported here for the first
time. Briefly, the collection technique employed membrane-
exchange equilibrators constructed of PVC that were in-
stalled∼15 cm from each ground collar. The equilibrators
enabled sampling of pore water gases at closely spaced depth
intervals (2 cm resolution) for measurement of dissolved
CH4 abundance. The design of Hesslein (1976) was modified
to permit input and removal of de-ionised, de-gassed water
after ground installation through 3-mm OD Tygon tubes con-
nected to 1×25×0.5 cm (H×W×D) troughs that were sealed

with a gas and ion permeable membrane filter (0.2µm pore
size; HT-200, Pall Life Sciences).

3.4 Peat cores and properties

Peat samples for porosity measurements and CH4 oxi-
dation kinetic experiments were obtained from monoliths
(100 cm2 cross-sectional area×120 cm length) collected us-
ing a Wardenaar peat corer (Eijelkamp, Netherlands). The
peat was sectioned in the field into 1 dm3 blocks, sealed in
air tight bags and then packed in ice for transport to the lab-
oratory.

Subsamples were extracted from the peat blocks in the
laboratory to determine bulk density (ρbulk; g cm−3) and
porosity(φ; unitless). A specific volume of peat was dried
to constant weight to determineρbulk. Porosity (φ) was cal-
culated from the equation:

φ = 1 −
ρbulk

ρparticle
(1)

whereρparticle (particle density; g cm−3) was assumed to be
1.4 g cm−3.

3.5 Soil temperature and water table level

Soil temperature was measured using an Omega Model HH-
41 handheld thermistor thermometer and a thermistor probe.
The latter consisted of a nylon-coated type-K thermocouple
encased within a 5-cm long brass tube that had a wall thick-
ness of 0.15 mm. The lead wire of the thermocouple was
passed through a 2-m long stainless steel tube enabling the
protected thermocouple tip to be inserted to specific depths
within the peat soil. A nylon plug was used to isolate ther-
mally the thermocouple tip from the stainless steel tube.

The ambient water-table level at each peatland was mea-
sured relative to the moss surface in a 10×10 cm hole that
had been cut during a previous visit using the Wardenaar
corer.

3.6 Methane concentration analysis

Methane concentrations in air samples collected for de-
termining flux rates were analyzed using a Carlo Erba
HRGC5300 gas chromatograph (GC) equipped with gas-
sampling valve (1 cm3 sample loop), Porapak QS packed col-
umn (3 mm×4 m), and flame ionization detector (FID). The
carrier gas was helium at 35 ml min−1, and FID support gases
were hydrogen at 30 ml min−1 and zero air at 400 ml min−1.
Samples were injected through 1 cm3 cartridges packed with
magnesium perchlorate to remove H2O. The relative pre-
cision of CH4 analysis in air samples typically was better
than ±2% based on replicate injections of BOC Specialty
Gases alpha-gravimetric standards and actual samples. Flux
rates were determined from the slope of linear regression
equations fitted to the change in chamber CH4 concentra-
tion versus time. Rates were corrected for the areal coverage
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and volume of the chambers, and are expressed in units of
mg CH4 m−2 d−1.

Methane was stripped from pore water into a headspace of
helium using the method of McAullife (1971). The resulting
gas samples were analyzed on the Carlo Erba HRGC5300
gas chromatograph (GC) under the same conditions used for
analysis of CH4 in flux samples. Pore water concentrations
of CH4 were corrected for differences in peat porosity and
are expressed in units ofµmol CH4 l−1.

3.7 Methane oxidation kinetics

Peat monoliths obtained from Cors Caron and Crymlyn Bog
were subsampled in 5 cm slices (∼0.5 dm3) centred on five
depths (5, 12.5, 20, 27.5 and 35 cm). The material was slur-
ried in a 1:1 ratio with autoclaved de-ionised water. Slurry
from each depth was incubated in triplicate at 15◦C in crimp-
top 35 ml Wheaton serum vials containing a headspace of
CH4 in zero air corresponding to initial dissolved CH4 con-
centrations (S0) of ∼10, 25, 50, 100, 250 and 500µM. An
additional slurry sample for each depth was incubated in sin-
gular as a blank containing a headspace of air only to con-
firm the absence of net CH4 production. Within two hours of
loading the vial headspace, the actual value ofS0 in each vial
was determined by GC-FID analysis of CH4 in the headspace
and Henry’s Law. The rate of CH4 oxidation was determined
subsequently from the decrease in headspace concentration
of CH4 from time 0 (initial) to 24, 48 and 72 h. Gas samples
were extracted using a 50µl Hamilton glass syringe fitted
with a side-hole needle and gas-tight valve. Methane con-
centration was analyzed in triplicate using a Perkin Elmer
Clarus 500 gas chromatogram fitted with an Elite PLOT Q
mega-bore column (30 m×0.53 mm diameter) and FID. The
carrier gas was helium at 45 ml min−1 and FID support gases
were hydrogen at 35 ml min−1 and zero air at 450 ml min−1.
The CH4 oxidation rates determined independently in tripli-
cate for each of the sixS0 values (i.e., 18 rate measurements
per depth) were used to determine the maximum specific rate
of CH4 uptake (µm) and half saturation concentrations (Ks)
for each depth interval in the two peatlands. Oxygen pre-
sumably was not a limiting factor in our experiments given
that the incubations were conducted in zero air and hence the
single Monod expression was used to describe methanotroph
consumption of CH4 in the vials:

µ=

µm [CH4]

Ks + [CH4]
(2)

whereµ is the rate of methanotrophy (µmol l−1 h−1), µm

is the maximum specific rate of CH4 uptake (µmol l−1 h−1),
[CH4] is the concentration of CH4 (µmol l−1) (i.e., S0 val-
ues) andKs is the concentration of CH4 (µmol l−1) required
to attain half the maximum rate of CH4 uptake. Equation (2)
was fitted to the CH4 oxidation rate andS0 data using non-
linear regression software (Prism v4.0, GraphPad Software,
San Diego, CA, USA).

3.8 Diffusion rates for CH4 in pore water

The rate of upward CH4 diffusion in pore water at each peat-
land was determined using Ficks 1st Law:

J = DS

(
d [CH4]

dz

)
(3)

whereJ is the flux rate (µmol cm2 s−1), Ds is the temper-
ature and porosity corrected diffusion coefficient for CH4 in
water (cm2 s−1) andd[CH4]/dzis the CH4 concentration gra-
dient (µmol cm−3 cm−1) with depth (cm) in peat soils. Ficks
1st law was used because the amount of time required to
sample an equilibrator profile (∼1 h) is small and hence the
measured gradients can be treated as being effectively steady
state. Final values ofJ are expressed in mg CH4 m−2 d−1

to facilitate comparison with CH4 fluxes to the atmosphere
measured using static chambers. The temperature depen-
dency ofDS was based upon polynomial regression of dif-
fusion coefficients for CH4 in water in the range 0 to 35◦C
(83rd Edition of the Handbook of Physics and Chemistry)
which yielded the relationship:

D = 8.889× 10−11T 3
− 1.714× 10−9T 2 (4)

+3.721× 10−7T + 8.771× 10−6

A value of D was calculated for each CH4 profile based
upon the mean soil temperature measured in situ across the
depth interval for which pore water CH4 concentration data
were linearly regressed to determined[CH4]/dz. Values ofD
were porosity corrected using Eq. (5) from Lerman (1979):

DS = Dφ2 (5)

whereφ is porosity (unitless). For each pore water data set,
an average value ofφ was calculated from in situ porosity
measurements collected across thed[CH4]/dzdepth interval.

4 Results

4.1 Daily precipitation and timing of sampling

The timing of sample collection at Crymlyn Bog, Cors
Caron, Blaen Fign and Gors Lwyd is shown in Fig. 2 in re-
lation to total daily precipitation measured at UK Meteoro-
logical Office Stations (MOSs) situated near the peatlands.
Swansea Victoria Park (Fig. 2a) and Swyddffynnon (Fig. 2b)
MOSs are located immediately adjacent to Crymlyn Bog and
Cors Caron, respectively, providing accurate daily precipita-
tion records for each site. There are no active MOSs in close
proximity to either Blaen Fign or Gors Lwyd because of
their remote locations in the Elan Valley. Consequently daily
precipitation records from the Cwmystwyth and Llangurig
MOSs, which geographically bracket the peatland sites, have
been used (Fig. 2c and d)
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Fig. 2. Sample collection dates at Crymlyn Bog (CB1 27.5.03; CB2
2.7.03; CB3 28.7.03; CB4 19.8.03), Cors Caron (CC1 7.5.03; CC2
17.6.03; CC3 14.7.03; CC4 25.8.03), Blaen Fign (BF1 30.4.03;
BF2 4.6.03; BF3 8.7.03; BF4 5.8.03; BF5 2.9.03), and Gors
Lwyd (GL1 19.5.03; GL2 24.6.03; GL3 23.7.03; GL4 11.8.03)
and daily precipitation amounts for 2003 from Met Office MIDAS
Land Surface Observation Stations at Swansea Victoria Park (src id
1257; 51◦36′43′′N, 03◦57′43′′W; 8 m a.s.l.), Swyddffynnon (src id
1204; 52◦16′19′′N, 03◦54′54′′W; 168 m a.s.l.), Cwmystwyth (src id
1211; 52◦21′29′′N, 03◦48′07′′W; 301 m a.s.l.), and Llangurig (src
id 10432; 52◦24′14′′N, 03◦36′22′′W; 273 m a.s.l.).

4.2 Pore water CH4

Pore water profiles of dissolved CH4, ambient water ta-
ble levels, linear regression curves from which values of
d[CH4]/dz were obtained, and the 3 cm thick zone imme-
diately beneath depth [CH4]0 in soils at the four peatlands
during the summer of 2003 are shown in Figs. 3 to 6. Pore
water CH4 concentration profiles at all sites exhibited a sim-
ilar shape although the size of the zone beneath the water
table in which dissolved CH4 abundance was below the de-
tection limit of our analysis method varied widely between
peatlands and sampling months at individual sites. The po-
tential impact of the magnitude and timing of rainfall events
on the size of the zone where [CH4] <0µmol l−1 will be ex-
plored further in Sect. 5.1.

4.3 CH4 oxidation kinetics

Maximum potential rates of CH4 oxidation (µm) and half
saturation concentrations (Ks) determined from incubations
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Fig. 3. Pore water profiles of dissolved CH4 measured at Crymlyn
Bog during the summer of 2003 from pore water equilibrators E1
and E2. Water-table level in each panel is indicated by a dotted hori-
zontal line and inverted filled triangle. The dashed line through shal-
low CH4 values trending to zero concentration is a regression line
fitted to the data to determine the gradient d[CH4]/dz, which was
used to calculate rates of CH4 flux into the methanotrophic zone
and the depth at which [CH4] = 0µmol l−1 (i.e., the y-intercept de-
noted as [CH4]0). The gray horizontal bar delineates a 3 cm thick
zone immediately beneath depth [CH4]0 in which potential rates
of CH4 oxidation were calculated based upon experimentally deter-
mined kinetic parameters (see Sect. 4.3) and in situ dissolved CH4
concentrations. If gaps existed in pore water [CH4] data, missing
values were interpolated between adjacent CH4 concentrations, in-
cluding when necessary the point [CH4]0 = 0µmol l−1.

Biogeosciences, 6, 1491–1504, 2009 www.biogeosciences.net/6/1491/2009/



E. R. C. Hornibrook et al.: Methanotrophy potential versus methane supply in peatlands 1497

Table 2. Maximum CH4 oxidation rates (µm) and half saturation constants (Ks )

Depth S0= 10 to 500µmol l−1 S0= 10 to 100µmol l−1

Site Interval µm±SEa Ks±SEa µm±SEa Ks±SEa

cm µmol l−1 h−1 µmol l−1 µmol l−1 h−1 µmol l−1

Crymlyn Bog 2.5 to 7.5 26±8 231±116 4.1±0.9 8.3±8.0
10 to 15 70±78 903±1329 dncb dncb

17.5 to 22.5 40±19 198±187 3.3±1.9 10.2±20.1
25 to 30 8±2 137±93 1.8±1.8 11.5±40.0
32.5 to 37.5 dncb dncb dncb dncb

Cors Caron 2.5 to 7.5 24±3 83±30 21.1±6.4 68.1±38.0
10 to 15 103±97 881±1091 15.6±3.9 45.8±25.1
17.5 to 22.5 106±88 956±1026 14.5±4.0 51.2±28.6
25 to 30 43±17 353±208 10.5±1.9 42.6±17.1
32.5 to 37.5 25±8 54±49 dncb dncb

a SE = standard error
b dnc = did not converge

of slurried peat are presented in Table 2. The methanotro-
phy rate andS0 data were fitted twice with Eq. (2): once
using all data (S0 = 10 to 500µmol l−1) and a second time
excluding theS0 = 250 and 500µmol l−1 measurements (i.e.,
usingS0 = 10 to 100µmol l−1). Theµm andKs values de-
termined using all data are anomalous, in particular, theKs

values which exceed all half saturation constants reported to
date for low affinity methanotropy by 1 to 2 orders of mag-
nitude. Theµm values are similarly high with values from
the two samples in the depth interval 10 to 22.5 cm at Cors
Caron being∼10 times greater than any maximum potential
rates for CH4 oxidation in freshwater environments reported
to date. These anomalous values appear to result from the
disproportionate effects of high CH4 oxidation rates deter-
mined from the small number of incubations havingS0 = 250
and 500µmol l−1. Such concentrations of CH4 are uncom-
mon in situ at the oxic-anoxic interface in peatlands and con-
sequently, Eq. (2) was fit to the data a second time exclud-
ing CH4 oxidation rates from the two highest values ofS0
(250 and 500µmol l−1). The resultingµm andKs values are
consistent with kinetic parameters typically associated with
low affinity methanotrophy in aerobic environments. The
half saturation concentrations are still amongst the highest
reported to date; however, they are similar to published val-
ues ofKs for peat soils, which tend to be large relative to
other methanotrophic environments (Segers, 1998).

Notably theS0 = 10 to 100µmol l−1 set of depth profiles
of µm andKs samples do not show maxima at depths near the
lower limit of water table fluctuations (which are present in
theµm andKs values from analysis of the complete data set).
Insteadµm values decrease steadily with increasing depth.
The large standard errors associated with theKs parameter
preclude any broad generalisation about trends with depth of
the half saturation constant in soils at either site.

4.4 Rates of CH4 flux and consumption

A summary of rates of internal and external CH4 fluxes
(all sites) and subsurface methanotrophy potentials (Crym-
lyn Bog and Cors Caron only) are presented in Table 3. Rates
of upward CH4 flux into the methanotrophic zone were de-
termined according to the method described in Sect. 3.8 and
then scaled to a cross-sectional area of 1 m2. The majority
of CH4 fluxes by pore water diffusion had a magnitude<10
mg m−2 d−1. The concentration of dissolved CH4 at the wa-
ter table surface was>0µmol l−1 in only 5 of the 33 pore
water CH4 profiles (Figs. 3c, e, g, 6c and f), suggesting that
diffusion of CH4 across the air-water interface contributes lit-
tle to atmospheric emissions of CH4 at these sites. Methane
escaping from the water surface within the peat profile must
still transit pore spaces and methanotroph populations in the
unsaturated zone before reaching the atmosphere.

In all cases the rate of upward CH4 flux was less than the
capacity for CH4 oxidation determined in a 3 cm thick zone
immediately below the depth at which [CH4] = 0µmol l−1

(Table 3). The potential for methanotrophy in the 3 cm thick
zone was estimated by integrating rates of CH4 oxidation cal-
culated by substituting values ofµm andKs , and in situ dis-
solved CH4 concentrations into Eq. (2). A peat interval of
3 cm downward from the point [CH4]0 was chosen because
(i) depths above the point [CH4]0 yield methanotrophy rates
(µ) equal to zero using Eq. (2), (ii) 3 cm was the minimum
depth reported by Beckmann and Lloyd (2001) for penetra-
tion of O2 by diffusion into a Scottish peat soil, and (iii) our
aim was to provide a conservative estimate of CH4 oxidation
potentials based upon the kinetic parameters determined in
laboratory incubations. For example, the values of potential
capacity for CH4 uptake noted in Table 3 (mg CH4 m−2 d−1)
are∼3 orders of magnitude smaller than integrated oxidation
rates reported by Sundh et al. (1994) for boreal peatlands in
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Table 3. Internal and external methane fluxes and subsurface oxidation potentials.

Station 1a Station 2a

CH4 flux into Potential CH4 Surface CH4 flux into Potential CH4 Surface
Site & Date Oxidation zoneb Oxidation ratec CH4 Fluxd Oxidation zoneb Oxidation ratec CH4 Fluxd

mg CH4 m−2 d−1 mg CH4 m−2 d−1 mg CH4 m−2 d−1 mg CH4 m−2 d−1 mg CH4 m−2 d−1 mg CH4 m−2 d−1

Crymlyn Bog
27-May-03 4.4±0.2 35.2 26.3±16.4 (3) 156±68 (3)
2-Jul-03 15.8±5.7 30.7 42.6±22.6 (3) 9.3±0.9e 9.6 130±16 (3)
28-Jul-03 1.6±0.1 26.7 52.4±17.6 (3) 2.4±0.3e 20.8 279±27 (3)
19-Aug-03 3.4±0.4 18.8 116±62 (3) 2.4±0.3e 30.0 287±116 (3)
Gors Lwyd
19-May-03 2.9±0.3 – 4.7±2.8 (2) 4.4±0.3 – 2.3±1.5 (2)

24-Jun-03 17.6±2.8 –
–
–

– 13.7±0.0 –
–
–

33.6±9.8 (3)

23-Jul-03 17.5±0.0 – 461±140 (2) 6.1±1.1 – 168 (1)

11-Aug-03 7.7±1.2 –
—

872 (1) 5.4±2.5 –
–

386±251 (3)

Blaen Fign
30-Apr-03 5.6±0.8 – –0.8±0.7 (3) 1.9±0.2 – 36.4±27.5 (3)

4-Jun-03 2.5±0.3 – 17.9±2.4 (3) 6.1±1.1 – 187±30 (3)

8-Jul-03 3.9±1.0 – 7.3±5.2 (3) 3.4±0.1 – 73.5±77.8 (3)

5-Aug-03 1.3±0.4 – 10.5±2.2 (3) 3.1±0.0 – 85.4±58.6 (3)

2-Sep-03 2.0±0.3 –
–

21.4±12.5 (3) 3.6±0.4 –
–

99.4±16.7 (3)

Cors Caron
7-May-03 5.3±1.3 59.3 4.8±2.4 (3) 8.1±0.8 63.4 0.3±0.1 (2)
17-Jun-03 1.5±0.1e 35.6 8.8±3.2 (3) 1.4±0.0 34.5 12.2±2.4 (3)
14-Jul-03 2.3±0.6 15.1 11.8±4.2 (3) 1.3±0.4e 5.3 10.1±3.6 (3)
25-Aug-03 2.0±0.2 34.9 18.2±7.7 (3) 2.7±0.5 32.3 12.8±4.3 (3)

a The ground surface at station 1 contained a greater abundance ofSphagnumand fewer vascular species than station 2 at Crymlyn Bog and
Blaen Fign.
b Rates of internal CH4 flux into the zone of methanotrophy based upon Ficks 1st law (Eq. (2)) and linear regression analysis of pore water
CH4 data shown in Fig. 2 to 5.
c Potential rate of CH4 oxidation in a 3 cm thick zone below the depth at which [CH4] = 0µmol l−1 defined by the y-intercept of linear
regression analysis of pore water CH4 concentration data in Figures 2 to 5. The total potential rate of CH4 oxidation in the 3 cm thick zone is
based upon actual CH4 concentrations measured in peat soils and the depth distribution ofµm andKs parameters determined experimentally
for Crymlyn Bog and Cors Caron (Table 2).
d Total diffusive CH4 flux to the atmosphere measured using closed dynamic chambers and reported previously in Bowes and Hornibrook
(2006) and Hornibrook and Bowes (2007). The number of chamber deployments is shown in brackets (i.e.,n = 1, 2 or 3). Wheren = 3 the
error shown is a standard deviation and forn = 2 the± value is the range. The number of flux measurements omitted because of evidence of
natural or induced ebullition was: Crymlyn Bog 0 of 24, Gors Lwyd 10 of 24, Blaen Fign 0 of 30, and Cors Caron 1 of 24.
e The concentration of dissolved CH4 in pore water at the subsurface air-water interface was>0µmol l−1 on these days.

Sweden that were based upon a 0 to 60 cm depth interval (3.0
to 22.1 g CH4 m−2 d−1). Integration over large depth inter-
vals is accurate when a double Monod expression incorpo-
rating availability of O2 can be employed; however, we did
not measure either in situ concentrations of pore water O2 or
kinetic parameters associated with O2 consumption, hence
we opted for the conservative approach of applying the de-
terminedµm andKs values to a small depth interval in which
O2 was likely to be available.

The integrated methanotrophy potential rates were scaled
to an area of 1 m2 to facilitate comparison with pore wa-
ter CH4 diffusive fluxes and directly measured rates of CH4
emission to the atmosphere. The latter also are shown in
Table 3 and have been reported previously in Bowes and
Hornibrook (2006) and Hornibrook and Bowes (2007). The
CH4 fluxes to the atmosphere are due only to steady-state
diffusion processes (i.e., pore water or plant-mediated trans-
port). Chamber measurements that exhibited erratic pulses
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Fig. 4. Pore water profiles of dissolved CH4 measured at Gors
Lwyd during the summer of 2003 from pore water equilibrators E1
and E2. Legend details are the same as described in the caption of
Fig. 3.
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Fign during the summer of 2003 from pore water equilibrators E1
and E2. Legend details are the same as described in the caption of
Fig. 3.
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Fig. 6. Pore water profiles of dissolved CH4 measured at Cors
Caron during the summer of 2003 from pore water equilibrators
E1 and E2. Legend details are the same as described in the caption
of Fig. 3.

(i.e., ebullition) were excluded from the flux analysis because
it could not be determined conclusively whether the events
were natural or induced artifically during sample collection
(see Table 3, footnote d).

In the minerotrophic peatlands (Crymlyn Bog and Gors
Lwyd), CH4 emission rates to the atmosphere typically ex-
ceeded maximum rates of CH4 transport by pore water diffu-
sion by one to two orders of magnitude, in particular, during
summer months (Table 3). Fluxes of CH4 to the atmosphere
were much smaller from the ombrotrophic peatlands (Blaen
Fign and Cors Caron) with the exception of the sedge-rich
plot (station 2) at Blaen Fign, consistent with the well known
ability of many aquatic vascular plants to mediate gas trans-
port via aerenchymatous tissue.

5 Discussion

5.1 The influence of precipitation events on pore water
CH4 profiles

Rates of both aerobic and anaerobic microbial processes in
peat soils can be affected by rainfall events through the in-
troduction of electron acceptors such as O2, SO2−

4 and NO−

3
(Dise and Verry, 2001; Gauci et al., 2002; Gauci et al., 2004).
Concentrations of microbial substrates in shallow peat layers,
including dissolved gases (e.g., CH4), also may be influenced
through dilution which may affect rates of processes such as
methanogenesis and methanotrophy (Kettunen et al., 1996).
Thus the timing of CH4 flux measurements or sampling of
pore water CH4 concentrations should be considered when
possible in relation to short-term precipitation events.

The distance between the water table level and depth
where [CH4] = 0µmol l−1 (i.e., [CH4]0) differed greatly be-
tween the four peatland sites and sampling periods at indi-
vidual sites (Figs. 3 to 6). The potential influence of precipi-
tation input on this parameter was explored by comparing the
depth to [CH4]0 in the saturated zone with rainfall amounts
on (i) the day of sampling, and (ii) the periods 1, 3, 5 and 7
days before sampling of pore water. Significant correlations
existed with cumulative rainfall during the period 3 days
prior to pore water sampling (Fig. 7 and Table 4) but not the
amount of rainfall over shorter or longer periods before sam-
ple collection (data not shown;r2 values typically<0.40). A
few of the weaker correlations in Fig. 7 (e.g., Cors Caron, sta-
tions 1 and 2) result from single data points heavily skewing
the linear regression analysis because of the small size of the
data sets (i.e., typicallyn = 4). Regression lines have a nega-
tive slope only for Crymlyn Bog, the most minerotrophic of
the peatlands which receives significant moisture input from
groundwater as well as precipitation. For the other three
peatlands, including Gors Lwyd which is positioned at the
head of a small catchment, the slopes of the regression equa-
tions are positive. The analysis in Table 4 and Fig. 7 suggests
that in the absence of significant rainfall events, the depth of

Biogeosciences, 6, 1491–1504, 2009 www.biogeosciences.net/6/1491/2009/



E. R. C. Hornibrook et al.: Methanotrophy potential versus methane supply in peatlands 1501

Table 4. Equations for linear regression curves in Fig. 7.

Site Station 1 Station 2

Crymlyn Bog y = –0.41 x +5.13 (r2 = 0.98;n = 4) y = –0.22 x –2.95 (r2 = 0.29;n = 3)
Gors Lwyd y = 0.86 x +9.17 (r2 = 0.94;n = 4) y = 0.68 x +11.05 (r2 = 0.81;n = 4)
Blaen Fign y = 0.74 x +5.45 (r2 = 0.91;n = 5) y = 0.62 x +4.77 (r2 = 0.40;n = 5)
Cors Caron y = 2.03 x –0.29 (r2 = 0.61;n = 4)a y = 0.71 x +5.06 (r2 = 0.07;n = 4)b

a Exclusion of 17 Jun 2003 data point yields y = 1.61+3.01 (r2 = 0.84).
b Exclusion of the 25 Aug 2003 data point yields y = 1.61–1.29 (r2 = 0.99).
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Fig. 7. Distance from water table surface to depth of nil CH4 con-
centration plotted against the cumulative amount of precipitation
from the 3-day period prior to collection of the pore water CH4
samples. The y-axis parameter is explained graphically in the in-
set to panel(a). Y-axis data in panels (a) and(b) are from stations
1 and 2, respectively, at each peatland. The symbols correspond
to Crymlyn Bog (squares), Cors Caron (triangles), Blaen Fign (cir-
cles), and Gors Lwyd (diamonds). Filled symbols represent times
when [CH4] was >0µmol l−1 at the air-water interface. Precip-
itation data (shown in Fig. 2) were taken from Swansea Victoria
Park (src id 1257) for Crymlyn Bog, Swyddffynnon (src id 1204)
for Cors Caron, and Cwmystwyth (src id 1211) for Blaen Fign and
Gors Lwyd. The dashed lines are linear regression analysis curves
fitted to the data for each peatland. The equations for the eight re-
gression lines are listed in Table 4.

[CH4]0 is not as variable as implied in Figs. 3 to 6. The large
range of values for this parameter likely reflect differences
in recent input of precipitation rather than microbiological
driven changes in methane production and consumption. The
“normal” depth of [CH4]0 appears to vary between individ-
ual peatlands as indicated by differences in the y-intercepts
of the regression equations in Table 4 (e.g.,∼10 cm for Gors
Lwyd versus∼5 cm for Blaen Fign).

Noteworthy in Fig. 7 are the infilled data points for Cors
Caron and Crymlyn Bog that lie largely at x-values of
∼0 mm (i.e., when little or no rainfall occurred prior to the
sampling period). The infilled points (5 in total) represent
times when the concentration of dissolved CH4 at the wa-
ter table level exceeded 0µmol l−1 and CH4 transport was
occurring across the subsurface air-water interface. The cor-
relations in Table 4 will be unimportant during periods of low
rainfall and at those times CH4 most likely is able to diffuse

across the water table surface because heterotrophic activity
in the unsaturated zone has depleted O2 from pore spaces.

5.2 CH4 oxidation kinetics

The µm values determined for different depth intervals
at Crymlyn Bog and Cors Caron (Table 3;S0 = 10 to
100µmol l−1 values) lie within the range of potential
methane oxidation rates (0.1 to 100µmol m−3 s−1) compiled
by Segers (1998) for different types of environments that host
low affinity methanotrophic activity. Conversion of units in
Table 3 for comparison yieldµm values of 0.5 to 1.1 and
2.9 to 5.9µmol m−3 s−1, respectively, for Crymlyn Bog and
Cors Caron. Half saturation constants for Cors Caron also
are higher than values for Crymlyn Bog. It is unclear why
methanotrophs in the raised bog environment should have
a lower affinity for substrate (i.e., higherKs) and molecu-
lar biology data are unavailable to determine whether dif-
ferences existed in methanotrophy communities at the two
peatlands. Athough the two peatlands differ in the com-
position and pH of their soil solution, we cannot speculate
about potential relationships between the parametersµm and
Ks , and factors such as pH because slurries were diluted 1:1
with deionized water. The buffering capacity of peat from
the two sites would have differed considerably (i.e., rainfed
versus groundwater influenced). However,Ks values cited
by Segers (1997) for peat soil ranged from 1 to 45µmol l−1,
encompassing the values determined for Crymlyn Bog. Wat-
son et al. (1997) reported aKs of 57.9µmol l−1 for CH4
oxidation in acidic peat from Ellergower Moss, compara-
ble to the range of half saturation constants determined with
depth for Cors Caron, which also is a raised bog (i.e., 42.6 to
68.1µmol l−1; Table 3).

The range ofµm andKs values in Table 3 is noteworthy
also because of the difficulties such variability presents in ef-
forts to model CH4 dynamics in peatland soils. For example,
one of the more rigorous process-based models for estimat-
ing CH4 flux from peatlands (Walter and Heimann, 2000)
employs the assumption that the parametersµm and Ks

for methanotrophy are constant with depth and in different
types of wetlands, assigning values of 20µmol l−1 h−1 and
5µmol l−1, respectively. The meanµm values for Crymlyn
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Bog and Cor Caron suggest that maximum rates of CH4 ox-
idation may differ between minerotrophic and ombrogenous
mires and in both cases appear to decrease gradually with
depth. As noted previously, half saturation concentrations
also may be higher in acidic rainfed peatlands (e.g., Table 3
and Watson et al., 1997). Availability of kinetic parame-
ters describing CH4 oxidation in peatlands is too limited at
present to attempt to develop generalised relationships de-
scribingµm andKs in different types of peatlands and spa-
tially and temporally within individual sites.

5.3 Methane supply, demand and net flux

The amount of upward CH4 transport in all four peatlands via
pore water diffusion typically was<10 mg m−2 d−1 and ex-
ceeded this value in only 4 of the 33 pore water CH4 profiles
collected during the summer of 2003. Rates of CH4 emis-
sion to the atmosphere from Blaen Fign and Cors Caron were
the same order of magnitude as pore water CH4 diffusion
rates; however, it is unlikely that CH4 transport by this mode
contributed to atmospheric flux. The stable carbon isotope
compositions (δ13C values) of CH4 in pore water and surface
flux have been used previously to demonstrate that diffusive
emission of CH4 to the atmosphere at all four peatlands oc-
curs predominately via plant-mediated transport (Bowes and
Hornibrook, 2006; Hornibrook and Bowes, 2007). For ex-
ample, CH4 emitted at a higher rate from sedge-rich station
2 at Blaen Fign hasδ13C values that are statistically indistin-
guishable from CH4 emissions fromSphagnum-rich station
1 (Bowes and Hornibrook, 2006). Theδ13C composition of
CH4 emissions from both plots are13C-depleted by∼15 to
20‰ relative to pore water CH4, which eliminates the pos-
sibility that the small quantities of CH4 emitted from station
1 are residual CH4 that has survived transit across the unsat-
urated zone (Happell et al., 1994; Popp et al., 1999). Sim-
ilarly, CH4 emissions from Cors Caron, Crymlyn Bog and
Gors Lwyd also are13C-depleted relative to the pore wa-
ter CH4 pool (Hornibrook and Bowes, 2007). These con-
clusions about transport processes based upon stable isotope
data are consistent with the observation reported here that
low affinity methanotrophs in the 3 cm thick zone where CH4
first appears in the pore water pool (i.e., immediately below
the depth [CH4]0) have a capacity for CH4 consumption that
significantly exceeds the upward CH4 supply via pore water
diffusion (Table 3). While low affinity methanotrophs appear
to consume the bulk of CH4 transported along concentration
gradients in pore water, they do not provide a robust bar-
rier to CH4 flux from peatlands because of the prevalence of
CH4 movement through vascular plants which bypasses the
methanotrophy filter. During June to August, microbial CH4
oxidation rates ranged from 0.8 to 40.7% of total CH4 flux to
the atmosphere in Crymlyn Bog and Gors Lwyd; however,
the majority of values were<10%. In the same months,
the percentages were higher at sedge-poor plots at the om-
brotrophic mires (Blaen Fign,∼9.3 to 53.4%; Cors Caron,

11.0 to 21.1%), but the difference in proportions is unim-
portant because as indicated byδ13C data little or none of
the diffusion transported CH4 contributed to surficial emis-
sions (Hornibrook and Bowes, 2007). Consequently, in the
absence of bacterial CH4 oxidation the CH4 flux rate from
minerotrophic peatlands would not be significantly greater
in absolute terms but the increase would be proportionally
much larger from the ombrotrophic bogs. The steady state
flux rates of>100 mg CH4 m−2 d−1 commonly observed
from wetland soils (e.g., Whalen, 2005) would be difficult to
achieve if pore water diffusion alone was the dominant trans-
port mechanism. The bulk of CH4 emitted from peatlands
typically occurs via vascular plants and possibly ebullition,
although data for the latter transport process remain sparse
(Baird et al., 2004).

6 Conclusions

The depth below ambient water table levels at which dis-
solved methane is depleted to∼0µmol l−1 by methan-
otrophic activity varies widely between peatlands and tem-
porally within individual peatlands. Short-term precipitation
events appear to increase the depth to [CH4]0 without nec-
essarily disturbing dissolved CH4 profiles. In the absence of
recent rainfall input, the depth of [CH4]0 below the water ta-
ble level ranged from∼5 to 10 cm, although the size of the
interval diminished to 0 (i.e., CH4 present at the water ta-
ble surface) during prolonged periods without precipitation
input.

The capacity for methanotrophy in peatland soils from
both minerotrophic and ombrotrophic peatlands typically
was greater than the available supply of upward diffusing
CH4. Kinetic parameters (µm and Ks) describing the re-
sponse of methanotroph populations to substrate (i.e., CH4)
concentrations are not constant with depth as assumed in
some process models and both parameters were larger in the
ombrotrophic versus minerotrophic peatlands. Low affinity
methanotrophic activity effectively consumes the majority of
upward diffusing CH4 in peatland soil (in most cases 100%).
Maximum rates of CH4 flux by pore water diffusion were
at most 10 to 20 mg m−2 d−1, which in minerotrophic mires
represents typically<10% of actual emissions. The gen-
erally lower CH4 emission rates from ombrotrophic mires
would be impacted more by cessation or attentuation of
methanotrophy activity but diffusive CH4 flux rates would
still amount to only a few 10 s of mg m−2 d−1.
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