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Abstract. The light scattering properties of oceanic parti-
cles have been suggested as an alternative index of phyto-
plankton biomass than chlorophyll-a concentration (chl-a),
with the benefit of being less sensitive to physiological forc-
ings (e.g., light and nutrients) that alter the intracellular pig-
ment concentrations. The drawback of particulate scatter-
ing is that it is not unique to phytoplankton. Nevertheless,
field studies have demonstrated that, to first order, the par-
ticulate beam-attenuation coefficient (cp) can track phyto-
plankton biomass. The relationship betweencp and the par-
ticulate backscattering coefficient (bbp), a property retriev-
able from space, has not been fully evaluated, largely due to
a lack of open-ocean field observations. Here, we present
extensive data on inherent optical properties from the Equa-
torial Pacific surface waters and demonstrate a remarkable
coherence inbbp andcp. Coincident measurements of par-
ticle size distributions (PSDs) and optical properties of size-
fractionated samples indicate that this covariance is due to
both the conserved nature of the PSD and a greater contribu-
tion of phytoplankton-sized particles tobbp than theoretically
predicted. These findings suggest that satellite-derivedbbp

could provide similar information on phytoplankton biomass
in the open ocean ascp.

1 Introduction

Inherent optical properties (IOPs) have been recognized as
important tools to study many ecophysiological and biogeo-
chemical oceanic processes at sub-meter spatial scales and
at high temporal resolution. For example, IOP data have
permitted deriving proxies of phytoplankton cell size (Ciotti
et al., 2002) and growth-rate estimates of particulate organic
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matter (Siegel et al., 1989; Claustre et al., 1999). Under-
standing how different types of oceanic particles affect the
bulk inherent optical properties is fundamental for infer-
ring particle dynamics and ecosystem rates from in-situ and
satellite-inverted IOPs.

The contribution of oceanic microorganisms to IOPs such
as the particle beam-attenuation and scattering coefficients
(cp andbp, respectively) have been investigated rather ex-
tensively by means of flow cytometry (Durand and Olson,
1996; Chung et al., 1996, 1998; Claustre et al., 1999; Green
et al., 2003; Oubelkheir et al., 2005; Grob et al., 2007). Typi-
cally, the concentrations, sizes, and refractive indices of spe-
cific groups of microorganisms were estimated and then their
contribution tocp calculated.

In some of these investigations, the observed microorgan-
isms (autototrophs and heterotrophs) accounted for a rather
constant fraction ofcp, while the remaining fraction ofcp

was attributed to an unmeasured particle pool referred to as
“detritus” (Chung et al., 1996, 1998; Claustre et al., 1999;
Oubelkheir et al., 2005). A corollary of these findings is that
it should be possible to estimate the attenuation by microor-
ganisms from bulkcp measurements (Chung et al., 1998).
By further considering that the biomass of autotrophic and
heterotrophic microbes covary in the open-ocean over large
scales (Cole et al., 1988; Gasol and Duarte, 2000), we can
then conclude that, to first order, bulkcp should be propor-
tional to phytoplankton beam attenuation (cφ).

Other studies estimated that phytoplankton accounted for
up to 50–60% ofcp (Durand and Olson, 1996; Chung et al.,
1996; Green et al., 2003). In addition,Durand and Olson
(1996) showed that most of the diel variations in bulkcp

could be attributed to variations in phytoplanktoncp. Thus,
in these investigations a first order correlation emerged di-
rectly between bulkcp and phytoplankton beam attenuation
coefficient.
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A validation of the above estimates was only presented
by Green et al.(2003) who favorably compared the recon-
structed total particulate scattering signals to independently
measured bulkbp (which dominatescp). Indeed, most of the
aforementioned investigations adopted different hypotheses
to which the calculated scattering cross-sections are strongly
dependent: for example, some studies employed forward
scattering measurements to obtain particle sizes (Durand and
Olson, 1996; Chung et al., 1998; Green et al., 2003; Grob
et al., 2007), while others assumed fixed sizes for a given
particle type (Chung et al., 1996; Claustre et al., 1999;
Oubelkheir et al., 2005). Thus, it is unclear if the differences
in the reported contributions of microorganisms to bulkcp

were real and due to variations in the geographic regions,
or biased because of the the assumptions regarding size and
scattering theory used to retrievecp.

Regardless, we have explained why a correlation between
cp and phytoplankton biomass (the first order driver ofcφ) is
expected. Certainly this global correlation may break down
at more regional scales, but it provides a way to derive phyto-
plankton biomass alternative to chlorophyll-a concentration
(chl-a). Indeed, despite its historical acceptance as an index
of phytoplankton biomass, chl-a is also strongly influenced
by physiological forcing such as light availability and nutri-
ent stress (e.g.,Geider et al., 1998). The chl-a:cp ratio should
thus reveal these physiological variations by removing the
biomass dependence from chl-a.

To test this hypothesis,Behrenfeld and Boss(2003) ana-
lyzed existing time-series of data and found a correlation be-
tween chl-a-normalizedcp and a14C-based photoacclima-
tion index. These investigators later assumed thatcp cor-
relates with the particulate backscattering (bbp) in the open
ocean and derived relationships between satellite-based chl-
a:bbp and environmental variables that closely mimic the chl-
a-to-carbon ratios measured in laboratory cultures of phy-
toplankton (Behrenfeld et al., 2005). Thus, these studies
support the hypothesis that phytoplankton biomass correlates
with cp andbbp in the open ocean.

This new scattering-based approach for interrogating vari-
ability in phytoplankton ecophysiology from space still has
a critical knowledge gap: it is not yet clear the extent to
which a direct connection exists betweencp andbbp at the
global scale. An exception is the recent analysis byHuot
et al. (2008) that reported strong correlations in the South
Pacific between bothbp or bbp and chl-a and, by extension,
betweenbp andbbp. Note thatbp andcp are here used inter-
changeably becausebp dominatescp in the open ocean (e.g.,
Loisel and Morel, 1998).

Despite this recent study, the relationship betweencp and
bbp is not well understood in the open ocean, mostly due to
the lack of coincidentcp andbbp measurements. Theoretical
simulations for homogeneous spherical particles (i.e., Mie
theory) predict thatcp and bbp are influenced by particles
belongings to different size fractions (Morel and Ahn, 1991;
Stramski and Kiefer, 1991). As a specific example, Mie

theory predicts that 50% ofbp is due to particles< 3.2µm,
while 50% ofbbp is from particles< 0.2µm, if low refractive
index (phytoplankton-like) homogeneous spherical particles
that follow a power-law size distribution with exponent of−4
are considered (Stramski and Kiefer, 1991). Thus, the rela-
tionship betweenbbp and phytoplankton biomass may not be
as strong as forcp and would depend on the conserved na-
ture of the particle size distribution (PSD) (i.e., that small
particles covary with phytoplankton-sized particles).

One of the problems with using Mie theory to simulate
backscattering coefficients is that oceanic microorganisms
are not homogenous spheres. Theoretical models that ac-
count for internal structure and non-sphericity of the particles
predict backscattering coefficients significantly higher (up to
an order of magnitude) than those expected for equivalent
homogeneous spheres (Meyer, 1979; Bohren and Singham,
1991; Kitchen and Zaneveld, 1992; Quirantes and Bernard,
2004; Clavano et al., 2007). Moreover, direct laboratory
measurements of the backscattering coefficient (or the vol-
ume scattering function) of phytoplankton cultures are also
in disagreement with predictions based on the homogeneous
spherical model. For example,Vaillancourt et al.(2004)
showed that observed backscattering efficiency factors could
be reproduced by Mie theory only by using refractive indices
significantly higher than those expected for phytoplankton.
Similarly, Volten et al.(1998) concluded that theoretical pre-
dictions could not achieve a “good agreement” with their
measured volume scattering functions because these pre-
dictions are “too steep” in the forward direction (i.e., the
backscattering ratiobbp:bp predicted by Mie theory is too
small). Quinby-Hunt et al.(1989) demonstrated that the
elements of the scattering matrix measured on aChlorella
culture could be satisfyingly reproduced only by a coated-
sphere model. When the volume-average of the refractive
indices fitted for the coating and for the core of the mod-
eled cell was used as input to the homogeneous spherical
model, backscatter was overestimated by a factor 3. Further-
more, Stramski and Piskozub(2003) indirectly determined
the backscattering ratios of two species of marine phyto-
plankton to be between at least three and ten fold larger than
those predicted by Mie theory. The above comparisons be-
tween theory and observations were conducted by indepen-
dent researchers and provide strong evidence that the homo-
geneous spherical model is insufficient to accurately model
the shape of the volume scattering function and the backscat-
tering coefficient of phytoplankton cells.

On the other hand, other investigators have estimated
the backscattering of phytoplankton and bacteria by using
Mie theory and measuring the volume scattering function
over a limited range of backward angles (Morel and Ahn,
1991; Ahn et al., 1992). Results from these studies were
in good agreement with the homogeneous spherical model
and presented backscattering coefficients for phytoplankton
too small to account for the bulkbbp measured in the open
ocean. These authors thus concluded that a large fraction of
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Fig. 1. SeaWiFS chlorophyll-a map (units of mg m−3) for May 2007 showing the cruise track and the locations

of the 3-µm filtrations (red circles) and of the fractionation experiments (black triangles with corresponding

experiment number). Clouds and land are represented in white and gray, respectively.
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Fig. 1. SeaWiFS chlorophyll-a map (units of mg m−3) for
May 2007 showing the cruise track and the locations of the 3-µm
filtrations (red circles) and of the fractionation experiments (black
triangles with corresponding experiment number). Clouds and land
are represented in white and gray, respectively.

the measured bulkbbp must be due to a group of particles
in the submicron size range that has not been well character-
ized and that seems to be mostly composed of detritus and
colloids. Stramski and Kiefer(1991) modeled microorgan-
isms as homogeneous spherical particles and came to similar
conclusions. Thus, contrasting results have been presented
so far with respect to the backscattering properties of oceanic
microorganisms (Stramski et al., 2004).

The current study focuses on the relationship betweencp

andbbp in open-ocean surface waters. We find a close corre-
lation betweencp and bbp using high temporal resolution
bbp and cp data collected along a 9000 km-long transect.
Backscattering from particles smaller than 0.2 µm was negli-
gible and, as a consequence, backscattering from particles in
the phytoplankton size range (0.5–20 µm) contributed a sig-
nificantly greater proportion of the bulkbbp than predicted by
Mie theory. These findings and the relatively constant shape
of the particle size distribution in open-ocean environments
provide supporting evidence to the use ofbbp as an alter-
native to chl-a for quantifying phytoplankton biomass from
space.

2 Methods

2.1 Flow-through measurements

Flow-through measurements were conducted on the clean
seawater supply (intake at 3 m depth) of the R.V. Ka’imi
Moana during a Tropical Atmosphere Ocean cruise from
8 May to 5 June 2007. The cruise track covered three sides
of a rectangle that approximately spanned from 125◦ W to
140◦ W and between 10◦ S and 10◦ N. During the final leg
of the cruise, the ship journeyed over a transect from 10◦ N

140◦ W to the Hawaiian islands (Fig.1). Temperature, salin-
ity and position were recorded by the ship’s underway sys-
tem. To remove bubbles, the seawater supply was plumbed
through two vortex debubblers in series (model VDB-1G, di-
ameter of about 5 cm, Stony Brook, NY, USA). Sample water
was then distributed to the optical instruments. To account
for the dissolved signals, instrumental drifts, and biofouling,
a custom-made automatic valve directed the bulk seawater
through a 0.2-µm Cole Parmer nylon cartridge filter, for ten
minutes every hour. On twelve occasions along the cruise,
the sample water arriving from the debubblers was manually
diverted through a 3.0-µm Cole Parmer nylon cartridge filter
for at least 20 min to measure the contribution from particles
smaller than 3 µm to the bulk inherent optical properties.

Beam-attenuation coefficients were measured at 526 and
650 nm by two 25-cm WET Labs C-star transmissometers
(sampling rate 5.8 Hz). The wavelengths corresponding to
the emission maxima of the light sources,λc, of each trans-
missometer were determined after the cruise by using a spec-
trally calibrated radiometer (OceanOptics USB2000) and
were found to be shifted from the manufacturer declared val-
ues by−6 and−10 nm, respectively. Hyperspectral beam
attenuation and absorption coefficients were also measured
between 400 and 750 nm by a 25-cm WET Labs spectral ab-
sorption and attenuation meter (AC-s, sampling rate 3.9 Hz).

The volume scattering function at a central angle of about
117◦, β(117◦) (m−1sr−1), was measured by a WET Labs
ECO-BB3 Measurement Sensor at three wavelengths (470,
526 and 656 nm, sampling rate 1 Hz). The reportedλc for the
backscattering meter were also determined spectroradiomet-
rically and were found to differ from the stated WET Labs
values by 0,−6, and−4 nm, respectively, after accounting
for the spectral responses of their detectors and interference
filters (e.g.,Twardowski et al., 2007). Instrument gains were
increased by the manufacturer before the cruise to measure
the lowβ(117◦) values expected in the Equatorial Pacific wa-
ters and in the oligotrophic North Pacific Subtropical Gyre.
The instrument was operated in a custom-made flow-through
chamber. Briefly, the instrument light sources illuminated the
water sample from the bottom of the chamber, thus avoiding
accumulation of occasional bubbles on the optical surface. In
addition, a baffle in the chamber prevented unwanted photons
from reaching the instrument detector. The internal surfaces
of the chamber and the baffle were made of black glossy high
density polyethylene that minimized diffuse reflectance from
the chamber walls (and thus retro-diffusion of unwanted pho-
tons into the detector field-of-view,Breneman, 1981). Most
of the photons were reflected by the chamber walls in the
direction opposite to the instrument, thus favoring their ab-
sorption by multiple interactions with the chamber sides and
baffle . The chamber volume (about 8.7 l) was conservatively
chosen to minimize back-reflections from the chamber sides.
A plug (14-cm in diameter) on one of the sides of the cham-
ber was used for installing the instrument and daily cleaning.
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Laboratory experiments were carried out to assess the
backscattering signal,bb,wall, contributed by reflections off
the chamber walls.bb,wall was determined in replicate ex-
periments by measuring the particulate backscattering of
reverse-osmosis water that was recirculated through a 0.2 µm
Cole Parmer nylon cartridge filter for about two hours. The
resultingbb,wall values were(0.34±0.06)×10−3 and(0.30±

0.05)× 10−3m−1 for the blue and green channels, respec-
tively. We note that such determination might be an over-
estimate ofbb,wall because the 0.2 µm filtration may leave
colloidal particles in the water sample.

bb,wall should theoretically decrease when natural sam-
ples are measured in the flow-through chamber because, as
the attenuation by particles or other dissolved substances
increases, the photons traveling from the instrument light-
source to the chamber wall have a smaller probability of
returning to the detector. This decrease inbb,wall however
should be limited since the pathlength covered by these pho-
tons is relatively short. We tested this hypothesis by compar-
ing thebb,wall measured in reverse-osmosis water with that
measured when the total absorption coefficient was raised
to about 2.0 and 2.2 m−1, in the blue and green channels,
respectively, by adding a 0.1 µm-filtered solution of cobalt
chlorine. Under these relatively high absorption values, the
measured decreases inbb,wall were practically insignificant:
(0.046± 0.046)× 10−3 and (0.030± 0.030)× 10−3m−1 in
the blue and green channels, respectively. It was therefore
decided to consider the values ofbb,wall measured in the lab-
oratory to be constant over the range of optical properties
encountered during this study.

Raw digital counts were converted intobbp values by
means of the following equation:

bbp = 2πχp [S(C −D)−βsw] −bb,wall (1)

whereS(C −D) and[S(C −D)−βsw] are the total and par-
ticle volume scattering functions,β andβp, respectively;χp,
taken equal to 1.1, is the factor used to convert theβp at
a central angle of 117◦ into bbp (Boss and Pegau, 2001);
S is the scaling factor determined through a serial dilution
with calibrated beads;C are the digital counts;D are the
dark counts measured when no light reaches the detector, and
βsw is the volume scattering function of pure seawater at the
same wavelength and angle at which the BB3 meter mea-
sures. To estimateβsw, the models byZhang and Hu(2009)
andZhang et al.(2009) with a depolarization ratio of 0.039
were adopted throughout this study.

The combined experimental uncertainty inbbp was cal-
culated by applying the standard law for the propagation of
uncertainty (BIPM and ISO, 1995) to Eq. (1) and assuming
uncorrelated uncertainties. The uncertainties of each term
of Eq. (1) used in these calculations are reported in Table1;
their median percent squared contributions to the combined
bbp uncertainty as well as their median absolute contributions
are presented in Table2.

Table 1. Experimental uncertainties of each term of Eq. (1) used to
compute the combined experimental uncertainty ofbbp as a func-
tion of wavelength. Units of absolute uncertainties are the same as
those reported in the text for the corresponding variables.

Variable Uncertainty Reference
470 nm 526 nm

χp 4.4% 4.4% Boss and Pegau (2001)
S 1.2×10−7 0.31×10−7 measured
C 1.5 2 measured
D 1 1 measured

βsw 2.24% 2.24% Zhang et al. (2009)
bb,wall 6.4×10−5 5.1×10−5 measured

Table 2. Uncertainty budget forbbp based on the values presented
in Table1 and on all BB3 measurements collected during the cruise.
Numbers represent the median values of the squared percent contri-
butions,σ2

rel (unitless), and the median absolute contributions,σ

(m−1), by each input variable to the combined experimental uncer-
tainty inbbp as a function of wavelength.

Variable σ2
rel σ×10−4

470 nm 526 nm 470 nm 526 nm

χp 11 15 0.41 0.35

S 24 4 0.62 0.17
C 24 37 0.62 0.55
D 11 9 0.42 0.27

βsw 9 6 0.37 0.23
bb,wall 26 32 0.64 0.51

During the field study, data from all instruments were time
stamped and merged using a WET Labs Data Handler-4. To
minimize biofouling effects, all instruments as well as the
backscattering flow-chamber were thoroughly cleaned with
a mild detergent, diluted ethanol (for glass surfaces only),
and deionized water usually every day, and on a few occa-
sions every two days. The 0.2-µm and 3-µm cartridge filters
were replaced weekly.

2.2 Particle size distribution measurements

Measurements of particle size distributions were conducted
in 1-ml triplicates with a Coulter Counter Multisizer-3 fit-
ted with a 70-µm aperture tube (which resulted in equivalent
spherical diameters, ESD, distributed in 256 size bins be-
tween 1.4 and 42 µm) at 71 locations along the cruise track.
These triplicate measurements were then averaged to reduce
the statistical noise. To further reduce noise, the number of
size bins was reduced to 22 by aggregating data over larger
bin sizes. Specifically, beginning from the smallest size bin,
we aggregated counts of the first three original bins into a
new bin and set the new central size to the weighted (by the
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counts in each bin) average of the central sizes of three orig-
inal bins. We then repeated the same procedure to compute
the second larger new bin, but we aggregated counts over the
following 4 original bins. Similarly, for the third new bin we
aggregated data over the following 5 original bins. We con-
tinued this aggregation procedure by incrementing by one the
number of original bins over which data were aggregated at
each new aggregated bin. In this way, the new bins at the
largest sizes were derived by aggregating the largest num-
ber of original bins. The particle numbersNi measured by a
Coulter counter in each size bin approximately follow a Pois-
son distribution and their standard deviation is equal toN0.5

i .
Thus, by accumulating counts over the three replicates and
over the larger bins, we were able to significantly increase
the number of particles per bin and thus the precision of our
measurements. The aggregated PSDs were characterized by
coefficients of variation at most of 10% for bin sizes smaller
than 5 µm and in all cases< 30% and typically< 15% for
bins smaller or equal than 8 µm. Obviously, the aggrega-
tion of the original bins into new ones spanning larger sizes
causes a coarsening of the size resolution. However, since
the original number of bins was rather large, the number of
new aggregated bins was 14 for sizes spanning from 1.4 to
8 µm and thus satisfactory for the purposes of our analysis.

A power law was fitted to the differential particle size dis-
tributions using data points with ESD between 2 and 8 µm
and a non-linear fitting routine (Boss et al., 2001). The lower
limit of 2 µm was selected to avoid peaks in the PSDs that
at times were observed around 1.5 µm. The upper limit was
chosen based on the above estimate of precision (i.e., to only
use data with a precision better than 15%). We compared
the PSD exponents resulting from the fits on the accumu-
lated replicates and on the accumulated replicates that had
also been aggregated in larger bins. We found that the mean
PSD exponents in the former and latter cases were not statis-
tically different, at the 95% confidence level. This is prob-
ably because the information content of the more noisy, but
more numerous data is approximately the same as that of the
less noisy, but fewer data aggregated over larger size bins.
Results reported hereafter are those referring to the averaged
replicates without accumulation of counts over larger bins.

As an additional consistency check, the efficiency factor
for attenuation (Qc) for the average particle was computed
as the ratio of concurrent bulkcp values (as measured by
the C-star transmissometer at 526 nm, see below) and total
geometric cross-sections derived from the PSDs. The me-
dian (±σp) Qc was 2.23±0.36 and thus in agreement with
theoretical predictions (Hulst van de, 1957, Fig. 32) and in-
dicative of consistent PSD andcp measurements.

2.3 Pigment concentrations

Pigment concentrations were measured in several ways. Sea-
water samples (500 ml) were concentrated on 25-mm What-
man GF/F filters and extracted in 90% acetone for 24 to

36 h in a freezer. The concentration of chlorophyll-a (chl-
a) was determined fluorometrically (Turner Designs) follow-
ing the acidification method (Strickland and Parsons, 1972).
Similarly, size-fractionated chl-a was measured after filter-
ing 250 ml of sample on 1-µm and 5-µm Nuclepore poly-
carbonate filters. An additional 2 l of seawater were filtered
on Whatman GF/F filters and stored in liquid nitrogen for
high performance liquid chromatography (HPLC) analysis
in the laboratory (Hooker et al., 2000; Van Heukelem and
Thomas, 2001). Total chlorophyll-a concentration, TChl-a,
was calculated by summing the contributions of monovinyl-
chl-a, divinyl-chl-a (DivChl-a), and chlorophyllidea. Chl-a
was also computed by exploiting the red absorption band of
the highly AC-sap-spectra (see below). Specifically, chl-
a was calculated from the particulate absorption line height
around 676 nm as chl-aACs

= [ap(676) − 39/65ap(650) −

26/65ap(715)]/0.014 (e.g.,Boss et al., 2007).
An intercalibration of the three different methods for de-

termining chl-a was achieved by linearly regressing fluo-
rometric chl-a and chl-aACs against HPLC-derived TChl-a.
The results of these regressions demonstrated that the inter-
cepts of the above relationships were negligible while the
slopes were not significantly different from 1: 1.13 (99%
confidence interval: 0.9–2.4) and 1.13 (99% confidence in-
terval: 0.9–1.2), for the fluorometric chl-a and chl-aACs,
respectively. The medians of the relative residuals were
not significantly different from zero (at the 99% confidence
level) and their precisions (computed as half the difference
between the 84th and 16th percentile, henceforth abbreviated
asσp) were 10.8% and 10.9% for the fluorometric chl-a and
chl-aACs, respectively. Thus, chl-aACs and fluorometric chl-a
were in agreement with TChl-a and no additional correction
was applied.

2.4 Flow-through data processing

2.4.1 C-star and AC-s meters

Optical measurements from all instruments were averaged
into 1-min time intervals before further processing. To
compute particulate beam attenuation and absorption coef-
ficients (cp andap, respectively), the median values of the
beam attenuation and absorption coefficients measured dur-
ing each of the 0.2-µm filtration times were linearly and
piecewise interpolated between hours and subtracted from
the bulk measurements. This procedure allowed us to deter-
mine calibration-independent particulate beam-attenuation
and absorption coefficients, with the uncertainties deter-
mined mostly by the instrument precision (Boss et al., 2007).
AC-s cp andap spectra were further processed to 1) remove
a spurious spectral step that was at times observed in the
green spectral region (corresponding to the discontinuity in
the AC-s filter wheel; Zaneveld, personal communication),
2) remove the scattering error from theap data (method #3,
Zaneveld et al.,1994) and 3) account for variations in sample
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temperature between consecutive 0.2-µm filtered data points.
Finally, the particle scattering coefficient,bp, was computed
as the difference betweencp andap.

C-star measurements were processed as for the AC-s to
obtain independentcp values. However, the correction for
variation in sample temperature was not applied because the
temperature dependence of water absorption around 650 nm
can be considered negligible (Sullivan et al., 2006).

2.4.2 Backscattering coefficients

The BB3 meter was calibrated by the manufacturer before the
cruise and by the authors after the cruise, to obtain the scal-
ing factors required to convert the digital counts into physical
values ofβ(λc,117◦). Both calibrations were completed us-
ing 2-µm beads (Duke Scientific) following established pro-
tocols (Moore et al., 2000). The relative difference between
the pre- and post-cruise scaling factors was found to be in-
significant for the blue and green channels (−4± 5% and
−1± 4%, respectively), but a significant positive 15± 2%
deviation was found for the red channel that could not be
attributed to any specific event during the cruise or the ship-
ment of the meter. In addition,bbp values in the red chan-
nel appeared to be contaminated by chl-a fluorescence (not
shown). Thus, only the blue and green channels of the BB3
were used in the following analysis. The scaling factors were
computed as the mean of the pre- and post-cruise measure-
ments. The resulting values and their combined experimental
uncertainties (BIPM and ISO, 1995) were: (6.02±0.12)×

10−6 and (3.968± 0.031)× 10−6sr−1count−1 for the blue
and green channels, respectively. Dark readings were deter-
mined every two days by covering the detectors with black
tape and submerging the instrument in water. The median
values (±σp) were found to be 53±1 and 56±1 counts for
the blue and green channels, respectively. Particle backscat-
tering coefficients were finally calculated from Eq. (1) using
the above derived scaling factors and dark counts. Combined
median relative uncertainties inbbp were about 17% and 14%
for the blue and green channels, respectively, with maximum
uncertainties, found in the most oligotrophic waters, of about
32% and 27%, respectively.

The turnover time of seawater in the backscattering flow-
through chamber was longer than the 10 min during which
the seawater supply was diverted through the 0.2-µm car-
tridge filter. Thus, thebbp measured during these 10 min
never reached a constant minimum value, although it showed
the characteristic exponential decay and it decreased by
about 75% (Fig.2a, filled circles). Similarly, measuredbbp

values exhibited a lag of about 10 min before reaching the
bulk bbp signal upon returning the seawater flow to its orig-
inal, unfiltered path (Fig.2a, pluses after the filled circles).
In addition, the first minute of 0.2-µm filtered data was of-
ten noisy. Thus, the first point of the 0.2-µm filtration pe-
riod, as well as the 10 min of data following the filtration
were removed from the analysis (Fig.2, pluses). The re-
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Fig. 2. (a) Example showing bulkbbp measurements used for the
analysis (open circles) as well as data collected during the 0.2-µm
filtration period (filled circles) that were fitted (dashed line) to de-
rive the 0.2-µm filteredbbp(< 0.2µm) value (obtained as the asymp-
totic value approached by the dashed line). Pluses indicate data that
were excluded from the analysis.(b) bbp data from the 50-min 0.2-
µm filtration experiment comparing the asymptotic value extrapo-
lated from the fit to the measuredbbp(< 0.2µm).

maining values were used to estimate bulkbbp (Fig. 2a,
empty circles). To obtain the “true” backscattering value
for the 0.2-µm filtered sample,bbp(< 0.2µm), thebbp values
measured during the 0.2-µm filtered measurements,bbp(t),
were fitted to the following relationbbp(t) = bbp(< 0.2µm)+

bbp(t0)exp[−s(t − t0)], wheret0 is the first point of the 0.2-
µm filtered data used for the fit ands is the decay constant
that is proportional to the ratio of the seawater flow rate to
chamber volume (Fig.2, dashed lines). The ratio of the ex-
trapolatedbbp(< 0.2µm) to the last point of the 0.2-µm fil-
teredbbp had a median value (±σp) of 0.85± 0.09, sug-
gesting that the 0.2-µm filtration time was generally long
enough to flush out most of the particles from the cham-
ber. On one occasion, the seawater supply was manually
diverted through the 0.2-µm filter for about 50 min and the
bbp(< 0.2µm) value extrapolated from the first 9 min of the
filtration period was found to be only 10−5m−1 larger than
the measured medianbbp(< 0.2µm) (Fig. 2b) supporting our
extrapolation procedure.

2.4.3 χp factor

The χp(117◦) = 1.1 adopted in this study was assumed
to be independent of wavelength and obtained from the-
oretical simulations and experimental field measurements
of βp(λc,117◦) (Boss and Pegau, 2001). However, this
χp(117◦) value was derived from field and theoreticalcon-
tinuous particle size distributions. In the current study,
βp(λc,117◦) was often measured on populations of particles
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Fig. 3. Medianχp values computed by re-integrating the theoreti-
cal results ofBoss and Pegau(2001) using particle size distributions
truncated at 0.2, 1, 3, and 5 µm. The medianχp value for the con-
tinuous particle size distributions (indicated as “bulk” in the legend)
as well as that for pure water (χw) are also reported for reference.
The red and blue lines represent the medianχp values computed for
populations of coated, spherical particles with constant shell thick-
ness of 75 nm and shell thickness equal to 5% of the core radius,
respectively. The vertical dashed line marks the central angle of the
BB3 meter (117◦).

that had beentruncatedby filtration. The applicability of
the aboveχp values to truncated particle size distributions
was verified by re-examining the theoretical results ofBoss
and Pegau(2001). Specifically, the particle-specific volume
scattering functions resulting from their simulations were re-
weighted using particle size distributions truncated at 0.2, 1,
3, and 5 µm. Figure3 presents the results of these new in-
tegrations and shows that theχp values calculated for the
truncated particle size distributions do not differ significantly
from the value obtained for the continuous particle size dis-
tribution around the central angle of the BB3 meter (117◦).

While the χp(117◦) adopted in this study for continu-
ous particle size distributions is in good agreement with the
value (1.08±0.02) obtained byBerthon et al.(2007) from
volume scattering functions measured in the North Adri-
atic Sea, other authors have proposed different values for
the χp factor. For example,Sullivan et al.(2005) derived
a value of 0.90±0.01 at 125◦ from experimental measure-
ments of the volume scattering function at three angles. On
the other hand,Chami et al.(2006) derived aχp(117◦) fac-
tor of 1.29± 0.01 from in-situ measurements in the Black
Sea and showed that phytoplankton cultures can display rel-
atively large interspecific differences inχp. In addition, the
data presented byChami et al.(2006) suggest thatχp could
be spectrally dependent. Note, however, that by definition
the angular mean value ofχ−1

p in the backscattering direc-

tion has to be 1. Given that the VSF of natural populations
in the back direction is rather flat, large deviation from 1 are
not expected. Finally, the absolute values ofbbp obtained
from Eq. (1) are directly dependent on the adoptedχp fac-
tors. Thus, caution should be exercised when comparingbbp

measurements from different investigators.

2.5 Fractionation experiments

To assess the contribution of different particle sizes to the
measured inherent optical properties, three size-fractionation
experiments were conducted at three different stations (see
locations in Figs.1 and4). Measurements ofcp andbbp were
conducted on∼20l of bulk and filtered seawater using AC-s,
C-star transmissometers, and BB3 meter in its flow-through
chamber. The different size-fractionated samples were ob-
tained by filtering seawater through 0.2-µm Cole Parmer ny-
lon cartridge filters, Whatman GF/F filters (nominal pore size
0.7 µm, disk diameter 25 mm), 1-µm Nuclepore filters (disk
diameter 25 mm), 3-µm Cole Parmer nylon cartridge filters
and 5-µm filters (Cole Parmer polypropylene cartridge filters
and also Nuclepore, disk diameter 25 mm). For each exper-
iment, instruments were first thoroughly rinsed with filtrate
and then optical measurements collected on quiescent sam-
ples. A maximum of 1 l of seawater was filtered through each
disk-filter to minimize clogging. Finally, the variation of the
sample water during the course of the experiment was evalu-
ated by including in the error calculation the changes in bulk
IOPs measured at the beginning and at the end of each exper-
iment.

2.6 Flow-through IOP validation

2.6.1 Comparison with CTD data

Flow-throughcp data collected by the C-star transmissome-
ter at 650 nm were compared to the data collected by a differ-
ent WetLabs C-star transmissometer with light source nomi-
nally emitting at 660 nm installed on the CTD. The spectral
emission of this instrument, which failed later in 2007, was
not characterized as that for the instrument employed on the
flow-through system. The voltages measured by the instru-
ment on the CTD were transformed intocp values by refer-
ring them to the voltages measured at 1000 m (e.g.,Loisel
and Morel, 1998; Stramski et al., 2008) and the median val-
ues ofcp values between 3 and 5 m were used for the com-
parison with the flow-through data. The range 3–5 m was
selected as a trade-off between avoiding data collected too
close to the surface and thus suffering from contamination
issues (e.g., bubbles, contamination from the ship) and a
depth close to the intake of the flow-through system (about
3 m). Deeper values were avoided because the tempera-
ture and salinity profiles indicated that at times there was
a shallow mixed layer around 10 m. Importantly, no effort
was spent in intercalibrating these two instruments, which
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Fig. 4. Time series of data collected along the cruise track. The black triangles and the vertical dashed lines in(a) indicate the locations
of the 3-µm filtrations and of the fractionation experiments, respectively. The horizontal dashed line in (a) indicates the backscattering of
pure sea water at 526 nm (Zhang and Hu, 2009; Zhang et al., 2009). The dashed vertical lines in(d) mark the beginning and the end of the
two equatorial stations. To remove high frequency noise, all optical data plotted in this figure were filtered as follows: first a median filter
(window size of 30 min) was applied to each time series and the relative differenceε between the value of the median filter and the actual
data computed; then all points for whichε≥15% were excluded from the plot.

were also maintained by different operators. In addition,
the calibration coefficient (Vref = 4.669volts) of the instru-
ment mounted on the CTD and supplied by the manufacturer
just before the cruise was significantly higher than the sig-
nals measured at 1000 m which were found to be stable at
V1000= 4.5690±0.0049volts . The difference betweenVref
andV1000 could be an indicator that the instrument mounted
on the CTD suffered some damage and/or misalignment dur-

ing shipping or installation. Regardless, the comparison be-
tweencp data measured on the CTD and in the flow-through
system showed that the two data sets were highly correlated
(r = 0.99, N = 26), even though the regression line of the
CTD vs. flow-through data had a slope of 1.130± 0.021
and an intercept of 0.0052±0.0022 m−1. Thus, in median
the cp data collected on the CTD were higher by about
0.0133±0.0063 m−1. This offset can be related to different
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causes among which differences manufacturing, in the cali-
bration methodology, lack of intercalibration, potential dif-
ferences in the spectral emission of the two LEDs, and dif-
ferences in the deployment methodology of the two instru-
ments (open to the environment for the one on the CTD vs.
fed with pumped water for that on the flow-through system).
In conclusion, despite all the caveats mentioned above, the
comparison between thecp values measured on the flow-
through system and on the CTD showed only a minor offset
(compare it for example with the bulkcp values in Fig.4a)
and thus support the validity of our flow-through data set.

2.6.2 Comparison with radiometric data

Hyperspectral remote-sensing reflectance measurements,
Rrs , were collected at four stations during the cruise by de-
ploying a calibrated Satlantic hyperspectral tethered spec-
tral radiometer buoy (HTSRB). Raw below-surface upward
radiance and above-surface downward irradiance data were
converted intoRrs following Chang et al.(2003). Process-
ing accounted for the depth of the radiance sensor below the
sea surface, instrument self-shading errors, and immersion
effects.

Rrs data at 470 and 526 nm were compared toRrs val-
ues modeled as a function of the coincident IOP data as
Rrs = <

f
Q

bb

a
; were < = 0.53 (Gordon, 2005) accounts for

the transfer of radiation across the water-air interface;f
Q

de-
scribes the bi-directionality of the underwater light field and
was derived from the tables presented inMorel et al.(2002);
bb and a are the total backscattering and absorption coef-
ficients, respectively. The measuredap and the pure water
absorption byPope and Fry(1997) were used to compute
a, but the absorption coefficient of chromophoric dissolved
organic matter,aCDOM, also needed to computea, was not
available for this cruise. However,aCDOM spectra collected
during TAO cruises that covered the same geographic region
during 2005 and 2006 were collected following established
protocols (Nelson et al., 2004). The median values (±σp) of
aCDOM(470) andaCDOM(526) derived during these cruises
in the surface Equatorial Pacific waters were(10.0±11.5)×

10−4 and(1.9±3.2)×10−4 m−1, respectively, and were in-
cluded in the computation ofa. Modeled remote-sensing re-
flectances,Rmod

rs , were found to be in agreement with the
observed ones,Robs

rs , with biases (median of percent residu-
als) of –10.2% and−18.5% and random uncertainties (σp of
percent residuals) of 11.3% and 11.9% in the blue and green
channels, respectively (4 observations per channel). Percent
residuals were defined as(Rmod

rs /Robs
rs −1)×100. Modeled

and observedRrs were in good agreement even when the
more conservative median+σp values ofaCDOM were used:
biases−13.7% and−19.0% and random uncertainties of
11.6% and 11.8% in the blue and green channels, respec-
tively.
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Fig. 5. Bivariate histograms representing the relationships between
bbp and bp (a, b) and bbp and cp (c, d) (from the AC-s) at the
central wavelengths of the BB3 meter. The color bar defines the
number of data points per bin,Nbin. Continuous red lines represent
the relationships obtained, after some algebraic manipulation, from
the models derived byHuot et al.(2008) from data collected in the
South Pacific. Continuous black lines are derived from the models
by Morel and Maritorena(2001) andLoisel and Morel(1998). Note
we used for bothbbp andbp the scattering model byLoisel and
Morel (1998) that did not include North Atlantic waters (i.e., sub-
sets 2+3 of the homogeneous layer). Binnedbbp andcp were fitted
using a weighted linear regression to the functionbbp = m×cp +q

to minimize the leverage of outliers (dashed lines). An iterative
technique was used to select the weights which were always integer
powers ofNbin: the coefficients of the regression were first deter-
mined as the median of 500 bootstrapped samples using as weight
Nn

bin, with n = 0. Thenn was increased by one and the coefficients
and their errors recalculated. The iteration was terminated when the
changes in both coefficients were smaller than their uncertainties.
Reported uncertainties represent the 99% confidence intervals. The
median (δ) andσp of the relative residuals are also presented as
estimates of the bias and precision of the fitted relationships.
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Fig. 6. Bivariate histograms representing the relationships between bbp and chl-a (obtained from the AC-s)

and bp and chl-a at 470 and 526 nm. Black lines in (a) and (b) are predictions from the model by Morel

and Maritorena (2001). The continuous black line in (c) and (d) are predictions from the models by Loisel and
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fits to the data and the text is as in Fig. 5.
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Fig. 6. Bivariate histograms representing the relationships between
bbp and chl-a (obtained from the AC-s) andbp and chl-a at 470
and 526 nm. Black lines in(a) and (b) are predictions from the
model byMorel and Maritorena(2001). The continuous black line
in (c) and(d) are predictions from the models byLoisel and Morel
(1998) scaled to the corresponding wavelengths assuming aλ−1

spectral dependency. The coefficients byLoisel and Morel(1998)
that did not include data from the North Atlantic (i.e., subsets 2+3 of
the homogeneous layer) were used. Red lines represent the models
derived byHuot et al.(2008). Black dashed lines are linear fits to
the data and the text is as in Fig.5.

3 Results

3.1 Bulk measurements

Surface particle beam-attenuation and backscattering coef-
ficients showed a remarkable correlation along the whole
cruise track (Fig.4a), and displayed up to 4-fold variations
that were related to both the large latitudinal hydrographic
features and to finer scale variability in the water masses
sampled (Fig.4d). bbp and cp (or bp) were tightly corre-
lated both at 470 and at 526 nm (r = 0.87 andr = 0.90 for
thecp vs. bbp relationships at 470 and 526 nm , respectively)
and the fitted relationships could reproduce the observations
with a bias of−4% and 6% and a precision of 11% and 9% in
the blue and green channels, respectively (bias and precision
are defined as the median andσp of the relative residuals.)
Our observations were also found in general agreement with
published bio-optical models (Fig.5).

While both surface chlorophyll-a and particle concentra-
tions trackedcp andbbp, the former displayed larger rela-
tive variations (up to 8-fold) than the latter (Fig.4b). At
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Fig. 7. bbp(<0.2 µm) data as a function of wavelength extrapolated from the hourly 0.2-µm filtered bbp mea-

surements (see text for details). Arrows indicate the times when the 0.2-µm cartridge filters were changed.
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Fig. 7. bbp(< 0.2µm) data as a function of wavelength extrapolated
from the hourly 0.2-µm filteredbbp measurements (see text for de-
tails). Arrows indicate the times when the 0.2-µm cartridge filters
were changed.

526 nm, thebbp:cp ratio exhibited a relatively constant me-
dian value along the cruise track (0.0112±0.0013). On the
other hand, thebbp:chl-a ratio was more variable (0.0066±
0.0020 m2 m g−1) (Fig. 4c). Both these ratios displayed diel
variations, which were absent form the bulk properties.

bbp was positively related to chlorophyll-a concentration,
and in good agreement with the model proposed byMorel
and Maritorena(2001) andHuot et al.(2008) (Fig. 6a and
b). On the other hand, existing models overestimated the
observedbp values by about 15% (Fig.6c and d).

The slopes of the power-law PSD fits were symmetrically
distributed around a median value (±σp) of 3.49± 0.37.
Thus, the shape of particle size distributions was relatively
constant in the sampled region for sizes varying between 2
and 8 µm.

3.2 Backscattering from 0.2-µm filtered samples

Figure7a shows that the hourlybbp(< 0.2µm) data were re-
markably constant along the cruise track and accounted for
an insignificant fraction of the bulk signal even though the
bbp(< 0.2µm) values for the blue channel were systemat-
ically larger than the green ones. The times whenbbp(<

0.2µm) showed local maxima (9 May and 1 June) corre-
sponded to local maxima in the bulkbbp values (compare
with Fig. 4c). In those occasions the 10-min 0.2-µm filtra-
tion time may not have been long enough and, as a conse-
quence, thebbp(< 0.2µm) extrapolated from the fits were in-
accurate. Another explanation could be that there might have
been residual bubbles in the sample water. Finally, the coef-
ficients of determination for the linear relationships between
bbp(< 0.2µm) and other variables such as chl-a, bulk bbp,
cp, temperature and salinity were always smaller than 0.07.

3.3 Along track size-fractionated IOPs

Particles smaller than 3 µm contributed 53%±7% and 51%±
7% of the bulkbbp measurements at 470 and 526 nm, respec-
tively, and 40%±9% and 46%±5% of the bulkcp at 526 and
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Fig. 8. Fractions ofbbp andcp smaller than 3 µm,(a) and(b), re-
spectively; error bars represent combined experimental uncertain-
ties. (c) relationship between the fraction of chl-a due to particles
smaller than 1 µm obtained from the size-fractionated chl-a mea-
surements, and the HPLC-derived fractional contribution of divinyl
chl-a to TChl-a. (d) fractional contributions to chl-a from particles
< 1 and< 5µm (derived form the fractionated chl-a measurements)
and from particles< 3µm (derived from filteredap measurements).
Black arrows in (d) indicate the two concurrent AC-s and fraction-
ated chl-a measurements.

650 nm, respectively (Fig.8a, b). The fraction of chl-a origi-
nating from particles smaller than 1 µm was generally higher
than the ratio DivChl-a:TChl-a (Fig. 8c) and accounted for
51%±15% of the total chl-a. Panel (d) of Fig.8 shows that,
when concurrent data were available (unfortunately, only on
two occasions), the fraction of chl-a originating from par-
ticles < 3µm and derived from filtered AC-s measurements
was between the chl-a originating from particles< 1 and
< 5µm.

An attempt was made to simulate the observedcp and
bbp, when along-track PSDs measurements were available.
Briefly, the minimum particle diameter was set at 0.2 µm and
the imaginary part of the refractive index at 0.0005, while the
real part of the refractive index and the maximum particle di-
ameter were allowed to vary (see Appendix A for detailed
methods). Results of Mie calculations showed that two in-
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Fig. 9. Comparison of observed vs. simulated cp and bbp as a function of the real part of the refractive index (n)

and maximum diameter (Dmax). The imaginary part of the refractive index was fixed at 0.0005, the minimum
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the observed ranges) (d). Optimal sets (in yellow) of n and Dmax for cp (e) and bbp (f).
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Fig. 9. Comparison of observed vs. simulatedcp andbbp as a
function of the real part of the refractive index (n) and maximum
diameter (Dmax). The imaginary part of the refractive index was
fixed at 0.0005, the minimum diameter used in the simulations was
0.2 µm. Median residuals (observation – model, m−1) of cp from
the C-star transmissometer(a) and ofbbp (b). Median ratios of
cp(< 3µm):cp (c) and bbp(< 3µm):bbp (in yellow the observed
ranges)(d). Optimal sets (in yellow) ofn andDmax for cp (e) and
bbp (f).

compatible particle populations characterized by different re-
fractive indices were needed to simulatecp andbbp (Fig. 9).
The population characterized by a lower real part of the re-
fractive index (∼ 1.055) allowed to successfully reproduce
the observedcp (Fig. 9a, c), but contributed only about 40%
of the bulk observed backscattering (compare Fig.9e and b).
On the other hand, the population with a higher real part of
the refractive index (∼ 1.090) replicated satisfyingly the ob-
servedbbp data (Fig.9b, d), but also generated acp that was
in median 60% larger than the measured one (compare Fig.9f
and a).

3.4 Fractionation experiments

The first fractionation experiment took place at the equa-
tor (0◦, 140◦ W) in relatively mesotrophic conditions (TChl-
a=0.25 mg m−3, bulk cp(526)=0.14 m−1; Figs. 1 and 4c).
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Fig. 10. Particle backscattering (top) and beam-attenuation (bottom) coefficients measured at 526 nm during
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indicated size fractions, the rightmost bars represent the bulk measurements. Error bars represent combined
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letters in parentheses below the bars indicate the type of filter used: c=cartridge, d=disk. Thick continuous lines

in (e, f) represent simulations completed using the PSDs measured on each size-fractionated sample.
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Fig. 10. Particle backscattering (top) and beam-attenuation (bottom) coefficients measured at 526 nm during the first(a, b), second(c, d),
and third(e, f) fractionation experiments. Bars represent measured IOPs for the indicated size fractions, the rightmost bars represent the
bulk measurements. Error bars represent combined experimental uncertainties. Lines with large symbols are results from Mie simulations
for the size fractions larger than 0.7 µm and smaller than the sizes reported below each bar (see Appendix A for details). Dashed lines with
small symbols are results of the sensitivity analysis to the filtration efficiency of the 0.7 µm filters. Horizontal dashed lines mark thebbp (a,
c, e) andcp (b, d, f) values recorded for the size fraction< 0.7µm. Modeledbbp andcp values for different refractive indices are presented
(from left to right: 1.020, 1.035, 1.050, 1.065, 1.080, and 1.095). The letters in parentheses below the bars indicate the type of filter used:
c=cartridge, d=disk. Thick continuous lines in (e, f) represent simulations completed using the PSDs measured on each size-fractionated
sample.

The differential particle distribution measured on bulk sam-
ples showed a peak centered around 1.5 µm and superim-
posed on the power law shape and presented the largest total
number of particles of the three experiments. The second and
third experiments were completed in the more oligotrophic
north Pacific gyre (9◦ N, 140◦ W, and 15.4◦ N, 150.4◦ W, re-
spectively; TChl-a = 0.07 and 0.04 mg m−3, bulk cp(526)=
0.054 and 0.039 m−1, respectively; Figs.1 and4c) and pre-
sented smoother particle size distributions and significantly
lower numbers of particles between 1.4 and 40 µm (12 529,
5202, and 2920 particles per ml for the 1st, 2nd, and 3rd ex-
periments, respectively).

During the first fractionation experiment, approximately
68% and 80% of the bulkbbp andcp signals, respectively,
were generated by particles greater than 0.7 µm (Fig.10a,
b). Approximately 58% of the bulkbbp was generated by
particles greater than 3 µm. In the more oligotrophic wa-
ters sampled during the 2nd and 3rd experiments, particles
greater than 0.7 µm contributed 71% and 43% of the bulk
bbp respectively (Fig.10c–f). This size fraction however,
contributed about the same percentage of the bulkcp signal,
i.e. 83% and 85%, respectively (Fig.10c–f).

Simulation results (see Appendix A) indicated that, in gen-
eral, Mie theory required higher refractive indices to match
bbp thancp although uncertainties in measuredbbp are rather
large in the third fractionation experiment (Fig.10). A sensi-
tivity analysis also showed that imperfections in the filtration
efficiency of the 0.7 µm filters used as baselines for the sim-

ulations did not introduce significant uncertainties (dashed
black lines in Fig.10).

4 Discussion

4.1 Bulk inherent optical properties

In this study continuous measurements of bulk inherent opti-
cal properties and discrete biogeochemical parameters have
been presented for surface waters of the Equatorial Pacific
during May 2007. In addition to the bulk measurements,
size-fractionated data onbbp, cp, ap, and chl-a were col-
lected and analyzed. Other investigators have studied size-
fractionatedcp andap in the oligotrophic Crater Lake (Boss
et al., 2007), size-fractionatedbbp measurements in pro-
ductive coastal waters (Roesler and Boss, 2008), and size-
fractionatedcp in the Equatorial Pacific (Chung et al., 1996).
Here, for the first time to the best of our knowledge, size-
fractionatedbbp data are presented for open-ocean waters
and a comparison of different size-fractionated inherent op-
tical properties is undertaken.

Two technical and methodological innovations were crit-
ical for the collection of the data set presented in this
study. First, highly accurate calibration-independent flow-
through measurements of particulate beam-attenuation and
absorption coefficients were achieved by applying a correc-
tion based on temporally adjacent 0.2-µm filtered measure-
ments. Second, a novel custom-made flow-through chamber
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allowed continuous surface particle backscattering measure-
ments. A total of more than 35 000 min-averaged data points
of concurrentbbp and cp were retrieved during the cruise
with this system.

The accuracy of the measured inherent optical properties
was determined through favorable comparison betweencp

measured on the flow-through system and on the CTD, be-
tween measured and modeledRrs values (see Method sec-
tion), as well as through closure ofcp with Mie theory
(Figs. 9a and b and10b, d and f). In addition, median
bbp:bp ratios (±σp) were consistent with the ranges re-
ported for other oligotrophic waters (i.e., 0.0119± 0.0016
and 0.0105±0.0013, at 470 and 526 nm, respectively;Whit-
mire et al., 2007; Stramski et al., 2008, but seeTwardowski
et al., 2007).

Particle backscattering and beam-attenuation (or scatter-
ing) coefficients were tightly correlated (Fig.5) and in agree-
ment with other studies and published bio-optical models
(Loisel and Morel, 1998; Morel and Maritorena, 2001; Huot
et al., 2008). Despite the absence from our data of previously
observed diel cycles incp (e.g., Siegel et al., 1989), both
the bbp:cp and bbp:chl-a ratios showed such cycles (com-
pare Fig.4a and c). It may be argued that these cycles arise
becausebbp andcp are sensitive to different particle popula-
tions (e.g., small vs. large) whose temporal dynamics are out
of phase. However, an alternative explanation may be that
these variations resulted from differences in the sensitivities
of bbp andcp to morphological and/or compositional (e.g.,
Stramski and Reynolds, 1993) changes in the same average
particle population. Alternatively, these cycles could arise
because of biases incp due to the finite acceptance angle of
the transmissometer (Boss et al., 2009). Finally, variations
in bbp:cp were limited and did not compromise the overall
covariation betweenbbp andcp.

Taken together our findings suggest that a common parti-
cle pool contributes, at least in part, to bothbbp andcp. In
agreement with this conclusion, PSD exponents derived by
fitting Coulter counter data between 2 and 8 µm varied by
about 10% along the cruise and a significant fraction ofbbp

originated from particles in the phytoplankton size range (see
below).

4.2 Phytoplankton carbon from scattering coefficients

Relatively conserved first order relationships between par-
ticulate organic carbon (POC) andcp have been repeatedly
observed in field data (e.g.,Claustre et al., 1999; Stramski
et al., 1999; Behrenfeld and Boss, 2006; Gardner et al., 2006;
Stramski et al., 2008). One way to interpret the observed co-
variation of POC withcp is that the relationship between the
carbon-specific scattering cross-section of the “average parti-
cle” is, to first order, constant. However, this constancy is not
expected a-priori, because the particles contributing to POC
and the scattering coefficient vary over a large range of sizes

and should have different compositions (e.g.,Stramski et al.,
2008).

On the other hand, numerous laboratory studies have
shown that the phytoplankton carbon-specific scattering
cross-section is constrained between 2 and 4 m2gC−1 for
cells belonging to different groups (from cyanobacteria to di-
atoms) and grown under different conditions (Stramski and
Morel, 1990; Stramski and Reynolds, 1993; DuRand et al.,
2002). Thus, based on the laboratory data currently available
and on the particulate vs. phytoplankton scattering propor-
tionality (see our argument in the introduction), it should be
less surprising that thebp vs. phytoplankton-carbon relation-
ship exists than abp vs. POC relationship.

Yet, the relationships between POC andbp observed
throughout the world oceans remain and the derived POC-
specific scattering cross sections (1.5−3.8 m2 gPOC−1) are
in agreement to those measured in the laboratory for phy-
toplankton carbon, despite differences in geographic areas,
protocols, and instrumentation (e.g.,Claustre et al., 1999;
Stramski et al., 1999; Behrenfeld and Boss, 2006; Gardner
et al., 2006; Stramski et al., 2008). Our explanation for these
findings is that phytoplankton may contribute a significant
fraction of POC andbp, and/or that the other particles affect-
ing POC andbp covary with phytoplankton and, possibly,
have similar carbon-specific scattering cross-sections. Un-
fortunately, the direct measurement of phytoplankton carbon
biomass is rare relative to POC measurements, so a similar
analysis has not been conducted. Nevertheless, substantial
indirect evidence for abp (or bbp) vs. phytoplankton-carbon
relationship does exists (Behrenfeld and Boss, 2003; Behren-
feld et al., 2005; Siegel et al., 2005; Behrenfeld and Boss,
2006; Huot et al., 2007; Westberry et al., 2008).

Finally, the variability in the carbon-specific scattering
cross-section of phytoplankton will introduce uncertainties
in the conversion ofbp to phytoplankton carbon. However,
these uncertainties should be compared to those of phyto-
plankton carbon biomass derived from chlorophyll-a. It is
indeed well documented that the ratio of chlorophyll-a to
phytoplankton carbon can vary by almost two orders of mag-
nitude (e.g.,MacIntyre et al., 2002; Behrenfeld et al., 2005).
Thus, we believe that scattering measurements represent a
reliable alternative to chl-a for estimating phytoplankton car-
bon biomass in the open ocean.

4.3 bbp(< 0.2µm)

An important observation recorded during this study was the
relatively constant and statistically insignificant backscatter-
ing of 0.2 µm-filtered seawater,bbp(< 0.2µm) (Fig.7). There
were no evident changes inbbp(< 0.2µm) when the 0.2 µm
cartridge filters were replaced during the cruise (black arrows
in Fig. 7). Thus, filter clogging and retention of particles
<0.2 µm did not appear significant. This finding, if indepen-
dently confirmed, is important because it challenges previ-
ous theoretical predictions that attributed about 50% ofbbp
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to particles smaller than 0.2 µm (when the PSD exponent is
–4, Fig. 4b inStramski and Kiefer, 1991).

4.4 Size-fractionated inherent optical properties

The along-track 3-µm filtrations, as well as the fractionation
experiments, demonstrated that particles larger than 3 µm
directly contributed about 60% and 50% of the bulk par-
ticulate and backscattering coefficients, respectively, in the
mesotrophic regions sampled (Figs.8a and10a). Fractional
cp data for particles< 3µm were found in agreement with the
range of fractionalcp for particles< 8µm (41–89%) reported
by Chung et al.(1996).

The 50% contribution from particles> 3µm to bbp in
the mesotrophic regions is significant, because it estab-
lishes a direct link between the biomass of particles in the
phytoplankton-size range and a remotely-sensed parameter
that is believed to be mostly influenced by sub-micron de-
trital particles (Stramski and Kiefer, 1991; Morel and Ahn,
1991). In the most oligotrophic part of our transectbbp was
dominated by sub-micron particles (0.2–1.0 µm, Fig.10e and
f). However, more data are needed to verify this interesting
finding.

4.5 Size-fractionation by filtration

The fractionated backscattering and beam-attenuation coef-
ficients reported in this study were determined by filtration
of seawater samples. Filtration is a technique widely used in
oceanographic research to partition the continuous size dis-
tribution that naturally occurs in water samples. For exam-
ple,Ciotti et al.(2002) used data on size-fractionated chloro-
phyll concentration to parameterize a size-dependent model
of phytoplankton absorption. Other investigators have used
size-fractionation to relate the bloom of specific phytoplank-
ton groups to nanomolar increases in nitrate in the Sargasso
Sea (Glover et al., 1988) or to follow the seasonal cycle of
phytoplankton blooms (Clarke and Leakey, 1996).

Despite its widespread use, size-fractionation based on fil-
tration has its disadvantages. Filters can retain a significant
fraction of particles smaller than the declared pore size and
the amount of this unwanted fraction depends on the particle
stickiness coefficient and on the filter type (Sheldon, 1972;
Logan, 1993; Logan et al., 1994; Chavez et al., 1995; Kne-
felkamp et al., 2007). The main reason for the mismatch
between nominal pore sizes and actual retained sizes appears
to be filter clogging and the inability to accurately define the
pore size of filters (e.g.,Droppo, 2000). Filter clogging was
minimized during our 0.2- and 3-µm filtrations by means of
cartridge filters with large surface areas (0.64 m2) and by re-
placing filters frequently. In addition, the filtration of sam-
ples in-situ should have minimized particle aggregation and
precipitation. Clogging and statistical fluctuations of our re-
sults were further decreased during our large-volume size-

fractionation experiments by filtering small amounts of sam-
ple through each filter.

The following considerations are presented as evidence
that the results obtained from the fractionation experiments
were minimally affected by filter clogging and, thus provide
a reasonable representation of size-fractionated IOPs. First,
the validity of the fractionated-chl-a measurements is estab-
lished by noting that a large fraction (range 20–70%, me-
dian 51%) of the bulk chl-a was retained on the 0.7 µm filter,
but not on the 1.0 µm filter (Fig.8c, red circles), indicating
that the 1.0 µm filters did not retain considerable amounts of
particles smaller than their pore size. Moreover, the< 1µm
size fraction typically contained more chl-a than the DivChl-
a:TChl-a values derived from the HPLC analysis of 0.7 µm
filtered samples (Fig.8c). Since DivChl-a is a pigment typ-
ical of the genusProchlorococcuswith typical average di-
ameter of 0.5–0.7 µm (e.g.Grob et al., 2007), this observa-
tion independently verifies that the 1-µm Nuclepore filters
were not trapping a significant number of particles smaller
than their pore size. Similarly, samples processed through
disk filters during the fractionation experiments should not
have been significantly affected by filter clogging, to the ex-
tent that the larger seawater volumes filtered during the frac-
tionation experiments did not cause significant obstruction
of filter pores. This hypothesis was partially validated by
the only two fractional chl-a values derived from the along-
cruise 3-µm filteredap measurements and concurrent to the
size-fractionated chl-a (Fig. 8d). Finally, effective partition-
ing of the size distribution is also evidenced by the closure (in
terms of refractive index range) achieved between Mie sim-
ulations and measurements of the fractionatedcp (Figs. 9e
and 10b, d, f). Thus, although not perfect, measurements
of size-fractionated water samples can provide important in-
sights on the relative contributions of different particles to the
bulk inherent optical properties. Future investigations should
stress collection of comprehensive ancillary measurements,
including particle size distributions, for each size fraction.

4.6 Comparison of observations with theory

The notion that light in the open ocean is mostly backscat-
tered by sub-micron detrital particles is founded on theoret-
ical modeling of light scattering by homogeneous spheres
(Stramski and Kiefer, 1991; Morel and Ahn, 1991). These
theoretical predictions force one to conclude that phyto-
plankton cells have a negligible contribution tobbp and have
been verified by some authors in the laboratory (Morel and
Ahn, 1991; Ahn et al., 1992). It is noteworthy, however, that
these experiments were all based on the same technique and
hypotheses: conversion of the measured volume scattering
function at a narrow angular range intobbp. On the other
hand, many independent experimental (Zielinski et al., 1986,
1987; Quinby-Hunt et al., 1989; Volten et al., 1998; Stram-
ski and Piskozub, 2003; Vaillancourt et al., 2004) and theo-
retical (Meyer, 1979; Kitchen and Zaneveld, 1992; Quirantes
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Fig. 11. Example of how the scattered intensity (normalized at an angle of 0 degrees) of a coated sphere (thin

black line) can be approximated by the sum of the scattered intensity of its homogeneous core (thick red line)

that contributes most of the forward scattering, and by the scattered intensity generated by its outer shell (dashed

blue line) that generates most of the backscattering (λvac = 520 nm). Scattered intensities were multiplied by

the corresponding scattering cross-sections relative to the scattering cross-section of the coated-sphere. The
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structures for the core and shell relative scattered intensities are presented for clarity. The backscattering ratio

of the coated sphere was 5 times that of its core. Modified after Meyer (1979).
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Fig. 11. Example of how the scattered intensity (normalized at
an angle of 0 degrees) of a coated sphere (thin black line) can be
approximated by the sum of the scattered intensity of its homo-
geneous core (thick red line) that contributes most of the forward
scattering, and by the scattered intensity generated by its outer shell
(dashed blue line, not to scale in the figure) that generates most of
the backscattering (λvac=520 nm). Scattered intensities were mul-
tiplied by the corresponding scattering cross-sections relative to the
scattering cross-section of the coated-sphere. The diameter of the
homogeneous core was 4.99 µm and its refractive index relative to
seawater was 1.02+ 0i. The shell thickness was 0.01 µm and its
relative refractive index was 1.15+0i. Only the envelopes of the
maxima structures for the core and shell relative scattered intensi-
ties are presented for clarity. The backscattering ratio of the coated
sphere was 5 times that of its core. Modified after Meyer (1979).

and Bernard, 2004, 2006; Clavano et al., 2007) investigations
have provided strong evidence that the homogeneous spher-
ical model is inappropriate for modeling the back-scattering
coefficient of phytoplankton.

Our results are in agreement with the latter studies: our
Mie simulations could not simultaneously reproduce the
measuredcp and bbp (Figs. 9 and 10). This is likely be-
cause the shape of the volume scattering function (but not
the total scattering) is sensitive to the internal structure and
non-sphericity of natural particles (Meyer, 1979; Kitchen and
Zaneveld, 1992; Quirantes and Bernard, 2004; Clavano et al.,
2007). In other words, the relative amount of light scattered
in the backward direction is higher for a microorganism that
contains internal organelles and membranes than for a homo-
geneous sphere with the same average refractive index.

Particularly insightful with this respect is the study by
Meyer(1979), who demonstrated that the scattering intensity
of a coated sphere can be approximated by the sum of the
scattering intensities due to two simpler particles (Fig.11).

The first of these particles accounts for most of the forward
part of the scattering intensity and is the homogeneous core
of the coated sphere. The other particle contributes most
of the backscattering and is the hollow-sphere that consti-
tutes the shell of the coated sphere. Thus, the scattering
intensity of a complex coated sphere can be approximately
predicted by employing two different and simpler particles
that separately contribute most of the forward and most of
the backward scattering, respectively. This theoretical find-
ing could likely be the reason for why two (or more) parti-
cle populations are needed when trying to reproduce volume
scattering functions measured in-situ using the homogeneous
spherical model (Figs.9 and10; see alsoBrown and Gordon,
1974; Kitchen and Zaneveld, 1992). Moreover, oceanic mi-
croorganisms modeled as coated spheres can contribute up
to one order of magnitude more backscattering than when
modeled as homogeneous spheres (Kitchen and Zaneveld,
1992; Quirantes and Bernard, 2006; Bernard et al., 2009).
Therefore, the coated spherical model could help resolving
the “backscattering enigma” (Stramski et al., 2004) and, at
the same time, explain the strong correlation we found be-
tweencp andbbp (Fig. 5).

It is also noteworthy that the models proposed byTwar-
dowski et al.(2001) and Mobley et al.(2002) predict that
the average particle in our study should have a value of the
real refractive index close to 1.1, when using as inputs for
the model the medianbbp:bp ratio at 526 nm and the me-
dian slope of the PSD derived in this study (0.010 and−3.5,
respectively). Thus, these models predict that a single parti-
cle population simultaneously contribute tocp andbbp. This
prediction disagrees with our results that indicate that Mie
theory was unable to simultaneously reproduce the measured
cp andbbp using a single population of particles (Figs.9 and
10). The likely explanation for this disagreement is that both
the above models assume that very small and large particles
contribute significantly to the measured optical properties
(0.006–73 µm, inTwardowski et al., 2001and 0−∞µm for
the Fournier-Forand phase functions used byMobley et al.,
2002). Our negligiblebbp(< 0.2µm) values are however at
odds with this assumption and the cumulative seawater sam-
ple over which our data are binned is too small to measure
particles larger than about 40–100 µm. Furthermore, the fi-
nite acceptance angles of our transmissometers also act as
filters for the signals generated by large particles (Boss et al.,
2009). Instead, very large particles have been shown to be
important in Mie theory simulations when the PSD exponent
is−3.5 and when the finite acceptance angle is not accounted
for. For example,Stramski and Kiefer(1991) needed to in-
crease their maximum diameter to 1000 µm to achieve a sat-
uration in their cumulative scattering contribution when the
PSD exponent was set at−3.5. In addition, the refractive in-
dex of 1.1 appears to be rather large for open ocean waters
as the surface Equatorial Pacific notoriously deficient in at-
mospheric dust deposition (Mahowald et al., 1999) and thus
likely dominated by organic particles. We recognize that a
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value ofn = 1.1 is on the theoretical upper range for phyto-
plankton (1.06±0.04, Aas,1996), but it is also significantly
higher than values expected for “soft” organic particles typ-
ical of open ocean waters (1.02–1.05,Zaneveld and Pak,
1973; Carder et al., 1972). Thus, then = 1.1 derived from
our median backscattering ratio and median PSD exponent
using the models byTwardowski et al.(2001) andMobley
et al.(2002) could be overestimating the actual averagen.

Finally, so far we have been implicitly assuming that mea-
suredcp values can be accurately reproduced by using ho-
mogeneous spheres as models of phytoplankton cells. This
assumption is based on theoretical findings showing little
sensitivity of the absorption and total scattering coefficients
to particle inhomogeneities and shape (e.g.,Meyer, 1979;
Clavano et al., 2007). Admittedly, a non-spherical popu-
lation of particles can produce in certain cases important
deviations from the optical properties of volume-equivalent
spheres (Clavano et al., 2007). However, such deviations are
expected to be constrained to about 20–30% for aspect ra-
tios ranging from 0.5 to 2. Only at extreme aspect ratios and
for non-spherical particles with ESD>10 µm, the deviations
become very significant (Clavano et al., 2007). Since non-
sphericity is an attribute typical of large cells, and since those
large cells are usually rare in the surface waters of the Equa-
torial Pacific and likely undersampled by our instrumentation
(see above), we believe that our assumption is valid.

4.7 Final remarks

A direct influence of particles in the phytoplankton size range
on bbp and the conserved shape of the particle size distri-
bution create a close correspondence betweenbbp and cp

variability (Fig. 5). These findings add to previous studies
that have 1) demonstrated in the laboratory that the carbon-
specific scattering cross-section of different phytoplankton
groups grown under different conditions is rather constrained
(Stramski and Morel, 1990; Stramski and Reynolds, 1993;
DuRand et al., 2002); 2) suggested thatcp can track phyto-
plankton biomass (Durand and Olson, 1996; Chung et al.,
1996, 1998; Green et al., 2003; Oubelkheir et al., 2005);
3) shown that chl-a:cp ratios are closely correlated to vari-
ations in phytoplankton physiological parameters in the field
(Behrenfeld and Boss, 2003); 4) demonstrated that the ratio
of chl-a to a function ofbbp retrieved from ocean color data
tracks physiological trends expected from laboratory exper-
iments over vast oceanic regions (Behrenfeld et al., 2005);
and 5) shown that the seasonal cycles of satellite-based chl-
a:bbp follow closely, in the oligotrophic ocean, those of the
in-situ cellular fluorescence ofProchlorococcus(Westberry
et al., 2008). Together, these different lines of evidence add
support to the hypothesis thatbbp can provide an alternative
to chl-a for monitoring open-ocean phytoplankton biomass
from space (Behrenfeld et al., 2005; Westberry et al., 2008).
It is additionally noteworthy that chlorophyll-a concentra-
tions during our Equatorial Pacific study spanned a range

(0.05 to 0.4 mg m−3) representative of about 80% of the open
ocean (based on satellite chl-a retrievals). Accordingly, our
results are likely relevant to many open-ocean regions, as has
already been established for the South Pacific (Huot et al.,
2008). Further verification is nevertheless desirable.

5 Conclusions

A field data set of bulk and size-fractionated measurements
of inherent optical properties was presented and analyzed for
the surface waters of the Equatorial Pacific during May 2007.
These are the key findings and implications:

– bbp and cp were highly correlated, suggesting that,
when considered with previous findings that bulkcp

may be used effectively to track phytoplankton biomass,
either particle scattering property should be equally
valued as a remote-sensing proxy for phytoplankton
biomass in open-ocean waters.

– bbp measurements of 0.2-µm filtered seawater were rel-
atively constant across the sampled region and con-
tributed negligibly to the bulkbbp.

– Particles larger than 3 µm contributed in median 50% of
bbp.

– Mie theory was unable to simultaneously reproduce the
observedcp andbbp by means of a single population of
particles.

Appendix A

Comparison of observed vs. simulatedcp, and bbp

A1 Along-track measurements

Simulations were completed to assess the ability of Mie the-
ory to reproduce the measuredcp (from the C-star trans-
missometer) andbbp values. The input parameters for these
simulations were the size distributions, minimum and max-
imum diameters, and complex refractive index of particles.
The fitted PSD exponents were used to extrapolate measured
PSDs to a minimum diameter of 0.2 µm and to a maximum
diameter (Dmax) of 100 µm. The value of the minimum di-
ameter was based on the negligiblebbp(< 0.2µm) that was
measured (Fig.7) and on the use of 0.2 µm-filtered seawa-
ter for referencingcp. TheDmax was set as a conservative
estimate of the maximum size of particles influencing our
measurements based on the instantaneous volume sampled
by the C-star transmissometer and by the BB3, as well as on
the flow-rate, and on the effect of the finite acceptance angle
of the transmissometer that acts as a filter for the large sized
particles (Boss et al., 2009). This effect was also taken into
account in the simulations.

Biogeosciences, 6, 947–967, 2009 www.biogeosciences.net/6/947/2009/



G. Dall’Olmo et al.: Particulate backscattering in the ocean 963

Simulations were then run for each PSD measured along-
track for which coincidentcp andbbp (at 526 nm) were avail-
able (45 and 30 stations, respectively).n was varied between
1.02 and 1.20 andDmax between 4 and 100 µm. The imag-
inary part of the refractive index was set at a nominal value
of 0.0005 because particulate absorption is typically low at
the wavelength selected for the simulations (526 nm). Then
for each set ofn andDmax the median differences between
the measured bulkcp andbbp and the corresponding sim-
ulated values were computed (Fig.9a, b). To further con-
strain these results, the simulated ratioscp(< 3µm):cp and
bbp(< 3µm):bbp were also computed for each set ofn and
Dmax and compared to the range measured for the corre-
sponding along-track measurements (Fig.9c, d). Finally,
an optimal set of parameters for simulatingcp was com-
puted by identifying all sets ofn and Dmax for which the
mediancp residuals were between±0.001m−1 and the sim-
ulatedcp(< 3µm):cp was between 0.3 and 0.5. Similarly,
an optimal set of parameters for simulatingbbp was com-
puted by identifying all sets ofn and Dmax for which the
medianbbp residuals were between±0.0002m−1 and the
bbp(< 3µm):bbp was between 0.44 and 0.60 (Fig.9e, f). The
core routine for the simulations was based onBohren and
Huffman(1983).

Results show that the optimal set ofn andDmax for cp was
located aroundn = 1.055±0.005 and forDmax> 20um. On
the other hand, for thebbp comparison the optimal range of
n wasn = 1.080−1.095 and the optimalDmax> 25µm and
covaried slightly withn (Fig. 9e and f).

A sensitivity analysis was carried out to study the impor-
tance of the value chosen for the imaginary part of the refrac-
tive index (n′). All the above simulations were repeated forn′

values of 0.0010 and 0.0000. The optimaln andDmax ranges
did not vary considerably. The only difference was that when
n′

= 0.0010 there was no optimal set ofn andDmax for bbp

within the range of parameters studied. In conclusion, the
main result of these simulations was unaffected by the value
of n′: with the imposed constraint on the minimum diameter,
it was not possible to model simultaneously the measuredcp

andbbp values by using only one refractive index.

A1.1 Fractionation experiments

Simulations were also carried out to test the ability of Mie
theory to reproduce thecp (from the C-star transmissometer)
andbbp (at 526 nm) measured during the three fractionation
experiments. Particle size distributions (PSDs) of bulk sam-
ples were truncated in correspondence of the nominal pore
sizes of the filters and used as input for the simulations. Mea-
sured PSDs were extrapolated from 1.4 to 0.3 µm and from
8 to 100 µm using the slope fitted between 2 and 8 µm. A
peak around 1.5 µm was fitted using a Gaussian model and
added to the power-law distribution adopted for the extrapo-
lation to lower sizes. To reduce uncertainties due to the ex-
trapolation of the PSD to lower sizes,cp andbbp for the size
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Fig. 12. Particle size distribution measurements aggregated over large bins for the size-fractionated samples

collected during the third fractionation experiment. Dashed lines represent standard deviations.

46

Fig. A1. Particle size distribution measurements aggregated over
large bins for the size-fractionated samples collected during the
third fractionation experiment. Dashed lines represent standard de-
viations.

fractions smaller than 0.7 µm were assumed as known (from
our measurements) and only thecp andbbp generated by size
fractions larger than 0.7 µm were modeled. The sensitivity of
our results to this hypothesis was investigated by repeating
the simulations assuming that the 0.7 µm filter had instead
trapped particles> 0.3 and> 1µm. n was varied between
1.02 and 1.10 andDmax was set to 100 µm. The imaginary
part of the refractive index was again set equal to 0.0005.

A1.2 Mie simulations with observed size-fractionated
PSDs for the 3rd fractionation experiment

The Mie simulations carried out for the three fractionation
experiments were based on PSDs of bulk samples that were
set to zero above the diameters corresponding to the nominal
pore sizes of the filtered samples. This approach was taken
because PSD measurements were not collected on the size-
fractionated samples during the 1st and 2nd experiments.
However, a limited set of PSDs were measured on the size-
fractionated samples collected during the 3rd fractionation
experiment.

Figure A1 presents the PSDs measured on the size-
fractionated samples collected during the 3rd experiment and
aggregated over larger bins. As expected, the PSD measure-
ment of the 0.7-µm filtered sample was only slightly larger
than the blank (0.2-µm filtered seawater) at the smallest sizes.
Similarly, the PSD of the 5-µm filtered sample was only
slightly smaller that the bulk sample for ESD smaller than
5 µm and, as expected, decreased with respect to the bulk at
larger ESDs.
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On the other hand, the 1-µm and the 3-µm filtered sam-
ples presented some problems. The PSD of the 1-µm filtered
sample had, as expected, values similar to those measured on
the bulk sample at bin sizes of about 1.4 µm, but showed that
some particles with ESD up to 2.5 µm had passed through the
filter (Fig. A1, compare filled red circles with black stars).
This phenomenon may be explained by imperfect filter pores
(e.g., two pores in contact with each other), by large soft
particles that squeezed through the filter pores or disaggre-
gated as they passed through the filter and re-aggregated
afterwards, and/or by an incorrect nominal pore size of the
filter. On the other hand, the PSD of the 3-µm filtered sam-
ple retained a significant fraction of particles smaller than the
nominal pore size.

Mie simulations were repeated using the PSDs measured
on the size-fractionated samples and extrapolated to 0.3 µm.
The PSD measured for the size fraction smaller< 1µm was
much steeper than the observed bulk PSD. Thus, to avoid
biasing the simulation, this PSD was extrapolated to 0.7 µm
by employing the slope of the bulk PSD.

Results for the 1- and 5-µm size fractions were consistent
with those obtained using the truncated bulk PSDs (compare
thick black lines with large circles in Fig.10e, f). However,
the newbbp andcp values simulated for the 3-µm size frac-
tion were lower than those obtained from the truncated bulk
PSD.

In conclusion, the PSD data measured on the size-
fractionated samples during the 3rd fractionation experi-
ment were in general agreement with the measured size-
fractionated IOPs, exception made for the PSD collected for
3-µm size fraction.

Appendix B

χp of coated spheres

One aspect of our analysis that may appear a contradiction to
our overall conclusions is that theχp factor at 117◦ adopted
in this study was predicted by Mie theory and found to be in
agreement with experimentally determinedχp values (e.g.,
Boss and Pegau, 2001; Berthon et al., 2007). Recognition
of this detail might incorrectly suggest that Mie theory is in-
deed able to accurately predict thebbp of oceanic microor-
ganisms. However, this contradiction is resolved by consid-
ering that the use of the homogeneous or the coated cell mod-
els causes large differences in the simulatedbbp:bp ratio, but
has only a minor impact on thebbp:βp(117◦) ratio (i.e.,χp).
To test this hypothesis we conducted a preliminary investi-
gation where a coated spherical model (based on algorithms
by Bohren and Huffman, 1983) was used to simulate the vol-
ume scattering functions of particles distributed between 0.4
and 100 µm according to a power law with exponents be-
tween−3 and−4. Particle sizes were determined by the ra-
dius of the core plus the thickness of the shell. We assumed

that the shell thickness can either have a constant value of
75 nm (Meyer, 1979), or be a constant (i.e., 5%) fraction of
the core radius (Kitchen and Zaneveld, 1992). The refrac-
tive index of the core was varied between 1.015 and 1.025,
while that of the shell between 1.085 and 1.095 (Kitchen and
Zaneveld, 1992). Thus, the volume-averaged refractive in-
dices had median values of 1.05 (range: 1.047–1.057) and
1.03 (range: 1.025–1.035), for the first and second type of
coated models, respectively. Particles were considered non-
absorbing. This analysis revealed that the resultingχp val-
ues around 117◦ were consistent with the values obtained
from the homogeneous spherical model (Fig.3). On the
other hand, the median backscattering ratio derived from the
coated-sphere model with shell thickness of 75 nm was 0.011
(range: 0.0063–0.0180), while that for the coated-sphere
model with shell thickness equal to 5% of the core radius was
0.0085 (range: 0.0064–0.0180). Thus, the backscattering ra-
tios were about a factor 2.2 and 1.7, respectively, larger than
those derived from the homogeneous spherical model (me-
dian: 0.005, range: 0.0035–0.0074) using the same size dis-
tributions and refractive index equal to 1.05. In conclusion, it
appears that theχp value adopted in this study is consistent
with non-homogeneous models of phytoplankton cells that
produce relatively largebbp:bp ratios. It should be noted,
though, that different combinations of shell thickness and re-
fractive indices may produce significantly different backscat-
tering ratios (both higher and lower). A thorough investi-
gation of the optimal coated shell model for phytoplankton,
however, is beyond the scope of this work.
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