Supplemental material to "Skill assessment of the PELAGOS model over the period 1980-2000"

M. Vichi and S. Masina

 Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy
 Centro Euro Mediterraneo per i Cambiamenti Climatici, Bologna, Italy Corresponding author: Marcello Vichi (vichi@bo.ingv.it)

Published in Biogeosciences

Tables of parameter values and descriptions

Changes with respect to Vichi et al. (2007b,a) are highlighted in bold.

Symbol	$P^{(1)}$	$P^{(2)}$	$P^{(3)}$	Description	Reference
r_{0_P}	2.00	2.50	3.00	Maximum specific photosynthetic rate (d ⁻¹)	Baretta-Bekker et al. (1997)
${\it Q}_{10_P}$	2.00	2.00	2.00	Characteristic Q10 coefficient	Baretta-Bekker et al. (1997)
$h^s_{_{P(1)}}$	1.00		1	Half saturation value for Si-limitation	Sarthou et al. (2005)
				(mmolSi m ⁻³)	
$b_{_P}$	0.01	0.05	0.10	Basal specific respiration rate (d^{-1})	Set
$\chi_{_{P}}$	0.10	0.20	0.25	Activity respiration fraction (-)	Baretta-Bekker et al. (1997)
$oldsymbol{eta}_{P}$	0.05	0.20	0.20	Excreted fraction of primary production (-)	Baretta-Bekker et al. (1997)
$h_{P}^{P,n,s}$	0.10	0.10	0.10	Nutrient stress threshold (-)	Baretta-Bekker et al. (1997)
d_{0P}	0.50	0.50	0.50	Maximum specific lysis rate (d^{-1})	Baretta-Bekker et al. (1997)
a_1	2.5010^{-2}	$2.50 \ 10^{-2}$	$2.50 \ 10^{-1}$	Specific affinity constant for P (m ^{-3} mg C ^{-1}) d ^{-1})	Baretta-Bekker et al. (1997)
<i>a</i> 3	2.5010^{-2}	$2.50 \ 10^{-2}$	0.00	Specific affinity constant for N-NO3 $(m^{-3}\ mg$	Baretta-Bekker et al. (1997)
<i>a</i> 4	2.5010^{-2}	$2.50 \ 10^{-2}$	$2.50 \ 10^{-1}$	Specific affinity constant for N-NH4 $(m^{-3}\ mg$ $C^{-1}\ d^{-1}$)	Baretta-Bekker et al. (1997)
a7	2.0010^{-4}	$2.00\ 10^{-4}$	$2.00 \ 10^{-4}$	Specific affinity constant for Fe (m ^{-3} mg C ^{-1}) d ^{-1})	Sunda and Huntsman (1995)
$S_{p(1)}^{opt}$	0.01		ı	Standard Si:C ratio in diatoms (mmolSi mg C^{-1})	Brzezinski (1985)
${oldsymbol{\mathcal{B}}}_{p(1)}^{sink}$	5.00		ı	Maximum sedimentation rate $(m d^{-1})$	Baretta-Bekker et al. (1997)
$l_{P(1)}^{sink}$	0.10	ı	I	Nutrient stress threshold for sedimentation (-)	Set
$n_p^{min}, n_p^{opt}, n_p^{max}$	1.2610^{-2} × (0.3, 1, 2)	$1.26 \ 10^{-2} \times \ (0.3, 1, 2)$	1.26 10^{-2} × (0.3, 1, 2)	Minimum, optimal and maximum nitrogen quota (mmolN mgC^{-1})	Baretta-Bekker et al. (1997); Bertilsson et al. (2003); Timmermans et al. (2004,
		· · · ·			2005)
$p_p^{min}, p_p^{opt}, p_p^{max}$	$7.8610^{-4}{ imes}(0.25,1,2)$	$7.86 \ 10^{-4} \times (0.25, 1, 2)$	$7.86 \ 10^{-4} \times (0.25, 1, 2)$	Minimum, optimal and maximum phospho- rus quota (mmolP mgC ⁻¹)	Baretta-Bekker et al. (1997); Bertilsson et al. (2003); Timmermans et al. (2004, 2005)
$\phi_{P}^{min}, \phi_{P}^{opt}, \phi_{P}^{max}$	$0.30 \ 10^{-3} \times \ (0.3, 1, 1)$	$0.30 \ 10^{-3} \times \ (0.3, 1, 1)$	$0.18 \ 10^{-4} \times \ (\sim 0, 1, 1)$	Minimum, optimal and maximum iron quota	Sunda and Huntsman (1997);
$lpha_{chl}^{0}$	$1.38 \ 10^{-5}$	$0.46 \ 10^{-5}$	1.52 10 ⁻⁵	(μ mol Fe mgC ⁻¹) Maximum light utilization coefficient (mgC (mg chl) ⁻¹ μ E ⁻¹ m ² s)	Timmermans et al. (2004, 2005) MacIntyre et al. (2002)
$ heta_{chl}^0$ c_{P}	0.025 0.03	0.015 0.03	0.020 0.03	Optimal chl:C quotum (mg chl mg C^{-1}) Chl-specific light absorption coefficient	MacIntyre et al. (2002) Set
Table 1: Symbc ton.	ls, standard values and	l description of the phy	toplankton parameters.	. $P^{(1)}$ = diatoms; $P^{(2)}$ = nanoflagellates; $P^{(1)}$	³⁾ = picophytoplank-

Symbol	$Z^{(4)}$	Z ⁽⁵⁾	$Z^{(6)}$	Description	Reference
$arOmega_{10_{ m Z}}$	3.00	2.00	2.00	Characteristic Q10 coefficient (-)	Baretta-Bekker et al. (1995)
h_z^F	$r_{0_Z} \setminus v_Z$	20.0	20	Michaelis constant for total food ingestion (mg C m^{-3})	Set
μ_{z}	0.00	20.0	20.0	Feeding threshold (mg C m^{-3})	Set
$r_{0_{ m Z}}$	2.00	2.00	10.0	Potential specific growth rate (d ⁻¹)	Broekhuizen et al. (1995); Baretta-
					Bekker et al. (1995)
$v_{\rm z}$	0.025	ı	ı	Specific search volume (m ³ mg C $^{-1}$)	Broekhuizen et al. (1995)
$b_{ m z}$	0.02	0.02	0.02	Basal specific respiration rate (d^{-1})	Broekhuizen et al. (1995); Baretta-
					Bekker et al. (1995)
η_z	0.60	0.60	0.50	Assimilation efficency (-)	Broekhuizen et al. (1995); Baretta-
					Bekker et al. (1995)
$oldsymbol{eta}_{ m z}$	0.55	0.40	0.30	Excreted fraction of uptake (-)	Broekhuizen et al. (1995); Baretta-
					Bekker et al. (1995)
$oldsymbol{arepsilon}_{\mathrm{Z}}^{\mathrm{C}}$	0.00	0.50	1.00	Partition between dissolved and particulate excretion of C	Set
				•	
ε_z^n	0.00	0.84	1.00	Partition between dissolved and particulate excretion of N (-)	Set
${oldsymbol{arepsilon}}_Z^D$	0.00	0.96	1.00	Partition between dissolved and particulate excretion of P (-)	Set
n_z^{opt}, p_z^{opt}	0.015, 0.00167	0.0167, 0.00185	0.0167, 0.00185	Maximum nutrient quota (mmolN mgC ⁻¹ , mmolP mgC ⁻¹)	Broekhuizen et al. (1995); Baretta-
					Bekker et al. (1995)
$v_{_{Z}}$	1.00	1.00	1.00	Specific rate of nutrients and carbon excretion (d^{-1})	Set
d_{0_Z}	0.02	0.05	0.05	Specific mortality rate (d^{-1})	Broekhuizen et al. (1995); Baretta-
					Bekker et al. (1995)
d_z^{dns}	0.02	0.00	0.00	Density-dependent specific mortality rate $(m^3 mgC^{-1} d^{-1})$	Broekhuizen et al. (1995)
$\gamma_{\rm z}$	2.50		ı	Exponent for density dependent mortality (-)	Broekhuizen et al. (1995)
Table 2. S	umbale etandar	oep pue seulex p	scription of the	constant to massive $Z^{(4)}$ – massive massive $Z^{(5)}$	$ -$ microzoonlankton: $Z^{(6)}$ - hat

. $Z^{(4)}$ = mesozooplankton; $Z^{(5)}$ = microzooplankton; $Z^{(6)}$ = het-	
Table 2: Symbols, standard values and description of the zooplankton parameters	erotrophic nanoflagellates.

Symbol	Value	Description
Q_{10_B}	2.95	Characteristic Q10 coefficient
$h_{\scriptscriptstyle B}^o$	30.0	Half saturation value for oxygen limitation (mmolO ₂ m^{-3})
r_{0_B}	8.38	Potential specific growth rate (d^{-1})
$b_{_B}$	0.01	Basal specific respiration rate (d^{-1})
$\eta_{\scriptscriptstyle B}$	0.40	Assimilation efficiency (-)
$\eta^o_{\scriptscriptstyle B}$	0.20	Decrease in assimilation efficiency under anoxic conditions (-)
d_{0_B}	0.00	Specific mortality rate (d^{-1})
$V_{\scriptscriptstyle B}^1$	0.30	Specific potential $R^{(1)}$ uptake (d ⁻¹)
v_{B}^{6}	0.01	Specific potential $R^{(6)}$ uptake (d ⁻¹)
$V_{B}^{n} = V_{B}^{p}$	1.00	Specific rate of uptake or remineralization (d^{-1})
n_{B}^{opt}, p_{B}^{opt}	0.0167, 0.00185	Optimal nutrient quota (mmolN mgC ^{-1} , mmolP mgC ^{-1})
h_{B}^{n}, h_{B}^{p}	5.00, 1.00	Half saturation for nutrient uptake (mmolN mgC^{-1} ,
-		mmolP mgC ^{-1})

Table 3: Symbols, standard values and description of the bacterioplankton parameters.

Symbol	Value	Description
Ω_c^o	$\frac{1}{12}$	Unit conversion factor and stoichiometric coefficient
	12	$(\text{mmolO}_2 \text{ mgC}^{-1})$
Ω_n^o	2.00	Stoichiometric coefficient nitrification reaction
		$(mmolO_2 mmolN^{-1})$
$\widetilde{\Omega}_n^o$	1.25	Stoichiometric coefficient denitrification reaction
		$(mmolO_2 mmolN^{-1})$
Ω_o^r	0.5	Stoichiometric coefficient (mmolHS $^{-}$ mmolO ₂ $^{-1}$)
Ω_n^r	0.625	Stoichiometric coefficient (mmolHS ⁻ mmolN ⁻¹)
$\Lambda_{_{N4}}^{nit}$	0.00	Specific nitrification rate (d^{-1})
$Q_{10_{N4}}$	2.37	Q10 factor for nitrification reaction.
$Q_{10_{N3}}$	2.37	Q10 factor for denitrification reaction.
$h^{o}_{_{N4}},h^{o}_{_{N6}}$	10.0	Half saturation oxygen concentration for chemical pro-
∧ denit	0.25	Cesses (minorO ₂ m ⁻¹) Specific denitrification rate (d^{-1})
Λ _{N3} 	0.33	Beference energie mineralization rate (mmal
M _o	1.00	$O_2 \text{ m}^{-3} \text{ d}^{-1})$
$\Lambda_{_{N6}}^{reox}$	0.05	Specific reoxidation rate of reduction equivalents (d ⁻¹)
$Q_{10_{N5}}$	1.49	Q10 factor for dissolution of biogenic silica
Λ_s^{rmn}	0.001	Specific dissolution rate of biogenic silica (d ⁻¹)
Λ_f^{rmn}	0.001	Specific remineralization rate of biogenic iron (d^{-1})
Λ_f^{dep}	0.005	Specific dissolution fraction of dust iron (-)
Λ_f^{scv}	$0.7 \ 10^{-4}$	Specific scavenging rate for iron (d^{-1})
ε_{PAR}	0.4	Fraction of Photosynthetically Available Radiation
		(-)
$\lambda_{_W}$	0.041	Optical extinction coefficient for pure water (m ⁻¹)
C_{R^{(6)}}		C-specific extinction coefficient of particulate detritus
		$(m^2 mg C^{-1})$
v_{P6}^{sed}	10.00	Settling velocity of particulate detritus (m d^{-1})

Table 4: Chemical stoichiometric coefficients and general parameters involving pelagic components.

					Preys			
		$P_{i}^{(1)}$	$P_{i}^{(2)}$	$P_{i}^{(3)}$	$Z_i^{(4)}$	$Z_i^{(5)}$	$Z_{i}^{(6)}$	B_i
Predators	$Z_i^{(3)} \ Z_i^{(4)} \ Z_i^{(5)} \ Z_i^{(5)} \ Z_i^{(6)}$	0 1.0 0.2 0	0 0 1.0 0	0 0 0.1 0.9	1.0 1.0 0 0	0 1.0 1.0 0	0 0 0.8 0.2	0 0 0.1 0.9

Table 5: Availability $\delta_{Z,X}$ (non-dimensional) of prey X_i to predator Z_i

References

- Baretta-Bekker, J., Baretta, J., Ebenhoeh, W., 1997. Microbial dynamics in the marine ecosystem model ERSEM II with decoupled carbon assimilation and nutrient uptake. J. Sea Res. 38 (3/4), 195–212.
- Baretta-Bekker, J., Baretta, J., Rasmussen, E., 1995. The microbial food web in the European Regional Seas Ecosystem Model. J. Sea Res. 33 (3-4), 363–379.
- Bertilsson, S., Berglund, O., Karl, D. M., Chisholm, S. W., 2003. Elemental composition of marine Prochlorococcus and Synechococcus: Implications for the ecological stoichiometry of the sea. Limnol. Oceanogr. 48, 1721–1731.
- Broekhuizen, N., Heath, M., Hay, S., Gurney, W., 1995. Modelling the dynamics of the North Sea's mesozooplankton. J. Sea Res. 33 (3-4), 381–406.
- Brzezinski, M. A., 1985. The Si-C-N ratio of marine diatoms interspecific variability and the effect of some environmental variables. J. Phycol. 21, 347–357.
- MacIntyre, H., Kana, T., Anning, T., Geider, R., 2002. Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J. Phycol. 38, 17–38.
- Sarthou, G., Timmermans, K. R., Blain, S., Treguer, P., 2005. Growth physiology and fate of diatoms in the ocean: a review. J. Sea Res. 53, 25–42.
- Sunda, W. G., Huntsman, S. A., 1995. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 50, 189–206.
- Sunda, W. G., Huntsman, S. A., 1997. Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 390, 389–392.
- Timmermans, K. R., van der Wagt, B., de Baar, H. J. W., 2004. Growth rates, half-saturation constants, and silicate, nitrate, and phosphate depletion in relation to iron availability of four large, open-ocean diatoms from the Southern ocean. Limnol. Oceanogr. 49, 2141–2151.
- Timmermans, K. R., van der Wagt, B., Veldhuis, M. J. W., Maatman, A., de Baar, H. J. W., 2005. Physiological responses of three species of marine pico-phytoplankton to ammonium, phosphate, iron and light limitation. J. Sea Res. 53, 109–120.
- Vichi, M., Masina, S., Navarra, A., 2007a. A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part II: numerical simulations. J. Mar. Sys. 64, 110–134.
- Vichi, M., Pinardi, N., Masina, S., 2007b. A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: theory. J. Mar. Sys. 64, 89–109.