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Abstract. Global Ocean Biogeochemistry General Circula-
tion Models are useful tools to study biogeochemical pro-
cesses at global and large scales under current climate and
future scenario conditions. The credibility of future esti-
mates is however dependent on the model skill in captur-
ing the observed multi-annual variability of firstly the mean
bulk biogeochemical properties, and secondly the rates at
which organic matter is processed within the food web. For
this double purpose, the results of a multi-annual simula-
tion of the global ocean biogeochemical model PELAGOS
have been objectively compared with multi-variate observa-
tions from the last 20 years of the 20th century, both con-
sidering bulk variables and carbon production/consumption
rates. Simulated net primary production (NPP) is compa-
rable with satellite-derived estimates at the global scale and
when compared with an independent data-set of in situ ob-
servations in the equatorial Pacific. The usage of objective
skill indicators allowed us to demonstrate the importance of
comparing like with like when considering carbon transfor-
mation processes. NPP scores improve substantially when
in situ data are compared with modeled NPP which takes
into account the excretion of freshly-produced dissolved or-
ganic carbon (DOC). It is thus recommended that DOC mea-
surements be performed during in situ NPP measurements to
quantify the actual production of organic carbon in the sur-
face ocean. The chlorophyll bias in the Southern Ocean that
affects this model as well as several others is linked to the
inadequate representation of the mixed layer seasonal cycle
in the region. A sensitivity experiment confirms that the ar-
tificial increase of mixed layer depths towards the observed
values substantially reduces the bias. Our assessment results
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qualify the model for studies of carbon transformation in the
surface ocean and metabolic balances. Within the limits of
the model assumption and known biases, PELAGOS indi-
cates a net heterotrophic balance especially in the more olig-
otrophic regions of the Atlantic during the boreal winter pe-
riod. However, at the annual time scale and over the global
ocean, the model suggests that the surface ocean is close to
a weakly positive autotrophic balance in accordance with re-
cent experimental findings and geochemical considerations.

1 Introduction

Ocean Biogeochemistry General Circulation Models
(OBGCM) derive from the coupling of GCMs that solve the
hydrodynamics of the ocean and biomass-based mathemat-
ical representations of the lower trophic levels of marine
ecosystems. Given the limitation of the biomass-based
mathematical definitions, OBGCMs are a rough approx-
imation of the complexity observed in the global ocean
ecosystem. The focus of these models is not the study of
interactions at the community and ecosystem scales but the
quantitative representation of the biogeochemical fluxes
of major constituents among the lower trophic levels. The
planktonic components are, despite their little standing
stock, the basis of the biological pump in the ocean with a
global estimated primary production ranging from less than
40 to more than 60 Pg C yr−1 (Carr et al., 2006). Even if the
net role of the oceanic biological pump in the global carbon
cycle is still to be clarified (e.g.Sarmiento et al., 1998),
there are concerns that alterations in ocean features due to
climate change may affect the ocean biogeochemistry with
feedbacks into the climate system itself (seeDenman et al.,
2007, for a compendium on the current literature).
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OBGCMs are promising tools to study the functioning of
global biogeochemical processes and to produce future pro-
jections driven by climate change scenarios. The credibility
of projections is however dependent on the adequate sim-
ulation of the ocean biogeochemical features under current
climate conditions. This requires an objective assessment
of model skill against available data, a method that only
recently has penetrated the community of biogeochemical
modellers (Lynch et al., 2009). The comparison between ob-
servations and model results at the global scales is however
both a technical and a scientific problem. On the one hand
data availability and data gridding have practical limitations
but on the other hand it is crucial that observations and model
variables are compared appropriately by considering the un-
derlying processes on both sides. .

This work presents an assessment study of a multi-
component biogeochemical model that was originally de-
veloped for coastal regions and recently generalized to the
global ocean (see Sect.2.1). The paper is conceptually di-
vided in two main parts. In Sects.2.2, and3 we introduce
and use a set of multi-variate, multi-instrument observations
collected over the last 20 years of the 20th century to objec-
tively evaluate the results of a multi-annual simulation of the
model. This part is meant to demonstrate the model validity
at the global and local scales as a tool for process understand-
ing and for use as a component of an Earth System Model
for carbon cycle studies. We focus mostly on the assessment
of primary production and microbial carbon transformation
processes as these are the basic information used to derive
carbon export and sequestration rates in the oceanic carbon
cycle (e.g.Dunne et al., 2007). The assessment exercise im-
plies the computation of adequate skill scores (Sect.2.2) and
the choice of acceptable levels of validity. To cover the possi-
ble range of currently available data, we focused on the eval-
uation of mean bulk variables at the global scale mostly using
satellite-derived data (Sects.3.1and3.2) and on multi-annual
process variables at selected locations for testing the seasonal
and inter-annual variability of organic carbon transformation
rates at the microbial level (Sects.3.3and3.4).

The discussion section introduces the second part of the
paper (Sect.4). Initially, the results are discussed in view
of the model formulation and main assumptions, providing
explanations of the major biases and recommendations for
model-data comparisons. Several studies have pointed out
the existence of biogeographical provinces and that phys-
ically distinct oceanic regions have different biogeochemi-
cal characteristics (Longhurst, 2007), and some specific re-
gional parameterizations might be useful to capture, for in-
stance, the satellite-derived chlorophyll variability (Tjiputra
et al., 2007). However, the extrapolation at larger spatial and
temporal scales of limited observations describing carbon cy-
cle rates may lead to misrepresentation of the microbial pro-
cesses over the annual scale (e.g.Maixandeau et al., 2005a).
This is thus a valid argument for using models of adequate
complexity to make this extrapolation, since a properly as-

sessed model is expected to capture the major features of the
ocean physical processes.

As an example of this methodology, we computed in
Sect.4.3 the metabolic state of the surface global ocean un-
der simulated current climate conditions, using the ratio of
net community production and bacterial carbon demand over
net primary production in the euphotic zone as indicators of
the biological pump efficiency in the model. The discussion
on the metabolic state of the surface ocean (e.g.Del Gior-
gio and Duarte, 2002; Riser and Johnson, 2008) has impor-
tant implications for the role of microbial biogeochemistry
in the oceanic carbon balance. The estimates of net surface
community production provided in Sect.4.3are baseline ref-
erences to compare with other on-going experiments where
PELAGOS is used as a component of a coupled carbon cy-
cle climate model under future climate scenarios. Section5
finally offers some methodological recommendations and a
summary of the major conclusions.

2 Methods

2.1 Model description and setup

PELAGOS (PELAgic biogeochemistry for Global Ocean
Simulations,Vichi et al., 2007a,b) is a coupling between the
OPA (Oćean PArallelise) general circulation model (Madec
et al., 1999) and the global ocean version of the Biogeochem-
ical Flux Model (BFM,http://bfm.cmcc.it) originally derived
and modified from the ERSEM regional model (Baretta et al.,
1995). The model grid is the irregular ORCA2 configuration
(Madec and Imbard, 1996) with a nominal 2×2 degrees size
and a refined latitudinal mesh of 0.5 degree in the equatorial
regions.

The biogeochemical model implements a set of biomass-
based differential equations that solves the fluxes of carbon,
nitrogen, phosphorus, silica and iron among selected biolog-
ical functional groups representing the major components of
the lower trophic levels. The functional groups in the pelagic
environment are represented by unicellular planktonic au-
totrophs (pico-, nano-phytoplankton and diatoms), zooplank-
ton (nano-, micro- and meso-) and heterotrophic bacterio-
plankton. The model also simulates the dynamics of nitrate,
ammonium, phosphate, biogenic silicate, iron, oxygen and
has an explicit parameterization of the biochemical cycling
of dissolved/particulate non-living organic matter.

The results analysed here are extracted from a multi-
annual simulation over the period 1958–2001 forced with
daily mean heat and momentum fluxes from the European
Centre for Medium Range Weather Forecasting (ECMWF)
40-year re-analysis. The forcing functions and the results
of a similar physical simulation are described inBellucci
et al.(2007). The ocean physics parameterizations are as in
Vichi et al. (2007a) with sea surface temperature (SST) re-
laxed to the daily-interpolated value of the Reynolds data set
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(Reynolds et al., 2002) with a coefficient of 40 W m−2. The
biogeochemical model is initialized as inVichi et al. (2008)
from the World Ocean Atlas nutrient data (Conkright et al.,
2002) and with homogeneous low values for all the other bio-
geochemical variables. The model was not calibrated against
the data used in this paper and the current set of parameter
values was derived following the experience with the model
forced by climatological atmospheric data, by means of a
manual one-at-a-time modification starting from the values
presented inVichi et al.(2007a). The major changes involved
an increase of the affinity constants for nutrients compared
to the original values inBaretta-Bekker et al.(1995) and a
general reduction of the iron limitation for all phytoplank-
ton groups. A new list of parameter values is available as a
supplemental table (http://www.biogeosciences.net/6/2333/
2009/bg-6-2333-2009-supplement.pdfand in the PELAGOS
page of the BFM web site (http://bfm.cmcc.it) with the dif-
ferences with respect toVichi et al. (2007a, also available on
the same page).

2.2 Data sets and skill indicators

The biogeochemical data sets used in this assessment encom-
pass the last 20 years of the 20th century with a focus on the
data that offer multivariate information and especially bio-
logical rates for at least a decade (e.g. primary and bacterial
production). Global coverage data are however related to de-
rived parameters of phytoplankton biomass only, available
mostly through satellites and ocean color products (e.g. the
Sea Wide Field-of-view Sensor. SeaWiFS). Empirical data-
models are required to translate sensor information into rele-
vant properties such as chlorophyll-a concentration, and the
quality of the reconstructed data is to be considered when
comparing with deterministic models. For instance,Gregg
and Casey(2004) report an average root mean square log
error of 31% and a coefficient of determination of 0.76 for
chl satellite estimates against in situ data over the whole
global ocean. These scores meet the objectives of the Sea-
WiFS mission at the global scale. On the other hand, a
thorough validation analysis against concurrent in situ chl
data shows regional discrepancies with overestimation in
the equatorial Atlantic and underestimation in the Southern
Ocean. Satellite data and inherent optical properties can be
further combined to estimate other important biogeochem-
ical properties such as primary production, carbon content
and plankton functional groups distributions (e.g.Behrenfeld
and Falkowski, 1997; Alvain et al., 2005; Aiken et al., 2007).
In this global assessment we used the estimates of primary
production derived with the Vertically Generalized Produc-
tion Model (VGPM) proposed byBehrenfeld and Falkowski
(1997).

The other datasets used in this assessment are in situ ob-
servations that have been selected because of their temporal
and spatial coverage of primary production and other relevant
biogeochemical rates or biomass data. We focused on three
publicly available datasets: the ClimPP dataset (Friedrichs
et al., 2009) and the Joint Global Ocean Study (JGOFS) time
series HOT (Hawaii Ocean Timeseries at Station ALOHA,
Lukas and Karl, 1999) and BATS (Bermuda Atlantic Time-
Series,Steinberg et al., 2001). These data are further de-
scribed in their specific Sects.3.3and3.4.

The choice of the performance indicators or scores is done
according to recent works that focused on skill assessment
(Allen et al., 2007; Lynch et al., 2009; Friedrichs et al., 2009;
Stow et al., 2009). The suggested univariate indices com-
prise the measure of bias (B), average absolute error (AAE)
and variability of the misfit measured as Root Mean Square
Differences (RMSD, see Appendix A). Two additional per-
formance indicators have been applied as suggested byAllen
et al. (2007) and Stow et al.(2009): the Modelling Effi-
ciency (MEF,Nash and Sutcliffe, 1970) and the Reliability
Index (RI,Leggett and Williams, 1981), which are further de-
scribed in the Appendix A. Regression analysis was also per-
formed to evaluate the goodness-of-fit of prediction vs. ob-
servations taking into account the linear methods described
in Smith and Rose(1995) andPineiro et al.(2008).

To visualize the combination of the different indicators
and compare the PELAGOS results with the other biogeo-
chemical models presented inFriedrichs et al.(2009), we
use the Multi-Dimensional Scaling (MDS) technique. The
MDS is an iterative technique used to visualize proximities
in a low-dimensional space first introduced in psychometrics
(Borg and Groenen, 2005). This analysis carefully preserves
the distance between items from multivariate datasets and al-
lows the combined visualization of multiple information in
one single plot (see also the Appendix A).

Score values and confidence intervals were also evaluated
by means of empirical p-values estimates and bootstrap tech-
niques. The probability of obtaining a score value better than
the one achieved is generally termed p-value (Mason, 2008).
The empirical distribution of score values was constructed
with 10 000 random re-samplings of the observation (or sim-
ulation) time series and computing the verification index for
each new set of model-data pairs. As pointed out byMa-
son(2008), p-values do not answer the question whether the
score value is good, but rather they provide a degree of signif-
icance with respect to random combinations. The confidence
interval is instead computed by means of the bootstrap tech-
nique, in which the choice of randomly permuted model-data
pairs is done by replacing the extracted pairs in the original
time series. This procedure ensures that the quality of the
new randomly-generated time series is as high as the original
model-data pairs to be evaluated. The 95% confidence lim-
its are then empirically computed from the distribution of the
score values.

www.biogeosciences.net/6/2333/2009/ Biogeosciences, 6, 2333–2353, 2009

http://www.biogeosciences.net/6/2333/2009/bg-6-2333-2009-supplement.pdf
http://www.biogeosciences.net/6/2333/2009/bg-6-2333-2009-supplement.pdf
http://bfm.cmcc.it


2336 M. Vichi and S. Masina: Skill assessment of the PELAGOS OBGCM

   
0

0.
05

 0
.1

0.
15

 0
.2

0.
25

 0
.5

0.
75    
1

1.
25

 1
.5

   
2

   
5

  90 E  180 E   90 W    0

 75 S 

 45 S 

  0   

 45 N 

 75 N 

(a) SeaWiFS 1998−2001
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(d) PELAGOS 1998−2001

Fig. 1. Comparison of observed and simulated chlorophyll (mg chl m−3) annual means and coefficient of variation (non-dimensional) for
the period 1998–2001:(a, c)SeaWiFS;(b, d) PELAGOS (average over the euphotic zone depth).

3 Skill assessment

3.1 Global chlorophyll concentration

Figure1 presents a visual comparison of simulated chloro-
phyll (chl) with satellite-derived estimates from SeaWiFS.
Remotely-sensed chl represents the average chl concentra-
tion within one optical penetration depth, which in turn de-
pends on the radiative extinction done by the chl concentra-
tion itself. When comparing model results with satellite data
we need to consider both a data uncertainty, the 30% RMS
log error described in Sect.2.2, and the model representa-
tion of satellite chl, which may range between the simulated
surface values and the vertically integrated chl concentra-
tion averaged over the euphotic depth (the latter shown in
Fig. 1). For instance, in the center of the gyres and in coastal
upwelling areas, the simulated surface values generally un-
derestimate the observations more than the integrated values
(not shown). The comparison is shown as annual means and

variability. The variability was estimated with the anomaly
coefficient of variation, which is the standard deviation of the
anomaly fields computed with respect to and normalized by
the monthly climatological averages.

The spatial distribution of the annual mean is visually cap-
tured in terms of maxima and minima. The modelled mean
chl concentrations in the north Atlantic and Pacific have im-
proved with respect to the climatological simulations inVichi
et al. (2007b), as well as the oligotrophic sub-tropical re-
gions. Coastal maxima are instead unchanged with respect to
the climatological runs, as the resolution of the ocean model
did not change. The model is however capable of simulating
the maxima of variation at the higher latitudes and the typi-
cal minima in the sub-tropical regions (Fig.1d), with distinct
intervals of high variability marking the borders of the Pa-
cific cold tongue influence as found in the satellite data. The
Northern Hemisphere higher-than-observed variability, par-
ticularly evident in the North Atlantic, is caused by too fast
decrease of surface biomass after the spring bloom, a feature
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that has not improved from the climatological model results
(Vichi et al., 2007b). The Southern Ocean is instead charac-
terised by a marked positive bias, either in terms of variabil-
ity and biomass.

A more objective way of looking at this latter feature is
through the MEF index (Fig.2). This index is extremely
strict when applied to spatial fields, because it computes a
point-to-point comparison on a reference grid. This analysis
adds information on the seasonal dependence of the misfit
that cannot be captured with maps alone. The misfits in the
Northern Hemisphere and tropical ocean are stationary and
linked to the seasonal cycle. The worst skill is found during
the boreal winter while during summer the model is as good
a predictor as the mean of the data (see Appendix A for the
threshold limits of MEF). The lowest performances occur in
the Southern Ocean during spring, due to a large simulated
bloom in the frontal regions of the Southern Ocean.

The simulation of mixed layer depth (MLD) spatial and
temporal evolution can partly explain the bias in the South-
ern Ocean. Figure3 allows the visual comparison with objec-
tively analyzed annual mean data (de Boyer Mont́egut et al.,
2004). The MLD was evaluated with a temperature differ-
ence criterium of 0.2◦C both in the data and in the model
results. The mean annual mismatch in the Southern Ocean is
extremely large, particularly south of 40◦ S as also evidenced
in the zonal mean distribution (Fig.3c). This discrepancy is
mostly found during the onset of the stratification in October-
November in the Subantarctic province (Fig.3d; the Sub-
antarctic province is defined according toLonghurst(1998)
as the zone between the sub-tropical convergence around
35◦ S and the limit of the polar front at about 55◦ S).

3.2 Global primary production

The VGPM (Behrenfeld and Falkowski, 1997) is an empiri-
cal model that estimates net primary production (NPP) from
satellite-derived chlorophyll using a temperature-dependent
description of chlorophyll-specific photosynthetic efficiency.
The NPP is thus computed using the observed chlorophyll
concentration, SST and surface available light as inputs. The
comparison with PELAGOS was done with a derived product
of the VGPM (available athttp://www.science.oregonstate.
edu/ocean.productivity/) that implements the exponential de-
pendence of production on temperature according toEppley
(1972). This exponential relationship is more similar to the
one applied in PELAGOS (Vichi et al., 2007a).

This exercise is a model-to-model comparison (see also
section below) therefore we focus here on maps of the annual
means (Fig.4) because they are expected to be better cap-
tured by the VGPM and satellite models in general (Camp-
bell et al., 2002). The spatial variability is in fact very similar
to the SeaWiFS chl variability (Fig.1), since the major input
of VGPM are the satellite-derived chlorophyll data. There is
a good agreement in the spatial distribution of maxima, espe-
cially in the location of the frontal maximum in the Antarctic
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Fig. 2. MEF index for PELAGOS and SeaWiFS chlorophyll data
over the period 1998–2001. The regions are defined as Tropical:
20◦ S–20◦ N; Northern Hemisphere: 20–60◦ N; Southern Hemi-
sphere: 20–60◦ S.

Circumpolar Current (AACC). This good result is obtained in
spite of the large positive bias in the annual mean chl value
(Fig. 1 and previous section). The coastal zone production
is generally underestimated because of the low phytoplank-
ton biomass. Nutrient availability plays a key role in these
areas and the model is not able to fuel the surface coastal
ocean with sufficient nutrient inputs. This is partly due to
the resolution, as also evidenced by the mismatch in the sub-
tropical and equatorial Atlantic and Indian Oceans, which
are the smaller basins. The Mauritanian upwelling is in fact
absent and the equatorial maximum in the Atlantic is closer
to the South American continent than found in the VGPM
estimates.

3.3 Primary production in the equatorial Pacific

3.3.1 The ClimPP dataset

The comparison of model results with satellite-derived pri-
mary production is a valid assessment only if satellite-
based NPP models are good in reproducing in situ observa-
tions. This kind of assessment was undertaken by the se-
ries of inter-comparison studies called Primary Production
Assessment Round-Robin (PPARR,Campbell et al., 2002;
Carr et al., 2006). In the latest published round, PPARR3,
Friedrichs et al.(2009) collected a set of observations from
the equatorial Pacific that were used as benchmarks for the
reality check of satellite-based production models (SatPPM)
and OBGCMs. One of their conclusions is that current state-
of-the-art SatPPM are only slightly more skillful then prog-
nostic OBGCMs and that the actual dominance depends on
the choice of the assessment score. Some models are better
than others in terms of bias, while others are better in terms
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Fig. 3. Comparison of observed and simulated mixed layer depths (MLD in m, temperature criterion1T =0.2◦C). (a) de Boyer Mont́egut
et al. (2004) (b) PELAGOS means over the whole simulation period;(c) comparison of zonal averages(d) mean seasonal cycle in the
sub-antarctic province.

of variability. Incidentally, one of the major outcomes of
this project is the public availability of this quality-checked
dataset, which can thus be used to test model performances.
The dataset consists of vertically-integrated euphotic zone
measurements of in situ primary production with a standard-
ized14C methodology, combined with SST, chlorophyll and
ancillary model data for MLD and surface irradiance, cov-
ering the whole tropical Pacific over the period 1983–1995.
The NPP data are originally available in units of daily carbon
production per unit area. A point-to-point comparison was
done according to the same protocol described inFriedrichs
et al. (2009) using monthly mean model data, and the as-
sessment was done by considering the same suggested set of
performance indicators.

3.3.2 PELAGOS results

Net primary production in PELAGOS is parameterized as a
function of light, chlorophyll, iron cell-content and dissolved
silicate concentration (Vichi et al., 2007a). The cell availabil-
ity of N and P does not directly control photosynthesis, but
the subsequent transformation of carbohydrates into proteins
and cell material. A portion of photosynthesized carbon is
therefore released as Dissolved Organic Carbon (DOC) exu-
dates according to the internal nutrient quota (Baretta-Bekker
et al., 1995; Vichi et al., 2007a).

During in situ incubation experiments performed with ra-
diocarbon techniques, the contribution of this DOC part is
only partly measured because of the filtering procedure that
removes particles smaller than (usually) 2µm. The colloidal
High Molecular Weight (HMW) portion is likely to remain
attached to cells, while the remainder Low Molecular Weight
(LMW) part is released in the water. The percentage of
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colloidal HMW DOC during a bloom is estimated around
20% (Kepkay et al., 1993) while an overall bulk figure of
LMW DOC varies from 65 to 80% (Ogawa and Tanoue,
2003), the highest loss likely to occur in oligotrophic waters.
From a modelling point of view this distinction is not neces-
sary, because the relevant input of organic carbon is the NPP
computed as photosynthetic production minus the metabolic
and/or activity respiration losses. Nevertheless, an unknown
portion of the NPP that is lost to DOC should be removed
when comparing the model output with data. To account for
this effect, two different estimates of NPP have been used in
the comparison: NPP1 is the total amount of organic carbon
produced by autotrophs, while NPP2 considers an estimated
conservative loss of 50% of the time-varying DOC produc-
tion rate. The overall estimate of ClimPP parameters is pre-
sented in Table1 and a graphical misfit analysis (Stow et al.,
2009) of NPP is shown in Fig.5.

The SST scores are very good, as it was expected because
of the relaxation to observed data described in Sect.2.1. Sim-
ulated MLD is also in accordance with the model data pro-
vided in the ClimPP datasets (MLD is on average deeper
but with similar standard deviation).Friedrichs et al.(2009)
report that the ClimPP MLD data are in the±20 m range
with respect to the JGOFS equatorial Pacific Process Study
cruises, therefore our results fall within the same range. The
low MEF however indicates that the two models give dif-
ferent time evolution and thus further independent data are
needed to assess the quality of the vertical structure of the
model with respect to the equatorial Pacific conditions. MLD
in the equatorial Pacific is probably not the best indicator for
production as the satPP models using MLD are not as skillful
as the others. OBGCMs like PELAGOS use more informa-
tion than the MLD and are capable to obtain better scores
because they do not rely on this variable only.

Chlorophyll skill is good only regarding the indicators of
average concentration. Bias and average errors are small,
but the simulated standard deviation is much higher than ob-
served and also the MEF indicates a poor if not bad predic-
tive performance. NPP scores are instead much better than
chlorophyll and in line with the results of the other PPARR3
models as further shown below. The NPP2 estimate of PP
improves all the performance indices (Table1): for instance,
the bias is much reduced with respect to NPP1 and conse-
quently the total RMSD. It is interesting to note that also
some indices of variability improve, such as the standard de-
viation and the correlation coefficient.

A possible way to show the combined skill of PELAGOS
in the framework of the other PPARR3 models is presented
in Fig. 6 with the aid of the MDS ordination (Sect.2.2). The
two-dimensional distances between the multivariate set of in-
dices is well represented (stress is close to 0) . The ClimPP
data point is included in the ordination by assuming a set of
indices with the highest score values (e.g.r=1, B=0, etc.).
Two additional artificial data points that represent the worst
cases have been added. They are obtained by combining the
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Fig. 4. Annual mean NPP over the euphotic zone in mg C m−2 d−1

for the period 1998–2001:(a) PELAGOS,(b) VGPM with Eppley
temperature dependence.

worst scores from all the models and by taking the high-
est and the lowest standard deviation values. This picture
clearly shows that the NPP estimates from satPP models and
OBGCMs are indeed comparable as initially suggested by
Friedrichs et al.(2009). All the models lie at approximately
the same distance from the data, the closest being a set of
satPPMs. PELAGOS NPP2 is much better than NPP1 be-
cause it is located in the cluster of the best OBGCMs and
satPPMs.

The direct visual comparison of ClimPP and PELAGOS
data and misfits (Fig.5, NPP2 results) provides additional
information on the goodness-of-fit of model results. The data
show a small positive trend as reported byFriedrichs et al.
(2009), though this is not statistically significant. The model-
data misfit (Fig.5b) apparently decreases with time though
the model does not have a trend (Fig.5a). This tendency
suggests that observed primary production in the ’80s was
relatively lower than the one in the ’90s. A similar evolution
can be found in the model results if the cluster of high NPP
after 1988 is not considered (not shown). The model in fact
overestimates the production during and after the 1988 La
Niña event.
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Table 1. Skill assessment indices for the ClimPP dataset. The units apply to all indices except the correlation coefficient and MEF that are
non-dimensional. Skill measures are defined in the Appendix A.

SST [deg C] MLD [m] Chlorophyll log10PP (NPP1) log10PP (NPP2)

Pearsonr 0.90 0.68 0.58 0.50 0.58
RMSDtot 0.89 19 0.11 0.38 0.27
B −0.22 −13 −0.02 0.29 0.11
AAE 0.64 15 0.08 0.31 0.21
RMSDcp 0.85 14 0.10 0.24 0.24
s.d. (PELAGOS) 1.96 15 0.12 0.17 0.25
s.d. (ClimPP) 2.03 19 0.01 0.28 0.28
MEF 0.81 0.02 −0.10 −0.82 0.10
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Fig. 5. Comparison of observed and simulated NPP values in g C m−2 d−1 for the data collected in the ClimPP dataset.(a) data and model
time-series;(b) model misfit versus time;(c) data and model scatter plot with the 1:1 line and regression lineŷD=0.58yM+0.12, r2

=0.33;
(d) model misfit versus model (the continuous lines represent the 0 misfit value and the 1:1 lines where the misfit is equal to the model value;
the regression line is dashed).

The goodness-of-fit between model and data values can
be objectively assessed by means of linear regression on the
scatter plot (Fig.5c). The slope of the regression line is sig-
nificantly different from 1 and the coefficient of determina-
tion is r2

=0.33. The lack of fit is however not caused by
the bias, but mostly by unexplained variance and partly by
the different slope. This confirms the results of Table1 per-

formed on the log-transformed data. The high dispersion
might be due to natural variability in the observations, al-
though it is also a possible indication of misspecification in
the model. The misfit in fact increases with increasing model
values (Fig.5d) with a majority of overestimation. The hy-
pothesisH0 that the regression slope with coefficient 0.42 is
equal 0 can be significantly rejected withp<0.01.
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3.4 Multi-annual assessment at selected locations

The number of available long term stations is rather lim-
ited and the choice of the two major JGOFS stations in the
Atlantic (Bermuda) and Pacific (station ALOHA) is almost
mandatory as locations for model calibration and hypothesis
testing (e.g.Hurtt and Armstrong, 1996; Spitz et al., 2001;
Huisman et al., 2006; Brix et al., 2006). In this section we
have focused on the set of data provided at the end of JGOFS
by the modelling and synthesis group because they reflect a
coherent dataset based on uniform unit and method conven-
tions for both stations.

3.4.1 The JGOFS Station BATS

BATS lies at the western boundary of the north Atlantic sub-
tropical gyre and, though being stratified for most of the time,
it experiences winter mixing events as deep as 200 m. This
seasonal signal is found in NPP data and well captured by
the model (Fig.7). The linear regression indicates goodness-
of-fit because the value of the slope is statistically equal to
1 (Fig. 7b, the equation is given in the caption). The major
discrepancy with the data is due to the bias, which is mostly
found during summer when our model simulates higher than
observed NPP, even if most of the previous modelling stud-
ies reported underestimation during this period (Brix et al.,
2006). There is however a distinct difference between the
surface and the vertically-integrated NPP values: the model
overestimates NPP in the euphotic zone and underestimates
the surface value (not shown). This implies that PELA-
GOS simulates a more productive deeper community dur-
ing summertime with respect to the previous modelling re-
sults. These results are obtained with the NPP2 estimation
(cf. Sect.3.3.2), but since during summertime more colloidal
DOC is exudated because of the oligotrophic conditions, it is
likely that considering a constant HMW proportion in DOC
when comparing with data is only partly sufficient. This is-
sue is further discussed in Sect.4.2.

Primary production peaks are linked to the maxima in
MLD (Fig. 8) both in the data and in the model (linear corre-
lation coefficientr=0.80 andr=0.65, respectively). The lag-
correlation analysis performed on the model results shows a
peak at 1 month and remain larger than 0.4 for an interval
of about 3 months. This implies that production starts when
the mixed layer is still deep and the peak of production is
reached after the onset of stratification. MLD is visually well
predicted by the model although the scatter plot (Fig.8b) is
not as significant as for NPP due to the wintertime bias. The
underestimation of NPP during winter is likely due to the
underestimation of MLD since the misfits are linearly corre-
lated (r=0.56). The model simulates the NPP inter-annual
variability quite well, particularly when linked to distinct
physical features. This occurs for instance during the low-
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production event of winter 1994 when the observed MLD is
shallower than other years and the model is able to simulate
it correctly.

The values of the performance indicators at BATS indi-
cate good skill of the model (Table2). Means are correctly
predicted and within the standard error for all the variables
except nutrients, which are close to the detection limits in
the observations and very close to 0 in the model. The linear
correlation coefficients for both chl and NPP are high and
significant (p<0.01) with confidence intervals of 0.50–0.73
and 0.53–0.78, respectively (both computed with the boot-
strap method, Sect.2.2). The MEF index is larger than 0 for
NPP only (p<0.01, confidence interval 0.27–0.58), which is
classified as a “good” score (see Appendix A). The RI is in-
stead rather high due to the summer overestimation, imply-
ing that on average, the spread of the predicted production is
large and can get more than twice as high than observed.

Bacterial biomass and production (BP) were compared
with the observed surface values due to the larger data avail-
ability at this level. Biomass values were converted from
cell counts using the cellular carbon content suggested by
Gundersen et al.(2002, 10 fg C/cell). BP was converted
from thymidine incorporation hourly rates into daily carbon
production by means of the conversion factor suggested by
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Fig. 7. Comparison of observed and simulated integrated primary production (in mg C m−2 d−1) at BATS.(a) JGOFS BATS time series;(b)
scatter plot with regression linêyD=1.1yM−60,r2

=0.46 (H0: slope=1 cannot be significantly rejected,p=0.32).
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Fig. 8. Comparison of observed and simulated mixed layer depths (in m) at BATS.(a) JGOFS BATS time series;(b) scatter plot with
regression linêyD=1.1yM+8, r2

=0.66 (H0: slope=1 can be rejected according to the choice of the referencep-value sincep = 0.02 ).

Fuhrman and Azam(1982) and by considering a multiplica-
tive factor of 12, which is in the range of the ratios between
leucine and thymidine incorporations as measured byDuck-
low et al. (2001) in the Arabian Sea. The mean bacterial
biomass is well simulated by the model, as confirmed by the
very low bias and RI value close to 1 (Table2). The model is
however not capable to simulate the variability (not shown),
which is partly linked to the seasonal production. This is
shown here by the high values of RMSDcp and the absolute
average error. There is a small linear phase correlation (con-
fidence interval 0.11–0.46,p<0.01) which is likely caused
by the presence of a weak seasonal signal both in data and
model, although the MEF index is still close to 0 confirm-
ing that the model can only capture the mean value. Similar
considerations can be done for BP, which has no bias at all
but is characterized by a higher RI due to the low variabil-
ity predicted by the model. The choice of a constant scal-
ing factor used to convert thymidine incorporation into daily
production may also play a role, because in some seasons it
can be 4 times as high as considered here (Ducklow et al.,
2001). The linear correlation is slightly higher than for the
biomass (confidence interval is 0.21–0.46,p<0.01) and the

MEF is also positive (c.i. is 0.05–0.18,p<0.01) although still
poor according to the indicative thresholds given in the Ap-
pendix A.

3.4.2 The JGOFS station ALOHA (HOT)

Station ALOHA is located in the sub-tropical Pacific Ocean
north of Hawaii. It is characterized by a permanently strati-
fied water column with a deep chlorophyll maximum (DCM)
below 100 m, mostly composed ofProchlorococcuswith
temporary outbursts of diatoms and dinoflagellates (Karl
et al., 2003a). The surface ocean is depleted in nutrients and
the mixed layer depths occasionally reaches the location of
the DCM during wintertime.

PELAGOS results at this station capture the typical low
production conditions but miss the observed higher fre-
quency variability (Fig.9). The tendency of models to pre-
dict low NPP at this station has been reported by other au-
thors (e.g.Ondrusek et al., 2001). The observations are
bounded by the NPP1 and NPP2 estimates, which suggests
that the choice of the fraction of colloidal DOC at Sta.
ALOHA may not be the same as estimated with the ClimPP
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Fig. 9. Comparison of observed and simulated integrated primary production (mg C m−2 d−1) at Sta. ALOHA.(a) JGOFS HOT time series
for the NPP1 and NPP2 estimates (cfr. Sect.3.3.2); (b) scatter plot of model vs. data for both estimates.
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(2009), though this is not statistically significant. The model-
data misfit (Fig.5b) apparently decreases with time though
the model does not have a trend (Fig.5a). This tendency
suggests that observed primary production in the ’80s was
relatively lower than the one in the ’90s. A similar evolution
can be found in the model results if the cluster of high NPP
after 1988 is not considered (not shown). The model in fact
overestimates the production during and after the 1988 La
Niña event.

The goodness-of-fit between model and data values can
be objectively assessed by means of linear regression on the
scatter plot (Fig.5c). The slope of the regression line is sig-
nificantly different from 1 and the coefficient of determina-
tion is r2

=0.33. The lack of fit is however not caused by
the bias, but mostly by unexplained variance and partly by
the different slope. This confirms the results of Table1 per-
formed on the log-transformed data. The high dispersion
might be due to natural variability in the observations, al-
though it is also a possible indication of misspecification in
the model. The misfit in fact increases with increasing model
values (Fig.5d) with a majority of overestimation. The hy-
pothesisH0 that the regression slope with coefficient 0.42 is
equal 0 can be significantly rejected withp<0.01.

3.4 Multi-annual assessment at selected locations

The number of available long term stations is rather lim-
ited and the choice of the two major JGOFS stations in the
Atlantic (Bermuda) and Pacific (station ALOHA) is almost
mandatory as locations for model calibration and hypothesis
testing (e.g.Hurtt and Armstrong, 1996; Spitz et al., 2001;

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
0

100

200

300

400

500

600

TIME

D
A

T
A

 a
nd

 M
O

D
E

L

(a)

 

 

0 200 400 600
0

100

200

300

400

500

600

MODEL
D

A
T

A

(b)

DATA NPP1 NPP2

Fig. 9. Comparison of observed and simulated integrated primary
production (mg C m−2 d−1) at Sta. ALOHA.(a) JGOFS HOT time
series for the NPP1 and NPP2 estimates (cfr. Sect.3.3.2); (b) scatter
plot of model vs. data for both estimates.
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Fig. 10. Comparison of observed and simulated mixed layer depths
(in m) at Sta. ALOHA.(a) JGOFS HOT time series;(b) scatter plot
with regression linêyD=0.59yM+0.21,r2

=0.38 (H0: slope=1 can
be significantly rejected).

Huisman et al., 2006; Brix et al., 2006). In this section we
have focused on the set of data provided at the end of JGOFS
by the modelling and synthesis group because they reflect a
coherent dataset based on uniform unit and method conven-
tions for both stations.

3.4.1 The JGOFS Station BATS

BATS lies at the western boundary of the north Atlantic sub-
tropical gyre and, though being stratified for most of the time,
it experiences winter mixing events as deep as 200 m. This
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(2009), though this is not statistically significant. The model-
data misfit (Fig.5b) apparently decreases with time though
the model does not have a trend (Fig.5a). This tendency
suggests that observed primary production in the ’80s was
relatively lower than the one in the ’90s. A similar evolution
can be found in the model results if the cluster of high NPP
after 1988 is not considered (not shown). The model in fact
overestimates the production during and after the 1988 La
Niña event.

The goodness-of-fit between model and data values can
be objectively assessed by means of linear regression on the
scatter plot (Fig.5c). The slope of the regression line is sig-
nificantly different from 1 and the coefficient of determina-
tion is r2

=0.33. The lack of fit is however not caused by
the bias, but mostly by unexplained variance and partly by
the different slope. This confirms the results of Table1 per-
formed on the log-transformed data. The high dispersion
might be due to natural variability in the observations, al-
though it is also a possible indication of misspecification in
the model. The misfit in fact increases with increasing model
values (Fig.5d) with a majority of overestimation. The hy-
pothesisH0 that the regression slope with coefficient 0.42 is
equal 0 can be significantly rejected withp<0.01.

3.4 Multi-annual assessment at selected locations

The number of available long term stations is rather lim-
ited and the choice of the two major JGOFS stations in the
Atlantic (Bermuda) and Pacific (station ALOHA) is almost
mandatory as locations for model calibration and hypothesis
testing (e.g.Hurtt and Armstrong, 1996; Spitz et al., 2001;
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Huisman et al., 2006; Brix et al., 2006). In this section we
have focused on the set of data provided at the end of JGOFS
by the modelling and synthesis group because they reflect a
coherent dataset based on uniform unit and method conven-
tions for both stations.

3.4.1 The JGOFS Station BATS

BATS lies at the western boundary of the north Atlantic sub-
tropical gyre and, though being stratified for most of the time,
it experiences winter mixing events as deep as 200 m. This
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Fig. 10.Comparison of observed and simulated mixed layer depths (in m) at Sta. ALOHA.(a) JGOFS HOT time series;(b) scatter plot with
regression linêyD=0.59yM+0.21,r2

=0.38 (H0: slope=1 can be significantly rejected).

dataset and BATS (cf. Sect.4.2). Both NPP1 and NPP2 how-
ever show a lack of fit as indicated by the scatter plot in
Fig. 9b.

The MLD evolution is well-reproduced by the model
(Fig. 10), but there is a less clear relationship with NPP
as seen for instance at BATS (r=0.46 both in observations
and model data; the lag-correlation in model data is higher
with one month lag,r=0.57). It is likely that the NPP
variability here is driven by small scale features, episodic
but seasonally-recurrent nitrogen fixation events (Dore et al.,
2008) or possibly by chaotic fluctuations (Huisman et al.,
2006). None of these features can be reproduced by the cur-
rent model design, either due to the coarse horizontal reso-
lution or because of the absence of diazotrophs that are cur-
rently not considered in PELAGOS.

The values of the performance indicators of biological
variables are less good than at BATS (Table3) although
SST and MLD are very well predicted both in terms of
magnitude and variability. Chl is on average one third of
the observations but standard deviations are comparable and
the linear correlation is statistically significant (c.i. 0.17–

0.59,p<0.05). The same considerations apply for bacterial
biomass, whose bulk value is well predicted. The number
of bacterial data at HOT is however smaller than at BATS,
which makes the linear correlation and RI values less signif-
icant (p<0.1, c.i.−0.13∼0.57, RI=1.3∼1.4, respectively).
The indicators of the standing stocks are thus generally ac-
ceptable but the NPP is underestimated. If we consider the
NPP1 estimate of autotrophic production, PELAGOS over-
estimates the measured NPP with a mean value of 337 and
s.d.=77. In this case the total amount of autotrophic carbon
production is more similar to the values suggested byOn-
drusek et al.(2001).

4 Discussion and applications

We presented here a selected set of results from a multi-
annual simulation of PELAGOS compared with publicly
available global and local datasets. The technical aim of
the previous part is to design a layout for model assessment,
building on the general prescriptions suggested inStow et al.
(2009). The scientific aim is to demonstrate that this model
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Table 2. Model skill assessment at BATS. The units apply to all indices except the correlation coefficient, MEF and RI. Variables refer to the
surface except MLD and NPP, which is integrated over the MLD in the data and to the euphotic zone depth in the model (∼90 m). n.s.=non
significant according to an empirical p-value estimate. Skill measures are defined in the Appendix A.

SST MLD Chlorophyll NPP Phosphate Nitrate Bacteria BP
[deg C] [m] [mg m−3] [mg C m−2d−1] [mmol m−3] [mmol m−3] [mg C m−3] [mg C m−3 d−1]

mean 23.0 43 0.14 275 8 10−4 0.19 4.96 2.33
mean BATS 23.5 55 0.10 251 8 10−3 0.04 4.58 2.33
s.d. 2.8 36 0.12 136 0.002 0.009 0.38 0.47
s.d. BATS 2.9 49 0.08 227 0.02 0.11 1.15 1.84
Pearsonr 0.96 0.81 0.64 0.68 n.s. n.s. 0.29 0.35
RMSDtot 0.94 31 0.10 169 0.02 0.18 1.16 1.73
B −0.56 −12 0.04 24 −0.007 0.15 0.38 0.00
AAE 0.74 19 0.07 132 0.009 0.17 0.90 1.27
RMSDcp 0.75 29 0.09 167 0.02 0.11 1.10 1.73
MEF 0.90 0.59 −0.80 0.44 −0.14 −1.6 −0.03 0.11
RI 1.0 1.7 2.2 2.5 n.s. n.s. 1.4 2.2

Table 3. Model skill assessment at HOT. The units apply to all indices except the correlation coefficient, MEF and RI that are non-
dimensional. n.s.=non significant according to an empirical p-value estimate. Skill measures are defined in the Appendix A.

SST MLD Chlorophyll NPP Phosphate Nitrate Bacteria
[deg C] [m] [mg m−3] [mg C m−2d−1] [mmol m−3] [mmol m−3] [mg C m−3]

mean 24.5 43 0.04 176 2 10−4 3 10−4 4.58
mean HOT 24.8 47 0.09 259 0.08 5 10−3 4.17
s.d. 1.38 20 0.02 39 5 10−4 4 10−4 0.07
s.d. HOT 1.27 19 0.04 103 0.03 0.01 0.90
Pearsonr 0.95 0.62 0.41 n.s. n.s. n.s. 0.24
RMSDtot 0.53 17 0.06 136 0.08 0.01 0.96
B −0.33 −3 −0.05 −83 −0.07 −0.004 0.41
AAE 0.42 13 0.05 104 0.08 0.005 0.79
RMSDcp 0.42 17 0.03 109 0.03 0.01 0.87
MEF 0.83 0.16 −1.9 n.s. n.s. n.s. −0.18
RI 1.0 1.4 3.2 n.s. n.s. n.s. 1.2

can be used as a component of an Earth System Model to
study climate change scenarios where modifications of the
ocean large-scale features are expected to affect marine bio-
geochemical dynamics. It is therefore essential to assess the
quality of the PELAGOS simulation in the context of the 20th
century climate conditions. The debate about the meaning
of validation in ecological models is still open (e.g.Rykiel,
1996) and it is not our aim to focus here on the more phy-
losophical questions of whether a model can ever be verified
or only falsified. Our interest is in the demonstration of op-
erational validity through the usage of objective indicators
of performance. This implies the subjective judgment about
the skill of the model (Lynch et al., 2009), which includes
the definition of acceptable thresholds. The target is the de-
scription of marine carbon transformation rates under current
climate conditions and therefore we are interested in describ-
ing the major distribution properties such as means, standard
deviations and phase correlation. This implies that values of
RI<2 and MEF≥0 are the minimum requirements (see Ap-

pendix A for definitions), phase correlations should be sig-
nificant and≥0.4 and that goodness-of-fit tests with linear
scatter plots should giver2

≥0.6 and slope values of 1. Bias
and RMSD values are very informative properties to qual-
ify model behavior, but the definition of validity thresholds
is even more based on subjective considerations and was not
decided a priori. However, as suggested byRose and Smith
(1998), it is more scientific to debate measures and thresh-
olds than graphical comparisons.

The problem of sample size is also relevant in case of bio-
geochemical data. We make here an additional substantial
assumption that cannot be assessed yet: the data used in this
work are considered sufficient to describe the mean state and
variability of the current climate conditions from a biogeo-
chemical point of view. This is a rather strong assumption
given the little amount of data concerning carbon exchange
rates and the lack of repeated measurements that are needed
to define variability in a climatological sense. It is more
likely to get good scores by accident with limited set of data
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(Mason, 2008), such as the monthly observations in the HOT
and BATS timeseries.

Scoring model performance is finally very useful in the
context of model development or in the framework of multi-
model comparison. These values can be used as benchmarks
to check the efficacy of a new component addition, param-
eterization changes or newly available data. The heuristic
nature of biogeochemical models implies that model formu-
lations are parameterized on specific datasets or derived from
general considerations on ecosystem functioning. Testing
their genericity against a set of benchmarks as proposed here
is therefore one possible way forward for building more ro-
bust formulations (see also discussions inHood et al., 2006).

4.1 Analysis of major biases

The simulated mean chlorophyll field is visually accept-
able in the northern mid-latitude regions and equatorial Pa-
cific, but is markedly overestimated in the Southern Ocean
(cfr. Fig. 1). This feature is found in other OBGCMs, ei-
ther linked to the role of iron in this High-Nutrient Low-
Chlorophyll (HNLC) region or to inadequate mixing (e.g.
Schneider et al., 2008). The use of multi-annual atmo-
spheric forcing functions instead of climatological have im-
proved the model results especially in the Northern Hemi-
sphere. However, the improvements in the North Atlantic
and equatorial Pacific with respect to the simulations inVichi
et al. (2007b, especially in terms of diatoms, not shown)
led to an increase of the chl bias in the Southern Ocean.
We hypothesize that the early stratification in the Subantarc-
tic province (Fig.3d) favours the bloom of diatoms, which
can maximise production through photo-acclimation in the
illuminated shallow MLD utilizing the abundance of nutri-
ents typical of this region. A sensitivity analysis has been
performed to demonstrate the linkage between biomass pro-
duction in the Southern Ocean and the seasonal cycle of the
mixed layer. The results shown in Fig.11 for year 2000 in-
dicate that simulated chlorophyll is substantially reduced by
artificially increasing of 2 orders of magnitude the minimum
level of turbulent kinetic energy throughout the year in the
Southern Ocean south of 50◦ S. Consequently, also the MEF
index for the Southern Hemisphere shown in Fig.2 increases
to values close to 0 as for the other regions (not shown). This
is however only a proof of concept and further work is needed
both on the physical and biological components of the model.
It is known that the Southern Ocean experiences local intense
mixing events (Garabato et al., 2004) and that current MLD
climatologies are inadequate to provide robust estimates of
this region due to data limitations (de Boyer Mont́egut et al.,
2004). Recently, a new climatology derived from ARGO
float data indicated that the deepest mixed layers are located
in the Subantarctic province, with maxima from June to Oc-
tober (Dong et al., 2008), similarly as obtained in Fig.11.
This experiment demonstrates that mixed layer depth con-
trols the simulated annual evolution of phytoplankton in the

Southern Ocean and that the energy transfer paramateriza-
tions in the subsurface should be improved in the future in
order to reduce the systematic bias in model results. It is
also important to avoid overconstraints of parameters such
as iron-limitation coefficients to force the model towards the
observed concentrations.

Simulated primary production is comparable with satellite
estimates at the global scale, though only a qualitative visual
comparison has been performed in this case. In fact, the us-
age of satellite-derived products for model assessment is a
model-to-model comparison and not an operational valida-
tion with observations. As demonstrated in Sect.3.3.2and
also pointed out inFriedrichs et al.(2009), the predictabil-
ity skill of satellite PP models and OBGCMs against in situ,
quality-controlled observations is comparable, at least in the
equatorial Pacific. This latter comparison has shown that
PELAGOS has better predictability than the mean of the data
(MEF>0), which implies that it can reproduce the long-term
observed mean and part of the variability which is related to
the climate variability in the region (not shown).

The independent test with the two long-term JGOFS sta-
tions increases the confidence in the model parameterizations
of carbon cycling in the surface ocean. The model was not
calibrated to the observations, therefore the skill in capturing
the observed means is remarkable. All the computed scores
are significant and indicative of some skill, mostly in predict-
ing the mean state. Variability, measured as linear correlation
and standard deviation, is well captured more at BATS than
at HOT because of the presence of a more marked seasonal
cycle. The observations at HOT indicates the presence of
short-term and small-scale sources of variability that are un-
likely to be simulated by the coarse resolution ocean model
in a generally stable area such as the subtropical north Pacific
gyre. The long-term means of observed nutrient concentra-
tions is an order of magnitude higher than in the model sim-
ulations both at BATS and HOT, although all values are al-
ready very close to the detectable limits. In particular, phos-
phate is reported to be 0 for most of the sampled data in the
JGOFS time series. However, the high observed s.d. indi-
cates the presence of nutrient pulses, which at BATS occur
during summer and not during the more mixed periods (not
shown).

If we consider the MEF and RI indicators as overall mea-
sures, we may conclude that the model has skills for sim-
ulating primary production in the equatorial Pacific and in
sub-tropical mid-latitude regions such as BATS. The latter
occurs in spite of the poor performance in predicting nu-
trient concentrations, which implies that from a functional
point of view there is a nutrient threshold below which car-
bon production can be quantitatively simulated unregarding
the kind of the limiting nutrient. There is thus more work
to be done for parameterizing multiple nutrient limitations
in models , though the influence on primary production esti-
mates are second order in PELAGOS.
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Fig. 11. Results of a sensitivity experiment on the artificial increase of TKE in the Southern Ocean (shown for year 2000).(a) Comparison
of the seasonal cycle of mixed layer depths in the Subantarctic province with the observed climatology and reference simulation shown in
Fig. 3d; (b) resulting mean chlorophyll concentrations and comparison with SeaWiFS and CZCS data. The gray-shaded area is the spatial
standard deviation of SeaWiFS in the province. (b) can be directly compared with Fig. 9c inVichi et al. (2007b).

4.2 DOC and primary production

The usage of objective skill indicators allowed us to demon-
strate that NPP scores improve when the model variable is
diagnosed by estimating net particle production (NPP2) and
not the more typical difference between gross production and
respiration losses (NPP1, Sect.3.3.2). In fact, the removal of
a constant portion of the produced carbon that is directly re-
leased as DOC improves the comparison with the ClimPP
data set (Table1 and Fig.6) and also at BATS (not shown). It
is known that a considerable fraction of primary production
may be lost directly as dissolved organic carbon in nutrient-
stressed conditions (Ogawa and Tanoue, 2003). Recently, a
paper comparing 8 different methods of measuring primary
production highlighted the role of dissolved organic matter,
which may lead to experimental underestimates of14C NPP
especially in the case of nutrient-stressed cells (Robinson
et al., 2009). Our results indicate that considering this frac-
tion when comparing with14C in situ primary production es-
timates considerably improves the results.

However, the choice of a constant fraction that fix the pro-
portion between HMW and LMW DOC is still insufficient.
In the more oligotrophic HOT data, the observations lie be-
tween the two NPP estimates (Fig.9). If the amount of col-
loidal LMW DOC produced at Sta. ALOHA is higher than
at BATS due to the more oligotrophic conditions, it is likely
that a fraction higher than 50% (as estimated with the ClimPP
dataset and used with BATS, cfr. Sect.3.3.2) be retained by
the filter and thus considered as particle production. Con-
current comparisons of14C NPP, DOC quality and oxygen
production fluxes should help to clarify further this issue.
Our experiments suggest that a dynamical parameterization

of the quality of the exudate production may contribute to a
more proper estimation of the observed production and ex-
port rates, since colloidal DOC may also increase the sinking
velocity of organic matter through aggregation (e.g.Engel
et al., 2004).

It is important to remember that the different estimates of
NPP presented in this work do not change the other variable
results; it only implies a different way of comparing data with
a model like PELAGOS that implements a more sophisti-
cated parameterization of primary production. This occurs
because our model of primary production simulates the dif-
ferent carbon pathways and the same methods may not be
applicable with specific models built to quantify net (partic-
ulate) primary production only. However, since most of the
biogeochemical models aim at the estimation of net ecosys-
tem production as a proxy to export production, by neglect-
ing this fraction they may underestimate the flow of carbon
through the food web.

4.3 Implications for the metabolic balance of the global
ocean

Microbial production and consumption rates are central for
evaluating the efficiency of the biological pump. The amount
of organic carbon produced by autotrophs and consumed by
the heterotrophic biota in the surface and deeper layers de-
termine the actual export of organic matter. A key question
here is whether the global ocean is net heterotrophic or how
large the net heterotrophic regions are (e.g.Del Giorgio and
Duarte, 2002; Riser and Johnson, 2008) and what will be the
changes in future climate conditions.
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Unfortunately, only sparse direct measurements of these
rates exist at the scale of the global ocean.Brix et al. (2006)
have analysed the BATS and HOT data to quantify export
production in subtropical gyres. They diagnosed metabolic
rates by means of the ratio of net community production
(NCP) over NPP (e- or ef-ratio), the ratio of particle produc-
tion over NCP (p-ratio) and the ratio of particle production
over NPP (pe-ratio, see Table 1 inBrix et al., 2006, for fur-
ther descriptions and values).

The long-term mean ratios simulated by the model at Sta.
Aloha (Sect.3.4.2) suggests that all NPP is utilised in the
surface euphotic layer by heterotrophic respiration (e-ratio is
0.04, p-ratio is 0.43 and pe-ratio is 0.015). The e-ratio at
Sta. ALOHA is much lower than estimated byBrix et al.
(2006, e-ratio=0.22) but the ep-ratio, which is a proxy of
the effective export from the euphotic zone is comparable.
Notice that these ratios are independent of the choice of
the NPP computation according to the DOC percentage dis-
cussed above, since modelled NCP also includes bacterial
production that originate from the utilization of DOC re-
leased by phytoplankton. The estimates computed byBrix
et al. (2006) might instead be affected by this factor. NPP
measured through C14 bottle incubations may be higher than
reported if there is extra-cellular DOC release, and therefore
the e-ratio can be substantially lower.

BATS shows a higher export ratio (e-ratio=0.23), with p-
ratio=0.23 and pe-ratio=0.05. PELAGOS is thus capable of
predicting the higher p-ratio at BATS indicating that there
is more particulate material production at BATS than at Sta.
ALOHA. Further comparison with bacterial production and
respiration data are still needed to assess whether the rates of
bacterial carbon transformation predicted by the model are
realistic. At the current stage these results imply that sub-
tropical regions in the model are metabolically neutral from
the point of view of the effects on the global carbon cycle be-
cause all primary produced carbon is utilized in the surface
ocean.

The JGOFS stations give information on the temporal vari-
ability of carbon cycling in the subtropical gyre but lack any
resolution of spatial variability. One of the largest available
datasets covering basin-wide microbial carbon fluxes was
presented byHoppe et al.(2002) and it consists in data col-
lected during the period November 1991–January 1992 along
an Atlantic meridional transect. These data revealed that the
tropical areas of the Atlantic with high SST values have Bac-
terial Carbon Demand (BCD) that exceeds NPP at the surface
of the ocean. This is an indicator of net heterotrophy at the
microbial level, that is likely to reduce the importance of the
biological pump as a carbon sequestration process.

The direct comparison of bottle incubations with model
data arises the same methodological issues as in Sect.3.3.2.
The model is parameterized to produce daily values of carbon
production rates while incubation experiments have shorter
time scales (usually 8–12 h). The strategy we adopted to re-
duce uncertainties in the extrapolation was to convert model

results into data units by taking into account the experimen-
tal protocols applied during the campaign. The estimate of
NPP byHoppe et al.(2002) was done by neglecting the DOC
exudation, which they estimated as 5–30% of the total.We
present both the NPP1 and NPP2 model estimates when com-
paring with the observations (as done in Sec.3.3.2), but used
the net organic production NPP1 only for deriving integrated
carbon production at the basin and global scales.

The model computes bacterial production (BP) from a
constant bacterial growth efficiency (BGE) of 30% (Vichi
et al., 2007a) and BCD is a function of the nutrient con-
tent of the available organic substrate. The comparison with
observed BP values is thus the central assessment of model
skill because this is the variable that is directly measured.
The surface ratio of BP/NPP (Fig.12a) computed along the
meridional transect and during the same period of observa-
tions (Fig.12c) shows a similar range of spatial variability
as reported inHoppe et al.(2002), with minima found at the
higher latitudes and at the equator, and maxima in the tropics
and at the southern boundary of the South-Pacific gyre. The
model reproduces also the BCD/BP distribution derived from
the data, with values above 100% in correspondence of the
same maxima of BP/NPP from 20◦ N to 40◦ S. The values in
the northern part, which are equal to the southern maximum
and higher than observed, are likely due to spatial biases in
the location of PP with respect to the estimates of satellite-
based PP models (Fig.4). Simulated NPP is in fact very low
in the western part of the tropical Atlantic close to the Ama-
zon river. Since the data fromHoppe et al.(2002) have been
collected at the surface (although with some special treat-
ments to account for low-light production), it is interesting to
analyse the integrated model results over the euphotic zone
depth (Fig.12b). In this case the model predicts that the At-
lantic north of 45◦ S is net heterotrophic during the boreal
winter period, implying that BCD is sustained by additional
non-local sources of organic matter. Since the model has no
input of organic matter from land, these additional sources
are provided by the more productive mid-latitude regions of
the northern and southern Atlantic.

In the upper part of Table4 we present a direct compar-
ison of model results with averages from the northern and
southern parts of the transect. The ranges of observations
and model data overlap for all parameters and the spatial dif-
ference between north and south Atlantic is well captured.
The southern part of the transects shows higher values of
production mostly because of the sampling along the east-
ern shelf of South America and the crossing with the polar
front. Surface chl is underestimated in the Northern Hemi-
sphere but not in the southern part of the transect because the
model simulates high biological activity in the frontal region
that increases the mean value. The ratio BP/PP is also well
simulated. The NPP2 estimates lead to higher ratios but also
to larger standard deviations that still overlaps the observed
values.
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Fig. 12.Ratios of Bacterial Production (BP) and Bacterial Carbon Demand (BCD) to net primary production (NPP2) along the Atlantic track
of Hoppe et al.(2002): (a) surface values;(b) values integrated over the euphotic zone depth;(c) map of the simulated mean value of BP/PP
over the period of the measurements (November 1991 to January 1992) and location of the transect where model data have been extracted
and compared with observations.

Given the good model skills on the transect data, it is inter-
esting to derive basin scale estimates of the metabolic ratios
first in the Atlantic and then in the global ocean. The re-
sults are shown in the lower part of Table4 using the val-
ues integrated over the euphotic zone to provide a figure
for the surface ocean. To check the relevance of seasonal-
ity, we have first extrapolated the boreal winter (NDJ) val-
ues computed over the whole simulation period 1980–2001
to the year length and compared it with the actual annual
means. According to model results, if the boreal winter con-
ditions are taken as representative of the mean microbial ac-
tivity, the Atlantic ocean is net heterotrophic and the global

ocean is slightly above 100%. The annual climatological
means instead reveal that autotrophic carbon production is
as important as heterotrophic processes, leading to values
that are close to a neutral metabolic balance, if not slightly
autotrophic. The overall figure of carbon production is in
accordance with the satellite derived estimates (Falkowski
et al., 2000; Carr et al., 2006). It is however likely that the
model compensates for the low production in the gyres with
the overestimation in the Southern Ocean (see Sect.4.1), thus
leading to a value that is comparable with the satellite esti-
mates.
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Table 4. Comparison of model results with data fromHoppe et al.(2002, Tab. 1) for the surface Atlantic in the period November 1991–
January 1992. Mean values with standard deviation between brackets. The published bacterial production (BP) data estimated via leucine
incorporation were converted to carbon using the factor of 1.5×10−3 µg C pmol−1. n.a.=not available. The lower part of the table shows
the spatially-integrated annual values of metabolic properties integrated over the euphotic zone (EZ) for the Atlantic and global ocean. Mean
November-December-January (NDJ) values have been extrapolated to the annual value.

Data and model SST [deg C] Chl [µg l−1] PP [µg C l−1 h−1] BP [ µg C l−1 h−1] BP/PP [%] BCD/PP [%]

North Atlantic 20.8 (5.5) 0.35 (0.43) 0.72 (0.65) 0.05 (0.03) 18 (20) n.a.
PELAGOS NPP1 19.9 (5.2) 0.14 (0.06) 0.77 (0.41) 0.07 (0.04) 21 (9) 53 (22)
NPP2 0.49 (0.22) 33 (21) 85 (49)
South Atlantic 14.6 (10.1) 0.86 (0.95) 1.31 (2.10) 0.09 (0.09) 23 (28) n.a.
PELAGOS NPP1 15.0 (8.7) 0.72 (0.71) 1.91 (1.39) 0.15 (0.08) 21 (10) 54 (25)
NPP2 1.49 (1.24) 35 (22) 89 (56)

Model (EZ) PP [Pg C y−1] BP [Pg C y−1] BP/PP [%] BCD/PP [%]

Atlantic (NDJ, extrapolated) 11.31 4.93 44 112
Global (NDJ, extrapolated) 56.40 22.70 40 103
Atlantic (Annual) 11.48 4.33 38 97
Global (Annual) 53.94 20.80 39 99

The net autotrophic balance suggested by the model is in
accordance with geochemical evidence of oxygen production
and recent direct observations (Najjar and Keeling, 2000;
Riser and Johnson, 2008). The coarse resolution of the model
cannot distinguish whether the autotrophic production is due
to pulses of production as suggested byKarl et al. (2003b)
or to a continuous contribution as recently suggested (Riser
and Johnson, 2008). It is however clear from model results
that the extrapolation of process rate variables from the local
scale to the annual and basin scales may lead to misestima-
tion of the metabolic state, with a tendency to show net het-
erotrophic conditions. This may even be more pronounced
when the extrapolation is done using real data that are af-
fected by mesoscale local processes more than our coarse
model simulation (Maixandeau et al., 2005a) and it is thus
important to consider an entire seasonal cycle to properly es-
timate the trophic state (Maixandeau et al., 2005b).

5 Conclusions

A set of objective assessment tools have been used to test the
skill of the PELAGOS model over the last 20 years of the
20th century. The aims were twofold. Firstly, to evaluate the
performance of the model under current climate conditions
in view of its usage in climate change scenario simulations
in the context of Earth System Models (ESM). The focus
was thus on the production of organic carbon and its trans-
formation along the microbial food web. Secondly, based
on additional comparisons with measured basin-scale carbon
exchange rates in the Atlantic, we computed the efficiency of
the surface net community production taken as a proxy for
the biological pump.

The skill of the model in terms of simulating NPP and
carbon transformation in the surface ocean is adequate in
some regions such as the equatorial Pacific and the north At-
lantic subtropical gyre. The visual comparison with satellite-
derived PP data is also qualitatively acceptable, although it
has been demonstrated that satPP models and OBGCMs have
similar skill scores with respect to in situ observations. Fur-
ther independent data sets are thus needed to make sure that
satellite-based products can be used to fill the observational
gaps and robustly validate OBGCMs. It is also extremely
important that long-term data series are maintained and new
ones are implemented in other important regions of the ocean
(for instance the northern Indian Ocean and the Southern
Ocean, where the models shows the largest biases), in order
to allow assessments as the one shown in Sect.3.4

Our results underline the importance of suitable compari-
son between observations and model simulations of primary
production. Experimental protocols and model variable (or
process) definitions need to be properly considered to max-
imize the information that can be extracted from data and
model results. In our specific case, the quality and quan-
tity of DOC exudated from phytoplankton under oligotrophic
conditions was found to be a key variable to improve the
goodness-of-fit of the model against in situ primary produc-
tion observations. It is therefore recommended that DOC
quality measurements be taken during in situ incubations for
NPP studies.

The comparison with completely independent data of the
carbon fluxes through bacteria increase our degree of confi-
dence in the model results, making it suitable for studying
the degradation processes of organic matter under different
oceanic conditions. Within the limits of the model assump-
tion and known biases, we have thus used PELAGOS results
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to estimate the metabolic balance of the global ocean in the
euphotic zone. The model predicts that in boreal winter con-
ditions and in oligotrophic regions of the Atlantic there is a
tendency towards net heterotrophy as observed in the field.
However, in the annual mean and over the Atlantic basin up
to the global scales, the surface ocean is close to a slightly
positive autotrophic balance. It is therefore interesting to fur-
ther investigate the behaviour of the model in case of climate
change scenarios and assess whether the induced changes in
the general circulation and water-mass properties might af-
fect this state.

Appendix A

Univariate skill scores

The most simple measures of distance between a set of ob-
servationsOn and model predictionsPn, n=1,2,...,N are
the bias

B =
1

N

N∑
n=1

Pn −
1

N

N∑
n=1

On = P̄ −Ō

and the absolute average error

AAE =
1

N

N∑
n=1

|On −Pn|.

The total Root Mean Square Difference (RMSD) is defined
as

RMSD=

√√√√ 1

N

N∑
n=1

(On −Pn)
2

which can be further separated into a component due to the
bias and a centered-pattern (unbiased) difference

RMSDCP =

√√√√ 1

N

N∑
n=1

[(
On −Ō

)
−

(
Pn − P̄

)]2

with the relationship

RMSD2
= B2

+RMSD2
CP .

The Nash-Sutcliffe Model Efficiency (Nash and Sutcliffe,
1970) is a measure of the ratio of the model error to the vari-
ability of the observations:

MEF= 1−

∑N
n=1(On −Pn)

2∑N
n=1

(
On −O

)2

whereOn andPn are theN pairs of observational data and
predictions, respectively. Performance levels are usually cat-
egorised as follows:>0.65 excellent, 0.65–0.5 very good,
0.5–0.2 good,<0.2 poor. If the index is lower than 0, it
means that the model is a worse predictor than the mean

of the observations. If the index is close to 0, the model is
as good a predictor as the data mean. This implies that the
model correctly reproduces the mean but that the simulated
variability is lower than observed.

The Reliability Index (RI,Leggett and Williams, 1981)
measures the order of magnitude of model predictions with
respect to data:

RI = exp

√√√√ 1

N

N∑
n=1

(
log

On

Pn

)2

.

It was originally proposed as a statistical interpretation of
log-normal distributed data, which is a typical distribution
for most of the properties in ecology. The measure is inter-
preted as the value such that 68% of the model predictions
fall within 1/RI and RI (Smith and Rose, 1995). This index
thus does not distinguish whether the multiplicative factor is
related to over- or underestimation therefore it requires the
concurrent analysis of the bias.

Non-metric Multi-Dimensional Scaling (MDS)

Starting from a matrix of similarities/dissimilarities (resem-
blance matrix) betweenn items, this algorithm constructs a
new set of data points in a low dimension space (usually 2-
D) whose proximities are obtained through a minimization
procedure that maintains the original distances in the resem-
blance matrix. The stress function that is minimized through
iteration is the measure of the fit between proximities in the
new low-dimensional space (dij ) and the distances in the
original data space (δij ) as, for instance:

stress=

∑n
i=1

∑n
j>i

(
dij −f

(
δij

))2∑n
i=1

∑n
j>i d

2
ij

 1
2

wheref is a non-metric, monotone transformation of the in-
put data (distances). The minimization will lead to a final
choice off that reproduces the general rank-ordering of dis-
tances between the objects. A stress value lower than 0.2 is
considered a sufficient description of the original proximities
in the lower dimensional space. The distances between the
coordinates of itemi andj in the new space are Euclidean
and depends on the chosen number of dimensionsm, such as

dij =

[
m∑

a=1

(
xia −xja

)2

] 1
2

wherexa,a=1,...,m, is the new coordinate system. MDS is
a standard tool in many statistical software packages and in
this particular case we used the MATLAB implementation.
The multivariate distance metrics containing the combina-
tion of the skill score values can be computed in different
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ways. Given the non-linear nature of the skill scores, the re-
semblance matrix was built using the Manhattan (cityblock)
distance:

δij =

K∑
k=1

∣∣sik −sjk

∣∣
whereK is the number of normalized skill scoress defining
each model object.
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