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Abstract. The flux of materials to the deep sea is dominated
by larger, organic-rich particles with sinking rates varying
between a few meters and several hundred meters per day.
Mineral ballast may regulate the transfer of organic mat-
ter and other components by determining the sinking rates,
e.g. via particle density. We calculated particle sinking rates
from mass flux patterns and alkenone measurements apply-
ing the results of sediment trap experiments from the At-
lantic Ocean. We have indication for higher particle sink-
ing rates in carbonate-dominated production systems when
considering both regional and seasonal data. During a sum-
mer coccolithophorid bloom in the Cape Blanc coastal up-
welling off Mauritania, particle sinking rates reached almost
570 m per day, most probably due the fast sedimentation of
densely packed zooplankton fecal pellets, which transport
high amounts of organic carbon associated with coccoliths
to the deep ocean despite rather low production. During the
recurring winter-spring blooms off NW Africa and in opal-
rich production systems of the Southern Ocean, sinking rates
of larger particles, most probably diatom aggregates, showed
a tendency to lower values. However, there is no straight-
forward relationship between carbonate content and particle
sinking rates. This could be due to the unknown composition
of carbonate and/or the influence of particle size and shape
on sinking rates. It also remains noticeable that the high-
est sinking rates occurred in dust-rich ocean regions off NW
Africa, but this issue deserves further detailed field and labo-
ratory investigations. We obtained increasing sinking rates
with depth. By using a seven-compartment biogeochemi-
cal model, it was shown that the deep ocean organic carbon
flux at a mesotrophic sediment trap site off Cape Blanc can
be captured fairly well using seasonal variable particle sink-
ing rates. Our model provides a total organic carbon flux of
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0.29 Tg per year down to 3000 m off the NW African up-
welling region between 5 and 35◦ N. Simple parameterisa-
tions of remineralisation and sinking rates in such models,
however, limit their capability in reproducing the flux varia-
tion in the water column.

1 Introduction

The biological pump plays a critical role in the discussion
about glacial-interglacialpCO2 variations measured in ice
cores as well as in the evaluation of future climate scenarios.
At highest efficiency, it may strongly draw down atmospheric
pCO2, at lowest efficiency, in a biologically dead ocean, the
value may significantly exceed modern atmospheric values
(Broecker, 1982). The transfer of particulate organic car-
bon to depth in modern oceans shows considerable regional
and temporal variability in the fraction of primary produc-
tion (∼2 to 50%) being exported to depth. Despite consider-
able progress in recent years, this variability is far from being
completely understood, mainly due to a lack of knowledge
of relevant meso- and bathypelagic processes (e.g. Boyd and
Trull, 2007).

The efficiency of carbon transfer to depth is influenced by
three major processes (de la Rocha and Passow, 2007): a) the
amount of primary production in the photic zone, b) the sink-
ing rate of organic carbon, and c) the rate of POC decompo-
sition. All these processes impact on ocean biogeochemistry.
The detritus of small zoo- and phytoplankton sinks predom-
inantly as larger composite particles, mainly fecal pellets or
marine snow aggregates (Alldredge and Silver, 1988). These
particles are widely considered to be major transport vehicles
of materials to the deep sea (e.g. Smetacek, 1985; Pilskaln
and Honjo, 1987). However, sinking rates of both particle
types display a large variation which cannot be explained yet.
Direct field measurements are still rare and many values orig-
inated from laboratory experiments (e.g. Ploug et al., 2008a),
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coastal-near regions or from surface waters only (Alldredge
and Silver, 1988; Angel, 1984). Particle sinking rates may
contribute to variable organic carbon flux attenuation curves
in the water column (e.g. Francois et al., 2002; Boyd and
Trull, 2007). Increasing sinking rates with depth provide in-
direct evidence of changes in particle porosity and/or density
in the water column, probably linked to particle composition
(Berelson, 2002).

Mineral ballasting is an important issue in the discussion
about particle formation, sinking rates and carbon transfer to
the deep ocean (Ittekkot, 1993; Armstrong et al., 2002; Fran-
cois et al., 2002; Klaas and Archer, 2002; Passow, 2004; De
La Rocha and Passow, 2007; Thunell et al., 2007). How-
ever, little is known about the mechanisms behind the bal-
last theory and empirical findings do not show cause and
effect (Passow, 2004). The use of global relationships to
derive global algorithms, without looking in detail at spa-
tial and temporal variations has also been questioned (e.g.
Ragueneau et al., 2006). Passow (2004) suggested that the
POC flux determines the flux of ballast minerals and that
marine snow aggregates scavenge mineral particles, both of
biogenic and lithogenic origin until they reach their carry-
ing capacity. Armstrong et al. (2002) argued that one frac-
tion of POC reaching the deep ocean is chemically protected
from degradation by mineral particles, which is debated by
Ploug et al. (2008a). Differential sinking speeds of larger
particles could also explain field observations and the bal-
last theory (Klaas and Archer, 2002; Francois et al., 2002).
The latter authors speculated that remineralisation in the twi-
light zone of the low-latitude oceans is relatively low due
to high carbonate mineral availability which might consti-
tute dense and fast sinking fecal pellets. Fecal pellets may
be the major carrier for coccolithophorids to the deep ocean
(de La Rocha and Passow, 2007). In contrast, high-latitude
oceans with high export of marine snow aggregates which
are formed preferentially by diatoms and which have a more
labile nature may be characterized by reduced particle sink-
ing rates and low organic carbon transfer rates (Francois et
al., 2002). Such scenarios would correspond to the overall
picture that fecal pellets have generally higher sinking rates
(∼10–2700 m d−1, Angel, 1984, 1989; Bruland and Silver,
1981; Turner, 2002) than the less dense and TEP-rich marine
snow aggregates (1–368 m d−1; Alldredge and Silver, 1988)
which may even be retained in the surface layer for several
days (Riebesell, 1992). However, retention of organic matter
in the surface layer due to the production of copepod fecal
pellets followed by coprophagy may also be observed (e.g.
Bathmann et al., 1987; Lampitt et al., 1990). There is also
evidence that diatoms may sink rapidly to the seafloor in the
form of larger chains, e.g. at the Antartic Polar Front (Du-
bischar and Bathmann, 2002). Both findings disagree with
the suggestions of Francois et al. (2002) which were derived
from a global flux data set.

The role of lithogenic material, i.e. dust as a major carrier
for organic carbon is discussed controversially (e.g. Boyd
and Trull, 2007). Globally, the role may be irrelevant as
pointed out by Francois et al. (2002). Locally, e.g. off NW
Africa, the role of dust as ballast should be considered. How-
ever, laboratory experiments have shown that lithogenic ma-
terial could even decrease the downward flux of phytoplank-
ton biomass (Hamm, 2002). According to Berelson (2002),
particle sinking rates estimated from sediment trap studies
are not controlled by the lithogenic contents of particles. He
concluded that sinking velocities of particles increase with
depth, but the database applied in this study was not from the
same locations.

The variation in particle characteristics across different
production systems is an issue that biogeochemical models
have to address. A bigger challenge for modellers is the
representation of particle transformations in the water col-
umn as they sink. Biogeochemical models (e.g. Gruber et
al., 2006) have traditionally prescribed particle sinking ve-
locities that are at least several orders of magnitude smaller
than the velocities estimated from deep water sediment trap
recordings. This inconsistency must be taken care of by ap-
propriate algorithms, which ensure reconciliation of surface
ocean productivity with deep water flux. Coagulation the-
ory attempted to formulate particle aggregation and disaggre-
gation and achieved significant progress in explaining these
transformations in the water column (see Jackson, 2005 for
a review). In a rare application, Gehlen et al. (2006) im-
plemented an aggregation kernel into a 3-D biogeochemi-
cal ocean model to study the biological soft tissue pump.
They showed that an aggregation model did not improve
subsurface POC flux relative to the simple, 2-particle-size-
classes model with prescribed sinking rates, despite Jack-
son’s (2001) scepticism about simple parameterisations to
represent the effect of coagulation in biogeochemical mod-
els.

This study aims to better understand the regional and tem-
poral variations in the efficiency of the biological pump in
the Atlantic Ocean and off Mauritania by looking at the vari-
ability of particle sinking rates of various production sys-
tems in relation to particle composition. We examine the
role of coccolithophorid carbonate as a major ballast mineral,
not total carbonate (mainly coccolithophorids and planktonic
foraminifera) as done by Francois et al. (2002) and Klaas and
Archer (2002). We use alkenone-derived sea surface tem-
peratures (SSTs, M̈uller and Fischer, 2001) to better assess
coccolithophorid-associated sinking rates of particles in the
meso- and bathypelagic. We will use particle flux records
from different sediment trap levels to approximate particle
sinking rates in the deeper water column and to test the hy-
pothesis of increasing sinking rates with depth (Berelson,
2002). Collections of particles spanning several years also
allow an assessment of the seasonal and interannual variabil-
ity of particle sinking rates which has not been done so far.
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We then extend our investigation to explore the possibil-
ity of representing particle flux in the deep water by using a
simple regional biogeochemical model with prescribed, aver-
aged sinking velocities. We subsequently show how seasonal
variation of particle sinking rates control deep water carbon
flux. The model was setup for the Cape Blanc filament region
in the NW African upwelling system, which hosts significant
export production with some biogenic opal and high carbon-
ate production. Because size spectrum and sinking speeds of
particles can be simulated fairly well with two size classes
(Gehlen et al., 2006), a biogeochemical model with two de-
tritus compartments was used for modeling particle flux. The
biogeochemical model was coupled to an ocean circulation
model and was run with real-time forcing data for the mea-
surement period. The results are compared to the satellite-
derived imagery and deep sediment trap recordings.

2 Material and methods

2.1 Sediment trap collections and analysis

Large-aperture time-series sediment traps of the Kiel-type
were used for particle collection at our study sites (Fig. 1).
They were equipped with 20 cups and an opening of 0.5 m2

(Kremling et al., 1996). Larger swimmers were removed by
hand using foreceps and the material was wet-sieved through
a 1 mm nylon mesh. Therefore, particle flux data from all
sites refer to the size fraction<1 mm; material flux in the
>1 mm size fraction was mostly negligible. Larger ma-
rine snow aggregates (>1 mm) which could partly consti-
tute mass flux but rapidly disintegrate in the sampling cups
are therefore included. Mass flux has not been corrected
for losses due to degradation and dissolution in the sam-
pling cups. The homogenized samples were split into sub-
samples on which further analysis was performed. Mass flux
was determined by weighing the sub-samples. Total carbon,
organic carbon and nitrogen were obtained by combustion
with a HEREAUS-CHN-analyzer. Organic carbon was mea-
sured after removal of carbonate with 2N HCl. Carbonate
was determined by subtracting organic carbon from total car-
bon, the latter being measured by combustion without a pre-
treatment with 2N HCl. Biogenic opal was measured ac-
cording to M̈uller and Schneider (1993) using a sequential
leaching technique with 1M NaOH as dissolving agent. The
lithogenic fraction was calculated as follows: Lithogenic =
Total flux − opal− carbonate− 2∗Corg. Alkenone concen-
trations and SST were calculated according to Müller and
Fischer (2001).

To avoid severe problems with the trapping efficiency,
which appears to be lower in the surface and subsurface wa-
ters (Yu et al., 2001; Scholten et al., 2001), we attempted to
use flux data from deeper traps to circumvent strong under-
sampling (Buesseler et al., 2007). Some of our mass flux data
derived from shallower depth (∼500–1000 m; Table 1) and
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Fig. 1. Locations of the sediment trap mooring sites in the Atlantic
Ocean (see Table 1). WEA = Western Equatorial Atlantic, EEA =
Eastern Equatorial Atlantic. CB = Cape Blanc, CV = Cape Verde
Islands; BO = Bouvet Island; WR = Walvis Ridge; PF = Polar Front;
KG = King George Basin.

flux magnitudes may be biased. Nevertheless, it is unlikely
that sinking velocities are strongly affected. We intended to
avoid depths where lateral input of material enhanced parti-
cle flux which was previously observed in the Canary Island
region (e.g. Neuer et al., 1997, 2002). For a detailed descrip-
tion of currents velocities and directions and the discussion
of trapping efficiencies see Fischer et al. (1996a, site CB) and
Fischer et al. (2000, 2002, Atlantic and Southern Ocean).

2.2 Estimation of particle sinking rates

To calculate sinking rates we used sediment traps from two
different water depths (about 1000 m water depth and some
500 m above the seafloor, Table 1). Two approaches were
applied, both using seasonal flux data to capture potential
seasonal changes in particle sinking rates. The first one com-
pared the time shift of major flux peaks of total mass, divided
by the distance between both traps by half the sampling in-
terval (at a one-cup shift). The second approach followed the
method of Berelson (2002) who attempted to find the best fit
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Fig. 2. Particle sinking rates determined by the major peak and the
correlation method (Berelson, 2002). Note the significant correla-
tion between both approaches (R2=0.66,N=35). When excluding
the value of CV-1, the correlation coefficient becomes even higher
(R2=0.80,N=34).

between total flux at two water depths by shifting the com-
plete time series by one or two sampling intervals. A com-
parison of both methods showed a close relationship with a
correlation coefficient ofR2=0.66 (N=35; Fig. 2) whereby
the correlation method provides slightly higher sinking rates.
When omitting the extreme sinking rate derived from one
deployment at the Cape Verde site CV-1, the relationship be-
tween both methods was even better (R2=0.80,N=34). We
applied the correlation method in our study as it is an es-
tablished method (Berlson, 2002) and because it generally
provided slightly higher sinking rates.

We further calculated sinking rates of alkenone-associated
particles, mainly coccolithophorids, by determining the
time shift between maxima/minima of measured SSTs
(weekly, IGOSS; Reynolds and Smith, 1994;http://ingrid.
ldgo.columbia.edu/SOURCES/.IGOSS/dataproducts.html)
and alkenone-derived temperatures obtained from the trap
samples (see M̈uller and Fischer, 2001, 2003) or by a
comparison between alkenone-based temperatures from
upper and lower trap levels. All estimated sinking rates must
be regarded as the lowest estimates due to the relatively low
time resolution for collection. The estimated sinking rates
are dependent on the sampling intervals which range from
9.5 to 30 days (average 19.6 days, Table 1). To account
for extreme differences in sampling intervals between the
study sites, we could have normalized our sinking rates.
However, only at a few locations, the sampling intervals

strongly differed from the average of 19.6 days. This
resulted in exceptionally high sinking rates only at site CV-1
(741 m d−1; Table 1). Therefore, we did not normalize our
values.

2.3 Modeling particle fluxes

A Regional Ocean Modelling System (ROMS) coupled to
a seven-compartment biogeochemical model was applied to
study deep water fluxes and their seasonal variation in the
Cape Blanc region. ROMS is a well established terrain-
following, hydrostatic, primitive equation ocean circulation
model with orthogonal curvilinear horizontal coordinates.
The numerical algorithms of the code are described in a se-
ries of papers by Shchepetkin and McWilliams (1998, 2003,
2005). The novelty in these algorithms is a split-explicit
hydrodynamic kernel that treats baroclinic and barotrophic
modes in such a way that ensures tracer conservation and
prevents errors associated with unresolved barotrophic pro-
cesses. Barotrophic fields are temporally averaged with
a cosine-shape filter before replacing the values calculated
with a longer baroclinic time step. By redefining barotrophic
pressure-gradient terms according to the changes in local
density fields, accuracy of the scheme is improved without
compromising from computational efficiency.

The biogeochemical model was a classical, nitrogen
based, NPZD-type, which was developed and defined in de-
tail by Gruber et al. (2006). The model comprises seven com-
partments; nitrate, ammonium, phytoplankton, zooplank-
ton, small and large detritus, and a dynamic phytoplankton
chlorophyll to carbon ratio. Apart from zooplankton, all
particulate compartments sink, which is modelled explicitly.
Small particles are represented by a slow settling small de-
tritus pool. Small detritus and phytoplankton coagulate to
form large detritus, which sink faster. Coagulation is param-
eterised according to a particle density function based on the
assumption that coagulation is proportional to particle con-
centration. Parameter values of the biogeochemical model
are given in Gruber et al. (2006). These values remained un-
changed in our configuration apart from the remineralisation
rates of small and large detritus, specific coagulation rate be-
tween small detritus and phytoplankton, and large detritus
sinking velocity.

Particles sink into the ocean’s floor in a complex pro-
cess with varying sinking velocities depending on their con-
stituents, size, shape, porosity and way of formation (Kriest,
2002). A variety of sinking velocities have been observed at
the Cape Blanc site (see Table 3). Because the small detri-
tus pool represents particles with minimum diameter in the
system, in our configuration the settling velocity of this class
remained the same as in the original model (1 m d−1). With
regard to the sinking of large detritus we used estimations of
Helmke et al. (2005). By looking into the delay between
chlorophyll maxima at the surface and the corresponding
sedimentation peaks in the deep trap at 3580 m, Helmke et
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Fig. 3. Sinking rates of particles (applying the correlation method) collected during different seasons in the Atlantic Ocean (Table 1) and
plotted versus latitude.

al. (2005) calculated a mean downward particle flux velocity
for the entire water column of 75 m d−1 at this site. We there-
fore set the sinking velocity of large particles to 75 m d−1 in
the model setup. Due to the seasonal variation (see Sect. 3.3)
we increased sinking velocity by a factor of 2 below the eu-
photic layer in summer, which corresponds to trap samples
#3 through #5.

In a parallel manner, particle remineralisation and spe-
cific coagulation rates are also increased in the present setup
in order to maintain the export production rate of the orig-
inal configuration. While remineralisation rates for small
and large particles were set to 0.18 d−1 and 0.06 d−1, re-
spectively, particle coagulation rate was specified as 0.07 d−1

(mmol m−3)−1. The rate of increase in the remineralisation
was similar to that of particle settling rate so that the reminer-
alisation length scale can be preserved. Despite this increase,
measurements of comparable remineralisation rates for ma-
rine snow were reported (Ploug and Grossart, 2000; Ploug et
al., 2008a) and these values appear to be realistic. Small de-
tritus remineralises three times faster than the large detritus
in the original model (Gruber et al., 2006), which is left un-
changed in this study as well. Moriceau et al. (2007) points to
a similar ratio of silica dissolution rates between aggregated
and freely suspended diatoms.

Our model domain covers the region between 5◦ to 41◦ N
and 30◦ to 5.5◦ W, and has a resolution of 12 km. GEBCO
data (IOC, IHO and BODC, 2003) was used to produce
model bathymetry. In the vertical 32 s-coordinate levels are
set with increasing resolution towards the surface. World
Ocean Atlas 2001 (WOA2001) (Stephens et al., 2002; Boyer
et al., 2002) climatology is used for the initialisation of the
model from a state of rest in January. Monthly means of
this climatology is employed along the lateral boundaries
to prescribe temperature, salinity, nutrient and momentum

fluxes. The model is forced with monthly averaged COADS
(Comprehensive Ocean-Atmosphere Data Set) for the heat,
fresh water and momentum fluxes (da Silva et al., 1994) dur-
ing spin-up. After 3 years of spin-up the model was forced by
6-hourly NCEP reanalysis-2 data (Kanamitsu et al., 2002) for
the years 2002 and 2003, i.e. during the time sediment trap
data were collected at the mesotrophic CB-13 deployment
site off Cape Blanc.

3 Results and discussion

3.1 Regional variability of particle sinking rates

Sinking rates of particles determined from sediment trap
samples range from 73 to 741 m d−1 applying the correlation
method (Table 1). At site CV (Cape Verde Islands, Fig. 1),
we obtained a large interannual variability of sinking rates
which may at least be partly due to exceptionally different
sampling intervals of 9.5 and 25 days (Table 1). Although the
high value derived from deployment CV-1 must be regarded
with caution, the total range of sinking rates could be rea-
sonable, thus pointing towards a high interannual variability
of sinking rates at his site. The regional, seasonal and in-
terannual variability of particle sinking rates versus latitude
is shown in Fig. 3. Relatively low sinking rates were ob-
tained in the Southern Ocean, at the Walvis Ridge and in the
western Equatorial Atlantic, highest values were found in the
eastern Equatorial Atlantic and off NW Africa. Mean sink-
ing rates and their standard deviations are given in Fig. 4e
together with the composition of sinking particles (% of to-
tal annual mass) from the upper trap collections (Table 1),
including mean sinking rates for the silicate-rich Equatorial
Pacific (158 m d−1) and the Arabian Sea (230 m d−1) (Berel-
son, 2002).

www.biogeosciences.net/6/85/2009/ Biogeosciences, 6, 85–102, 2009
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Although the seasonal and interannual variability is sig-
nificant, we observe highest mean sinking rates close to the
equator in the Eastern Atlantic and off NW Africa, which
corresponds roughly to highest organic carbon and carbon-
ate contents (Fig. 4). Consequently, biogenic opal contents
remain low there. Mean sinking rates from the Arabian Sea,
a production system with high carbonate and low biogenic
opal (De La Rocha and Passow, 2007), are also relatively
high. The Equatorial Pacific, however, a production sys-
tem characterized by biogenic opal sedimentation (Rague-
neau et al., 2000) provided lower sinking rates. Highest par-
ticle sinking rates in carbonate-dominated production sys-
tems correspond at first sight to the global distribution of or-
ganic carbon transfer efficiency which is higher in carbonate
(equatorial regions) compared to biogenic opal production
systems (polar or subpolar regions). Francois et al. (2002)
speculated that this might reflect a fundamental difference in
the type of particle transport, i.e. fast sinking fecal pellets
in carbonate – versus slowly sinking diatom aggregates in
opal production systems. However, a statistically valid rela-
tionship between particle sinking rates and carbonate content
was not found using the regional data shown in Fig. 4. This
may be explained by a variable and largely unknown com-
position of total carbonate in the modern ocean, i.e. mainly
coccolithophorids versus planktonic foraminifera. Total car-
bonate appears to be mostly composed of coccolithophorids,
but foraminifera may contribute up to 50–70% of the total
carbonate flux (Berner and Honjo, 1981; Schiebel, 2002).
In contrast to small coccoliths, foraminifera appear to sink
mainly individually, not within larger composite particles
and should not be included in the carbonate flux when dis-
cussing carbonate ballasting effects for the sedimentation of
aggregated organic carbon-rich particles. De La Rocha and
Passow (2007) showed that sedimentation of foramineral cal-
cite does not appear to be as tightly linked to POC flux as
coccolith sedimentation.

Coccoliths are thought to be transported mainly within
dense and fast sinking pellets (Honjo, 1976; Knappertsbusch
and Brummer, 1995), thus transporting organic carbon and
other organic components (e.g. chlorophyll derivates) very
efficiently to greater depth (Fischer et al., 1996b). Fecal
pellets generally have higher sinking rates (10–2700 m d−1,
Angel, 1984, 1989; Fowler and Knauer, 1986; Cadée et al.,
1992; Bruland and Silver, 1981; Turner, 2002) than the less
denser and TEP-rich marine snow aggregates (16–26 m d−1

from Pilskaln et al., 1998; 10 m d−1 (mean); from Dierks and
Asper, 1997; 1–36 m d−1 from Asper, 1987; 100–150 m d−1

from Smetacek, 1985; Billet et al., 1983; Alldredge and
Gotschalk, 1989; 1–368 m d−1 from Alldredge and Silver,
1988), although the range of sinking rates for both type
of larger particles overlap. In coastal settings of the Ross
Sea, diatom aggregates may have sinking rates higher than
288 m d−1 (Asper and Smith, 2003). At the Antarctic Po-
lar Front, diatoms may be rapidly transferred downwards
to the sediment via large chains of larger cells (Dubischar
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Fig. 4. Mean sinking rates of particles (e, with standard deviation)
and particle compositions of the upper traps (a–d, % of total annual
mass) in the Atlantic Ocean based on seasonal time resolution (Ta-
ble 1). In (e), average sinking rates determined for the Equatorial
Pacific (EqPac) and the Arabian Sea (AS) are also given (Berelson,
2002). Note the highest mean sinking rates at the Equator and off
NW Africa.

and Bathmann, 2002). We also obtained an overlap of the
sinking rates between the two different production systems
(Fig. 4e), but the highest rates occurred in carbonate and
dust-dominated areas at the eastern equator and off NW
Africa.

Although the lithogenic content of particle flux from the
entire Atlantic does not show an overall significant relation-
ship to particle sinking rates, the distribution pattern shown
in Fig. 4 suggests some effect of dust minerals. For exam-
ple, mean particle sinking rates decrease from about 315
to 183 m d−1 in the eastern Atlantic in a southward direc-
tion (Table 1), concomitant with a decrease in the flux of
lithogenic materials (Fischer and Wefer, 1996). The northern
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92 G. Fischer and G. Karakaş: Sinking rates of particles

Table 2. Sinking rates of particles calculated from alkenone measurements from the Cape Blanc deployments (at site CB; Müller and Fischer,
2001 and unpubl. data). Note the increase of mean sinking rates with depth (from 51 to 108 to 318 m d−1) and the extraordinary high rates
of 566 m d−1 in 1991 (CB-4) during the sedimentation of a summer coccolithophorid bloom.

Sinking rates from alkenone measurements of the Cape Blanc deployments

Trap deployment CB1 CB2 CB3 CB3 CB3 CB4 CB4 CB4 CB13 CB13 CB13

year 1988 1989 1990/91 1990/91 1990/91 1991 1991 1991 2002/03 2002/03 2002/03
lag of peaks (cup) – – – – 0 – – 0 – – 1
lag of peaks (days) 25 45 48 48 10.75 10 10 5 19 36 19
season summer summer summer summer summer summer summer summer late summer late w./late su. late w./late su.
depths (m) 0 0 0 0 730 0 0 733 0 0 1228

2195 3502 730 3557 3557 733 3562 3562 1228 3606 3606

sinking rates 88 78 15 74 263 73 356 566 65 100 125
(m day−1)
sampling intervals 27 17 21.5 21.5 21.5 10 10 10 19 19 19
(days)
reference M. and F., M. and F., M. and F., M. and F., M. and F., M. and F., M. and F., M. and F., unpubl. unpubl. unpubl.

2001 2001 2001 2001 2001 2001 2001 2001 data data data

sites (EEA 2◦ N, EEA 0◦) having relatively high mean sink-
ing rates (315–400 m d−1) are strongly influenced by the mi-
gration of the ITCZ bringing fine-grained lithogenic compo-
nents (dust) into the oceanic environment. As sinking rates
are to a large part derived from winter and spring sedimen-
tation, the time of the southernmost extension of the ITCZ,
an impact of dust is plausible. To clarify the potential role of
mineral dust vs. coccolith-carbonate for ballasting off NW
Africa is another issue and requires further detailed studies
in the field and laboratory. Different ballast minerals from
dust such as kaolinite, smectite or quartz may have different
effects on sinking rates of aggregates as shown in labora-
tory studies (Hamm, 2002). When discussing particle sink-
ing rates, not only mass properties of larger particles (e.g.
composition, density) have to be considered as in this study,
but also the size and shape of aggregates (De La Rocha and
Passow, 2007). However, the latter issue requires other, non-
destructive methods such as in situ optical techniques.

3.2 Coccolithophorid-associated particle sinking rates

Here we use alkenones which are thought to be produced
mainly by coccolithophorids and we calculated sinking rates
associated primarily with these organisms (Müller and Fis-
cher, 2001, 2003). This approach not only allows the estima-
tion of particle sinking rates in the bathypelagic by compar-
ing trap results from the upper and lower traps but also the
assessment of average sinking rates in the mesopelagic zone
by comparing measured SST with the reconstructed tem-
peratures of the upper trap samples derived from alkenone
measurements (M̈uller and Fischer, 2001, 2003). Sinking
rates from the mesopelagic are an interesting issue as they
document the sum of aggregation-disaggregation processes
and the complexity of the food web structure occurring in
this zone of high organic carbon remineralization. We ob-
tained unusually low sinking rates of 9 m d−1 in the South-
ern Ocean (site PF-3, 0–613 m water depth), probably due
to a long range lateral displacement of particles within the

deep-reaching, constantly eastward flowing Antarctic Cir-
cumpolar Current (ACC) with relatively high current veloci-
ties (Müller and Fischer, 2003). Advection of water masses
and transport of larger particles over laterally significant dis-
tances from their point of origin is also described by Gorsky
et al. (2003). This shows that coccoliths are not transported
rapidly downwards via fast sinking fecal pellets everywhere.
A long-range transport is also proposed from the sinking
rates of coccolith-associated particles in the eastern equato-
rial Atlantic (site EA-8, Table 1; M̈uller and Fischer, 2003),
with mean sinking rates in the order of 13 m d−1 for the wa-
ter column between the surface and 598 m. Higher values
of 48 m d−1 were recorded for the Benguela System (trap
WR-2-4), however, between the surface and 1648/1717 m.
At site NU-2 off Namibia, 45 m d−1 was estimated between
the surface and 2516 m. These observations point to increas-
ing sinking rates with depth for alkenone-containing parti-
cles. Sinking of coccolithophorid mats containing mucus
in the Panama Basis was in the order of 65 m d−1 (Honjo,
1982), thus being well within our range of values. Sawada
et al. (1998) found sinking rates of alkenone-associated par-
ticles in the western Pacific off Japan of 145–290 m d−1, but
for the entire water column of 8000 m. Marine snow aggre-
gates formed by coccolithophorids, the major primary pro-
ducers of carbonate in the ocean (Berner and Honjo, 1981;
Schiebel, 2002) have not yet been observed (de la Rocha
and Passow, 2007). The upwelling filament off Cape Blanc
was studied in more detail (M̈uller and Fischer, 2001 and
unpubl. data), indicating high interannual variability of sink-
ing rates and associated transport processes. We obtained
sinking rates for the mesopelagic between 15 and 73 m d−1

(Table 2), being within the range of values from the At-
lantic Ocean described above. These relatively low rates
might indicate a significant lateral displacement of larger
particles from their point of origin, most probably from the
coast (e.g. Karakaş et al., 2006). Values between the surface
and the deep traps were between 73 and 100 m d−1 for the
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Table 3.Summary of sinking rates derived from this study (Tables 1, 2) in comparison to literature values for fecal pellets and marine snow
aggregates.

Summary of sinking rates

method region study sites sinking rate depth range remark reference
m d−1 m

(corr. method)

flux patterns Northeast Atlantic see Table 1 326 730–4523 m mean this study
Eastern Eq. Atlantik see Table 1 299 597–4029 m mean this study
Western Eq. Atlantik see Table 1 211 718–4736 m mean this study
Southeast Atlantic WR, see Table 1 117 599–1648 m this study
Southern Ocean see Table 1 157 494–3196 m mean this study
Cape Blanc CB 235 730–3606 m mean this study
Cape Blanc CB13 63 1228–3606 m winter-spring bloom this study
Cape Blanc CB13 250 1228–3606 m summer this study

flux patterns/ Cape Blanc CB9 90 surface to 3600 m winter-spring bloom from Helmke et al., 2005
chlorophyll Cape Blanc CB9 120 surface to 3600 m summer from Helmke et al., 2005
alkenones Cape Blanc CB1, 2, 3, 4, 13 51 surface – upper traps Table 2, mean this study

CB1, 2, 3, 4, 13 108 surface – deep traps Table 2, mean
CB1, 2, 3, 4, 13 318 upper – deep traps Table 2, mean

Polar Front PF3 9 surface to 613 m Müller and Fischer, 2003
Eastern Equatorial Atlantic EA8 13 Surface to 598 m Müller and Fischer, 2003
Namibia upwelling NU1 45 Surface to 2516 m Müller and Fischer, 2003
Walvis Ridge WR2-4 48 Surface to 1648/1717 m Müller and Fischer, 2003

alkenones Western Pacific off Japan – 145–290 surface to 8688 m – Sawada et al., 1998
sediment trap fluxes Eastern Equatorial Pacific – 150 surface to 5000 m coccol. fecal pellets Honjo, 1976
sediment trap fluxes Panama Basin – 65 surface to 3860 m mucus coccol. mats Honjo, 1982
– – – 100 – diatom flocs Smetacek, 1985
settling chambers Monterey Bay, Calif. – 43–95 surface ocean marine snow Shanks and Trent, 1980
photography Northeast Atlantic – 100–150 surface to seafloor diatom aggregates Billet et al., 1983
in situ observations Santa, B. channel, Calif. – 117±56 surface diatom flocs Alldredge and Gotschalk, 1989
photography coastal Ross Sea – >288 shelf waters diatom aggregates Asper and Smith, 2003

deployments CB-1-3 and CB-13, respectively, again point-
ing to increasing sinking rates with depth. During deploy-
ment CB-4 in summer 1991, sinking rates were 356 m d−1

between the surface and 3562 m (Table 2). Between the up-
per trap and the lower trap, sinking rates were even as high as
566 m d−1. During this year organic carbon transfer and the
alkenone flux to depth were extraordinary high, even though
production at the surface was assumed to be even decreas-
ing (Müller and Fischer, 2001; Fischer et al., 2009). When
calculating the coccolith flux from total carbonate flux (by
counting and weighing planktic foraminifera and pteropods),
we found that almost all carbonate (95%) was supplied by
coccoliths in 1991. In contrast, during deployment CB-
3 (1989), we obtained a contribution of coccolith-carbonate
in the order of only 65%. We assume that an episodic pulse
of a coccolithophorid bloom in 1991 (CB-4) was exported
rapidly in a vertical direction leading to an effective trans-
fer of carbon through rapidly sinking fecal pellets. Coc-
coliths being densely packed within fast sinking fecal pel-
lets (around 150 m d−1) were described by Knappertsbusch
and Brummer (1995) from the North Atlantic near NABE
48◦ N. Zooplankton fecal pellets with coccoliths were also
described from the Equatorial Pacific and had sinking rates
of 150 m d−1 (Honjo, 1976). These values are close to our
average coccolith-associated sinking rates for the entire wa-
ter column off Cape Blanc which were around 160 m d−1

(Table 3). But our peak value of 566 m d−1 appears to be also
reasonable when considering sinking rates given by Cherry
et al. (1978, 50–950 m d−1), Fowler and Small (1972, 126–
862 m d−1) or Cad́ee et al. (1992, 50–800 m d−1).

We collected mesozooplankton fecal pellets made up to a
large part of densely packed coccoliths at the ESTOC site in
the Canary Current in 1992. They transported rather fresh
organic detritus to greater depth providing a perfect corre-
spondence between seasonal organic carbon and carbonate
flux (Fischer et al., 1996b). In addition, we found 1000µm
long and very densely packed appendicularian pellets in the
sediment trap collections at the coastal eutrophic site off
Cape Blanc (CBcoastal-2: 1296 m trap depth, unpubl. data)
which contain large amounts of coccoliths and which sink
with rates of about 732±153 m d−1 as determined by a flow
velocimeter (Ploug et al., 2008b). Experimental studies sup-
port our field observations; M. Iversen and H. Ploug from the
MPI in Bremen (unpubl. data) obtained significantly higher
particle sinking rates in artificial aggregates containing coc-
coliths compared to those with diatoms. De La Rocha and
Passow (2007) obtained more compact, less porous aggre-
gates when adding fine-grained carbonate which resulted in
increased particle sinking velocities.
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Fig. 5. Typical total mass flux patterns of upper(a) and lower traps(b) at the mesotrophic Cape Blanc site CB (deployment 13: spring
2002 to spring 2003) (Table 1). Note the time shift in winter-spring peak combined with an increase in fluxes with depth, which points to an
additional particle source at the coast (Karakaş et al., 2006). A similar flux pattern between the upper and lower trap without any delay in
major peaks was observed for the late spring and summer season. Accordingly, sinking rates change from 63 m d−1 in spring to 250 m d−1

in summer between 1228 and 3606 m water depth.

3.3 Seasonal variability of particle sinking rates

In the coastal upwelling setting off Cape Blanc, an E-W tran-
sect of surface chlorophyll from SeaWiFs and sediment trap
data from deployment CB-9 were used to track the seasonal
chlorophyll signals, to determine the source region of par-
ticles settling through the water column and to study the
relationship between chlorophyll and deep ocean organic car-
bon fluxes (Helmke et al., 2005). We applied these data
to calculate seasonal sinking rates of particles between the
surface and 3600 m water depths (CB-9 deployment). We
obtained higher sinking rates of about 120 m d−1 during the
late summer/early fall season when coccolithophorid produc-
tion was enhanced. During the winter-spring bloom with

enhanced biogenic opal sedimentation, sinking rates were
only around 90 m d−1. A similar pattern is found for the CB-
13 deployment (Fig. 5) when applying total flux data from
the upper (1228 m) and the lower trap (3606 m). The winter-
spring peak measured with the upper trap appeared two cups
later in the deep trap where the particle flux is almost twice
as high, pointing to an additional particle source, most prob-
ably at the coast (Karakaş et al., 2006). This delay trans-
lates into a sinking rate of 63 m d−1 during the winter-spring
bloom. The carbonate-dominated summer sedimentation in
the mesopelagic zone is almost perfectly reflected in the deep
trap with some reduction in magnitude, as expected, but
without any time shift, suggesting particle sinking rates of
250 m d−1.
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3.4 Variability of particle sinking rates with depth

Sinking rates derived from alkenone analysis and SST mea-
surements suggest an increase with water depth, e.g. from
15 to 263 m d−1 at site CB-3, 73 to 566 m d−1 at site CB-4
and 65 to 125 m d−1 at site CB-13 (Table 2). All these values
from the deeper water column fall within the range of sinking
rates derived from the flux patterns, pointing to almost sim-
ilar values for total material and coccolith-associated carbon
and carbonate. In Fig. 6, we plotted the latitudinal distri-
bution of sinking rates from shallower depths (derived from
alkenones, Table 2) and those from the deeper water column
taken from flux comparisons (Table 1). All values from the
deeper water column exceed the sinking rates from shallower
waters.

Increasing sinking rates of particles have important impli-
cations for the degradation of organic carbon and particle
remineralisation rates in general. Studies modelling parti-
cle transport paths currently operate with fixed sinking rates
for the entire water column (e.g. Karakaş et al., 2006; Gru-
ber et al., 2006). Lower sinking rates in the mesopelagic
zone (e.g. around 50 m d−1 off Cape Blanc, Table 2) may be
explained by rather fresh material containing high amounts
of organic material combined with relatively low contents of
ballast minerals. In the mesopelagic, material may be pro-
cessed through complex food webs (Legendre and Rivkin,
2002), thus increasing the residence time of materials in this
part of the water column. Higher sinking rates in the bathy-
pelagic may be caused by a loss of light organic materials
(Berelson, 2002) and therefore a relative increase in ballast
minerals. It is known from studies from the deeper water col-
umn that the amount of suspended material, e.g. fine-grained
lithogenic components or tiny coccoliths (de La Rocha and

Passow, 2007) resuspended from the seafloor but also from
the shelf (e.g. Karakaş et al., 2006) are enhanced and might
be incorporated into larger particles (Nowald et al., 2006),
thus increasing particle sinking rates.

3.5 Simulated chlorophyll distribution and deep water
fluxes

The model produced physical and biogeochemical charac-
teristics of the upwelling system reasonably well. The
simulated hydrodynamic fields are presented by Karakaş et
al. (2006) and Marchesiello and Estrada (2007). Herein,
we explicitly focus on biogeochemical properties. Figure 7
shows annual surface chlorophyll fields for the year 2002 in-
ferred from SeaWiFS and that of our simulation. Despite
its relatively coarse resolution, the surface chlorophyll distri-
bution was reproduced to a great extent. The model shows
a slightly exaggerated offshore chlorophyll concentration to
the North of Cape Juby, in the North and off Cape Verde in
the South. In these locations, the 0.4 mg m−3 contour line
in the model is around 100–150 km farther offshore than the
one in the SeaWiFS data. Off Cape Blanc, on the other hand,
which is the region of our interest, the spatial distribution is
very similar. The study site CB for instance, where sediment
data are recorded, lies under 0.4 mg m−3 contour line both
in satellite data and modelled fields. Simulated near-shore
values on the other hand appear to be weaker than remotely
recorded data. While relatively coarse grid resolution could
be one reason for this anomaly, the quality of remote sens-
ing data in coastal regions could be another, which has been
questioned in a number of studies (e.g. Gohin et al., 2002;
Lavender et al., 2004; Harding et al., 2005).
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96 G. Fischer and G. Karakaş: Sinking rates of particles

Fig. 7. Annual surface chlorophyll distribution (mg m−3) as observed by SeaWiFS (left) and modelled by ROMS (right) for the year 2002.

Fig. 8a. (a) Seasonal surface chlorophyll distribution (mg m−3) in spring (mid-March to mid-June) and summer (mid-June to mid-
September) 2002 as inferred by SeaWiFS and simulated by the model.
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Fig. 8b. Seasonal surface chlorophyll distribution (mg m−3) in autumn (mid-September to mid-December) 2002 and winter (mid-December
to mid-March) 2003 as inferred by SeaWiFS and simulated by the model.

In Fig. 8a and b, we compare the seasonal surface chloro-
phyll from the simulation to that acquired by SeaWiFS. The
seasonal variation on the whole is retrieved well by the
model solutions. The winter-spring bloom differentiates it-
self with elevated chlorophyll concentrations in these sea-
sons over large areas of the surface ocean. However, the
onshore-offshore chlorophyll gradient in the model does not
appear as steep as the observed one. There also exist underes-
timations (mostly near the coast) and overestimations (to the
north of Cape Juby, in spring and winter) of the model. The
use of fine temporal resolution forcing nonetheless is proved
to be worthwhile. The model performs remarkably well in
winter by reproducing offshore extensions of 0.8 mg m−3

contour off Cape Blanc and off Cape Timiris as in the satel-
lite data. Although below the observed concentrations, the
summer filament off Cape Blanc is also seen in the model
solution. At site CB, very similar chlorophyll concentra-
tions were produced except in autumn. In this season, the
model solution (0.11 mg m−3) underestimated the observed
value (0.3 mg m−3) at this station by a factor of more than
two.

The seasonal variation of surface biomass is successfully
mimicked in the deep water organic carbon fluxes. Figure 9
illustrates modelled fluxes against those recorded by the sedi-
ment trap at station CB in 3606 m depth. One has to take into
consideration that temporal variability and amount of parti-
cles sinking into the ocean’s floor at a particular station can
only be reproduced by capturing filaments and patchiness of
the flow field in the right time scales, which transport the
biogeochemical properties. We believe that although slightly
underestimated in winter 2003, the general pattern and car-
bon mass are calculated notably well by the model. It is also
worth mentioning that even though particles of different ori-
gin sink in different seasons, setting seasonal sinking veloc-
ity makes prediction of deep water fluxes possible, despite
the fact that the model has one phytoplankton compartment.

We must note that the settling velocity that is specified in
the model is the mean rate calculated by Helmke et al. (2005)
over the entire water column. Our own estimations in Ta-
ble 1, which are based on the sediment trap recordings at two
different water depths, are higher than this mean rate simply
because the upper trap is located at 1228 m. As the sinking
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Fig. 9. Seasonal organic carbon fluxes simulated by our model(a) and measured with the deep ocean sediment trap CB-13 (3606 m,b).
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velocity increases with depth, the velocity for the entire water
column must be less than the one measured in deeper layers
between upper and lower traps. In fact the value given by
Helmke et al. (2005) compares well to the sinking rates of
alkenone associated particles shown in Table 2, that are cal-
culated based on the time shift between maxima/minima of
measured SST and alkenone-derived temperatures obtained
from trap samples.

Although the mean rates over the entire water column
give reasonable flux predictions in the deep sediment trap
at 3606 m depth, the flux comparison with the upper trap do
not show good correlation (data not shown) which may be
due to the changing particle compositions and sinking veloc-
ities in the water column and decreased collection efficiency
of shallower sediment traps (Yu et al., 2001; Scholten et al.,
2001). It is therefore very unlikely that simple parameteri-
sations with constant remineralisation and sinking rates can
represent the variation in particle characteristics.
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Helmke et al. (2005) applied a linear regression model
within a box area from 5◦ N to 35◦ N and 5◦ W to 35◦ W
in order to estimate the total flux of organic carbon down
to 1000 m depth and came up with values ranging between
1.1 Tg and 2.6 Tg per year. During the period from May 2002
until April 2003, our model calculations give a total organic
carbon flux of 292 Gg down to the 3000 m depth contour
line off the NW African upwelling region between 5◦ N and
35◦ N. Since the small detritus remineralises at the surface
due to slow settling it does not contribute to the calculated
carbon fluxes in the depth. The estimated carbon flux is
therefore solely due to large particles. Considering the fact
that these particles, with a remineralisation rate of 0.06 d−1

and sinking velocity of 75 m d−1, lose approximately 80%
of their mass between 1000 m and 3000 m depth, our value
compares well with the estimations given by Helmke et
al. (2005).

4 Summary and conclusions

Considering all our regional and seasonal data as well
as unpublished data from experimental studies and litera-
ture values from sediment trap studies (Berelson, 2002),
we have indication for higher particle sinking rates in
carbonate-dominated productions systems in the equatorial
Atlantic and off NW Africa (Table 3). This might re-
flect a major transport mode for tiny and heavy coccoliths
(density=2.7−2.9 g cm−3), being densely packed within fe-
cal pellets which are frequently found in the material col-
lected by sediment traps (e.g. Ploug et al., 2008b; Fischer et
al., 1996b). The significance of lithogenic particles for par-
ticle sinking rates could not be clarified in this study but the
high values off NW Africa remain noticeable (Table 3). This
issue deserves further detailed field and laboratory investi-
gations. A tendency to lower sinking rates was obtained in
diatom-dominated production systems in the southeast At-
lantic and the Southern Ocean as well as during seasonal
spring blooms off Mauritania (Table 3). Our studies suggest
that the type of particle carrier (i.e. densely packed coccoliths
in pellets versus loosely-packed TEP-rich diatom aggregates)
influences particle sinking rates and may be more impor-
tant for the amount of carbon reaching the deep sea than the
magnitude of primary production in the surface layer. Both
during a summer coccolithophorid bloom and a fall episodic
sinking event of appendicularian fecal pellets containing high
amounts of coccoliths off Mauritania, sinking rates reached
566 m d−1 and 732±153 m d−1 (Ploug et al., 2008b), respec-
tively. Such high values have not been recorded for TEP-rich
diatom aggregates. However, a statistically significant rela-
tionship between total carbonate content and particle sinking
rates could not be obtained and might not exist at all (De La
Rocha and Passow, 2007). This could be partly due to the

unknown composition of carbonate and the undefined role
of dust as particle carrier. Additionally, we have to consider
the shape of larger particles (size and porosity) which are not
discussed here but may account for variable particle sinking
rates.

We generally obtained lower particle sinking rates in the
mesopelagic zone, probably reflecting the sum of aggrega-
tion and disaggregation processes in the twilight zone as well
as reduced vertical sinking due to stronger horizontal and
vertical currents in the surface and subsurface layer. Parti-
cle sinking rates clearly increase with depth as observed by
Berelson (2002), most probably due to a loss of relatively
light organic-rich materials (density around 1.06 g cm−3; Lo-
gan and Hunt, 1987) and increased scavenging of suspended
fine-grained mineral particles, both of which would lead to
higher particle densities. Our mean sinking rates were high-
est off NW Africa, decreasing southwards (Table 3). Aver-
age values of alkenone-associated particles were 9–51 m d−1

and 318 m d−1 in the upper and lower water column, respec-
tively, thus being well within the range of other studies (e.g.
Alldredge and Silver, 1988; Sawada et al., 1988) (Table 3).

Many models that try to reproduce particle fluxes and dis-
tributions in the water column apply consistent sinking rates
in the order of 5–20 m d−1, which are on certain occasions
capable to mimic observations in the surface or near-surface
layers of the water column, e.g. particle profiles obtained by
optical systems (Karakaş et al., 2006). However, their ca-
pability is limited in the deeper layers due to the small set-
tling velocities. Particle sedimentation has an episodic na-
ture (e.g. Fischer et al., 1996b), which is rarely captured by
studies with optical systems because they provide only spot
observations over a very short time period of the year. Par-
ticle cameras apparently record more the normal distribution
of particles in the water column (e.g. mid-water maxima off
the shelves, Karakaş et al., 2006; Nowald et al., 2006), with
larger particle volumes being suspended or sinking slowly.
Nevertheless, in one particle profile off NW Africa (Nowald
et al., 2006), we were able to capture such an episodic sink-
ing event occurring in spring.

We showed that it was possible to estimate organic car-
bon fluxes in the deep layers of the ocean to a good degree
of accuracy with a simple biogeochemical model by using
site specific estimations of sinking velocity and undertaking
proportional changes in remineralisation rates. This requires
a review of parameterisations assigned to biologically pro-
duced particles in most biogeochemical models especially
when regional studies are involved. A changing seasonal
sinking velocity between 75 m d−1 and 150 m d−1 showed us
a satisfactory agreement of simulated values with recorded
ones at the Cape Blanc site. However, the validity of mean
sinking velocities and remineralisation rates prescribed in
such models are limited to the depth level and possibly to
the site concerned (Kriest and Oschlies, 2008). The vari-
ations in particle flux along the water column can only be
represented by elaborate methods formulating alterations in
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particle composition and dynamics. For a better mathemat-
ical representation of these processes, further experimental
and observational studies are also needed.
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Ragueneau, O., Tréguer, P., Leynaert, A., et al.: A review of the
Si cycle in the modern ocean: recent progress and missing gaps
in the application of biogenic opal as a paleoproductivity proxy,
Global Planet. Change , 26, 317–365, 2000.

Ragueneau, O., Schultes, S., Bidle, K., Claquin, P., and Moriceau,
B.: Si and C interactions in the world ocean: Importance of
ecological processes and implications for the role of diatoms
in the biological pump, Global Biogeoch. Cy., 20, GB4S02,
doi:10.1029/2006GB002688, 2006.

Ratmeyer, V., Balzer, W., Bergametti, G., Chiapello, I., Fischer,
G., and Wyputta, U.: Seasonal impact of mineral dust on deep-
ocean particle flux in the eastern subtropical Atlantic Ocean,
Mar. Geol., 159, 241–252, 1999.

Reynolds, R. W. and Smith, T. M.: Improved global sea surface
temperature analyses using optimum interpolation, J. Climate, 7,
929–948, 1994.

Riebesell, U.: The formation of large marine snow and its sustained
residence time in surface waters, Limnol. Oceanogr., 37, 63–76,
1992.

Sawada, K., Handa, N., and Nakatsuka, T.: Production and transport
of long-chain alkenones and alkyl alkenoates in a sea water col-
umn in the northwestern Pacific off central Japan, Mar. Chem.,
59, 219–234, 1998.

Schiebel, R.: Planktic foraminiferal sedimentation and the ma-
rine calcite budget, Global Biogeochem. Cy., 16, 1065,
doi:10.1029/2001GB001459, 2002.

Scholten, J. C., Fietzke, J., and Vogler, S., et al.:Trapping efficien-
cies of sediment traps from the deep Eastern North Atlantic: the
230Th calibration, Deep-Sea Res. II, 48, 2383–2408, 2001.

Shanks, A. L. and Trent, J. D.: Marine snow: sinking rates and
potential role in vertical flux, Deep-Sea Res. I, 27A, 137–143,
1980.

Shchepetkin, A. F. and McWilliams, J. C.: Quasi-monotone ad-
vection schemes based on explicit locally adaptive dissipiation,
Mon. Weather Rev., 126, 1541–1580, 1998.

Shchepetkin, A. F. and McWilliams, J. C.: A method for comput-
ing horizontal pressure-gradient force in an oceanic model with a
nonaligned vertical coordinate, J. Geophys. Res., 108(C3), 3090,
doi:10.1029/2001JC001047, 2003.

Shchepetkin, A. F. and McWilliams, J. C.: The regional
oceanic modeling system (ROMS): a split-explicit, free-surface,
topography-following-coordinate oceanic model, Ocean Model.,
9(4), 347–404, 2005.

Smetacek, V. S.: Role of sinking in diatom life-history cycles: eco-
logical, evolutionary and geological significance, Mar. Biol., 84,
239–251, 1985.

Stephens, C., Antonov, J. I., Boyer, T. P., et al.: World Ocean Atlas
2001, Volume 1: Temperature, edited by: Levitus, S., NOAA
Atlas NESDIS 49, US Government Printing Office, Washington
DC, USA, p. 167, 2002.

Thunell, R., Benitez-Nelson, C., Varela, R., Astor, Y., and Muller-
Karger, F.: Particulate organic carbon fluxes along the upwelling-
dominated continental margins: Rates and mechanisms, Global
Biogeochem. Cy., 21, GB1022, doi:10.1029/2006GB002793,
2007.

Turner, J. T.: Zooplankton fecal pellets, marine snow and sinking
phytoplankton blooms, Aquat. Microb. Ecol., 27, 57–102, 2002.

Wefer, G., Fischer, G., F̈utterer, D., and Gersonde, R.: Seasonal
particle flux in the Bransfield Strait, Antarctica, Deep-Sea Res.,
35, 891–898, 1988.

Yu, E. F., Francois, R., Honjo, S., Fleer, A. P., Manganini, S. J.,
Rutgers van der Loeff, M. M., and Ittekot, V.: Trapping efficiency
of bottom-tethered sediment traps estimated from the intercepted
fluxes of230Th and231Pa, Deep-Sea Res. I, 48, 865–889, 2001.

Biogeosciences, 6, 85–102, 2009 www.biogeosciences.net/6/85/2009/

http://www.ocean-sci-discuss.net/3/903/2006/

