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Abstract. The main biogeochemical nutrient distributions,
along with ambient ocean temperature and the light field,
control ocean biological productivity. Observations of nutri-
ents are much sparser than physical observations of temper-
ature and salinity, yet it is critical to validate biogeochem-
ical models against these sparse observations if we are to
successfully model biological variability and trends. Here
we use data from the Bermuda Atlantic Time-series Study
and the World Ocean Database 2005 to demonstrate quanti-
tatively that over the entire globe a significant fraction of the
temporal variability of phosphate, silicate and nitrate within
the oceans is correlated with water density. The temporal
variability of these nutrients as a function of depth is almost
always greater than as a function of potential density, with he
largest reductions in variability found within the main pycn-
ocline. The greater nutrient variability as a function of depth
occurs when dynamical processes vertically displace nutri-
ent and density fields together on shorter timescales than bi-
ological adjustments. These results show that dynamical pro-
cesses can have a significant impact on the instantaneous nu-
trient distributions. These processes must therefore be con-
sidered when modeling biogeochemical systems, when com-
paring such models with observations, or when assimilating
data into such models.

1 Introduction

The distribution of biological nutrients within the world’s
oceans is one of the significant determining factors in the
distribution of oceanic life (Falkowski et al., 1998). For in-
stance, high nutrient coastal regions are the source of most of
the world’s fish (Watson et al., 2004), while the nutrient poor
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subtropical gyres are relatively devoid of life (Sharp et al.,
1980). Consequently, our understanding of biogeochemical
processes is intimately linked to our knowledge of the be-
havior of dissolved nutrients. In particular, modeling efforts
(see, for example,Palmer and Totterdell, 2001; Le Qúeŕe
et al., 2005) of global ocean biogeochemistry need to ac-
curately describe nutrient fields in order to simulate ocean
biogeochemistry. It has long been known that nutrients may
exhibit relationships to both ocean temperature (Iselin, 1939;
Switzer et al., 2003; Kamykowski, 2008; Steinhoff et al.,
2010) and water density (Kamykowski and Zentra, 1985;
McGillicuddy Jr. et al., 1999; Archer et al., 1996), with tem-
perature relationships often used to infer nutrient distribu-
tions from temperature observations. The form of these re-
lationships locally depends upon surface nutrient availability
where the water is formed, and on remineralization and mix-
ing below the surface (Sarimento and Gruber, 2006). Thus
the robustness of nutrient-density relationships is determined
by many non-local processes. Near to the surface biological
consumption is also important, withGose et al.(2000) show-
ing that surface relationships between nutrients and tempera-
ture can be improved by also considering chlorophyll. These
previous investigations mostly focus on understanding spa-
tial distributions of nutrients. However, in any location nutri-
ents are also subject to ocean dynamical processes, irrespec-
tive of the origin of the water masses. This dynamic temporal
variability will always modulate the nutrient variability and
determine a component of the observed variations. It is this
temporal variability that is the main subject of this study.

Our main interest is in comparing the variability of nu-
trients about nutrient-potential density (N(ρ)) and nutrient-
depth (N(z)) relationships. This is because ocean dynami-
cal processes, particularly the propagation of internal waves
and Rossby waves, that vertically displace Lagrangian water
properties should have limited impact onN(ρ) variability,
but would significantly affect the variability ofN(z). Other
than ocean dynamicsN(z) is determined by much the same
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processes asN(ρ), although as sinking and remineralization
rates are only weakly influenced by changes in potential den-
sity, remineralization of sinking particles can be expected to
be more strongly correlated to depth. Thus, by comparing
the relative variabilities aroundN(ρ) andN(z), we are able
to quantitatively ascertain how much of an impact ocean dy-
namics has on the instantaneous distribution of nutrients. An
analogy to this work can be made by looking at salinity and
temperature and similar diagnostics to those used here have
been presented for looking at salinity-temperature variability
in Troccoli and Haines(1999) andHaines et al.(2006).

Section 2 of this paper shows, in agreement with
McGillicuddy Jr. et al.(1999), how the nutrients nitrate,
phosphate, and silicate vary within a water column using data
taken from the Bermuda Atlantic Time-series Study, (BATS;
Phillips and Joyce, 2007). From these abundant data we
develop our diagnostic approach to show that the temporal
variability of N(ρ) is considerably reduced within the main
thermocline. Then in Sect.3 we develop diagnostics for the
much sparser data in the World Ocean Database (WOD05;
Garcia et al., 2006) to show thatN(ρ) has lower variability
thanN(z) over almost all of the world’s oceans. The paper
concludes with a section discussing our results and their rel-
evance to biogeochemical modeling and data assimilation.

2 Nutrient time-series at the BATS site

To illustrate how the variability of nutrients changes down a
water column at a single site, we repeat some of the work of
McGillicuddy Jr. et al.(1999), but including more recently
available data. Specifically we present results obtained from
an analysis of the BATS data set. The BATS time-series, ob-
tained from approximately 75 km SE of Bermuda, provides
a long data record of nutrients that stretches back to 1988,
with a sampling interval of approximately one month. As
such, the BATS data set contains a high density of measure-
ments in a highly localized area. Crucially for our purposes,
measurements taken within BATS include phosphate, nitrate
(combined with nitrite), silicate, and potential density (de-
rived from temperature and salinity). Such a large collection
of data allows us, with a high degree of accuracy, to quanti-
tatively assess the variability of bothN(ρ) andN(z).

Nitrate + nitrite, phosphate, and silicate are plotted against
depth and potential density (referenced to 2000 m) in Fig.1
rows (a) and (b). A visual inspection clearly shows the mean
relationships between nutrients and depth or density; how-
ever, a closer inspection reveals that the scatter of the data
around the mean relationship appears much smaller on the
N(ρ) plots, (b), than on theN(z) plots, (a). This reduction
is most obvious where the nutrient concentration increases
dramatically with increasing density through the main ther-
mocline. We quantize this reduction in (c), which shows the
variance ofN(ρ) andN(z) as a function of depth over the top
1500 m of the water column. The variance ofN(z) was cal-

culated at 20 m intervals using all data within±10 m; any in-
terval containing no data was excluded from the result. Con-
versely, the variance against potential density was obtained
by finding the mean density within each 20 m interval and
reallocating the nutrient data between the intervals using a
nearest in density approach. After this process the nutrient
variance was calculated for each depth interval, defined now
by its mean density.

Outliers within the data, several of which are clearly visi-
ble in Fig.1b, can severely bias the above variance calcula-
tion. As such, outliers were identified and removed prior to
calculating the variances. As temperature, salinity, and nu-
trient errors all contribute to theN(ρ) plots, outliers were
identified using these data rather thanN(z). Outlier identi-
fication was performed by calculating the median absolute
deviation of the nutrient data in an advancing 0.4 kg/m3 win-
dow that moved down the water column; any data point lying
more than 3 median deviations from the median was flagged
as an outlier. Once flagged, outliers were rejected from the
variance calculations of bothN(ρ) andN(z).

It is clear from the plots in Fig.1c that between 300 m and
1000 m there is a very substantial reduction in the variabil-
ity of all of the nutrients. This is indicative of the nutrient
distribution being strongly tied to the vertical density struc-
ture of the water within the main thermocline. Here dynam-
ically induced variability associated with vertical heaving of
the water column raises the depth level variance, but not the
density level variance. At other depths, including depths be-
low 1500 m which we do not show, the variance ofN(ρ) is
approximately equal to the variance ofN(z). In shallow wa-
ters the biological processing of nutrients and mixing within
the mixed layer will tend to break any nutrient-density re-
lationships. In deeper water the dominant variability is less
likely to be due to vertical heave of the water column on short
timescales and more likely to be due to slower processes.

BATS is but a single time-series and its results apply to
only one location. However, it is not unreasonable to assume
that similar processes are taking place elsewhere leading to
similar patterns of variability with depth. In the next section
we extend our scope to look at temporal nutrient variability
around the globe.

3 A global perspective

In order to obtain the variability statistics for nutrients on a
global scale, we have analyzed nutrient data collected after
1990 available from the WOD05 database. These data give
global coverage of the nutrients phosphate, nitrate, and sil-
icate, though there are large gaps in the data set (the data
distribution is shown in Fig.2a). In order to estimate the
variability of N(ρ) andN(z) we rejected any data that were
flagged – for whatever reason – within the data set. We also
rejected any data that didn’t consist of concomitant measure-
ments of temperature, salinity, depth, and nutrient. After
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Fig. 1. BATS nutrient concentration data plotted against(a) depth and(b) potential density anomaly (ρ−1020 kg/m3) referenced to 2000 m.
Plots on row(c) show the nutrient-depth variance (solid-line) and nutrient-density variance (dashed line; see text for how this was calculated)
within the top 1500m of the water column.

these initial checks the data were binned into 2◦
×2◦ bins.

This bin size was chosen to be large enough to contain suffi-
cient data to allow reasonable statistics to be calculated, yet
small enough that lateral variations would be small leaving
temporal variability as the dominant signal. Later, by using
larger bin sizes, we look at how sensitive the results are to
allowing in more spatial variability.

3.1 Methods

Outliers in each of these bins were again removed using a
median based technique; however, as we have far fewer data
in a water column, this process needed to be more flexible
than for the BATS data. As with BATS, onlyN(ρ) data were
used in the determination of outliers, but once identified out-
lying points were rejected from bothN(ρ) and N(z). To
determine whether a data pointk was an outlier it was com-
pared to a set of nearby data points within the water column.
These comparison points were found by gradually increas-
ing the density windowρk ±η3k until at least 10 data points
were found, whereρk is the density ofk, 3k is the full po-
tential density range (referenced to the depth ofk) of all data

within the bin, andη = 0.001,0.002,0.003,...,0.1. If there
were fewer than 10 data points available in the largest win-
dow (±0.13), then all data points within this window were
used down to a minimum of 4. The selected data were de-
trended and the median and median deviation calculated. If
the nutrient value of data pointk exceeded 3 median devi-
ations from the median of the window, thenk was rejected
as an outlier. This method detected most outliers; however,
it was insensitive to erroneous data points with excessively
high densities outside the true density range. To avoid this
problem we also checked that the potential density of pointk

was within 3 median deviations of the potential densities of
the other data points within the adaptive window.

With the outliers removed the remaining WOD05 data in
each bin were used to estimate the ratioR given by

R =

∑M
j=1

∣∣Nj (ρj )−µρ(ρj )
∣∣∑M

k=1|Nk(zk)−µz(zk)|
, (1)

whereM is the number of data points per bin down to a
user chosen maximum depth. As above,N is the amount
of a nutrient (either nitrate, silicate, or phosphate) measured
at a data point,ρ is the water density, andz is the depth.
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Fig. 2. The value ofR, see text, gridded into 2◦ bins. The nutrients shown are(b) Nitrate, (c) Phosphate, and(d) Silicate. (a) Shows the
number of data points available per 2◦

×2◦ bin to estimateR. The plots were generated from World Ocean Database data measured from
1990 onwards.P<1 is the number of bins withR < 1,P>1 is the number of bins withR > 1, whileP<0.9 is the number of bins withR < 0.9.
A non-linear color scale is used to highlight the structure near the critical value ofR = 1.

We use the ratioR because it is insensitive to factors, such
as instrument noise and bias, that would be expected to af-
fect the measured nutrient-density and nutrient-depth rela-
tionships equally. IfR is less than 1 then there is less scatter,
hence less variability, inN(ρ) than inN(z) and vice versa if
R > 1. The mean absolute deviation of the data was used in
the definition ofR because it is a more robust estimator of
the variability in the presence of outlying data (DeGroot and
Schervish, 2002). This was desirable because our method
could not be optimized for every bin, and poor estimates of
µz andµρ in bins with sparse data could have lead to outly-
ing data points.

The functionsµρ andµz, are the ‘mean’ nutrient profiles
with respect to density and depth in each 2◦

× 2◦ bin. It
is evident from the BATS data, Fig.1, that these functions
may have a complex structure within a water column and
we do not seek to explain the origin of these functions from
the physical and biogeochemical history of the water masses.
For a data pointk, a local estimate ofµz was calculated from

µzk = mkzk +ck (2)

wherezk is the depth ofk andµzk is the valueµz takes atk.
The parametersmk andck, specific tok, are the gradient and
intercept of a local linear regression aboutk. The regression
was calculated using all data found within the smallest of

zk ±η3z that, excludingk, contained 10 data points; here
3z is the full depth range of the data, andη is defined as
before. If the largest window (±0.13z) contained less then
10 data points, then all data within the window were used
down to a minimum of 3 points, otherwiseµzk could not
be estimated andk was rejected. Excluding pointk from
the estimate ensured thatµzk was independent ofk. Since
measurements in WOD05 tend to be available at standard
depths, it is common to have a lot of data at, or near to, a
single depth, with no other nearby data. A linear fit is then
ill-conditioned and the data mean was used forµzk.

The calculation ofµρ proceeded in a similar fashion, but
using the potential density referenced to the depth ofk.
However, at large depths (higher densities) a complication
arose because nutrients, especially silicate, can increase very
rapidly with potential density, as seen for silicate in Fig.1a.
With such large gradientsµk becomes almost impossible to
determine. To avoid this problem the maximum depth of the
analysis was set to 2000 m.

3.2 Results

The value ofR for the 2◦ binned WOD05 data down to a
maximum depth of 2000 m is shown for phosphate, silicate,
and nitrate in Fig.2b–d. Also given in this figure are the
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number of binsP<1 that haveR < 1, the number of bins
P>1 for whichR > 1, and the number of binsP<0.9 in which
R < 0.9. While there is a lot of spatial variability in the plots,
it is apparent that most bins, by a ratio of 3:1 or more, have
R < 1. Translated into relative area, we haveR < 1 over 79%
of the area for which we have nitrate data, 80% for phosphate
data, and 74% for silicate data. More significantly, for all
three nutrientsR is less than 0.9 (corresponding to the vari-
ability of N(ρ) being at least 11% less than the variability of
N(z)) more than twice as often asR > 1. In fact, in terms of
relative area,R is less than 0.9 over more than half of the area
for which we have data (60% for nitrate; 62% for phosphate;
54% for silicate). Thus from the WOD05 data it appears that
temporal variations in nutrients are tied to temporal varia-
tions in water density over most of the world’s oceans.

There is a lot of scatter in the value ofR in Fig.2, both spa-
tially and between the three nutrients. To get an in-depth and
detailed analysis of what is happening would require a bin
by bin examination of the data, which is beyond the scope of
this paper. Broadly speaking, nitrate and phosphate tend to
have smaller values ofR than silicate. This is a consequence
of silicate tending to have much larger, and more difficult to
estimate, nutrient-density gradients at depth. Nonetheless,
in the data rich North Pacific and North AtlanticR is gener-
ally less than 0.9 demonstrating thatN(ρ) shows consistently
less, though not much less, scatter thanN(z). It may be that
with more high quality data in these regions we would expect
to get results similar to BATS, whereRBATS ≈ 0.7. Interest-
ingly, in the southern oceans below 40◦ S, R is often fairly
low (sometimes less than 0.5) suggesting goodN(ρ) rela-
tionships; this is despite the somewhat weaker density strati-
fication present at these latitudes. Although data are limited
in the southern oceans, a detailed inspection was conducted
on a few bins and the results were found to support the idea
of lower variability there.

Further to the above we carried out an experiment on
WOD05 nitrate data to see the effect that bin size had on
our results. To do this we varied the width of the data bins
used to calculatedR. The values ofP>1/P<1 obtained from
this experiment are shown in Fig.3. As the bin size grows
additional data become available per bin allowing for more
accurate statistics, but at the same time an increasing amount
of lateral variability is introduced into our results. Clearly
for N(ρ), the increased lateral variability does not increase
the variance to the same extent as forN(z), leading to the
reduction ofP>1/P<1 as the bin size increases. Nutrients,
like many other ocean tracers, tend to spread laterally along
isopycnals (e.g.McDougall, 1984), and therefore lateral gra-
dients along isopycnals are likely to be smaller than along
depth surfaces. For a zero bin size lateral gradients are ex-
cluded leaving only temporal variations and linearly extrapo-
lating in Fig. 3 gives 0.31 (regression coefficient of 0.95) for
a zero bin size, implying that the temporal variance ofN(ρ)

relative toN(z) is indeed reduced over∼70% of the world
ocean.

Fig. 3. P>1/P<1 for nitrate data as bin size is varied from 1 to 5
degrees.

Two tests were done to check that the results shown in
Figs. 2 and3 are not due to biases in our analysis method.
The first test allowed for a broader data window, withzk ±

η3z allowed to expanded until it contained 40 data points.
This test permitted more data and allowed for more accurate
regressions, but was also less local and produced larger er-
rors whenµz andµρ were strongly non-linear. Applied to
WOD05 nitrate data the results from this test were not sig-
nificantly different to the results obtained above; the new
values wereP>1 = 1081, P<1 = 3954, andP<0.9 = 2999.
Such small changes in the results show that our method is
relatively insensitive to the size of the vertical data window
and that we can have confidence in the values ofR obtained.
In the second test we carried out the following experiment.
An estimate ofR was obtained by applying our method to
WOD05 depth and density data, but with the WOD05 nutri-
ents replaced with uniformly distributed random values from
0 to the largest measured nutrient value. Discounting outlier
removal, not done in the test, we expectR > 1 andR < 1
to be equally likely. The test found a small but distinct bias
towardsR being greater than 1. This bias is explained by
the practice of measuring nutrients on, or as close as possi-
ble to, standard depth levels, such as the distinct levels seen
on Fig. 1a. Consequently we have a very large number of
measurements at relatively few depths and very few mea-
surements elsewhere. This enablesµz to be determined very
accurately at depths where we have data. Conversely, plotted
against density the data are spread out along a trend, and thus
it is more difficult to determineµρ . This effect is sufficient
to biasR. The bias is slight as, excluding bins with less than
1000 points, the mean value ofR was 1.01, with a standard
deviation of 0.01. That the plots of Fig.2 show, despite this
bias, a very clear signal ofR < 1 almost everywhere, strongly
suggests that the variability of nutrients on potential density
surfaces is indeed reduced.
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Fig. 4. Mean absolute deviation of WOD05 phosphate down to
2000 m. Solid line: deviation against depth; dashed line: deviation
against density. Plot(b) shows the number of data points available
to estimate(a).

As with the BATS data, we wish to know where in the wa-
ter column the reduction in variability ofN(ρ) takes place.
We calculated the absolute deviations aboutµz andµρ of all
data points in the WOD05 data. These deviations were then
collected into 100 m depth bins and their averages taken. The
results of this test applied to WOD05 phosphate data (results
for nitrate are similar, while silicate follows the same pattern,
but has less variability reduction in the near surface) can be
seen in Fig.4a. In the top 1000 m there is a clear reduction of
up to 10% in the mean deviation ofN(ρ), while below this
depth the variability is roughly the same betweenN(z) and
N(ρ). There is some indication that the variability ofN(ρ)

has been slightly increased at depth, but this effect is small
and likely due to the bias of the method. The results seen
in the figure are consistent with what is seen at BATS, with
upper water column variability reduction and then equality
of variability at greater depths. This is in agreement with our
earlier assertion that anN(ρ) relationship exists where both
nutrients and isopycnals are moved up and down by vertical
heave of the thermocline. In a global average this appears to
happen over a broader range of depths than in the BATS data
because of geographic variations in the mean depth of the
thermocline. In regions where the thermocline outcrops, or
is very shallow, we get reduced variability near the surface,
while reduced variability occurs at depth when the thermo-
cline is very deep.

It is interesting to consider the effects that seasonality has
on our results. An in-depth examination of the changes in
variability across the globe is challenging due to lack of data,

especially in the Southern Hemisphere. However, to see if
there is a seasonal change in the variability of the data we
conducted a similar experiment to the above. In this experi-
ment we concentrated on nitrate data in the Northern hemi-
sphere, where data are relatively abundant, and then split this
data into “summer” (all data from April, May, June, July, Au-
gust, and September) and ‘winter’ groups (all data from Oc-
tober, November, December, January, February, and March).
Statistics for the value ofR were then calculated for both of
these groups. It was found for the winter data thatP>1=449
and P<1=1514, while for the summer dataP>1=541 and
P<1=1778. In both cases the fraction of bins for whichR > 1
is very similar (∼ 0.3) implying that there is not much sea-
sonal dependence to our results. From this we may infer that
the proportional effect of ocean dynamics on nutrient rela-
tionships does not vary significantly throughout the year.

4 Summary and discussion

We have shown, through the analysis of in-situ nutrient (ni-
trate, phosphate and silicate) measurements, that a significant
amount of the temporal variability of nutrient distributions is
coupled to the temporal variability of potential density nearly
everywhere within the world’s ocean. In other words, nutri-
ent distributions show covariability with potential density.

The reduction in variability aroundN(ρ) relationships
compared toN(z) relationships has been demonstrated both
at a single location, using the data rich BATS time-series,
and, more importantly, in a global sense using data from the
WOD05 database. In both data sets the variability of the nu-
trients as a function of potential density was shown to be sig-
nificantly reduced.

Our results, which show little seasonal variability, may be
explained by the coupling of nutrients to potential density
removing variability due to the dynamical effects of wave
propagation. In the case of waves the vertical motion of wa-
ter affects the nutrients and potential density equally. This
is not true for other processes such as biological activity and
mixing. These processes add variability to bothN(ρ) and
N(z). Consequently the smaller variability ofN(ρ) when
compared toN(z), is most likely due to vertical dynamics
inflating theN(z) variability. Thus our results indicate that
dynamical vertical motion does play a significant role in de-
termining the instantaneous nutrient structure of the ocean.

In most ocean regions we have shown that the largest re-
duction in the variability ofN(ρ) occurs in upper waters,
particularly through the main pycnocline, although not nec-
essarily right to the surface. Close to the surface factors
such as biological processing break theN(ρ) relationship.
At depth nutrient gradients are small so vertical motion,
which is also weak in deep waters, has only a limited impact.
However, between these two depth domains significant wave
motion acts on steep nutrient gradients leading to increased
nutrient-depth, but not nutrient-density, temporal variability.
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We suggest thatN(ρ) relationships, which we have
demonstrated here to be of reduced variability when com-
pared toN(z), can be of importance to practitioners of
data assimilation in biogeochemical models. Biogeochem-
ical models can be of very different levels of complexity, but
they all share a common dependence on the underlying nutri-
ent distributions. In recent studies data assimilation has been
used to constrain either the biogeochemical variables them-
selves (examples includeTriantafyllou et al., 2003; Nerger
and Gregg, 2007; Hemmings et al., 2008) and/or the physi-
cal state of the ocean (Anderson et al., 2000; Eden and Os-
chlies, 2006). However, in such assimilation schemes nutri-
ents are usually left unconstrained, leading to the breakdown
of the nutrient-water mass relationships and a worsening of
the modeled nutrient fields. The results presented here indi-
cate that ideallyN(ρ) variability should be kept small, even
when assimilating data. This should be possible by applying
nutrient balancing increments similar to the approach used
for salinity in Troccoli and Haines(1999). We propose that
this presents the possibility of considerably improving the re-
production of nutrient distributions in biogeochemical mod-
els, potentially having a big impact on all areas of model
behavior. Experiments using these ideas are ongoing and re-
sults will be reported in a separate study.
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