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Abstract. Modelling of wetland CH4 fluxes using wetland
soil emission models is used to determine the size of this nat-
ural source of CH4 emission on local to global scale. Most
process models of CH4 formation and soil-atmosphere CH4
transport processes operate on a plot scale. For large scale
emission modelling (regional to global scale) upscaling of
this type of model requires thorough analysis of the sen-
sitivity of these models to parameter uncertainty. We ap-
plied the GLUE (Generalized Likelihood Uncertainty Anal-
ysis) methodology to a well-known CH4 emission model, the
Walter-Heimann model, as implemented in the PEATLAND-
VU model. The model is tested using data from two temper-
ate wetland sites and one arctic site. The tests include exper-
iments with different objective functions, which quantify the
fit of the model results to the data.

The results indicate that the model 1) in most cases is capa-
ble of estimating CH4 fluxes better than an estimate based on
the data avarage, but does not clearly outcompete a regres-
sion model based on local data; 2) is capable of reproduc-
ing larger scale (seasonal) temporal variability in the data,
but not the small-scale (daily) temporal variability; 3) is not
strongly sensitive to soil parameters, 4) is sensitive to param-
eters determining CH4 transport and oxidation in vegetation,
and the temperature sensitivity of the microbial population.
The GLUE method also allowed testing of several smaller
modifications of the original model.

We conclude that upscaling of this plot-based wetland
CH4 emission model is feasible, but considerable improve-
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ments of wetland CH4 modelling will result from improve-
ment of wetland vegetation data.

1 Introduction

Together with water vapour and carbon dioxide (CO2),
methane (CH4) is an important greenhouse gas, because of
its strong global warming potential of 23·CO2 on a 100-year
time scale. The atmospheric mixing ratio of CH4 has in-
creased with 151±25%, since pre-industrial times. About
60% of the global CH4 emission is of antropogenous ori-
gin. From the natural sources (wetlands, termites, oceans,
methane seeps and hydrates), the wetland environments are
the major natural source of atmospheric methane (IPCC,
2001). Moreover, the atmospheric methane concentration ap-
pears to be strongly linked to climate change during the last
800 000 years (Loulergue et al., 2008).

Understanding of feedbacks between climate and wetland
CH4 emission, in particular in boreal/arctic regions, is a
problem for predicting future climate change (Denman et
al., 2007). Wetland CH4 emission is also influenced by land
management (e.g.,Van Huissteden et al., 2006; Hendriks et
al., 2007). With the need to reduce greenhouse gas emis-
sions, the relation between wetland CH4 emission and wet-
land management may become an important question in the
future. Predictive models may contribute to a better under-
standing of feedbacks between climate and CH4 emission,
or the effects of wetland management on CH4 emission (e.g.
Petrescu et al., 2009b; Hendriks et al., 2007; Petrescu et al.,
2009a). However, to reduce modelling uncertainty extensive
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sensitivity testing and uncertainty analysis is required, in par-
ticular when models are scaled up from a local to regional or
global scale. As yet, existing CH4 emission models have not
been subjected to rigorous uncertainty analysis going beyond
simple model-data comparisons. Here, we present an uncer-
tainty analysis of a wetland CH4 emission model, based on
the GLUE (Generalized Likelihood Uncertainty Estimation)
methodology (Lamb et al., 1998; Beven, 2001and references
therein).

Methane emission from wetland soils is essentially the net
result of a balance between CH4 production by methanogenic
bacteria in anaerobic soil zones, and CH4 oxidation by
methanotrophic bacteria in aerated soil zones and in plants.
Several process models of wetland soil methane emission
have been designed (Walter, 2000; Segers and Leffelaar,
2001; Granberg et al., 2001; Segers et al., 2001; Wania,
2007). These papers and references therein give an overview
of the processes involved. CH4 is generated by methanogenic
bacteria in anaerobic parts of the soil, when other electron ac-
ceptors for organic matter oxidation are exhausted or unavail-
able (nitrate, sulfate, Fe and Mn oxides). The substrate for
methanogenesis is mainly derived from labile organic com-
pounds, produced by the roots of the wetland vegetation.
In wetlands very rapid transfer (1–2 days) of photosynthe-
sis products to CH4 has been observed (King and Reeburgh,
2002). The two major reaction pathways for methanogen-
esis are CO2 reduction and acetate splitting (e.g.,Bréas et
al., 2001). transport of CH4 from soil to atmosphere occurs
along three pathways: diffusion in soil pores, bubbles rising
to the surface (ebullition), and transport through plant roots
and stems. In particular during diffusive transport in the soil
and plant-mediated transport, CH4 is subject to oxidation by
methanotrophic bacteria (e.g.Whalen et al., 1996; Raghoe-
barsing et al., 2005; Van Huissteden et al., 2008).

Several models have been developed to model methane
fluxes either at a plot scale (Walter, 2000; Granberg et al.,
2001; Segers and Leffelaar, 2001; Segers et al., 2001) or
on a larger scale, ranging from regional to global scale (Pe-
trescu et al., 2009a, b), usually coupled to climate models
(e.g.,Cao et al., 1996; Kaplan, 2002; Gedney et al., 2004;
Van Huissteden, 2004; Wania, 2007). Process-based mod-
elling of methane fluxes from wetland environments is dif-
ficult because of the complicated interactions between soil
biochemistry, vegetation and soil chemical and physical pro-
cesses; most of these processes require parameters that are
difficult to measure and generally not available (e.g.,Walter,
2000). In fact, many ’process’ based models therefore con-
tain rather course bulk parameterizations of key processes,
and the more detailed the process formulation in a model,
the higher the parameter requirements of the model. This
may result in overparameterized models, containing param-
eters that do not contribute significantly to a better fit of the
model to field data. Careful parameter sensitivity analysis
is therefore necessary to assist model improvement. Usu-
ally CH4 emission or soil respiration models are tested only

by varying a few key model parameters and input data and
determining the resulting variation in model output, without
further analysis of the model uncertainty.Van Huissteden et
al. (2006) tested the PEATLAND-VU model on sensitivity
to climate and water table input data and a limited number
of model parameters.Granberg et al.(2001) consider in the
data-model comparison also the standard error of the data,
which can be large compared to the measurements in case
of CH4 emission. Wania (2007) tests the senitivity of her
model by regressing output on parameter values for a range
of model parameters.Berritella and Van Huissteden(2009)
tested a large scale CH4 flux model with varying complex-
ity. However since they modelled paleo-wetland CH4 fluxes
a rigorous data-model comparison was impossible.

Plot-scale models have the advantage that they can be val-
idated against site CH4 flux measurements under a variety
of conditions (e.g.,Walter, 2000; Granberg et al., 2001; Pe-
trescu et al., 2008) and can make use of detailed on-site mea-
surements of key parameters of soil physical and chemical
conditions. Larger scale modelling of CH4 fluxes always re-
quires aggregated and simplified information on vegetation
and soil and are more difficult to validate. However, to prop-
erly understand interactions of wetland CH4 emission with
climate or wetland management, large scale modelling of
these emissions and coupling to climate or hydrological mod-
els is highly important (Petrescu et al., 2009b). For that pur-
pose it is necessary to know at which level of detail processes
need to be modelled to represent the interactions between cli-
mate or management correctly. CH4 fluxes are known to be
spatially highly variable on a small scale (e.g.,Van Huisste-
den et al., 2005; Hendriks et al., 2009a). Water table position
is the most important variable, but also difference in vege-
tation and soil properties have been shown to be influential
(Hendriks et al., 2009a).

An approach that can give information on the required
model complexity for large scale modelling, is to test the
parameter sensitivity of the more detailed, plot-scale mod-
els (Beven, 2001). If a model parameter has a strong in-
fluence on the modelled fluxes on the plot scale, it is likely
that it also has a large influence in an upscaled version of
this model. Depending on model structure, this may hold
also for other models that use the same or similar parame-
ters. In that case large-scale modellers should focus on ob-
taining correct values of this parameter, or at least obtain-
ing a good proxy estimate, for example from remote sensing
of vegetation cover. Conversely, model parameters that do
not contribute significantly to model-data fit on the plot scale
will neither contribute to large-scale modelling of fluxes. To
distinguish influence from specific local conditions, models
need to be tested with several data sets, from spatially and
environmentally different locations. In particular for large-
scale modelling also simpler, reduced complexity modelling
approaches should be considered (e.g.,Berritella and Van
Huissteden, 2009). For model testing the following questions
should be asked:
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1. What is the uncertainty in the model results, given the
uncertainty in input parameters?

2. What is the sensitivity of the model results to variations
in parameter values, in particular those that vary spa-
tially?

3. What is the interaction with other model parameters -
does variation in one parameter affect the sensitivity of
another parameter?

4. Can optimum parameter sets be found? Are there
unique parameter sets or multiple sets that produce re-
alistic model simulations?

A widely used plot-scale process model is that ofWal-
ter (2000); modified versions have been incorporated in
PEATLAND-VU (Van Huissteden et al., 2006; Petrescu
et al., 2008; Petrescu et al., 2009a), and WetlandDNDC
(Zhang et al., 2002). The model ofWalter (2000) includes
methane generation by bacterial consumption of labile soil
organic matter, bacterial methane oxidation, and transport of
methane to the atmosphere by ebullition, diffusion and fluxes
through plants. This model contains several site-specific pa-
rameters that are difficult to quantify properly. We tested
the version of this model included in PEATLAND-VU (Van
Huissteden et al., 2006), which is a slightly modified version
of the Walter (2000) model (for a description of the model
and modifications of the original model ofWalter(2000) see
below). We use the GLUE (Generalized Likelyhood Uncer-
tainty Estimation) methodology (Lamb et al., 1998; Beven,
2001and references therein), with validation data from three
different sites, including a natural and a managed temperate
wetland and a permafrost tundra wetland.

GLUE is an approach that includes a combined evalua-
tion of model result uncertainty and parameter sensitivity. It
has been applied extensively to hydrological models (Beven,
2001) and overcomes several problems that usually arise with
model calibration and sensitivity analysis in complex envi-
ronmental models. In simple cases, for model calibration the
outcome of a model for a given parameter set is compared to
observation data on the modelled system using an objective
function. This objective function indicates with a goodness-
of-fit measure to what extent the model results agree with
the observed values. The parameter set that yields model
results with the best agreement between model and observa-
tions (lowest value of objective function) is chosen as the op-
timal parameter set. This is a straightforward approach when
a clear optimal value of the objective function exists and the
number of model parameters is small and their value range
well constrained. However, in complicated systems like hy-
drological and soil systems the number of relevant parame-
ters that have to be considered may be prohibitive. Also there
may be considerable interaction between the parameters. In
such cases widely different parameter sets may yield simi-
lar model results (equifinality). This situation also has been

observed for the PEATLAND-VU model (Van Huissteden et
al., 2006). For instance, PEATLAND-VU can generate CH4
flux time series with a good model-data fit using different
combinations of microbial CH4 production rates and plant
oxidation rates.

GLUE makes no assumptions about the nature of the op-
timal parameter set of the model. The approach specifically
recognizes the occurrence of non-unique solutions of model
optimization. GLUE is based on a large number of model
simulations with randomly generated parameter sets. Each
parameter can vary within a specified range; multiple param-
eters are changed at each model run. For each run also an
objective function value is generated. Although there will
be one most optimal value of the objective function among
the simulations, there may be many that are nearly as good
and may represent also valid parameter sets. By studying
the distribution of the objective function values for all model
simulations that are well-behaved, not only optimal parame-
ter sets can be found but also conclusions can be drawn on
the parameter sensitivity, parameter interaction and predic-
tive uncertainty of the model (Freer and Beven, 1996; Lamb
et al., 1998; Beven, 2009).

2 The model

PEATLAND-VU is a process-based, plot scale model of CO2
and CH4 emission from peat soils at various climate scenar-
ios. The model has been used byVan den Bos et al.(2003)
andPetrescu et al.(2009b) for regional scale simulation of
CO2 and CH4 fluxes in the Netherlands.Van Huissteden
(2004) andBerritella and Van Huissteden(2009) employed
the model for simulation of paleo-CH4 fluxes from wetlands
in Europe during the last glacial.Petrescu et al.(2009a) have
used the model for global scale simulation of present-day bo-
real and arctic wetlands, by coupling the model to a global
hydrological model. PEATLAND-VU consists of four sub-
models: a soil physics sub-model to calculate temperature,
water saturation and ice content of the soil layers, a CO2 sub-
model, a CH4 sub-model and a soil organic matter (SOM)
production sub-model. For a complete model description we
refer toVan Huissteden et al.(2006). Here only recent modi-
fications are discussed. The CH4 sub-model is based onWal-
ter (2000). The model ofWalter (2000) includes: (1) CH4
production depending on substrate availability/labile organic
matter; (2) CH4 oxidation within the aerated soil topsoil and
in plant roots and stems; (3) CH4 transport by diffusion above
and below the water table; (4) transport by ebullition below
the water table; and (5) transport through plants.

The PEATLAND-VU model requires as input a soil pro-
file description with organic matter content, dry bulk den-
sity and soil moisture retention curve for each soil horizon,
and time series for soil surface or air temperature, water
table depth and snow cover for each model time step of
1–10 days. To diminish the influence of initial boundary
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conditions (soil temperature profile, methane concentration
profile) the model is run with one spin-up year. The output
of the model consists of surface CH4 fluxes, including con-
tributions from the different transport pathways. The input
data for the PEATLAND-VU Model can be obtained from
generic data, e.g. soil profile descriptions and weather data
stations (Van Huissteden et al., 2006).

According to Walter (2000), the production factor for
methane from labile organic compounds in the soil (termed
R0 in Walter’s model description) should be regarded as a
tuning parameter to adapt the model to different sites and
climatic conditions. In PEATLAND-VUR0 has been made
dependent also on soil pH, using an empirical linear rela-
tion derived byDunfield et al.(1993) (Van Huissteden et al.,
2006). Additionally, the model appears sensitive to param-
eters influencing the soil-atmosphere CH4 transport through
plants (Van Huissteden et al., 2006; Petrescu et al., 2008), in
particular to the fraction of CH4 that is assumed to be ox-
idized during plant transportPox). Also parameters related
to primary production and distribution of labile organic com-
pounds in the SOM production submodel potentially influ-
ence modelled fluxes: the Net Primary Production (NPP),
and the fraction of NPP transferred to labile organic com-
pounds. This fraction in turn is determined in PEATLAND-
VU by the fraction of below-ground organic productionfroots
and the fraction offroots that is transferred to rhizodeposition
(dead root material and exudates,fdep).

With respect to the the model description byVan Huisste-
den et al.(2006) andWalter(2000), modifications have been
made to the model. Field observations suggest that after a
dry period in wetland soils, a time lag occurs between a rise
of the water table at the onset of rain and the increase of CH4
fluxes (Hendriks et al., 2007; Hendriks et al., 2009a). This
time lag is caused by the decrease of redox potential in pore
water due to progressive oxidation of labile organic com-
pounds (e.g.Segers et al., 2001). Within the PEATLAND
model lowering of redox potential is not explicitly modelled
by modelling the successive redox processes since it would
require addition of extra soil chemical parameters. However,
it can be mimicked by assuming an exponential increase of
CH4 production to its maximum rate, depending on the time
lag lsat (days) after the onset of completely water saturated
conditions in a soil layer that has previously been unsat-
urated, and the availability of labile organic carbon Clabile
(µmol C kg−1). This is modelled as follows:

fdelay= 1−e−kdelay·(lsat·Clabile) (1)

where kdelay (range 0.01–0.05) is a constant defining the
restoration rate of maximum CH4 production.

Second, our field observations at the Horstermeer site (see
below) suggest that in dense, partly oxidized fen peats CH4
production also may occur above the water table at low
stands in summer, presumably due to the presence of anaer-
obic microsites in the soil.Wagner and Pfeiffer(1997) have
found viable methanogenic bacteria above the water table

in similar marsh soils. In PEATLAND-VU CH4 production
above the water table is modelled as a fraction (panaer) of the
the production below the water table. This fraction depends
linearly on the pore water saturation fraction. The slope of
this relation,fanaer, is the model parameter that determines
panerobe:

fsaturated=

{
< 1:panaer= fanaer·fsaturated, 0≤ panaer≤ 1
= 1:panaer= 1

(2)

3 Study sites and field methods

3.1 Sites

Horstermeer (52◦14′30′′ N, 5◦5′ E) is located SE of Amster-
dam, in a drained lake. The water level in the ditches is at
approximately 3.5 m below sea level, and up to 2 m below
that of surrounding areas. The area is subject to strong seep-
age, in particular in the drainage ditches. The soil consists of
2 m of clayey gyttja (organic lake sediment), erosively over-
lying eutrophic fen peat on Pleistocene sand. Until 1997 the
area was a grazed pasture, thereafter the water level has been
raised to 0.2–0.4 m below the surface, to create a wetland
nature reserve. The present vegetation, a degraded pasture,
is not harvested or managed otherwise. Dominant species
in the wetter parts areHolcus lanatus, Equisetum palustre,
Glyceria maximaandTypha latifolia; dryer patches are dom-
inated byUrtica dioicaandPhalaris arundinacea. At the site
ten chamber flux measurement stations have been installed,
of which two are located on ditches, the others on the land
surface. Data have been collected from May 2003 until Au-
gust 2008 with monthly to weekly intervals. The average
annual air temperature is 9.8◦ C and an average precipita-
tion of 793 mm yr−1. The site was extensively described by
Hendriks et al.(2007).

Ruwiel (52◦10′30′′ N, 4◦56′30′′ E) is a small nature re-
serve (Armenland Ruwiel) with a high water table. Climatic
conditions are the same as those of Horstermeer. It is a
species-rich, mesotrophic hay pasture, dominated by sedges
(Carex sp.) and Eriophorum angustifolium, and has never
been manured or fertilized. It is mown only once a year.
The water table is kept artificially 0.3–0.5 m higher than that
of the surrounding agricultural land. Within the reserve, the
water level varies between 0 to 30 cm below the surface, out-
side the reserve it varies between 20 and 60 cm below the
surface. The soil is a clayey fen peat. Four measurement sta-
tions have been installed in the winter of 2003–2004 in the
reserve. CH4 flux chamber measurements were taken with a
bi-weekly to monthly interval from 22 January, 2004 till 20
December, 2005.

Kytalyk is a tundra wetland site, located in Northeast-
ern Siberia, in the Indigirka lowlands near Chokurdakh
(70◦48 N, 147◦26 E, elevation 48 m). The climate is arctic,
with an annual average temperature measured at the Chokur-
dakh airport weather station of−14.3◦C, the warmest month
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being July, the coldest January. The research site consists of
two different morphological units: a river floodplain, and the
bottom of a former thaw lake, both underlain by continu-
ous permafrost with a network of ice wedge polygons. The
area is characterized by silty soils with a peaty topsoil. The
CH4 flux measurements have been made on both the thaw
lake bottom and the river floodplain. The sites at the river
floodplain are situated in Carex/Eriophorum or Arctica fulva
vegetation and show very high fluxes. The vegetation on the
thaw lake bottom is more varied, with hummocks and pools
dominated bySphagnum, Carex/Eriophorummeadows and
vegetation dominated byBetula nanaor Eriophorumhum-
mocks on higher parts. Compared to the river floodplain,
the fluxes are modest, being lowest in the Sphagnum vege-
tations, despite high water table. Air temperature, precipita-
tion and snow data are based on local site measurements in
summer, supplemented with data from the Chokurdakh air-
port weather station. CO2 flux measurements using cham-
bers and eddy covariance started in 2003, CH4 flux measure-
ments using chambers in the summer of 2004. From 2004 till
2006, CH4 flux was measured only once a year in short (4–
6 days) field campaigns, from 2007 onwards measurement
campaigns included the months of July and part of August,
with a higher measurement frequency. The measurement sta-
tions sample the entire range of wetland vegetation types in
the area. The site and its CO2 and CH4 flux measurement
methodology have been described extensively byVan Huis-
steden et al.(2005) andVan der Molen et al.(2007). A first
attempt at modelling the CH4 fluxes was undertaken byPe-
trescu et al.(2008).

3.1.1 Field methods and error sources

The flux measurements were carried out using closed cham-
bers (non-transparant PVC, of different sizes; in Kytalyk a
smaller sized chamber was used). The measurement proce-
dure has been described in detail byHendriks et al.(2007),
and Van Huissteden et al.(2005). For each flux measure-
ment, at least five gas concentration measurements were
taken at regular time intervals per chamber per flux measure-
ment. Before May 2004 (Horstermeer and Ruwiel sites) CH4
concentrations were determined from syringe samples taken
from the chambers and analysed on a gas chromatograph.
Thereafter CH4 analysis was performed in the field using an
Innova 1312 photo-acoustic gas analyser, fitted with a CO2
(sodalime) and H2O (silica gel) filter to prevent interference
of high concentrations of these gases with the CH4 analy-
sis. A cross-check was made with flux measurements at the
Ruwiel site to check the agreement between the two meth-
ods, no significant differences were detected. Thereafter, the
Innova1312 has been frequently calibrated according to the
recommendations of the manufacturer (Van Huissteden et al.,
2005; Hendriks et al., 2007).

For all sites analysis of soil organic matter content and dry
bulk density was available as input for soil profile informa-

tion for the model. For the Horstermeer and Ruwiel sites also
soil pH was available, and pF curve estimates. The pF curve
estimates for Kytalyk have been based on average pF curve
data from peat profiles (Petrescu et al., 2008).

For data-model comparison, also error sources in the data
should be considered. In the case of the chamber flux mea-
surements, these consist of:

1. The statistical error in the flux measurements which is
inherent to the method of flux calculation. This con-
sists of calculating the gradient of CH4 concentration
vs. time using regression. This gradient is subject to sta-
tistical error, which is specified as a standard deviation
on the flux.

2. The flux calculation method. Here, we assumed that
the time-CH4 concentration relation is linear, which is a
common approach and is valid when the measurement
period is kept as short as possible. However, the re-
lation may not be linear, for instance as a result of a
decreasing soil-chamber concentration gradient during
the measurement. In that case a linear approximation
causes underestimation of the fluxes (Kutzbach et al.,
2007).

3. Other technical errors of the flux measurements (con-
centration analysis errors, chamber leakage, other dis-
turbances of the measurement) may result in faulty mea-
surements. In particular on extremely wet sites with
soft soils, excessive CH4 flux by ebullition is easily
induced by site access. This results in overestimation
of fluxes. With the Innova 1312 such events are de-
tected by high starting concentrations of the measure-
ment, otherwise these errors can be detected by plotting
the time-CH4 concentration relation for every measure-
ment and checking for irregularities. However, it can-
not be excluded that faulty measurements remain unno-
ticed.

4. Spatial and temporal variability of the CH4 fluxes. Al-
though observed fluxes are generally related to water
table, soil temperature and vegetation, the variability of
fluxes within measurement points with similar soil type,
vegetation and water table position is usually high (e.g.,
Van Huissteden et al., 2005; Hendriks et al., 2009a).
This small-scale spatial variation is probably related
to unquantified differences in vegetation characteristics
and soil. Also small-scale (daily and shorter) tempo-
ral variation in CH4 fluxes occurs. This variation has
been observed with CH4 flux measurements using eddy
covariance, but is unnoticed with daily chamber flux
measurements. This temporal variation may be caused
by air pressure variations and variations in near-surface
turbulence (Hendriks et al., 2008; Wille et al., 2008).
Also the diurnal variation of CH4 fluxes may be strong,
as is the case at the Horstermeer site (Hendriks et al.,
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2009b). Since during the day fluxes at Horstermeer are
higher than during the night, the daytime flux chamber
measurements result in an overestimation of the fluxes.
These sub-daily variations and processes are not in-
cluded in the PEATLAND-VU/Walter(2000) model.

4 GLUE application

4.1 Procedure

The GLUE method is based on Monte Carlo simulations of
the model with randomly chosen parameter values (Beven,
2009). Monte Carlo simulations are large sets of model sim-
ulations, for each single simulation within this set the value
of one or more parameters of the model is chosen randomly
within a pre-defined value range. The parameter values have
been sampled from a uniform distribution, assuming no prior
knowledge of the correct parameter value. The results of
each model run are compared with the data from the study
site being considered. The performance of the model run
is summarized by an objective function value, derived from
the differences between data and model. Different types of
objective functions can be chosen, depending on the desired
features of the data to which the model should fit best (see
below). We used 5000 model runs for each site/data set sep-
arately.

After completion of all model runs, the distribution of
the objective function values over the value range of the
parameters is used to analyse the sensitivity of the model.
In particular the difference of this distribution for “be-
havioural” (model runs that that fit well to the data) and
“non-behavioural” (poorly fitting model runs) indicates to
which parameters the model outcome is sensitive, and the
range of parameter values that contribute to a good model-
data fit (Hornberger and Spear, 1981; Young, 1983). The se-
lection of behavioural models is based on the objective func-
tion value, different criteria can be used. In this study we se-
lected the 2% of all runs with the highest objective function
value as “behavioural”, which allows to study the parameter
sensitivity for all sites irrespective of the maximum objective
function value. To plot the results of the behavioural model
runs the 1% best runs have been selected.

A large difference between the cumulative distribution of
the behavioural runs and that of all model runs indicates a
strong sensitivity for the parameter in question. The Kol-
mogorovD statistic for testing of differences in distribution
functions is a measure of the parameter sensitivity. TheD

value should be seen as a qualitative measure of the differ-
ence between the distributions, since for large numbers of
simulations the statistical test forD is not robust (Beven,
2001).

4.2 Objective functions

We tested three different objective functions for use in sub-
sequent analysis. In the case of CH4 fluxes, data-model com-
parison fluxes can be performed in different ways. Com-
paring the model results with a single measurement station
appears obvious, but because of the high spatial variability
of fluxes mentioned above, it can be argued that the model
should reproduce the average flux of a group of measurement
points with similar soil, hydrology and vegetation (grouped
sites hereafter), rather than the measurements of single sta-
tions. We tested both approaches. Also it may be desirable
to account for errors of the measurements in the data-model
comparison. In case of grouped sites, the within-group vari-
ance can be taken as a statistical error on the flux. If the
model results are compared with individual sites, the statis-
tical error of the flux measurements is taken. This results in
the following choice of objective functions:

1. The Nash-Sutcliffe efficiency (NS hereafter,Nash and
Sutcliffe, 1970) is often used for model-data compari-
son (Beven, 2001). It is defined as

E = 1−
σ 2

e

σ 2
o

(3)

whereσ 2
e is the error variance,

σ 2
e =

1

T −1

T∑
t=1

(ŷt −yt ) (4)

in which ŷt is the predicted value at timet , andyt the ob-
served value, andσ 2

o the variance of the observations.E

has the value of 1 for a perfect fit, and values close to,
or below 0 when the error variance is of the same mag-
nitude or larger than the variance of the observations. In
that case the model performs not better, or worse than a
flux estimate simply based on the average of the data.

2. Regression Comparison (RC). Since the methane flux
can also easily be modelled by regression of local flux
data on water table and soil surface temperature (e.g.,
Van Huissteden et al., 2005), we also tested a variant of
the NS objective function, that compares the model re-
sults with an estimate from a regression model. In this
Regression Comparison (RC) function,σ 2

o is replaced
by the variance of the residuals of a multilinear regres-
sion with water table position and soil temperature as
independent variables. A value close to, or below 0 in-
dicates that the model performs not better, or worse than
the regression equation.

3. Summed Z score accounting for data error. The NS and
RC objective functions do not account for the statistical
error in the data outlined above. Therefore an objective
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function that accounts for this error has also been tested,
based on the summedz scores of the deviation between
modelled and measured flux:

zt = |(ŷt −yt )/σt | (5)

Z = e−S(
∑T

t=1zt )/T (6)

Herezt is the absolute standardized model-observation
deviation at timet , andσt the standard error of the flux
measurement. To combine these in a single measure
thez scores are summed and divided by the number of
observations. To convert this to an objective function
value which increases with better model-data fit and to
scale between 0 and 1, the exponential of the result is
computed, withS as a shape parameter. This scales the
objective function value between 1 and 0. Depending
on S, Z rises rapidly with low values of

∑T
t=1zt , al-

lowing good discrimination of best fitting model runs.
This objective function can be easily adapted for data-
model comparison using grouped measurement points,
by comparing with the average flux of the group. In this
case of theZ score objective function, denoted below
asZgroup, the standard deviationσt is the group stan-
dard deviation. This has the effect that the data error of
individual measurements is not included in the objective
function, but the within-group spatial variation instead.

The NS and RC objective functions also can be used for
grouped measurement points as well as single points. Since
NS and RC are based on comparison of variances, signifi-
cance of the objective function values can be evaluated using
anF (variance ratio) test, with the degrees of freedom deter-
mined by the number of observations on which the objective
function value is based.

4.3 Model parameters and analysis procedure

The model parameters that potentially influence the CH4 flux
and hence are tested, can be grouped into 1) microbial re-
action rate parameters, 2) vegetation parameters and 3) soil
physical and chemical parameters (horizon thicknesses and
properties). We used for all sites a soil profile definition con-
sisting of two horizons, in the case of the Horstermeer and
Ruwiel sites this was a aggregation of a detailed soil profile
with more horizons (Table 1). The ranges of the parameters
are based onWalter(2000) andVan Huissteden et al.(2006),
or for the soil parameters, on parameter ranges measured at
the sites. Parameter ranges are derived from literature and
discussed byWalter (2000). For a first approximation, pa-
rameters in group 1 and 2 and group 3 have been tested sep-
arately to select the parameters that have a significant influ-
ence on the model output. Next, a combination of sensitive
parameters of all groups (soil and non-soil parameters) has
been tested.

The following test procedure has been applied:

1. For the Ruwiel site, analysis of CH4 produc-
tion/oxidation and vegetation parameters, to compare
the objective functions described above, and to compare
the effects of using data from individual measurement
stations versus grouped stations. Based on these tests,
an objective function is selected for subsequent analy-
sis. The Ruwiel site has been chosen because previ-
ous modelling experiments showed a good model-data
fit for this site (Van Huissteden et al., 2006).

2. All sites: CH4 production/oxidation and vegetation pa-
rameters, to test parameter sensitivity and its consis-
tency among different wetland sites, and effects of using
data time series of different length.

3. All sites, combining soil, CH4 production/oxidation and
vegetation parameters, to study the effects of soil pa-
rameters.

5 Results and discussion

5.1 Objective function selection

The tests for the Ruwiel site shows the effects of selection
of the objective function. From the site, three measure-
ment points with similar vegetation (species-rich grasses and
sedges) and water table (frequently at or above soil surface)
have been selected for data-model comparison, in grouped
and single station mode. The number of observations for
each measurement station is 26. Monte Carlo simulations
have been made for all CH4 production/oxidation and vege-
tation parameters in Table 1. Figure 1 shows the objective
function values of NS plotted against parameter value for
each parameter, Fig. 2 the plots of the parameter distributions
of the behavioural model runs. Figure 1 indicates that there is
strong equifinality. Behavioural model runs that exceed the
F testp = 0.1 probability limit (NS> 0.3937) are realized
with quite different sets of parameters; for all parameters the
entire parameter range is covered.

In Fig. 2, the deviations of the parameter distributions of
the behavioural model runs from the original parameter dis-
tribution, measured with theD statistic, indicates the param-
eter sensitivity. Here we take the behavioural model runs as
the best 2% runs (NS> 0.6408) in stead of theF test cri-
terion, for comparison with the other sites. The sensitivity
is highest for maximum root depthZroot, with a value for
the D statistic of 0.30. Other sensitive parameters are the
plant transport factorVtransp, Q10 for CH4 production and
the maximum primary production of the vegetation with val-
ues forD of respectively 0.29, 0.26 and 0.24. Model runs
with relatively highQ10, shallow root depth, low primary
production and high plant transport factor tend to produce a
better fit to the data.
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Table 1. Model parameters of PEATLAND-VU which have been included in the GLUE analysis of the model, with value ranges of the
parameters.

Parameter Range Function

CH4 production and oxidation (group 1)
R0 0.5–2.0 µMhr−1 CH4 production rate
Q10 3.0–8.0 temperature sensitivity of CH4 production
Tref 5–15◦ C reference temperature for temperature sensitivity
Q10ox 1.4–2.1 temperature sensitivity of CH4 oxidation by methanotrophs
Vmax 10–50 µMhr−1 maximum CH4 concentration in Michaelis-Menten eq. CH4 oxidation rate
Km 3–5 µMhr−1 half CH4 concentration rate in Michaelis-Menten eq. CH4 oxidation rate
fanaerobe 0–3 slope of the linear relation of soil volume fraction producingCH4 above

the water table to soil moisture; this assumes CH4 production in anaerobic
microsites above the water table

kdelay 0.01–1 constant for exponential increase of anaerobic conditions after rapid water table rise
R0,peat 0–0.001 µMhr−1 CH4 production rate from peat substrate

Vegetation parameters (group 2)
Pox 0.1–0.9 fraction of CH4 oxidized during plant transport
fex 0.1–0.5 fraction of below-ground primary production allocated to exudates
fshoots 0.3–0.7 fraction of net primary production allocated to shoots
Zroots 0.4–1.0 m maximum root depth
S 0.1–1.0 correction on exudate production for stronger exudation in spring
Pmax 0.002–0.009 kgCm2d−1 maximum net primary production
Vtransp 0–15 plant CH4 transport rate factor

Soil parameters (group 3)
p 2.5–5% of local average porosity / first value of pF curve
O 10–15% of local average organic matter percentage
D 0.1–1.5 m horizon thickness organic top horizon (lower boundary)
pH pH 4–pH 8 Soil pH
kfreeze 1.5–2.0 Soil texture dependent constant of relation ice content temperature

at subzero temperatures; tested for Kytalyk only.

Fig. 1. Objective function values (Nash-Sutcliffe) for 5000 runs of PEATLAND with randomly chozen param-

eters using a uniform distribution over the parameter range. The model results have been compared with data

from the Ruwiel measurement site 1, 2 and 3. Red: model runs of which the objective function value exceeds

the 0.1 probability limit (F-test, see text); blue: non-behavioural runs below the probability limit. For parameter

explanation, see Table 1.

Fig. 2. Cumulative distributions of the parameters in the model runs of Figure 1. Green: distribution of

behavioural runs; red: distribution of all runs. Behavioural runs are the best 2% of the Monte Carlo simulations.

D is the Kolmogorov-Smirnoff D statistic for comparison of distribution functions. For parameter explanation,

see Table 1.
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Fig. 1. Objective function values (Nash-Sutcliffe) for 5000 runs of PEATLAND with randomly chozen parameters using a uniform dis-
tribution over the parameter range. The model results have been compared with data from the Ruwiel measurement site 1, 2 and 3. Red:
model runs of which the objective function value exceeds the 0.1 probability limit (F-test, see text); blue: non-behavioural runs below the
probability limit. For parameter explanation, see Table 1.
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Table 2. Summary of objective function values for Monte Carlo runs for the Ruwiel site. The probabilities for the NS and RC objective
functions are based on anF variance ratio test (see text). The cutoff value for behavioural runs is the lowest value of the best 100 (2%) runs,
and has been used for calculating theD statistic in Fig. 2.

Objective function Max. value shape pmax value at cutoff value
param.S value p = 0.1 behavioural runs

Grouped measurement points
NS (Nash-Sutcliffe) all 0.7471 0.0003 0.3937 0.6408
RC (Regression Comparison) all 0.2978 0.182 0.3937 0.1913
Z, all 0.2836 1 0.2171

Individual measurement points
NS point 1 0.5291 0.028 0.3937 0.4445
NS point 2 0.6510 0.005 0.3996 0.5554
NS 3 0.7000 0.001 0.3937 0.5921
Z point 1 0.00024 1 0.00003
Z point 2 < 0.0001 1 < 0.0001
Z point 3 < 0.0001 1 < 0.0001

Fig. 1. Objective function values (Nash-Sutcliffe) for 5000 runs of PEATLAND with randomly chozen param-

eters using a uniform distribution over the parameter range. The model results have been compared with data

from the Ruwiel measurement site 1, 2 and 3. Red: model runs of which the objective function value exceeds

the 0.1 probability limit (F-test, see text); blue: non-behavioural runs below the probability limit. For parameter

explanation, see Table 1.

Fig. 2. Cumulative distributions of the parameters in the model runs of Figure 1. Green: distribution of

behavioural runs; red: distribution of all runs. Behavioural runs are the best 2% of the Monte Carlo simulations.

D is the Kolmogorov-Smirnoff D statistic for comparison of distribution functions. For parameter explanation,

see Table 1.
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Fig. 2. Cumulative distributions of the parameters in the model runs of Fig. 1. Green: distribution of behavioural runs; red: distribution of
all runs. Behavioural runs are the best 2% of the Monte Carlo simulations.D is the Kolmogorov-SmirnoffD statistic for comparison of
distribution functions. For parameter explanation, see Table 1.

Similar plots for the other objective functions are not
shown, but Fig. 3 and Table 2 summarize the results for all
objective functions. The maximum value for theNS effi-
ciency in Table 2, 0.75, is quite high and indicates that the
model explains the data significantly better than an estimate
based on the mean of the data. TheF test shows that the
variance of the model-data residuals is significantly smaller
(p < 0.1) than the variance of the data. Also the maximum
value for RC, 0.30, is positive, indicating that the model per-
forms better than a regression on water table and soil tem-
perature. However, the value does not indicate a signifi-
cant difference between the variance of the regression resid-
uals and the variance of the model-data differences (F test,
p = 0.18> 0.1). Although revealing on the performance of
the model with respect to a simple regression model, it will

not be discussed further here since it behaves similar as the
NS function.

The Z objective function is a stricter requirement for
model-data fit, since it does not test on variances over the en-
tire data range but requires a good fit for each individual data
point, weighed against the known data error. If the model is
compared with the average fluxes of the three sites, a maxi-
mum value forZgroupof 0.28 results (shape parameterS = 1).
However, when compared with individual sites, the results
become much worse, resulting in near-zeroZ values. The
model clearly cannot follow the individual data points of an
individual site. The large difference betweenZ andZgroup
also results from the fact that the within-group variance of
a site group is much larger than the statistical measurement
error of the individual measurements.
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Fig. 3. Bar graphs showing the D statistic for the tested model parameters (see also Figure 2) for all objective

functions for the Ruwiel site. For parameter explanation, see Table 1. Above: D statistic for grouped Ruwiel

measurement sites 1, 2 and 3; below; the same, evaluated for the measurement points individually. NS: Nash-

Sutcliffe efficiency; R: Regression comparison; Z: Z statistic (see text); Z grouped: Zgroup statistic for grouped

sites (see text).
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Fig. 3. Bar graphs showing theD statistic for the tested model pa-
rameters (see also Fig. 2) for all objective functions for the Ruwiel
site. For parameter explanation, see Table 1. Above:D statis-
tic for grouped Ruwiel measurement sites 1, 2 and 3; below; the
same, evaluated for the measurement points individually. NS: Nash-
Sutcliffe efficiency;R: Regression comparison;Z: Z statistic (see
text);Z grouped:Zgroupstatistic for grouped sites (see text).

The tests for the three objective functions generally indi-
cate high sensitivity (highest values for theD statistic) for
theQ10 andTref parameters for CH4 production and the pa-
rameters related to vegetation biomass and plant transport
of CH4, Pmax, Pox andVtransp (Fig. 3). However, there are
also conspicuous differences for the objective functions. The
Zgroup function indicates a much higher sensitivity forPox,
Q10 andTref than NS and RC and a lower sensitivity for
Vtransp. The parametersPox andVtranspmay affect plant CH4
transport rate antagonistically, in the absence of interaction
with other parameters, a highVtranspmay be compensated by
a highPox. Apparently, different objective functions select
one or the other parameter as the most sensitive one.Q10
andTref may affect differences in CH4 flux due to soil tem-
perature and may result in a better fit of variations in CH4
flux to seasonal and shorter term differences in temperature;
the Zgroup function weighs these differences more strongly
than NS and RC. Also the tests for individual measurement
points show differences in the parameter sensitivities. Here,
also thefanaerparameter proves to be sensitive. Apparently,
part of the spatial variation between individual measurement

points is explained by the occurrence of CH4 production in
anaerobic microsites in the soil at lower water tables in the
quite dense, clayey peat of this site.

For individual measurement points, the model cannot cap-
ture flux differences that are related to small-scale spatial and
temporal variation (Table 2 and Fig. 3). This is most clearly
shown by the low values of theZ function for individual
sites, but also the maximum NS value is lower for the in-
dividual sites than for the grouped sites. Figure 4 shows the
1% best model runs for the NS andZgroup functions, com-
pared with the data. For grouped sites, the NS function re-
sults in a very slight positive bias with respect to the data, the
Zgroup function shows a slightly lower bias. However, multi-
day temporal fluctuations in fluxes are captured much better
when the NS function is used. For both objective functions,
some model runs show high flux peaks. For the highest mea-
sured fluxes in the second summer season, these peaks may
be realistic, but cannot be checked against the data because
the data density is too low to reject unrealistic peaks that fall
between to measurement dates.

A possible cause of the observed high flux peaks may be
ebullition events that are induced by air pressure variations
(Whalen, 2005), in particular for the high water table sites.
The representation of ebullition in the model is very simple
and depends only on the pore water CH4 concentration (Wal-
ter, 2000). However, for the Horstermeer site a statistically
significant relation between air pressure and CH4 flux mea-
sured by eddy covariance is absent (Hendriks et al., 2009b).

Concluding, the NS objective function performs best as it
results in model runs that follow better the yearly and within-
year variations in the fluxes, and performs well also for in-
dividual measurement points. The test on the other research
sites have been restricted to the NS function.

5.2 Comparison between study sites

A comparison of the sensitivity for the different sites
(Ruwiel, Horstermeer, Kytalyk) shows the parameter sen-
sitivity for sites that differ in geography and wetland type.
Only grouped measurement points have been considered, us-
ing the NS objective function. For Ruwiel, the same sites
have been selected as above (number of observationsn = 26).
The Kytalyk site has been split into two contrasting mea-
surement point groups: the river floodplain with sedge and
grass vegetation (n = 30, Kytalyk Floodplain hereafter), and
the oligotrophic terrace with submergedSphagnumvegeta-
tion (n = 27), mainly located in ice wedge polygon centres
(Kytalyk Terrace hereafter). These are highly contrasting
sites, both with high water table but different vegetation and
strongly different CH4 fluxes. Likewise, two site groups have
been tested at Horstermeer: a site group consisting of sites
with varying water table (high in winter, up to 35 cm below
surface in dry spells in summer) and vegetation that is well
capable of CH4 transport (Holcus lanatusgrass,Equisetum
palustre, Glyceria maxima, Juncus effusus, point nrs. 3–5,
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Fig. 4. The 1 % best runs for the NS and Zgroup objective functions for Ruwiel points 1,2 and 3. Grey:

modelled fluxes; thick line with error bars: data.
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Fig. 4. The 1% best runs for the NS and Zgroup objective functions
for Ruwiel points 1, 2 and 3. Grey: modelled fluxes; thick line with
error bars: data.

n = 64), and two extremely marshy sites along ditches domi-
nated byTypha angustifoliaandGlyceria maxima, where the
water table is at a constant level throughout the year (nrs. 7–
8, n = 24, Horstermeer Wet hereafter). For the varying water
table sites at Horstermeer, a longer time series is available,
the tests have been run for both a shorter time series (n = 24)
for compatibility with the other sites, and the longer time
series to study the behaviour of the model over longer runs
(Horstermeer 1 and Horstermeer 2 hereafter for respectively
the short and long time series).

The results (Fig. 5, Table 3) show clear differences in the
ability to model the CH4 fluxes for the sites. The model per-
forms best for Ruwiel; for Horstermeer 1 and for Kytalyk
Terrace the model also performs significantly better than an
estimate based on average measured fluxes. For Horster-
meer 2, and for Kytalyk Floodplain, also positive objective
function values are produced, but these do not exceed the
significance limit. For Horstermeer Wet only negative NS
values were calculated, meaning that he model does worse
than an average of the data.

The relatively poor fit of the model to the longer time se-
ries at Horstermeer is caused mainly by high flux peaks ob-
served in the third and fourth year. The model simulates
flux peaks, but not exactly at the same dates as the obser-
vations (Fig. 6). The same holds for the Horstermeer Wet
and Kytalyk Floodplain (not shown). Remarkably, the model
performs less well for the eutrophic high water table sites.
However, more tests on more sites would be necessary to
confirm whether this is a consistent feature of the model.
For Horstermeer Wet, the model completely fails to simu-
late the high measured fluxes. Measurement error cannot be
excluded here, since these sites are extremely sensitive to dis-
turbance during flux chamber measurements, despite precau-
tionary measures such as boardwalk construction and careful

Fig. 5. Bar graphs showing the D statistic (see also Figure 2) for all sites indicated in Table 5. For parameter

explanation, see Table 1.

Fig. 6. The 1% best runs for Horstermeer points 3, 4, 5 and ditch sites (7, 8) compared with the data. Above left:

Horstermeer 1 (varying water table, short data set); above right: Horstermeer wet sites; below: Horstermeer 2

(varying water table, long data set).
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Fig. 5. Bar graphs showing theD statistic (see also Fig. 2) for all
sites indicated in Table 3. For parameter explanation, see Table 1.

analysis of the measurement data. However, if suspected data
points are deleted, the result only slightly improves to a still
negative maximum NS value of−0.10.

Differences in the parameter sensitivity (D statistic) be-
tween the site tests are found for most parameters (Fig. 5),
although in general the same parameters that were insensi-
tive for Ruwiel are also insensitive for the other sites. Ex-
ceptions areR0 andPox which show a high sensitivity for all
sites except Ruwiel. The sensitivity ofQ10,Zroot, Tref, Pmax,
fanaer, R0,peat, Vtranspalso vary among the sites. Within the
Horstermeer site, the sensitivity ofTref, S, Q10ox andZroot
varies depending on the length of the data time series against
which the model is tested. With the more difficult model fit
for the longer times series these parameters also contribute
to a better model fit, while they contribute insignificantly for
the shorter time series. With exception ofZroot, all these pa-
rameters influence the temporal variation of CH4 emission
throughout the year. The sites also differ markedly in sen-
sitivity to Tref, the reference temperature for theQ10 rela-
tion of CH4 production. Highest sensitivity is found for the
Kytalyk Terrace and Horstermeer 2 data; for the first, low
values ofTref give the highest objective function values, for
the second highTref values. Also for the Kytalyk Floodplain
sites lowTref values result in a better model fit, but the ef-
fect is strongest for the Terrace sites where the active layer
is thinner and soil temperatures generally lower. This agrees
well with the expected differences in microbial communities
between arctic and temperate wetland sites. Microbial popu-
lations in arctic soils tend to show metabolic activity also at
low temperatures (Rivkina et al., 2007).

Also within Kytalyk differences in parameter sensitivity
arises between the Floodplain and Terrace sites, in particular
for the plant oxidationPox transportVtranspandPmax primary
production parameters. The floodplain and terrace points
markedly differ in biomass and probably also net primary
production of the vegetation, with highest biomass occurring
on the floodplain. The plots of objective function value vs.
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Table 3. Summary of objective function values for Monte Carlo runs for all sites. The probabilities for the NS objective function is based
on anF variance ratio test (see text). The cutoff value for behavioural runs is the lowest value of the best 100 runs, and has been used for
calculating theD statistic in Fig. 2.

Objective function Max. value pmax value at cutoff value
value p = 0.1 behavioural runs

Ruwiel 0.7471 <0.001 0.3937 0.6408
Horstermeer 1 (short time series) 0.5348 0.036 0.4193 0.3198
Horstermeer 2 (long time series) 0.1011 0.337 0.2773 0.0
Horstermeer Wet −0.1671 no behavioural runs
Kytalyk floodplain 0.1857 0.292 0.3827 0.0866
Kytalyk terrace 0.4110 0.092 0.3996 0.35

Fig. 5. Bar graphs showing the D statistic (see also Figure 2) for all sites indicated in Table 5. For parameter

explanation, see Table 1.

Fig. 6. The 1% best runs for Horstermeer points 3, 4, 5 and ditch sites (7, 8) compared with the data. Above left:

Horstermeer 1 (varying water table, short data set); above right: Horstermeer wet sites; below: Horstermeer 2

(varying water table, long data set).
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Fig. 6. The 1% best runs for Horstermeer points 3, 4, 5 and ditch sites (7, 8) compared with the data. Above left: Horstermeer 1 (varying
water table, short data set); above right: Horstermeer wet sites; below: Horstermeer 2 (varying water table, long data set).

parameter value for thePox andVtranspparameters are shown
in Fig. 7. For the terrace points, the model performs best with
a higher plant oxidation rate and a lower transport rate factor,
whilst for the floodplain this pattern is reversed. The sensi-
tivity pattern confirms the inferred processes that are respon-
sible for the spatial difference in fluxes between river flood-
plain and terrace. On the terrace, the transport rate of CH4
through the dominating Sphagnum vegetation is low, while
oxidation is high due to the presence of symbiotic methan-
otrophic bacteria in the plants (Raghoebarsing et al., 2005;
confirmed by measurements on Sphagnum samples, N. Kip,
personal communication, 2008). On the floodplain, transport
rate through Carex and Eriphorum species is high (Van Huis-
steden et al., 2005), with low oxidation rate. The results do
not confirm that the net primary production on the floodplain
is high on the floodplain. For the Kytalyk Floodplain sites,
low Pmax values result in a higher objective function value.

5.3 Soil parameters

Next to the parameters above, also soil parameters may in-
fluence model results strongly and could explain the spatial
variability of CH4 fluxes. The soil properties tested for each
horizon are the water-filled porosityθsat, organic matter per-
centageO, thickness of the upper soil horizonH1, soil pH,
and for Kytalyk, the shape parameter of the relation between
temperature and frozen water contentkfreezehas been added.
These parameters are combined in the test with the most sen-
sitive vegetation and microbial population parameters:R0,
Q10,Pox, Zroots, Pmax, fanaer, kdelay, R0,peatandVtransp. All
sites have been tested, for the Ruwiel site also the individual
measurement stations have been tested (Fig. 8).

With exception of the thickness of the upper soil horizon,
all soil parameters appear to be less sensitive than the veg-
etation parameters. Only soil pH has a somewhat higher
D statistic value, in particular for Kytalyk Floodplain. This
site shows the strongest sensitivities to soil parameters. A
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Fig. 7. Objective function value plot for the plant transport parameters Pox (oxidation of CH4 during transport)

and Vtransp (Plan transport factor) for Kytalyk floodplain and terrace.
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Fig. 7. Objective function value plot for the plant transport parametersPox (oxidation of CH4 during transport) andVtransp(Plant transport
factor) for Kytalyk floodplain and terrace.

remarkable feature is the different sensitivities of pH for
the Horstermeer long and short time series; apparently more
model parameters need to be adjusted for making the model
fit to the longer time series. The sensitivity of thekfreeze
parameter is inconsistent, it is more sensitive for Kytalyk
Floodplain than for Kytalyk Terrace. This may be a spurious
effect introduced by the generally low model fit for Kytalyk
Floodplain. Concluding, the model is not very sensitive to
uncertainty in soil characteristics. The thickness of the upper
soil horizon is the most critical soil parameter.

For the Ruwiel individual measurement stations, the soil
parameters are hardly sensitive. Apparently variability in
soil properties does not contribute here to the observed small-
scale spatial variability in CH4 fluxes of individual measure-
ment points within the site. Comparing Figs. 5 and 8, there
are no large differences in sensitivity of the vegetation and
microbial parameters if tests are done with and without soil
parameters. The same parameters that showed highD statis-
tic values without soil parameters also show high values with
soil parameters included. The only exception is the CH4 pro-
duction factor from peat,R0,peat, which becomes less impor-
tant for the Horstermeer site when soil parameters are added.
For other vegetation and microbial parametersD tends to be
higher when soil parameters are included, in particular for
the Horstermeer 2 and Kytalyk Floodplain data. We infer
that model fit problems arising from soil parameters can be
compensated by adjustments of the vegetation and microbial
parameters, in particular for sites where the model fit in gen-
eral is rather poor.

Adding the soil parameters does not improve the model fit
(Table 4). In particular for Ruwiel and Kytalyk Floodplain,
the maximum objective function value with the soil parame-
ters included is lower than without the soil parameters. This
might be caused by the deletion of some of the other param-

Fig. 8. Above: Bar graphs showing the D statistic (see also Figure 2) for all sites indicated in Table 5, including

soil parameters. For parameter explanation, see Table 1 and text. Below: the same for Ruwiel site, individual

measurement stations.

28

Fig. 8. Above: bar graphs showing theD statistic (see also Fig. 2)
for all sites indicated in Table 4, including soil parameters. For
parameter explanation, see Table 1 and text. Below: the same for
Ruwiel site, individual measurement stations.

eters from the experiments. If the Monte Carlo simulations
are run with the complete parameter set on vegetation and
microbial population and all soil parameters (23 parameters
in total), maximum objective function values result that are
closer to, or slightly better, than those of Table 3 (Table 4,
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Table 4. Summary of objective function values for Monte Carlo runs for all sites. The probabilities for the NS objective function is based
on anF variance ratio test (see text). The cutoff value for behavioural runs is the lowest value of the best 100 runs, and has been used for
calculating theD statistic in Fig. 2. “X”: no behavioural model runs.

Objective function Max. value p max value at cutoff value Max. value Max. value
value p=0.1 behavioural without soil with all

runs parameters parameters
(Tables 2, 3)

Ruwiel 1, 2, 3 0.5581 0.019 0.3937 0.4817 0.7471 0.7733
Horstermeer 1 short time series 0.5374 0.035 0.4193 0.3835 0.5348 0.5264
Horstermeer 2 long time series 0.0612 0.401 0.2773 0.0000 0.1011 0.1034
Horstermeer Wet −0.3481 X −0.0968 −0.2429
Kytalyk floodplain 0.1029 0.386 0.3827 0.0000 0.19 0.1964
Kytalyk terrace 0.4128 0.091 0.3996 0.2502 0.4110 0.4532
Ruwiel 1 0.4085 0.090 0.3937 0.3313 0.5291
Ruwiel 2 0.5613 0.020 0.3996 0.4281 0.6510
Ruwiel 3 0.6350 0.006 0.3937 0.4374 0.7000

last column). In that case for all sites except Horstermeer
slight improvements of the model fit are resulting.

5.4 Recently added parameters

The parameterskdelay and fanaer were newly added to the
model, respectively to simulate time delay in restoration of
anaerobic conditions in the soil at rapid water table rise,
and CH4 formation above the water table.fanaeris sensitive
only for the Horstermeer 2 dataset,kdelay for both Ruwiel
and Horstermeer 2. For the other sites,fanaerinfluences the
model fit more strongly when the soil parameters are added.
We conclude that both parameters may be useful depending
on site conditions, in case of a poor model-data fit these pa-
rameters may improve the model fit to some extent. How-
ever, these parameters never appear to have a strong overall
influence on model fit.

A parameter of the SOM production submodel, that is not
included in the original model byWalter(2000) is the correc-
tion factor on stronger exudate production in springS (Van
Huissteden et al., 2006). In all tests, this factor attains only
low values for theD statistic, so it does not influence the
modelled CH4 emission significantly. Soil pH also has been
added to the originalWalter (2000) model as a factor influ-
encing CH4 production in the model (Van Huissteden et al.,
2006). It proves an effective parameter in some cases (Ky-
talyk, Horstermeer).

6 Conclusions

With regard to theoverall model performance, we conclude
that the PEATLAND-VU model is capable of simulating
CH4 fluxes in temperate and arctic wetlands, under differ-
ent type of site conditions. However, not in all cases the
model improves prediction of emissions, compared to a sim-

ple emission factor approach based on averages of measure-
ment data. In three of the six data sets the model results were
significantly better than an estimate of the fluxes based on
averaged data. In two data sets, the model still performed
better but the difference was not large enough to classify it
as significant. For one data set, the model did not perform
well, but in that case data error cannot be excluded. For one
data set (Ruwiel) the model also has been compared with a
multilinear regression model derived from regression of the
flux measurement data on soil temperature and water table.
Although the objective function values indicate better per-
formance for the PEATLAND-VU model, it does not signif-
icantly outcompete the regression model. However, a regres-
sion model is less relevant for upscaling purposes since larger
scale spatial upscaling based on regression results of individ-
ual sites depends strongly on local data availability compared
with a process model.

Details of spatial and temporal variationare poorly re-
produced by the model. Analysis of the model-data devia-
tions shows that the model is not capable of simulating short-
term temporal variation that may occur on a daily time scale.
However, the model simulates longer term temporal variation
(seasonal and weekly-monthly) correctly. Since longer term
variations and the average yearly cycle is more important for
temporal upscaling than timing of the peaks, this does not
have to be a problem. We experimented with different types
of objective functions in applying the GLUE method. One
type of objective function accounts for short-distance spa-
tial variability of the fluxes by comparing the model results
with averages of groups of points with homogeneous vege-
tation/soil characteristics, another objective function for the
flux measurement standard error. The first approach provided
the best results since it averages out some of the small scale
spatial variability inherent to CH4 fluxes.
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The parameters to which the model is most sensitive
are vegetation parameters and temperature sensitivity of the
methanogenic microbial population. In particular parameters
related to transport of CH4 through plants (transport rate, ox-
idation during transport and root depth) determine the model
sensitivity. This is not surprising since in wetland sites plant
transport is usually the dominant soil-atmosphere transport
mechanism for CH4. By contrast, the model is not very sen-
sitive to soil parameters, which are an important source of
spatial variability in input data. For all sites, adding soil pa-
rameters to the GLUE analysis resulted at best in very small
improvements of the model results. Uncertainty with respect
to water table and soil temperature input has not been tested
in this study.

The parameter sensitivity and the parameter values result-
ing from the GLUE optimalisation agree well with a priori
knowledge on the parameters. For the arctic site, a lower
reference temperature for CH4 production temperature sen-
sitivity resulted, compared with the temperate climate sites.
This agrees well with observed temperature sensitivity of mi-
crobial populations in arctic soils. Also, at the site where ox-
idation of CH4 by symbiotic methanotrophs was observed in
Sphagnum vegetation, the optimalisation correctly resulted
in higher values for the plant oxidation parameter and lower
values for plant transport rate. We conclude that GLUE anal-
ysis may enhance insight in the local relevance of processes
included in the model.

There is considerableparameter interactionwithin the
model. In particular parameters for vegetation and microbial
population strongly interact. The reason is that some of the
parameters act antagonistically in the model. For instance a
higher plant transport oxidation rate suppresses the effects of
high plant transport rate. Tuning both parameters in an op-
posite way results in a good model fit for a large range of
parameter values. For the purpose of model tuning it may be
useful to summarize these two parameters in one, in partic-
ular since these have been defined in the original model as
bulk parameters without physical background.

The GLUE analysis suggestsfuture improvementsfor wet-
land CH4 emission modelling. The vegetation parameters
contribute strongly to model uncertainty. These are spatially
highly variable, and several of the relevant vegetation param-
eters above are difficult to quantify. Therefore it is highly
important to invest in improvement of vegetation data, in
particular data on methane emission functionality of wetland
species and wetland vegetation units, and wetland vegetation
mapping. Fortunately the results for the Kytalyk site suggest
that some of these parameters for vegetation can be derived
from general vegetation characteristics (e.g. dominance of
arenchymous tissue in wetland plants, oxidation of CH4 in
Sphagnum) and can be constrained by model fitting.
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