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Abstract. We are comparing spatially explicit process-
model based estimates of the terrestrial carbon balance and
its components over Africa and confront them with remote
sensing based proxies of vegetation productivity and atmo-
spheric inversions of land-atmosphere net carbon exchange.
Particular emphasis is on characterizing the patterns of inter-
annual variability of carbon fluxes and analyzing the factors
and processes responsible for it. For this purpose simula-
tions with the terrestrial biosphere models ORCHIDEE, LPJ-
DGVM, LPJ-Guess and JULES have been performed using
a standardized modeling protocol and a uniform set of cor-
rected climate forcing data.

While the models differ concerning the absolute magni-
tude of carbon fluxes, we find several robust patterns of inter-
annual variability among the models. Models exhibit largest
interannual variability in southern and eastern Africa, regions
which are primarily covered by herbaceous vegetation. In-
terannual variability of the net carbon balance appears to be
more strongly influenced by gross primary production than
by ecosystem respiration. A principal component analysis in-
dicates that moisture is the main driving factor of interannual
gross primary production variability for those regions. On
the contrary in a large part of the inner tropics radiation ap-
pears to be limiting in two models. These patterns are partly
corroborated by remotely sensed vegetation properties from
the SeaWiFS satellite sensor. Inverse atmospheric modeling
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estimates of surface carbon fluxes are less conclusive at this
point, implying the need for a denser network of observation
stations over Africa.

1 Introduction

Understanding terrestrial sources and sinks of CO2 and its
variability is important for understanding the carbon cycle-
climate feedback. Extensive research in this field has con-
centrated on the highly developed parts of the world, in par-
ticular North America and Europe with a strong research in-
frastructure. In a recent review, Williams et al. (2007) identi-
fied Africa as “one of the weakest links in our understanding
of the global carbon cycle.” Africa is the second largest con-
tinent of the world occupying about 20% of global land mass
and inhabits a large variety of ecosystems ranging from per-
humid tropical forest to semi-arid and arid grass and shrub
communities. Although Africa’s decadal scale mean carbon
balance appears to be neutral, the continent contributes about
half of the interannual variability of the carbon balance on
global scale (Williams et al., 2007). This large interannual
variability results primarily from climatic perturbations re-
lated to the El Nino phenomenon that directly affects the
ecosystems’ productivity and due to concomitant biomass
burning (e.g. Le Page et al., 2007; Anyamba et al., 2002,
2003; Myneni et al., 1996; Kogan 2000).

Given the scarcity of observation sites for atmospheric
CO2 concentrations and land – atmosphere CO2 exchange
the uncertainties of African carbon cycle research remain
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high in particular regarding the spatial localization of hotspot
regions of variability and the underlying driving forces. Sim-
ulations of terrestrial ecosystem models can provide insights
here; however, these models are also associated with large
uncertainties (e.g. McGuire et al., 2001; Friedlingstein et al.,
2006) in particular for water limited conditions (e.g. Morales
et al., 2005; Jung et al., 2007), and in addition have gener-
ally not been tested and parameterized specifically for Africa.
Thus, confidence of a single model analysis is limited and a
multi-model study is warranted to identify coherent and dis-
similar behavior between different biosphere models.

In this study we assess the interannual variability of
Africa’s carbon cycle using four different terrestrial carbon
cycle models in conjunction with remotely sensed indicators
for the state of the vegetation as well as carbon balance esti-
mates from global atmospheric inversions. We aim to iden-
tify (1) regions of largest carbon balance interannual variabil-
ity, (2) the primary process (photosynthesis or respiration)
dominating the carbon balance variability, and (3) which cli-
mate variables are driving the ecosystem’s carbon cycle in
the models.

2 Materials and methods

2.1 Model descriptions

The four ecosystem models ORCHIDEE (Krinner et al.,
2005), LPJ-DGVM (Sitch et al., 2003), LPJ-GUESS (Smith
et al., 2001), and JULES/TRIFFID (Cox et al., 2001; Es-
sery et al., 2001; Hughes et al., 2006) applied in this
study are coupled biogeography-biogeochemistry models,
i.e. they combine representations of both vegetation dynam-
ics and land-atmosphere carbon and water exchanges (dy-
namic global vegetation models – DGVMs). The concept of
plant functional types (PFT) (Smith et al., 1997) is used to
discretize differences in physiology and allometry of species
including adaptations to climatic conditions and disturbance
regime. PFTs compete for resources like light, and water.
Representations of vegetation structure like allometry, and
function like phenology, allocation, mortality, and establish-
ment are essential for this. Gross primary production (GPP)
is calculated based on a coupled photosynthesis-water bal-
ance scheme after (Farquhar et al., 1980; Collatz et al., 1991,
1992), where simplifications have been incorporated in the
different models as described in detail in the above refer-
ences. Heterotrophic respiration is assumed to be represented
by first-order decay of organic material with decay rates for
a few pools (Foley, 1995) which depend on temperature and
moisture following (Lloyd and Talor, 1994) or a Q10 formula.
Fire, the main disturbance in the region is simulated follow-
ing (Thonicke et al., 2001) within LPJ-DGVM, ORCHIDEE,
and LPJ-GUESS.

The applied models differ in the temporal resolution and in
the resolution of vegetation structure representations. While

LPJ-DGVM and LPJ-GUESS are designed as stand-alone
models running on a daily time step, ORCHIDEE and
JULES can be coupled to General Circulation Models func-
tioning as land-surface schemes. Therefore, latter models re-
solve the diurnal cycle with time steps of 30 to 60 min. Usu-
ally, the LPJ family of models is driven by monthly climatic
data which are interpolated to pseudo-daily using a whether
generator for precipitation. In this study, the LPJ-DGVM is
driven by daily climatic inputs. In doing so, net radiation
is approximated from global radiation after Linacre (1969).
The LPJ-GUESS has the most advanced representation of
vegetation structure including age with features of a forest-
gap model (Shugart, 1984) resolving forest succession. LPJ-
DGVM and ORCHIDEE have intermediate complexity ap-
plying the concept of “average individuals” for a whole grid
cell (Sitch et al., 2003) while JULES/TRIFFID employs a
heuristic approach to determine the vegetation coverage and
carbon allocation to each PFT.

2.2 Model drivers

All models are driven by the same climate data, atmospheric
CO2 concentration, and soil texture type on a 1◦ grid from
1982 to 2006, which has been derived as follows: Meteo-
rological forcing (near surface air temperature, specific hu-
midity, wind speed, radiation, and precipitation) originates
from 6-hourly NCEP-DOE Reanalysis-2 (Kanamitsu et al.,
2002) that were spatially interpolated to 1◦ from the origi-
nal T62 Gaussian grid. Despite substantial improvements of
NCEP R2 over R1 considerable precipitation biases remain
in comparison to various independent data sets (Fekete et al.,
2004). To account for these limitations, precipitation was
corrected using more reliable data sets based on observations
from the satellite based Tropical Rainfall Measuring Mission
(TRMM 3B43) available from 1998–2006 (Kummerow et
al., 1998) and from interpolated station data provided by the
Climate Research Unit (CRU) from 1961–2003 (CRUTR2.1,
Mitchell and Jones, 2005). The general calibration method
follows Williams et al. (2008), Ngo-Duc et al. (2005) and
Sheffield et al. (2006), where the daily values of the origi-
nal NCEP data for each grid cell are scaled to match in their
monthly totals those of the corresponding CRU and TRMM
data. For the CRU period (1979–1997) precipitation was cor-
rected following:

CAl NCEPy,m,d,h =
NCEPy,m,d,h × CRUy,m

NCEPy,m
× (1)∑2006

1998TRMMm∑2006
1998CRUm

For the TRMM period (1998–2006) the calibration used:

CAl NCEPy,m,d,h = NCEPy,m,d,h ×
TRMMy,m

NCEPy,m
(2)
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Fig. 1. African ecoregions

The adjustment yielded an overall reduction of 15.2% pre-
cipitation.

Soil texture is given by the IGBP-DIS map at 1◦ (Tempel et
al., 1996). Data on the annual CO2 concentration was taken
from measurements at Mauna Loa (www.esrl.noaa.gov/gmd/
ccgg/trends/).

2.3 Experimental setup

The simulation of the terrestrial carbon and water budgets are
carried out at a spatial resolution of 1◦

×1◦ for entire conti-
nental Africa for the target period 1982–2006. Spin-up cal-
culations were performed by repeating the years 1982–1992
using the meteorological data sets of the appropriate years
and a fixed CO2 concentration of 341.13 ppm (Mauna Loa
value in 1982) until carbon pools reach equilibrium. After
the spin-up, model simulations start in 1982 with rising CO2
concentration per annum. Potential vegetation distribution
was dynamically simulated by the models.

2.4 Data analysis

Definition of regions

We define six major regions of sub-saharan Africa based
on the broad distribution of ecosystem types (available from
global land cover maps), and thus implicitly according
to bioclimatic conditions: Northern Savannah Belt, Cen-
tral African tropical forest, Horn of Africa, Southern rain-
green woodlands, South African grasslands, and Madagascar
(Fig. 1). Given that Madagascar is small in comparison to the
other regions and very heterogeneous we do not discuss this
region extensively.

Quantification of interannual variability

Interannual variability (IAV) is calculated for each pixel
and model as the standard deviation of the respective quantity
(e.g. GPP) for a yearly time step across all years, resulting in
a grid of IAV for each model and variable. For identifying
spatial patterns of relatively high and low interannual vari-
ability, the IAV grid of each model was z-transformed.

z(IAV i) =

(
IAV i − IAV

)
σIAV

Where z(IAVI) is the standardized IAV of grid cell i,IAV
andσIAV are the spatial mean and standard deviation of the
IAV, respectively. Hence z(IAVI ) measures the degree of
variability for each pixel in units of standard deviations, i.e.
values larger than 0 refer to above average interannual vari-
ability and for example a value of two indicates variability
of 2 standard deviations above the mean variability of the
continent. Consistent spatial patterns between all models
are defined as model agreement and are implemented as the
sum of models per grid cell which show variability larger
than one standard deviation above the mean variability of
the continent.

Principal component analysis

To analyze the relationship between meteorological
conditions and simulated carbon fluxes on annual scale we
follow the approach of Jung et al. (2007). First we reduce
the array of several meteorological driver variables to their
principal components and then calculate the correlation
between meteorological principal components and relative
flux variations for each grid cell. The principal component
analysis (PCA) of the meteorological data reduces the
dimensionality of the data set and often extracts major
weather patterns or gradients. We used four annual data
fields as input to the PCA: precipitation, air temperature,
radiation, specific air humidity.

Corroboration against satellite data

We use the fraction of absorbed photosynthetic active radi-
ation (FAPAR) product of Gobron et al. (2006) based on the
SeaWiFS satellite sensor as a proxy for vegetation productiv-
ity (available at:www.fapar.jrc.it). It has been designed as an
optimized indicator for the state and health of the vegetation
and overcomes several limitations of the classically used nor-
malized difference vegetation index (NDVI) (Gobron et al.,
2000). Jung et al. (2008) have shown that the annual sum
of FAPAR growing season values correlates strongly with
annual gross primary production from eddy covariance mea-
surement sites in Europe. At first glance it appears to be more
consistent to compare simulated FAPAR by the models with
the FAPAR satellite retrievals instead of using the FAPAR as
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a proxy for GPP. However, there are several reasons why it
makes more sense to interpret the remotely sensed FAPAR as
an indicator for productivity: (1) ecosystem models tend to
capture interannual variability of GPP primarily via interan-
nual variations of radiation use efficiency and not via changes
of leaf area (Jung et al., 2007) while the interannual anomaly
patterns of the SeaWiFS-FAPAR provide a realistic picture of
the GPP anomalies (Jung et al., 2008; Gobron et al., 2005),
and (2) there are conceptual mismatches between the FAPAR
from the satellite and the FAPAR simulated by models. For
example the response of herbaceous understorey, which is
very sensitive to e.g. water stress, plays likely an important
role in the anomaly patterns of the satellite FAPAR by indi-
cating the direction of change of the ecosystem (see in Jung
et al., 2008 for more discussion). In addition, changes of
the remotely sensed FAPAR may originate from changes of
leaf colour (e.g. leaf darkening or yellowing), which indi-
cates changes of chlorophyll content and thus radiation use
efficiency. In contrast, the leaves in the models do not change
their reflective properties; effects of leaf aging on photosyn-
thesis are in some cases captured as Vcmax being a function
of leaf age as in ORCHIDEE.

We calculate mean annual FAPAR as a proxy for GPP
after filling gaps of the FAPAR time series as described
in Jung et al. (2008). In addition we compare the mean
seasonal cycles of simulated GPP and remotely sensed
FAPAR for the defined regions.

Comparison with atmospheric inversions

We compare the simulated variations of the African car-
bon balance in terms of Net Ecosystem Productivity (NEP),
and Net Biome Production (NBP) with results from global
atmospheric inversions from Rödenbeck (2005) (version
s96v3.1) covering the period of 1997 to 2006 based on glob-
ally 51 stations of atmospheric CO2 records. This way we
also determine the role of fire on the interannual variability
of the carbon balance. Simulated NEP is calculated as GPP
minus Terrestrial Ecosystem Respiration (TER). Modeled
NBP is based on the difference of NEP and model specific
fire emissions, except JULES which does not include fire.
The inversions detect carbon emissions from fire. To facili-
tate comparability between NEP simulations and inversions,
we used the Global Fire Emission Database (GFED version
2.1, available at:ftp://daac.ornl.gov/data/globalvegetation/
fire emissionsv2.1) from Randerson et al. (2007) and Van
der Werf et al. (2006) to correct for carbon fire emissions in
the atmospheric inversions.

Table 1. Continental annual average GPP, NPP per model (temporal
standard deviation), all numbers are in Pg C y-1

LPJ DGVM LPJ GUESS JULES ORCHIDEE

GPP 39.68 [1.73] 16.58 [1.04] 31.50 [0.91] 29.80 [1.20]
NPP 17.28 [1.12] 9.16 [0.67] 12.01 [0.48] 15.38 [0.77]

3 Results and discussion

3.1 Mean annual carbon fluxes

We use annual sums of GPP and Net Primary Production
(NPP) over the entire study period to investigate the mean
annual carbon fluxes at the continental as well as on the re-
gional scale, and compare them to global numbers based on
the IPCC Fourth Assessment Report (IPCC 2007). Mod-
elled absolute NEP estimates strongly depend on factors that
cannot be taken into account (e.g. change in land-use his-
tory) and thus are relatively meaningless. Hence, we dis-
cuss NEP only in terms of interannual variability as previ-
ously done in other contexts (e.g., Ciais et al., 2005; Vet-
ter et al., 2008) (see below). At continental scale annual
GPP estimates range from 16.58 to 39.68 Pg C y-1 (14–33%
of global GPP (120 Pg C y-1)), and 9.16 to 17.28 Pg C y-1
for NPP (14–27% of global NPP (65 Pg C y-1)) respectively
(Table 1). Previous modeling studies indicated mean annual
NPP between 7 and 13 Pg C y-1 (Cramer et al., 1999; Cao et
al., 2001; Potter, 2003). Possibly, the too extensive forest
cover simulated by LPJ-DGVM (17.28 Pg C y-1) and OR-
CHIDEE (15.38 Pg C y-1) may have caused an overestima-
tion of continental scale NPP. A realistic representation of
savannah ecosystems is still a challenge for dynamic vegeta-
tion models.

The comparison of simulated interannual variations of the
African carbon balance with atmospheric inversions reveals
a consistent pattern but some discrepancies remain (Fig. 2).
There is agreement of above average net uptake for 1997,
2000, 2001, and 2006 and a below average carbon balance
for 1998, 2002, 2003 and 2005. The general pattern of conti-
nental scale IAV is consistent between NEP and NBP, which
indicates a small contribution of fire emissions on the vari-
ability of the African carbon balance in the considered pe-
riod. Relatively low interannual variability of fire emissions
in Africa is consistent with van der Werf et al. (2006). Some
of the deviations between the models and the inversions is
certainly also related to uncertainties of the latter given that
the density of atmospheric CO2 measurement stations is low.

Differences between models are even more pronounced at
regional level (Fig. 3). GPP numbers are similar between
JULES, ORCHIDEE, and LPJ-DGVM for the Northern Sa-
vannah Belt, the Central Tropical Forest, and the Southern
Raingreen Woodland, where LPJ-Guess represents only 50
percent of other modeled GPP numbers. GPP estimates for
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Fig. 2. Comparison of Atmospheric Inversion and Models based on standardized NEP(a) and NBP(b) (1997–2006). Due to the standardiza-
tion method, 0 represents the mean of each individual distribution, but no neutral balance. NEP for models was calculated as the difference
of GPP and TER. NEP from atmospheric inversions was calculated by removing fire emissions using GFED (van der Werf et al., 2006). NBP
refers to the originally inversion results, and NEP minus model specific fire emissions (except JULES, which does not simulate fire).

the Horn of Africa and the South African Grassland are con-
sistent between JULES and LPJ-DGVM, but significantly
lower for ORCHIDEE but in the same range as LPJ-Guess.
Annual NPP estimates are more consistent between all mod-
els. Exceptions are lower LPJ-Guess NPP at the Northern
Savannah Belt, twice as much higher ORCHIDEE NPP than
inter-model average at the Central Tropical Forest, as well
as a high and low plateau situation in the South African
Grassland region as represented by JULES/LPJ-DGVM and
ORCHIDEE/LPJ-GUESS.

Despite the discrepancies among models regarding the ab-
solute flux magnitudes, consistent patterns emerge between
models and with satellite observations regarding seasonal
changes of photosynthesis in the different regions (Fig. 4).
Both, remotely sensed FAPAR and simulated GPP show that
the seasonality of photosynthesis varies in concert with rain-
fall in all regions except for the inner tropical forest, where
low intra-annual variation of rainfall creates climatic con-
ditions without water limitation, reducing the effect of pre-
cipitation on photosynthesis. The heterogeneous vegetation
of Madagascar together with known extensive anthropogenic
transformations (Green and Sussman, 1990) are likely a ma-
jor reason for the disagreement between the models and be-
tween models and remotely sensed FAPAR.

3.2 Regions of large interannual variability

Similar spatial patterns of interannual variability for GPP and
NEP are estimated by all models (Fig. 5). Despite some dif-
ferences of the patterns among the models, we can identify
areas of large interannual variability of GPP and NEP in east
and south Africa predicted by all models (Fig. 6). Both re-
gions are dominated by herbaceous vegetation, including ex-
tensive agricultural land, and are known to be strongly influ-
enced by El Nino conditions (Plisnier et al., 2003; Kogan,
2000). The independent remote sensing based FAPAR data
confirms these two variability hotspot regions (Fig. 7). How-
ever, ORCHIDEE and JULES further simulate considerable
variability in the northern savannahs and partly in the tropical
forest, which is not evident in the satellite observations.

3.3 What drives NEP interannual variability – Photosyn-
thesis or respiration?

The previous section indicated that regions of large inter-
annual NEP variability are associated with also large GPP
variability, suggesting that variations of photosynthesis are
driving the variations of the net carbon balance. Table 2 fur-
ther shows that NEP anomalies in the five defined regions
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Fig. 3. Annual average GPP, NPP, and NEP per region (g C/m2/yr).

are strongly correlated with GPP anomalies in all models. In
many cases anomalies of ecosystem respiration are also pos-
itively correlated with the NEP anomalies which may appear
counterintuitive at first glance. If respiration would drive
the carbon balance we would expect negative correlations;
the positive correlations instead originate from the tight cou-
pling of GPP and TER in the models, which is also evident
in eddy-covariance based, estimates of GPP and TER (e.g.
Reichstein et al., 2007; Baldocchi, 2008). In such case a pos-
itive anomaly of TER results in a positive anomaly of NEP
because the GPP increase is even higher, than the (GPP in-
duced) TER stimulation.

Although the overall pattern of GPP controlled NEP in-
terannual variability is robust and consistent among models
and regions, we find differences in the strength of this re-
lationship depending on the model and region. JULES and
LPJ-GUESS show strongest correlations between GPP and
NEP anomalies (RGPP/NEP>0.92) in all regions, while LPJ-
DGVM and ORCHIDEE simulate larger inter-regional vari-
ability and slightly weaker correlations.

4 The response of simulated gross primary production
to meteorological conditions

Having identified GPP as a crucial driver of the carbon bal-
ance and the hotspot regions of largest interannual variability
in east and South Africa, we now infer which meteorological
conditions drive the variability of GPP. We use a principal

Table 2. Correlation coefficient (R) between GPP and NEP anoma-
lies (left), and TER and NEP anomalies 1 (right) per region and
model

Northern Savannah Belt R (GPP/NEP) R (TER/NEP)

LPJ DGVM 0.71 0.19
LPJ GUESS 0.97 0.82
ORCHIDEE 0.83 0.67
JULES 0.99 0.99
Central African tropical forest R (GPP / NEP) R (TER / NEP)
LPJ DGVM 0.83 0.57
LPJ GUESS 0.92 0.67
ORCHIDEE 0.79 0.63
JULES 0.94 0.91
Horn of Africa R (GPP/NEP) R (TER/NEP)
LPJ DGVM 0.94 0.84
LPJ GUESS 0.99 0.92
ORCHIDEE 0.82 0.60
JULES 0.99 0.99
Southern raingreen woodland R (GPP/NEP) R (TER/NEP)
LPJ DGVM 0.89 0.64
LPJ GUESS 0.99 0.91
ORCHIDEE 0.47 0.12
JULES 0.96 0.93
South African Grassland R (GPP/NEP) R (TER/NEP)
LPJ DGVM 0.94 0.78
LPJ GUESS 1.00 0.96
ORCHIDEE 0.81 0.60
JULES 1.00 0.99

Table 3. Eigenvectors and percent variance per Principal Compo-
nent Modes

Eigenvectors precipitation temp2m iswrad shumid variance %

Mode 1 0.41 0.20 −0.26 0.42 55.09
Mode 2 0.00 −0.79 −0.61 −0.01 25.19
Mode 3 −0.51 0.67 −0.87 −0.35 15.57
Mode 4 1.67 0.14 −0.15 −1.79 4.14

component analysis to reduce the dimensionality of the me-
teorological dataset and to extract typical weather gradients
(see Sect. 2.4). The first two modes of the PCA of the annual
meteorological data explain 80% of its variability (Table 3)
and are used to infer the primary driving factor of GPP in-
terannual variability in the models. The first mode is most
strongly associated with precipitation and specific humidity
and thus represents a gradient of moisture availability. The
factor loadings of the second mode show that it represents
a gradient of increasing temperature and radiation with de-
creasing values of mode 2.

The correlation maps between the first principal compo-
nent and GPP clearly show that moisture availability is the
main limiting factor for photosynthesis (Fig. 8). This find-
ing is in conjunction with Williams et al. (2008), who iden-
tified water stress as the primary governing factor of IAV
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Fig. 4. Standardized mean seasonal cycle GPP from SEAWIFS-FAPAR and participating models.

Fig. 5. Standardized interannual variability of modeled GPP (top),
NEP (bottom); from left: LPJ-DGVM, ORCHIDEE, JULES, LPJ-
GUESS.

Fig. 6. Model agreement of interannual variability defined as count
of models per grid cell where standardized interannual variability is
greater than one standard deviation (GPP (left), NEP (right), 1982–
2006)

Fig. 7. GPP model agreement of interannual variability defined as
count of models per grid cell where standardized interannual vari-
ability is greater than one standard deviation 1998–2005 (left), and
standardized SeaWiFs-FAPAR interannual variability greater one
standard deviation 1998–2005 (right)

of photosynthesis. Correlation maps between the meteoro-
logical PCAs and the mean annual FAPAR from SeaW-
iFS (Fig. 9) confirm that primary productivity responds to
moisture in south and east Africa, which are the regions of
largest interannual variability (see Sect. 3.2). The correla-
tions between moisture and FAPAR on interannual scale in
the Northern Savannah Belt are not as extensive as indicated
by the models. This is possibly an artifact related to the rel-
atively short time series (8 years) and coarse meteorological
data. Camberlin et al. (2006) found more widespread strong
correlations between integrated NDVI and rainfall for a 20
year time series in the northern savannahs. We also find
no correlations between moisture and FAPAR in the Horn
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Fig. 8. Correlation between modeled GPP and Meteorology PCA
1, not significant correlations in grey (confidence interval=0.90)

Fig. 9. Top: Correlation between FAPAR and Meteorology PCA 1
(left) and PCA 2 (right), not significant correlations in grey (con-
fidence interval=0.90), bottom: Model Agreement of significant
(confidence interval=0.90) positive correlations between PCA1 and
GPP (left), and of significant negative correlations between PCA2
and GPP (right).

of Africa region while the models suggest such relationship.
For this region Camberlin et al. (2006) confirm no correla-
tion between precipitation and vegetation productivity for the
northern corner of the African Horn but indicate strong cor-
relations with rainfall in the southern part of the region.

Fig. 10. Correlation between modeled GPP and Meteorology PCA
2, not significant correlations in grey (confidence interval=0.90)

The partly different spatial correlation patterns between
PCA1 and GPP among the models is likely related to dif-
ferent parameterizations for water stress effects such as root
profiles, soil depth, and the coupling between photosynthesis
and transpiration via canopy conductance which largely de-
termines soil water depletion. The simulation of water stress
effects on photosynthesis has been previously identified as a
major source for differences among models regarding inter-
annual variability of GPP in Europe (Jung et al., 2007; Vetter
et al., 2008).

The general water limitation of African vegetation’s pri-
mary production is consistent with Churkina and Run-
ning (1998) based on Biome-BGC simulations and Jolly
et al. (2005) based on the analysis of remote sensing data
from MODIS. Using a production efficiency model Nemani
et al. (2003) find that tropical Africa is primarily radiation
limited, while both Churkina and Running (1998) as well
as Jolly et al. (2005) masked the inner tropical regions and
concluded that no climatic constrain limits productivity here.
Interestingly, LPJ-DGVM and JULES also suggest that not
rainfall but radiation limits GPP in some regions, especially
in the inner tropics. This is represented by the negative
correlations between PCA 2 and GPP in the tropical for-
est where simulated GPP increases with increasing radiation
and temperature (Fig. 10). Given that temperature limitation
does likely not play a role here, we can interpret the neg-
ative correlations between PCA2 and GPP as an indication
for light limitation. The latter also makes sense since fre-
quent cloud cover is present in the tropics, which controls
incoming radiation with otherwise favorable climatic condi-
tions for productivity. Light limitation for parts of the Ama-
zon tropical forests has been inferred from studying wet to
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dry season transitions using in-situ measurements of CO2
gas exchange (Saleska et al., 2003), manipulative experi-
ments (Graham et al., 2002), and remote sensing based stud-
ies (Huete et al., 2006; Xiao et al., 2006; Nemani et al.,
2003). Light limitation for parts of the Amazon result from
access to groundwater during dry seasons when the vegeta-
tion capitalizes from the increases incoming radiation. From
the correlation maps between the remote sensing based FA-
PAR and PCA2 we also find patches in the inner tropics of
Africa where productivity increases with increasing radiation
but to a much smaller extent than suggested by some of the
models. Thus, the role of light availability in the African
tropics remains controversial. There are several possible rea-
sons why we find only small areas with significant corre-
lation between radiation and productivity from the remote
sensing data: (1) the short time series (8 years) in combina-
tion with small variances make it difficult to achieve large
correlations, (2) the uncertainty of the meteorological data
that originate from global reanalysis, (3) possible errors in
the satellite FAPAR retrievals due to subpixel cloud contam-
ination, (4) a strong role of non-climatic limitations of pro-
ductivity such as nutrients. If nutrients are not most limiting,
ecosystems are more sensitive to climatic variations. Possi-
bly, light limitation in the African tropics occurs where less
phosphorous depleted soils are present since phosphorous is
believed to be generally the main limiting factor for produc-
tivity in the tropics (Vitousek, 1984). The overriding effect
of nutrient availability may explain why we find only small
areas with light limitation from the analysis using the satel-
lite data, in contrast to the extensive areas of light limitation
indicated by LPJ-DGVM, JULES, and Nemani et al. (2003)
because none of the latter considers explicitly nutrient cycles.

5 Conclusions

Using four terrestrial ecosystem models in combination with
remote sensing based information of vegetation productivity
we were able to identify that (1) the largest interannual vari-
ability of gross primary production and net ecosystem pro-
ductivity are concentrated in east and south Africa, (2) inter-
annual variations of gross primary production is driving net
ecosystem production in the models, and (3) the availability
of moisture is the primary determinant of interannual varia-
tions of gross primary production and consequently the net
carbon balance.

Nevertheless, our current simulations reveal substantial
discrepancies among models regarding the actual flux mag-
nitudes. Future simulations should be performed with im-
proved forcings by prescribing the actual distribution of veg-
etation types provided by a remote sensing based land cover
map and improved meteorological reanalysis. In addition it
should be investigated to what extent the models are able to
reproduce the ecological patterns found in the synthesis of in-
situ measurements of carbon and water fluxes across Africa

(Merbold et al., 2009). Given the significance of moisture
control on the carbon fluxes in most parts of Africa, particu-
lar attention should be dedicated to the models’ ability to ac-
curately simulate soil hydrological conditions, and the sensi-
tivity of photosynthesis and soil respiration to soil moisture.
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