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Abstract. Long term, high quality estimates of burned area
are needed for improving both prognostic and diagnostic
fire emissions models and for assessing feedbacks between
fire and the climate system. We developed global, monthly
burned area estimates aggregated to 0.5◦ spatial resolution
for the time period July 1996 through mid-2009 using four
satellite data sets. From 2001–2009, our primary data source
was 500-m burned area maps produced using Moderate
Resolution Imaging Spectroradiometer (MODIS) surface re-
flectance imagery; more than 90% of the global area burned
during this time period was mapped in this fashion. Dur-
ing times when the 500-m MODIS data were not available,
we used a combination of local regression and regional re-
gression trees developed over periods when burned area and
Terra MODIS active fire data were available to indirectly es-
timate burned area. Cross-calibration with fire observations
from the Tropical Rainfall Measuring Mission (TRMM) Vis-
ible and Infrared Scanner (VIRS) and the Along-Track Scan-
ning Radiometer (ATSR) allowed the data set to be extended
prior to the MODIS era. With our data set we estimated
that the global annual area burned for the years 1997–2008
varied between 330 and 431 Mha, with the maximum oc-
curring in 1998. We compared our data set to the recent
GFED2, L3JRC, GLOBCARBON, and MODIS MCD45A1
global burned area products and found substantial differences
in many regions. Lastly, we assessed the interannual variabil-
ity and long-term trends in global burned area over the past
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13 years. This burned area time series serves as the basis
for the third version of the Global Fire Emissions Database
(GFED3) estimates of trace gas and aerosol emissions.

1 Introduction

As Earth-system modeling efforts increasingly recognize and
include fire as an important process in the terrestrial carbon
cycle, there remains a strong need for long term, spatially-
and temporally-explicit global burned area data sets. Among
other purposes, such data are essential for quantifying py-
rogenic trace gas and aerosol emissions, discriminating nat-
ural versus anthropogenic contributions to global change,
and identifying feedbacks between fire and climate change
(Langmann et al., 2009). In response to this need, a grow-
ing number of multi-year, satellite-based global burned area
products have been made publicly available over the past
several years. These include: 1) the 1-km L3JRC prod-
uct (Tansey et al., 2008), currently spanning April 2000–
March 2007, and produced from SPOT VEGETATION im-
agery with a modified version of theTansey et al.(2004)
Global Burnt Area (GBA) 2000 algorithm; 2) the 1-km
GLOBCARBON burned area product, currently spanning
April 1998–December 2007, derived from SPOT VEGETA-
TION, Along-Track Scanning Radiometer (ATSR-2), and
Advanced ATSR (AATSR) imagery using a combination of
mapping algorithms (Plummer et al., 2006); and 3) theRoy
et al.(2008) 500-m Moderate Resolution Imaging Spectrora-
diometer (MODIS) burned area product (MCD45A1), gen-
erated from Terra and Aqua MODIS imagery and available
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from mid-2000 through the present. All three data sets map
the spatial extent of burned vegetation (variously referred to
asburned areas, burnt areas, burn scars, fire scars, andfire-
affected areas) at daily temporal resolution. At coarser spa-
tial and temporal scales, the version 2 Global Fire Emissions
Database (GFED2) provides monthly global burned area es-
timates at 1◦ spatial resolution from January 1997–December
2008. In GFED2, burned area was estimated indirectly using
monthly active fire observations from the MODIS, ATSR,
and Tropical Rainfall Measuring Mission (TRMM) Visible
and Infrared Scanner (VIRS) sensors, drawing upon a rela-
tively small set of MODIS 500-m burned area observations
(Giglio et al., 2006b; van der Werf et al., 2006).

Here we describe the next generation of the Global Fire
Emissions Database burned area data set – GFED3 – which
provides global, monthly burned area aggregated to 0.5◦

spatial resolution from mid-1996 through the present, and
is specifically intended for use within large-scale (typically
global) atmospheric and biogeochemical models. Unlike
existing products, the data set was compiled using inter-
calibrated observations from multiple sensors, followed by
a correction phase to improve consistency, thus reducing the
need for end users to manually stitch together multiple (and
potentially inconsistent) burned area data sets over extended
time periods. Included in the data set are spatially-explicit
uncertainties that reflect the varying quality of the burned
area estimates produced from each source and methodol-
ogy. Following a summary of the input data in Sect.2 and
a description of our methods in Sect.3, we use the GFED3
data set to assess the interannual variability and long-term
trends in global burned area over the past 13 years in Sect.4,
and then compare it to the independent L3JRC, GLOBCAR-
BON, and Collection 5 MODIS MCD45A1 global burned
area products in Sect.5.

2 Data

2.1 Burned area data

Reference burned area maps were produced from the 500-m
MODIS atmospherically-corrected Level 2G surface re-
flectance product (Vermote and Justice, 2002), the MODIS
Level 3 daily active fire products (Justice et al., 2002), and
the MODIS Level 3 96-day land cover product (Friedl et al.,
2002) using theGiglio et al.(2009) MODIS direct broadcast
(DB) burned area mapping algorithm. The algorithm iden-
tifies the date of burn (to the nearest day) for each grid cell
within individual MODIS Level 3 tiles (Wolfe et al., 1998)
by applying dynamic thresholds to composite imagery gener-
ated from a burn-sensitive vegetation index. These thresholds
are derived locally using training samples of both burned and
unburned pixels identified with the 1-km MODIS active fire
mask, enabling the algorithm to function over a wide range
of conditions in multiple ecosystems. At present, validation

of the 500-m burned area maps is limited to Southern Africa,
Siberia, and the Western United States through comparison
with high resolution Landsat imagery (Giglio et al., 2009).

Individual calendar months were processed for most
MODIS land tiles, yielding a total of approximately 8300
“tile-months” of burned area maps between November 2000
and July 2009. This is nearly 19 times the quantity of training
data used to produce the GFED2 burned area data set (Giglio
et al., 2006b). The resulting maps were aggregated to 0.5◦

spatial resolution and monthly temporal resolution.
While the theGiglio et al.(2009) DB mapping algorithm

shares some similarities with theRoy et al.(2005) MCD45
bi-directional reflectance modeling approach – both produce
burned area maps from 500-m MODIS surface reflectance
imagery, for example – the two algorithms have some im-
portant differences. Among these are the following: 1) the
DB algorithm makes heavy use of active fire observations;
the MCD45 algorithm uses no active fire information what-
soever. 2) The DB algorithm relies primarily on a change
in a vegetation index to identify burns, whereas the MCD45
algorithm relies primarily on a change in reflectance. 3) By
design the DB algorithm is somewhat more tolerant of cloud
and aerosol contamination since such noise is often more
likely to be encountered in a (typically near-real time) direct
broadcast data stream.

2.2 Active fire data

We used the Collection 5, version 1 Terra MODIS monthly
Climate Modeling Grid (CMG) fire product at 0.5◦ spatial
resolution (“MOD14CMH”) from November 2000 through
mid-2009. We also used theGiglio et al.(2003) 0.5◦ gridded
monthly VIRS fire product, from January 1998 through De-
cember 2008, and the ATSR World Fire Atlas (algorithm 2)
from July 1996 through December 2007 (Arino and Rosaz,
1999). For compatibility the ATSR fire locations were grid-
ded to produce monthly 0.5◦ ATSR fire counts.

3 Method

As an interim product based on a small quantity of 500-m
burned area training data, the GFED2 burned area data set
was composed solely of indirect burned area estimates de-
rived from gridded active fire counts. In that approach, a se-
ries of regional regression trees were used to relate monthly
active-fire and ancillary land cover information to monthly
area burned at 1◦ spatial resolution (Giglio et al., 2006b).
The enormous quantity of 500-m MODIS burned area train-
ing data we have produced since that earlier work, however,
has allowed us to incorporate several major refinements into
GFED3. First, the spatial resolution of the global grid was
quadrupled from 1◦ to 0.5◦. Second, we used 500-m MODIS
daily burned area maps (Giglio et al., 2009) as the default
source; indirect estimates are derived from active fire counts
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only when the 500-m direct measurements are unavailable.
Finally, in producing the indirect, active-fire based estimates
of burned area, we largely (though not entirely) replaced the
regional regression trees of GFED2 with a local regression
approach that greatly reduces the spatial scales over which
the regression relationships are extrapolated.

3.1 MODIS era

3.1.1 Direct mapping

As mentioned above, the GFED3 monthly burned area esti-
mates during the MODIS era (2000-present) were obtained
almost exclusively from daily 500-m burned area maps pro-
duced using theGiglio et al.(2009) MODIS direct broadcast
burned area mapping algorithm and aggregated to 0.5◦ spa-
tial and monthly temporal resolution. Nearly 92% of the area
burned worldwide from November 2000 through mid-2009
was mapped directly in this manner.

3.1.2 Local regression

During time periods when our 500-m MODIS burned area
maps were not available for a particular MODIS tile, we esti-
mated burned area within the affected grid cells on a monthly
basis using a regression relationship obtained by calibrating
Terra MODIS monthly active fire counts to monthly burned
area derived from our 500-m reference maps. The quantity of
training data was sufficient to constrain the regression to bet-
ter capture local environmental characteristics and fire man-
agement practices. To this end, we used local regression to
express the monthly area burned in a 0.5◦ grid cell at loca-
tion i during montht as a nonlinear function of overpass-
corrected monthly active fire countsNf(i,t), i.e.,

A(i,t)= α(i)Nf(i,t)
β(i), (1)

whereα(i)≥0 andβ(i)>0. The parametersα andβ were de-
rived independently for each grid cell using all training ob-
servations available for the grid cell for which Eq. (1) was
being fitted. During the least squares fitting process observa-
tions having zero burned area and zero active fire pixels were
excluded as these had no influence aside from artificially in-
flating the apparent quality of the fit. If fewer than eight train-
ing observations were available, or if examination of the his-
torical active fire time series for the grid cell revealed that sig-
nificant extrapolation was necessary at least once during the
historical record, then additional training observations were
gathered from the eight neighboring grid cells adjacent to the
grid cell being processed. Grid cells lacking a sufficient num-
ber of training observations even with this broadened search
criteria were flagged as having no reliable calibration; for
such cells no estimate of monthly burned area can be made
via Eq. (1) even when active fires were observed. An alterna-
tive approach for producing estimates in such cases will be
discussed in the next section.

3.1.3 Regional regression trees

As noted above, the highly spatially-constrained local regres-
sion approach can lead to uncalibrated grid cells in areas
seldom (or never) experiencing fires. In such cases no esti-
mate of monthly burned area can be produced using Eq. (1).
The similarly problematic issue of extrapolation must also be
dealt with since use of Eq. (1) in a predictive manner may at
some point require extrapolation beyond the largest number
of monthly fire counts seen in the training observations used
for calibration. The obvious solution is to expand the spatial
window from which training observations are collected, but
this proves problematic because larger spatial windows are
likely to include observations from a wider range of tree and
herbaceous vegetation cover fractions not representative of
the center grid cell. For uncalibrated grid cells, therefore, and
for predictions requiring excessive extrapolation, we instead
produce burned area estimates using a set of regional regres-
sion trees (Breiman et al., 1984). Compared to local regres-
sion, regression trees pool the training data into much larger,
“optimal” subsets, and are consequently better able to han-
dle both situations described above. Following the approach
used for GFED2, we used the training data to construct re-
gression trees for 14 geographic regions (Fig.1). For consis-
tency with the local regression approach, our regression trees
modeled monthly burned area as the same nonlinear function
of monthly fire counts within each terminal node, i.e.,

A(i,t) = αrNf(i,t)
βr , (2)

whereαr andβr are functions of the splitting variables ex-
pressed as a regression tree for regionr. As with GFED2, the
splitting variables consisted of the mean percent tree cover
(Tf), mean percent herbaceous cover (Hf), and mean percent
bare ground (Bf) from the 2001 global MODIS Vegetation
Continuous Fields (VCF) products (Hansen et al., 2003) for
all fire pixels within the grid cell, as well as monthly mean
fire-pixel cluster size (Cf) and monthly fire counts (Nf).

3.1.4 Merging of approaches

For those locations and time periods lacking direct obser-
vations of burned area from our 500-m MODIS maps, we
combined the two regression approaches to generate an esti-
mate of the area burned in a particular grid cell during a par-
ticular month in the following manner. If regression coeffi-
cients were available for the grid cell, and if the number of
monthly fire counts in the cell [Nf(i,t)] was not so large that
excessive extrapolation was necessary, then the burned area
in the grid cell for the month was estimated using Eq. (1).
If, however, either condition was not satisfied, the monthly
burned area for the grid cell was instead estimated using
Eq. (2) with regression parameters obtained from the appro-
priate terminal node of the appropriate regional regression
tree. We deemed extrapolation to be excessive ifNf(i,t)>10
andNf(i,t)>1.25Mi , whereMi was the maximum number
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Fig. 1. Map of the 14 regions used in this study, afterGiglio et al.
(2006b) andvan der Werf et al.(2006).

of fire counts among the monthly training observations used
to calibrate the grid cell.

3.2 Pre-MODIS era

To extend the GFED3 time series prior to the start of high
quality Terra MODIS data (November 2000) we used ac-
tive fire observations from the VIRS and ATSR sensors.
Using the same reference data derived from our 500-m
MODIS burned area maps, the calibration procedures de-
scribed in Sects.3.1.2and3.1.3were repeated for each sen-
sor, yielding local regression coefficients and regional re-
gression trees constructed specifically for use with VIRS and
ATSR monthly fire counts. During the pre-MODIS era the
monthly burned area in each grid cell was then estimated us-
ing Eqs. (1) and (2), as described above, using ATSR- and
VIRS-specific regression parameters and regression trees. To
ensure better continuity with the MODIS era, these estimates
required a correction that will be discussed in Sect.4.3.

Note that the ATSR World Fire Atlas is supplied in raw
form with no overpass correction, hence for this sensor we
calibrated against raw fire counts directly. While this has
no detrimental effect on the local regression, which will im-
plicitly “absorb” the correction into the parametersα(i) and
β(i), it will slightly degrade the quality of the burned area
estimates made using the ATSR regional regression trees.

We note here that the choice of a relatively coarse one-
month time step in Eqs. (1) and (2) was dictated not by
MODIS but rather our desire to have the GFED3 time se-
ries extend back into the pre-MODIS era. The ability to pre-
dict burned area at the 0.5◦ GFED3 spatial resolution using
either VIRS or ATSR fire counts is essentially nil at time
scales much less than one month. (This is related to the issue
of sampling frequency to be discussed in Sect.4.1.) In ad-
dition, VIRS is constrained to a monthly time step to avoid
strong diurnal sampling biases arising from the orbital pre-
cession of the TRMM satellite.

3.3 Uncertainties

The uncertainty in the area burned allocated to each grid cell
arises from two distinct sources: errors in the 500-m burned
area maps, and the inability of the relationships in Eqs. (1)
and (2) to perfectly model the training data, leading to scat-
ter of observations about the regression line. We considered
both sources when assigning uncertainty estimates suitable
for propagation into global models.

3.3.1 Aggregated 500-m burned area uncertainty

Assigning burned area to a monthly grid cell by spatially
and temporally aggregating (or binning) the 500-m MODIS
burned area maps is essentially an exercise in counting pix-
els, and the net uncertainty in this process is the combined
result of four underlying types of errors: 1) misclassifica-
tion errors, in which burned pixels are mistakenly classified
as unburned, and vice versa; 2) temporal binning errors, in
which burned pixels are assigned to the incorrect calendar
month due to the inherent uncertainty in the estimated date
of the burn (typically±2 days); 3) quantization error aris-
ing from the inherent 500-m spatial resolution of the MODIS
pixels used to map burns; and 4) resampling errors accrued
in projecting the native 500-m MODIS swath pixels onto the
fixed MODIS sinusoidal grid. We assumed that the first error
source was dominant and ignored the remaining error sources
in our analysis. Given the relatively coarse spatial and tem-
poral resolution of the GFED3 grid, this was not an unrea-
sonable assumption.

Ideally we could employ a bottom up, 500-m pixel-
level probabilistic approach to estimate an uncertainty in the
burned area assigned to each monthly grid cell. At a mini-
mum this would require estimates of the probabilities of mis-
classifying a burned pixel as unburned (pbu) and misclassi-
fying an unburned pixel as burned (pub). A Monte Carlo
approach could then be used to estimate the net uncertainty
in burned area for each monthly grid cell, though this would
be a computationally formidable undertaking, especially if
the secondary error sources noted above were also included.
(Under rather drastic simplifying assumptions uncertainty
estimates could be derived analytically. By ignoring all sec-
ondary sources of error and assuming thatpub=0, for exam-
ple, the probability density of monthly burned area would
follow a binomial distribution.) Confounding any pixel-level
approach, however, is the fact that the misclassification prob-
abilities are in reality highly dependent on spatial and tem-
poral context. For example, the likelihood of having misclas-
sified a lone, remote burned 500-m pixel is much higher than
the likelihood of having misclassified a burned pixel near the
interior of the large (∼100 000 ha) burns common in Africa
and Australia. Similarly, misclassifying unburned pixels in
the tropics is much less likely during the wet season than
during the (dry) fire season.
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As we currently lack sufficient data to estimate meaning-
ful contextual pixel-level misclassification probabilities for
our 500-m burned area maps, we used a simpler, top down
approach to approximate the net uncertainty in our grid-
ded 500-m burned area estimates using validation data from
Giglio et al.(2009). In that study the authors assessed the ac-
curacy of the areas of individual fire scars mapped with the
MODIS 500-m burned area mapping algorithm in Siberia,
Southern Africa, and the Western United States using ground
truth maps produced manually from high resolution Landsat
imagery. An analysis of the residuals in MODIS vs. Landsat
burned areas showed that the variance in the measured area
of an individual fire scar is approximately proportional to the
area of the fire scar (Fig.2). As the range of burn sizes exam-
ined in that study (approximately 0.1 ha to 300 000 ha) spans
the range of burned area possible within a 0.5◦ GFED3 grid
cell, we may use this result to conservatively model the un-
certainty in our binned monthly burned area estimates. Thus

σ 2
A(i,t) = cB(i)A(i,t), (3)

where σA(i,t) is the standard deviation of the monthly
burned area estimate (here obtained by binning pixels of our
500-m burned area maps) andcB is the “binned-burned-area
uncertainty coefficient” for the grid cell at locationi. In hav-
ing estimated the coefficientcB using validation data for indi-
vidual burns (rather than total burned area in a grid cell) we
are not accounting for the potential canceling of errors due
to the presence of multiple burns within the same grid cell,
hence our description of this approach as a “conservative”
model since it may tend to overestimate the actual uncer-
tainty. In extrapolating the results from the three validation
regions we used the results for Siberia in BOAS and BONA
(see Fig.1), the results from the Western United States in
TENA, and the results for Southern Africa in SHAF and
NHAF, partitioned into low and high tree cover regions using
the global VCF data set averaged to 0.5◦ spatial resolution.
In the remaining GFED regions we used the median value of
cB=571 ha.

3.3.2 Regression uncertainties

When using Eq. (1) to indirectly estimate monthly area
burned we followed the approach ofGiglio et al. (2006b)
and regressed the square of the residuals against monthly fire
counts for each grid cell. The varianceσR predicted by this
supplementary fit then provides an estimate of the regression
uncertainty, i.e.,

σ 2
R(i,t)= cR(i)Nf(i,t), (4)

wherecR is the “regression variance coefficient” for the grid
cell at locationi. We must also account for the inherent vari-
ance in the binned 500-m burned area training observations
used in calibrating Eq. (1). We estimate this variance using
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Fig. 2. Top: example of fitted residuals fromGiglio et al. (2009)
Siberian validation data. Residuals are those remaining from a lin-
ear fit of MODIS vs. Landsat-derived areas of individual fire scars.
Bottom: one-standard-deviation uncertainty in size of individual
fire scars mapped at 500-m spatial resolution as a function of burn
size for theGiglio et al. (2009) validation regions, with results for
Southern Africa partitioned into high and low fractional tree cover
(TC) subsets.

Eq. (3), but with monthly burned areaA(i,t) predicted using
Eq. (1). Thus

σ 2
B(i,t) = cB(i)A(i,t). (5)

The total one-standard-deviation (“one-sigma”) uncertainty
estimate for all future predictions is then the sum of the re-
spective one-sigma uncertainties:

σA(i,t)= σR(i,t)+σB(i,t) (6)

Here we do not add the respective uncertainties in quadrature
as both terms on the right hand side of Eq. (6) are derived
from monthly fire counts and are consequently not indepen-
dent.
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When using Eq. (2) to indirectly estimate monthly burned
area the procedure is identical except that a separate regres-
sion variance coefficient is now associated with each terminal
node of each regression tree, i.e.,

σ 2
R(i,t)= cR,rNf(i,t), (7)

where the coefficientcR,r is a function of the splitting vari-
ables in the regionr regression tree.

3.4 Ancillary fire and burned area data layers

In addition to the gridded monthly burned area and uncer-
tainty estimates described above, GFED3 provides additional
ancillary data layers useful for modeling as well as for gen-
eral use of the data set. These include: 1) the distribution of
burned area within the grid cell as a function of fractional tree
cover from the MODIS VCF product (Hansen et al., 2003),
2) the distribution of burned area within the grid cell across
different MODIS land cover classes (Friedl et al., 2002),
and 3) the fraction of burned area observed in organic peat
(currently our peat map is limited to Borneo and Sumatra,
where peat fires are most prevalent). For the MODIS era we
compiled these fields using our high quality 500-m MODIS
burned area maps for each 0.5◦ grid cell; when these maps
were not available (as during the pre-MODIS era) we com-
piled the fields based on the locations of all 1-km active fire
pixels (2.5 km for VIRS) within each grid cell. Based on the
utility of fire persistence for identifying deforestation fires,
monthly fire persistence was calculated using active fire ob-
servations as described inGiglio et al.(2006b) and provided
in an additional ancillary data layer.

4 Results

4.1 Local regression

Equation (1) was fitted separately for each sensor to obtain
the spatially-dependent regression coefficientsα andβ. Be-
cause small changes in the exponentβ can produce very large
changes in the coefficientα (over several orders of magni-
tude), it is instructive to consider the special case in which
β is constrained to unity. Under this constraint the coeffi-
cientα represents the effective burned area per fire pixel, and
is directly comparable across all grid cells. For this special
linear case we show the coefficientsα and the correspond-
ing correlation for each sensor in Fig.3. For all three sen-
sors the general spatial pattern in the effective burned area
per fire pixel reflects an increase inα with an increase in
herbaceous vegetation fraction due to the lower densities and
higher fire spread rates characteristic of dryer, herbaceous
fuels (Scholes et al., 1996; van der Werf et al., 2003; Giglio
et al., 2006b). A secondary (and independent) feature appli-
cable only to the ATSR sensor is a decrease inα at higher
latitudes due to the latitudinal increase in the frequency of
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Fig. 3. Effective burned area per fire pixel (left column) and corre-
sponding linear correlation (right column) for the constrained linear
case (β=1 in Eq.1) for the Terra MODIS(a, b), VIRS (c, d) and
ATSR (e, f) sensors. Note different scales used in (a), (c), and (e).
The spatial coverage of the VIRS is restricted to within approxi-
mately 38◦ of the Equator due to the highly inclined TRMM orbit,
hence no data are available at higher latitudes for this sensor.

satellite overpasses. For the MODIS and VIRS sensors this
feature is effectively absent since the gridded MODIS and
VIRS fire products are corrected for this variation in over-
pass frequency (which is characteristic of all polar-orbiting
and precessing satellites). Additional factors affectingα in-
clude local variations in topography, fire management prac-
tices, and cloud and forest canopy obscuration.

Comparing across platforms, the MODIS instrument con-
sistently has the least burned area per fire pixel (lowestα)
and the highest correlation between monthly fire counts and
monthly burned area, while the ATSR-2/AATSR sensor con-
sistently has the most burned area per fire pixel (highestα)
and the lowest correlation. The VIRS sensor in turn lies be-
tween these two extremes. This trend is a result of the lower
relative sampling frequencies of the VIRS and ATSR sensors
(Giglio et al., 2006b). Consequently, more burned area must
be assigned to each fire pixel (thus raisingα), and the fre-
quency of unobserved fires is greater (thus reducing the cor-
relation) for these sensors. The impact on the GFED3 burned
area data set will be larger uncertainties in the pre-MODIS
and especially the pre-VIRS time periods.

4.2 Regional regression trees

Regression trees were constructed for each sensor and each
region. A representative example for each sensor is shown
for the NH Africa region in Fig.4. The number of terminal
nodes in the Terra MODIS trees ranged from 9 (NHSA) to
16 (BONA, SHSA, NHAF, and BOAS), and for the ATSR
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Fig. 4. Example of regression trees relating monthly fire counts to monthly burned area obtained for the Terra MODIS, VIRS, and ATSR
sensors in the Northern Hemisphere Africa region. The left fork is taken when the condition at a split is satisfied. The upper and lower
numbers in each terminal node (leaf) are the respective values of the parametersαr (km2) andβr appearing in Eq. (2) for the node. As in
Giglio et al.(2006b), the subscript “f” has been dropped from the splitting variablesTf (percent tree cover),Hf (percent herbaceous cover),
Bf (percent bare ground),Cf (mean fire-pixel cluster size), andNf (corrected monthly fire counts) to reduce clutter.

ranged from 5 (EURO, SHAF, and SEAS) to 8 (BONA,
TENA, MIDE, BOAS, and AUST). For VIRS the largest
tree (AUST) contained 16 terminal nodes. (The minimum
VIRS tree size is not meaningful to compare because the
sensor provides only partial coverage in many extra-tropical
regions.) Unlike GFED2, the wide range of sizes does not re-
flect differences in the quantity of calibration data available
for each region, but rather the complexity of the relationship
between burned area and fire counts (which is in turn influ-
enced by the size of the region), and the strength of the as-
sociation between these quantities. The significantly lower
correlations observed in the tropics for the ATSR, for exam-
ple, result in smaller trees simply because further splitting
of terminal nodes yields no meaningful improvement in the
predictive capability of the tree.

4.3 Pre-MODIS correction

As discussed above, both the VIRS and the ATSR provide
substantially lower sampling rates compared to the Terra
MODIS sensor. In the case of the ATSR this undersampling
can be quite severe, and is further exacerbated by the fact
that the sensor records only nighttime fires occurring well
after the mid-afternoon peak in tropical fire activity (Giglio,
2007). This leads to large numbers of grid cells in which ac-
tive fires are never detected, yet which contain burned area.
In this situation it is impossible for burned area to be allo-
cated to such grid cells via Eqs. (1) or (2), and the cumula-
tive effect of such occurrences over large spatial and tempo-
ral scales is to underestimate the total area burned. To com-
pensate for this effect, we applied regional correction fac-

tors to our monthly VIRS- and ATSR-based burned area es-
timates to achieve better consistency with our MODIS-based
monthly estimates. We denote these factors byγr , where
the subscriptr denotes the region. The corrected monthly
burned area estimateA′(i,t) in the grid cell at locationi dur-
ing montht is then

A′(i,t) = γrA(i,t), (8)

whereA(i,t) is the uncorrected monthly burned area esti-
mate predicted by Eqs. (1) or (2).

Correction factors were derived by linearly regressing the
total monthly burned area derived from MODIS in each re-
gion against the corresponding total burned area estimated
from VIRS and ATSR monthly fire counts, i.e.,∑
i∈r

AMODIS(i,t)= γr

∑
i∈r

AVIRS(i,t), (9)

whereAMODIS(i,t) is the monthly burned area in each grid
cell within regionr and montht as derived from the binned
500-m MODIS burned area maps [or monthly MODIS fire
counts and either Eqs. (1) or (2) when the 500-m maps
are unavailable], andAVIRS(i,t) is the corresponding un-
corrected burned area in each grid cell as estimated from
monthly VIRS fire counts via Eqs. (1) or (2). A separate set
of regression coefficients is similarly derived for the ATSR.
The resulting coefficientsγr are then used to correct the ini-
tial ATSR and VIRS burned area estimates in each grid cell
through Eq. (8). An example regression for the ATSR is
shown in Fig.5. A complete list of regional correction fac-
tors is provided in Table1.
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Table 1. Monthly ATSR and VIRS burned area correction factors
(γr ) and linear correlation coefficients (r).

ATSR VIRS
Region γr r γr r

Boreal North America 1.35 0.94 – –
Temperate North America 1.52 0.95 1.50 0.90
Central America 1.39 0.97 1.35 0.95
NH South America 1.42 0.86 1.22 0.89
SH South America 1.55 0.97 1.25 0.97
Europe 1.75 0.95 – –
Middle East 1.30 0.91 2.38 0.84
NH Africa 1.84 0.91 1.14 0.99
SH Africa 2.13 0.97 1.11 0.96
Boreal Asia 1.36 0.89 – –
Central Asia 1.70 0.98 – –
Southeast Asia 1.39 0.78 1.45 0.92
Equatorial Asia 1.40 0.96 1.43 0.97
Australia 1.67 0.98 1.37 0.96

It is important to keep in mind that the correction in Eq. (8)
does not restore burned area to those VIRS and ATSR zero-
fire-count grid cells that cause the cumulative underestima-
tion of burned area in the first place. The correction merely
increases the area burned in grid cells already containing
burned area, based on the average fraction of burned area
that is missing (relative to MODIS) in each region. While far
from perfect, we deemed this approach preferable to “paint-
ing in” missing burned area on the basis of, e.g., a fire clima-
tology.

In propagating uncertainties we must include the effect of
the correction factor, including the uncertainty in the cor-
rection factor itself. The uncertainty in our corrected pre-
MODIS monthly burned area estimates is then

σA′(i,t) = γrA(i,t)

[(
σA(i,t)

A(i,t)

)2

+

(
σγ,r

γr

)2
] 1

2

, (10)

whereσγ,r is the uncertainty inγr . Here we have assumed
that the uncertaintiesσA(i,t) and σγ,r are random and in-
dependent, which is valid since inclusion of our VIRS- and
ATSR-based burned area estimates in the GFED3 time series
was restricted to the pre-MODIS era, hence no pre-MODIS
observations were used in fitting Eq. (9).

4.4 Merging of burned area estimates

As the spatial coverage of our ATSR- and VIRS-based es-
timates overlap in the tropics and sub-tropics, we used the
following scheme to merge the estimates from these sensors
during the pre-MODIS era. From January 1998 (the first full
calendar month of VIRS data) through October 2000 (the last
month of the pre-MODIS era) the choice of sensor was made
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Fig. 5. 2001–2008 total monthly area burned in the SH South Amer-
ica region derived from MODIS data versus the corresponding un-
corrected area estimated from ATSR fire counts. The slope of the
least squares regression line (solid line) provides the correction fac-
tor for this region.

independently for each region based on sensor coverage and
the quality of the fit in Eq. (9). Under these criteria, ATSR
fire counts were used in the high-latitude regions (BONA and
BOAS) as well as CEAM, SHAF, CEAS, and EQAS, and
VIRS fire counts were used in NHSA, SHSA, NHAF, and
AUST. In the remaining regions data from the two sensors
were merged, with VIRS observations having precedence
when available. Prior to January 1998 the GFED3 burned
area time series was produced exclusively from ATSR obser-
vations.

4.5 Multi-year burned area estimates

We used the hybrid approach described in Sect.3 with the
correction and merging described in Sects.4.3 and 4.4 to
produce monthly burned area estimates spanning July 1996
through mid-2009. Regional monthly burned area time series
are shown in Figs.6 and7. Here the different colors indi-
cate the proportion of the monthly area burned contributed by
each of the different sensors and methodologies used to pro-
duce the multi-year data set. In Fig.8 we show the spatially
explicit 1997–2008 mean annual area burned and the associ-
ated uncertainties. It is important to note that the magnitude
of the uncertainties in our GFED3 burned area data set are not
uniform over time; they are smallest during the MODIS era,
when the majority of the burned area estimates are obtained
directly from our 500-m burned area maps, larger during the
1998–2000 VIRS/ATSR overlap period, and larger still dur-
ing the 1996–1997 ATSR-only era. For example, the 1997
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Fig. 6. Regional and worldwide July 1996–November 2009 time
series of GFED3 monthly burned area. The different colors indi-
cate the quantity of burned area contributed by each of the different
sensors (ATSR, VIRS, or Terra MODIS) and methodologies (500-m
map, local regression (LR), or regression tree (RT)) used to produce
the entire data set.

global mean burned area uncertainty is nearly seven times
larger than the 2007 global mean burned area uncertainty,
despite comparable total area burned in both years.

Following Giglio et al.(2006a), we calculated two clima-
tological fields from our monthly burned area estimates as
part of our analysis. These were: 1) the seasonal peak in
fire activity, defined as the calendar month having the great-
est area burned (Fig.9a), and 2) the 12-month lagged auto-
correlation of the full 1996–2008 monthly burned area time
series (Fig.9b), which provides a spatially-explicit measure
of the interannual variability and periodicity of fire activity.
The seasonal peak shows very good agreement with earlier
work byGiglio et al.(2006a), who used five years of MODIS
active fire observations to characterize the global distribu-
tion and seasonality of biomass burning. Consistent also in
terms of spatial distribution was the 12-month lagged auto-
correlation of monthly burned area. As in this earlier work,
higher temporal autocorrelation tends to occur in many parts
of the tropics, with the highest values occuring in African
savannas, and lower autocorrelation (i.e., greater interannual
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Fig. 7. Regional and worldwide July 1996–November 2009 time
series of GFED3 monthly burned area (continued from Fig.6).
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Fig. 8. 1997–2008 GFED3 mean annual burned area (top) and as-
sociated one-sigma uncertainties (bottom), expressed as the fraction
of each grid cell that burns each year. One sigma uncertainties were
obtained by adding the monthly, spatially-explicit uncertainty esti-
mates (assumed to be independent and random) in quadrature.
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Fig. 9. Climatological fields derived from July 1997–December
2008 GFED3 burned area data set.(a) Calendar month of maximum
burned area.(b) Twelve-month lagged autocorrelation of monthly
burned area time series.

variability) occurring in regions prone to more sporadic burn-
ing, including Australia, the United States, and boreal forests
of both Asia and North America.

In Table 2 and Fig. 10 we summarize the annual area
burned within each GFED region. The most extensive
area burned consistently occurred in Northern Hemisphere
(NH) and Southern Hemisphere (SH) Africa, with∼250 Mha
burned on the continent annually. This represents on average
about 70% of the global area burned each year. The remain-
ing 30% is composed primarily of area burned in Australia,
followed by SH South America and Central Asia.

At 13 years the duration of our GFED3 data set is still
too short to reliably identify regional burned area trends, par-
ticularly in light of the major 1997–1998 El-Niño South-
ern Oscillation (ENSO) event at the beginning of the time
series. Considering only the most obvious trends, how-
ever, we note the following with respect to burned area: 1)
a very gradual increase (+1.5 Mha yr−1) in SH Africa since
2002; 2) an inconsistent though comparatively rapid decrease
(−6 Mha yr−1) in Australia since 2001; and 3) a gradual
decrease (−8 Mha yr−1) in global burned area since 1998,
which beginning in 2001 is primarily a result of the rapid
decrease in Australia.

With respect to the impact of ENSO events on fire activity
during the GFED3 era, we note a significant association be-
tween the Southern Oscillation Index (SOI) and area burned
in Equatorial Asia and Australia (Fig.11). In Equatorial Asia
the impact of ENSO activity (as measured by negative values
of the SOI) was both positive and immediate, with greater
burned occurring during ENSO events. This is consistent
with the earlier and more detailed analysis ofFuller and Mur-
phy (2006), who reported a strong inverse correlation be-
tween the SOI and five years of monthly ATSR fire counts
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Fig. 10. Annual area burned during calendar years 1999–2008 for
the GFED3 (blue), MCD45A1 (green), L3JRC (red), GLOBCAR-
BON (orange), and GFED2 (grey dashed line) data sets.
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Table 2. 1997–2008 estimated annual regional and worldwide area burned.

Area Burned (×104 km2
=Mha)

Region 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 Mean

BONA 0.9 4.5 1.5 0.7 0.3 3.2 2.0 5.0 2.9 1.9 1.5 1.4 2.2
TENA 0.5 1.1 1.8 2.2 1.2 1.4 1.3 0.7 1.7 2.4 2.7 1.5 1.5
CEAM 0.9 3.2 1.3 1.7 1.0 1.0 1.7 0.8 1.9 1.3 1.1 1.2 1.4
NHSA 1.7 2.8 2.0 2.4 2.0 1.1 3.3 3.2 1.8 1.5 2.5 1.8 2.2
SHSA 16.0 38.9 30.9 15.8 19.4 21.3 16.1 18.7 22.1 12.5 33.8 13.4 21.6
EURO 0.4 0.8 0.6 1.2 1.1 0.4 0.9 0.5 0.6 0.5 1.0 0.5 0.7
MIDE 0.6 0.9 0.8 0.6 1.2 1.0 0.9 0.8 0.7 0.9 1.2 0.6 0.9
NHAF 152.4 148.7 143.5 145.9 114.4 126.1 128.0 116.4 139.9 115.2 123.4 117.7 131.0
SHAF 111.6 153.1 123.1 118.3 117.3 113.9 126.6 127.1 134.1 122.2 124.2 131.5 125.2
BOAS 3.1 12.9 4.7 7.2 5.8 8.1 15.9 1.6 2.8 4.3 3.2 12.0 6.8
CEAS 17.4 14.6 8.1 11.0 15.0 25.0 12.8 15.6 15.1 17.5 12.5 14.0 14.9
SEAS 3.9 7.9 9.5 4.5 4.5 7.7 6.3 10.7 7.1 5.9 9.9 7.0 7.1
EQAS 9.4 2.6 0.6 0.4 0.7 2.4 0.8 1.2 1.1 2.7 0.5 0.4 1.9
AUST 40.5 39.0 80.2 81.7 88.3 73.1 29.0 60.4 24.9 53.1 48.7 26.6 53.8
Global 359.6 431.2 408.7 393.8 372.1 385.6 345.6 363.0 356.7 342.0 366.3 329.7 371.2

in a study area corresponding to our EQAS region. In Aus-
tralia, the association between burned area and ENSO was
negative and significantly delayed (by about ten months),
thus in this region a reduction in burned area tends to fol-
low ENSO events nearly a year later. This is a consequence
of the lower fuel loads following drought years (Randerson
et al., 2005; van der Werf et al., 2008). We found significant
(though somewhat weaker) associations in several other re-
gions, in particular CEAM, TENA, and BOAS, with burned
area typically lagging the SOI by five to eight months.

5 Comparison with other satellite-based burned area
products

We compared our global burned area data set to the L3JRC,
Collection 5 MODIS (MCD45A1), and GLOBCARBON
burned area products, as well as the GFED2 burned area
data set. We binned the L3JRC and MCD45A1 products to
monthly temporal and 0.5◦ spatial resolution to facilitate the
comparison. For each data set we calculated the total area
burned annually on a regional basis (Fig.10) and the 2001–
2006 mean annual area burned (Fig.12).

5.1 Comparison with GFED2

The annual time series in Fig.10 indicate that while GFED3
shows only a relatively modest (∼10%) increase in world-
wide area burned each year over GFED2, the difference in
some regions is substantially larger. The magnitude of these
differences can be seen more clearly in Fig.13, which shows
the relative change in mean burned area from GFED2 to
GFED3. While the relative change is greatest in the Middle
East and Europe, the area burned in these regions represents
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MCD45 

GLOBCARBON

 

L3JRC
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  %/year

Fig. 12.2001–2006 mean annual burned area derived from GFED3,
GLOBCARBON, MCD45A1, and L3JRC burned area data sets, ex-
pressed as the fraction of each grid cell that burns each year.

less than 0.5% of the total area burned worldwide each year
and is in this sense comparatively unimportant at the global
scale.

Of greater significance is the∼60% increase in annual
burned area in Southern Hemisphere Africa (SHAF), where
approximately one third of the total area burned worldwide
occurs each year. Based on a separate analysis (not shown)
we determined that about 30% of this difference was due to
significant omission errors in some of the 500-m burned area
training maps used to produce GFED2, where the impact of
these errors was amplified by the very small number of train-
ing maps available at the time. This lack of training data was
ultimately responsible for the remaining 70% of the differ-
ence as well. This can be seen from Fig.14, which shows the
frequency distribution of the effective burned area per fire
pixel (α) for all grid cells within SHAF for the constrained
local regression (β = 1) described in Sect.4.1. (Here we con-
sider the constrained case as it permits a direct comparison
with GFED2.) Superimposed on the continuous frequency
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Fig. 13. Change between GFED3 and GFED2 2001–2006 mean
burned area, relative to GFED2. Positive values indicate an increase
in burned area in GFED3 compared to GFED2, while negative val-
ues indicate a decrease.

distribution (which qualitatively resembles an exponential
distribution) are the discrete values ofα (shown as black ver-
tical lines, with height indicating frequency) in each of the
seven terminal nodes of the GFED2 SHAF regional regres-
sion tree (Fig.14 inset). Of interest here is the difference in
the general shape of each distribution, as well as the signif-
icant gaps in the discrete case. Had the regression tree been
grown with a sufficiently large training sample, the two dis-
tributions would be in much better agreement, with similar
shapes and with the discrete values ofα in the (now large)
set of terminal nodes spaced much more densely over the
continuous distribution. Being limited in size by the small
quantity of training data available at the time, however, the
SHAF regression tree is too small to adequately represent the
entire range ofα needed to accurately estimate burned area,
with the following consequences: In the 23% of grid cells
for which GFED3 has a value ofα below the GFED2 min-
imum of 1.01 km2/pixel, GFED2 will overestimate burned
area. The terminal node containing this minimum happens
to be the most common destination for the highest tree cover
grid cells found in SHAF, thus GFED2 tends to allocate this
excess burned area to wooded areas within this region. Con-
versely, the small number of terminal nodes located in the
upper half of the continuous distribution leads to a deficit of
burned area in the less wooded areas of SHAF, thus in this re-
gion GFED2 routinely underestimates the extent of savanna
fires.

This same paucity of training data limits the fidelity of the
GFED2 regression trees used to estimate burned area in other
regions such as NH South America and especially Equatorial
Asia (here the regression tree contained only two terminal
nodes). As with SHAF, the small number of discrete values
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Fig. 14. Frequency of effective burned area per fire pixel (α) for all
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cal regression for the constrained linear case (β = 1). Black vertical
lines indicates the discrete values ofα within the terminal nodes of
the GFED2 SHAF regional regression tree (inset), with the height
of each line indicating the fraction of monthly observations from
2001–2006 falling within each terminal node. Variables in the non-
terminal nodes of regression tree are labeled as in Fig.4.

of α contained within the terminal nodes of the tree provide
a comparatively poor sampling of the (approximately) expo-
nential distributions obtained through local regression.

To help assess the extent of the improvements incor-
porated into GFED3, we compared burned area estimates
from both GFED2 and GFED3 to independent estimates
compiled by the Canadian Interagency Forest Fire Centre
(CIFFC) and the National Interagency Fire Center (NIFC).
The CIFFC provides yearly burned area totals for nine
Canadian provinces (British Columbia, Alberta, Manitoba,
Newfoundland and Labrador, Northwest Territories, Ontario,
Quebec, Saskatchewan, and the Yukon Territories). Plots of
GFED versus CIFFC burned area (Fig.15, top) show the sig-
nificantly improved agreement attained with GFED3 during
both the MODIS and pre-MODIS eras. Improvement is also
seen in the comparison with NIFC estimates for the United
States (Fig.15, bottom), particularly during the pre-MODIS
era.

5.2 Comparison with the MCD45A1, L3JRC, and
GLOBCARBON burned area data sets

To facilitate our comparison with the MCD45A1, L3JRC,
and GLOBCARBON products, we analyzed spatially ex-
plicit differences during 2001–2006 when data from all four
products was available (Fig.16). Focusing first on the
L3JRC product, the burned area reported in this data set is
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Fig. 15. 1997–2008 GFED2 (left column) and GFED3 (right
column) annual burned area totals versus independent annual to-
tals compiled by the Canadian Interagency Forest Fire Centre
(http://www.ciffc.ca/) for nine Canadian provinces (top row) and
the National Interagency Fire Center (http://www.nifc.gov/fireinfo/
fire stats.htm) for the United States (bottom row). Totals from the
pre-MODIS era are shown in red; totals from the MODIS era (2001
onward) are shown in blue.

consistently many times larger than both the GFED3 and
MCD45A1 products in seven regions (Boreal North Amer-
ica, Temperate North America, Central America, Europe,
Middle East, Boreal Asia, and Central Asia) and, conversely,
consistently about half as large in NH Africa and two thirds
as large in SH Africa. The large surplus in seven re-
gions is alarming since the validation performed byTansey
et al.(2008) using 72 Landsat-based reference maps revealed
a substantial underestimation of area burned in the L3JRC
product (by roughly a factor of two) in all land cover classes
they considered with the exception of needle-leaved decid-
uous forest. This finding might seem to suggest that the
GFED3 and MCD45A1 burned area products even more
grossly underestimate burned area in these regions. However,
by comparing annual burned area totals for each product to
the independent CIFFC and NIFC mentioned above, and ad-
ditional estimates from the Alaskan Forest Service (AFS), we
conclude that the L3JRC product is significantly overestimat-
ing burned area in at least North America (Fig.17). We note
also that while the GFED3 and MCD45A1 annual totals are
highly correlated with the independent North American esti-
mates, the L3JRC totals are either uncorrelated or negatively
correlated with the independent estimates. These results are
consistent with the findings ofChang and Song(2009) in

MCD45 - GFED3

L3JRC - GFED3

GLOBCARBON - GFED3

-80 -40 -20 -5 0 5 20 40 80

    %/year

Fig. 16. Differences between the 2001–2006 mean annual burned
area derived from the MCD45A1, L3JRC, and GLOBCARBON
data sets and the corresponding mean derived from GFED3, ex-
pressed as a fraction of each grid cell. Red indicates a surplus of
burned area relative to GFED3, while blue indicates a deficit.

a recent intercomparison of the L3JRC and MODIS products,
although the zero-intercept regression constraint used by the
authors inadvertently obscures those instances in which the
L3JRC burned areas and the national statistics are inversely
related. The L3JRC product also often reports burned area in
arid regions containing little burnable vegetation. The prox-
imity of these regions to “pure” deserts suggests that these
burned areas might actually be false alarms limited in extent
by a static desert mask.

The GLOBCARBON product strongly resembles the
L3JRC product, with a similar spatial distribution of burned
area, but generally lower magnitude. Like the L3JRC prod-
uct, it appears to significantly overestimate burned area in
the continental United States and Canada, and shares the
same poor correlation with independent estimates (Fig.17).
A major difference between the two products occurs in
Central America, however, where the GLOBCARBON to-
tals are comparable to those of GFED3 and MCD45A1,
and the L3JRC totals are about three times larger. In
SH Africa, GLOBCARBON consistently reported the least
burned area of all data sets, a result that initially appears to
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Fig. 17. 2001–2006 GFED3 (left column, blue points), MCD45A1
(second column from left, green points), L3JRC (third column from
left, red points), and GLOBCARBON (right column, orange points)
annual burned area totals versus independent annual totals compiled
by the Canadian Interagency Forest Fire Centre for Canada (top
row), the National Interagency Fire Center for the United States
(center row), and the Alaskan Forest Service for the state of Alaska
(bottom row). Note change of scale in L3JRC and GLOBCARBON
plots for Canada and USA.

be inconsistent with the Southern Africa validation study of
Roy and Boschetti(2009). Based on an analysis of 11 Land-
sat scenes, the authors found that the L3JRC and GLOB-
CARBON products successfully mapped 14% and 60%, re-
spectively, of the true area burned. Based on this result, one
would expect the burned area reported in SHAF to be con-
siderably higher for GLOBCARBON than for the L3JRC
product. The reason for this discrepancy probably lies in the
fact that the Roy and Boschetti study was restricted to about
two months of the SH Africa fire season, while our annual
totals include an additional ten months during which a sub-
stantial number of out-of-season commission errors occur in
the L3JRC product. In addition, our SH Africa totals were
compiled over a much larger area than the Roy and Boschetti
study region (by a factor of about 35), and consequently in-
clude very large areas spanning some climatic zones not con-
sidered in their analysis for which their results may not be
representative.

Focusing next on the GFED3 and MCD45A1 data sets, the
annual areas burned for these products have much greater
consistency in most regions. We note, however, that the
former tends to allocate more burned area along gradients
between bare ground and herbaceous vegetation, while the
latter tends to allocate more burned area in cropland. De-
spite having comparable annual totals in NH and SH Africa,
the GFED3 and MCD45A1 products show substantial spatial

differences in both regions. Aside from GFED3 again allo-
cating more burned area along bare-herbaceous gradients, the
spatial trends with respect to vegetation are much less con-
sistent in Africa than elsewhere.

The EQAS region warrants particular attention because
here GFED3 consistently reports much higher annual burned
area totals than either the MCD45A1, L3JRC, or GLOB-
CARBON products (which are relatively consistent in this
case). For this region the “surplus” GFED3 annual burned
area is typically 1–2 Mha. The relative discrepancy in EQAS
exceeds 100% and is worrisome because comparable rela-
tive discrepancies will propagate into any higher-level mod-
eling effort (such as emissions modeling) making use of the
different products. To help explain this discrepancy, we ex-
amined daily MODIS surface reflectance imagery from 2002
and 2006 for several MODIS tiles in the region. While exten-
sive burning could be sporadically identified in the imagery,
the combination of persistent cloud cover and aggressive
cloud and aerosol filtering used in generating the MCD45A1
product restricted mapping to a small fraction of the actual
fire season. This was especially true in 2006, when anoma-
lously high fire activity in Southern Borneo peaked unusually
late in the fire season and subsequently abutted the onset of
the persistently-cloudy wet season, leaving very few post-
fire surface observations available for the predictive model-
ing approach used in theRoy et al.(2005) MCD45A1 algo-
rithm. As the mapping algorithm used to produce our 500-m
MODIS burned area maps is to some extent more resistant
to cloud and aerosol contamination in the reflectance time
series, the larger number of observations available for use
translates into fewer unmapped pixels. These same issues of
persistent cloud cover and aerosol contamination are likely
to contribute to the relatively low burned areas reported for
EQAS in the L3JRC and GLOBCARBON products as well.

6 Conclusions

We used a combination of active fire observations from mul-
tiple satellites, 500-m MODIS burned area maps, local re-
gression, and regional regression trees to produce a hybrid,
global, monthly burned area data set from July 1996 through
mid-2009. Annual totals derived from these data showed
good agreement with independent annual estimates available
for Canada and the United States (both nationally and in the
state of Alaska). Using these data we estimated the global
annual burned area for the years 1997–2008 to vary between
330 and 431 Mha, with the maximum occurring in 1998 and
the minimum in 2008. The most extensive burning consis-
tently occurred in Africa, with∼250 Mha burned on the con-
tinent each year. This represents on average about 70% of
the total area burned worldwide annually.

By considering the 12-month lagged autocorrelation of the
burned area time series, we found that the lowest interan-
nual variability in area burned occurred in the savannas of
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Southern- and Northern-Hemisphere Africa. Regions of high
interannual variability included Australia, the United States,
and boreal forests of both Asia and North America, where
much more sporadic burning is the norm. These results are
consistent with earlier efforts to characterize global fire ac-
tivity using active fire data obtained from satellite-based sen-
sors.

We compared our global burned area data set to the
L3JRC, MODIS MCD45A1, and GLOBCARBON burned
area products, as well as the GFED2 burned area data set.
The burned area reported in the L3JRC product was consis-
tently much larger than all other data sets in about half of the
regions we considered, and consistently much lower than the
GFED3 and MCD45A1 products in NH and SH Africa. Us-
ing independent national burned area statistics, we showed
that the L3JRC product appears to be consistently overesti-
mating the area burned in the continental United States and
Canada each year by a factor of three to ten. The GLOB-
CARBON product most closely resembled the L3JRC prod-
uct, with a similar spatial distribution of burned area but gen-
erally lower magnitude. Similarly, our GFED3 data set most
closely resembled the MCD45A1 data set, both in terms of
the spatial distribution of burned area, as well as the annual
area burned in most regions.

While GFED3 offers an improvement over the 1◦ burned
area component of GFED2, the monthly temporal resolution
of the data set is often inadequate for contemporary emis-
sions and chemical transport models. The relatively coarse
time step is an inherent limitation of the indirect approach
used to estimate burned area from VIRS and ATSR active fire
counts during the pre-MODIS era. A version of GFED re-
stricted to the MODIS-era could provide global burned area
estimates over much finer time scales (up to daily) and is
now under development. As the calibration approach we
applied to VIRS and ATSR active fire data cannot achieve
these finer temporal scales, future efforts to develop a multi-
decadal global burned area data record would more profitably
be directed toward developing a multi-satellite suite of con-
sistent, validated, historical burned area products that exploit
the direct observation of burn scars, and merging these into a
coherent whole.
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