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Abstract. Resolving the discrepancies between NEE esti-
mates based upon (1) ground studies and (2) atmospheric
inversion results, demands increasingly sophisticated tech-
niques. In this paper we present a high-resolution inversion
based upon a regional meteorology model (RAMS) and an
underlying biosphere (SiB3) model, both running on an iden-
tical 40 km grid over most of North America. Current op-
erational systems like CarbonTracker as well as many pre-
vious global inversions including the Transcom suite of in-
versions have utilized inversion regions formed by collaps-
ing biome-similar grid cells into larger aggregated regions.
An extreme example of this might be where corrections to
NEE imposed on forested regions on the east coast of the
United States might be the same as that imposed on forests
on the west coast of the United States while, in reality, there
likely exist subtle differences in the two areas, both natural
and anthropogenic. Our current inversion framework utilizes
a combination of previously employed inversion techniques
while allowing carbon flux corrections to be biome indepen-
dent. Temporally and spatially high-resolution results utiliz-
ing biome-independent corrections provide insight into car-
bon dynamics in North America. In particular, we analyze
hourly CO2 mixing ratio data from a sparse network of eight
towers in North America for 2004. A prior estimate of carbon
fluxes due to Gross Primary Productivity (GPP) and Ecosys-
tem Respiration (ER) is constructed from the SiB3 biosphere
model on a 40 km grid. A combination of transport from
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the RAMS and the Parameterized Chemical Transport Model
(PCTM) models is used to forge a connection between up-
wind biosphere fluxes and downwind observed CO2 mixing
ratio data. A Kalman filter procedure is used to estimate
weekly corrections to biosphere fluxes based upon observed
CO2. RMSE-weighted annual NEE estimates, over an en-
semble of potential inversion parameter sets, show a mean
estimate 0.57 Pg/yr sink in North America. We perform the
inversion with two independently derived boundary inflow
conditions and calculate jackknife-based statistics to test the
robustness of the model results. We then compare final re-
sults to estimates obtained from the CarbonTracker inversion
system and at the Southern Great Plains flux site. Results are
promising, showing the ability to correct carbon fluxes from
the biosphere models over annual and seasonal time scales,
as well as over the different GPP and ER components. Addi-
tionally, the correlation of an estimated sink of carbon in the
South Central United States with regional anomalously high
precipitation in an area of managed agricultural and forest
lands provides interesting hypotheses for future work.

1 Introduction

Carbon dioxide inversion studies have generally been fo-
cused on improved estimation of terrestrial carbon fluxes
such as Ecosystem Respiration (ER), Gross Primary Pro-
duction (GPP), and Net Ecosystem Exchange (NEE) as a
means to better understand the carbon cycle of the earth. Re-
searchers have progressively increased the resolution, in both
time and space, and accuracy of the carbon flux estimates
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over the past decade. Early inversion studies were focused
primarily with finding an explanation for the missing sink of
carbon that can be easily identified from calculating a bud-
get from annual fossil fuel emissions to the atmosphere, the
effect of land use changes, and the oceanic carbon sink and
comparing it to annual records of increasing atmospheric car-
bon dioxide concentrations. Given that the sink often repre-
sents a third of the annual fossil fuel emissions, it is of great
interest to scientists and policy makers alike. Inversion re-
sults have been very effective at identifying large defining
features of the terrestrial portion of the carbon sink (Fan et
al., 1998; Gurney et al., 2002) although much debate remains
even at extremely large scales (Stephens et al., 2007). How-
ever, the debate on a global scale has not deterred researchers
from focusing these techniques on finer scale problems. In
fact, criticism has been aimed at large scale global inversions
because of the fact that their estimates can be biased on finer
regional scales (Kaminski et al., 2001). The data available
for regional inversion studies is increasing rapidly year af-
ter year, primarily within the developed industrial nations of
the Northern Hemisphere. This provides researchers with
some of the first opportunities to perform inversion studies
in a very high-resolution setting.

Gerbig et al. (2003) provided the first major regional in-
version paper. They used a receptor-oriented inversion ap-
proach to investigate a series of flights from the CO2 Bud-
get and Rectification Airborne (COBRA) study conducted in
2000. Results showed that the effect of biosphere carbon
fluxes could be seen at altitude in mixed layer CO2 observed
by aircraft. The paper pointed out several areas for future im-
provements in regional inverse modeling including improv-
ing biosphere-atmosphere exchange and convective transport
modeling. Peylin et al. (2005) followed this with a regional
inversion based on western Europe in which he estimated
daily fluxes for a month using relatively continuous mea-
surements of CO2 from towers in the inversion domain. The
most similar effort made for North America comes from the
ongoing CarbonTracker project (Peters et al., 2007). Peters
et al. (2007) used a nested transport structure (TM5) with
a relatively high-resolution 1-degree inner grid over North
America. A priori carbon fluxes were estimated by modify-
ing 1-degree by 1-degree monthly output from the Carnegie
Ames Stanford Approach (CASA) model to provide diurnal
variability by incorporating aQ10 temperature relationship
for respiration and a linear scaling of GPP with solar radi-
ance. NEE estimates were optimized by estimating linear
correction factors for NEE for each of up to 19 ecoregion-
based (Olsen et al., 1992) sub-areas of North America based
upon a 5-week smoothing window. The coarseness of the in-
version over North America is required in order to regularize
the inversion problem in light of limited observations.

Our inversion framework has drawn upon certain tech-
niques from previous inversions while including some new
features. The aim of the inversion is to provide fine scale in-
version results over North America for 2004. A novel feature

of this inversion is the distinct estimation of GPP and ER
instead of just NEE, which to our knowledge has not previ-
ously been performed, at least in the regional framework. We
have drawn upon the spatial correlation constraints used by
Rödenbeck et al. (2003) and Michalak et al. (2004), largely in
order to regularize the inversion problem. We are largely us-
ing the spatial correlation in the prior error covariance struc-
ture to regularize the problem. Attempts were made to es-
timate the spatial correlation via the measurements but the
data was not constraining enough. Future alternatives that
might be possible would be to estimate parameters via a
prior flux model as in Mueller et al. (2008) or Gourdji et
al. (2008). However, it has been shown in practice that cer-
tain isotropic spatial error correlations can work well as a
regularization agent. Carouge et al. (2008a, b) investigated
the potential of a 10 tower network of CO2 observing towers
over Europe using a 50 km resolution grid over Europe. They
found that 10 days temporal and 1000 km spatial averaging
was required in order to obtain good agreement between es-
timate and “true” fluxes. Surprisingly, they found that these
isotropic assumptions on the spatial errors performed better
than an estimate of the spatial errors based on the “physical
errors”, those that could be calculated by knowing the “true”
fluxes.

Large matrix inversions limited the inversion grid resolu-
tion to approximately 10 000 km2 (60×36 grid composed of
100 km by 100 km grid cells). For sensitivity studies involv-
ing numerous inversion runs, a 40 000 km2 grid (30×18 grid
composed of 200 km by 200 km grid cells) is used. Many
previous global inversions have been performed upon grid
areas of around 5 to 10 times that size. In order to provide
some contrast, CarbonTracker optimizes 17 bias correction
factors for NEE over North America (with 4 of those rep-
resenting less than 0.5% of the land area each) while this
inversion typically optimizes 30×18=540 each (30×18 grid
mentioned above) for ER and GPP. It is important to note that
the employment of a spatial correlation constraint and decor-
relation length scale, either due to a formal statistical model,
or as a method of regularization, does reduce the effective
degrees of freedom so that we certainly do not expect the op-
timization of 540 “independent” parameters. Nevertheless,
it is important to note that Schuh et al. (2009) showed how
biases can occur when using a relatively coarse fixed set of
regions within an atmospheric inversion as opposed to a finer
set of regions, even when assuming spatial-scale patterns of
carbon flux on the order of 500 km and greater. The flexi-
bility we have achieved by avoiding fixed inversion regions
does not come without a cost since we cannot simultane-
ously optimize fluxes outside of North America. Therefore
we used offline-derived boundary conditions and provided
these as fixed contributions to the tower CO2 budget.

Schuh et al. (2009) showed that considerable success could
be achieved in estimating large spatial scale ER and GPP sig-
nals in the midst of small spatial scale variability in fluxes.
We leveraged this result and put the problem in a Kalman
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filter framework in order to allow higher resolution spatial
estimation. This filter is of a somewhat simple variety and
allowed us to work with all portions of the inversion, such
as complete prior and posterior covariance matrices, explic-
itly. We then tested sensitivity to a number of pieces of the
inversion considered uncertain, including parameters in the
actual inversion as well as fixed contributions to the modeled
CO2 such as fossil fuel and boundary inflow. As far as we
know this is also the first paper providing a comparison of
inversion results derived by using two independent bound-
ary inflow estimates. Additionally, the effect of including
recently available high-resolution fossil fuel inventory data
is quantified.

2 Methods

2.1 Prior flux model and transport

The Simple Biosphere model (SiB) is based on a land-surface
parameterization scheme originally used to compute bio-
physical exchanges in climate models (Sellers et al., 1986),
but later adapted to include ecosystem metabolism (Sellers et
al., 1996a; Denning et al., 1996a). SiB has been coupled to
the Brazilian version of the Regional Atmospheric Modeling
System (RAMS; Pielke et al., 1992; Frietas et al., 2006) and
used to study PBL-scale interactions among carbon fluxes,
turbulence, and CO2 mixing ratio (Denning et al., 2003) and
regional-scale controls on CO2 variations (Nicholls et al.,
2004; Wang et al., 2006). This latest version of SiB is termed
SiB3.

In SiB3, Net Ecosystem Exchange (NEE) is composed
of two component fluxes, Gross Primary Productivity (GPP)
and Ecosystem Respiration (ER), which includes autotrophic
(canopy respiration and root respiration) and heterotrophic
respiration terms (due to decomposition of dead organic mat-
ter),

NEE(x,y,t) = ER(x,y,t) − GPP(x,y,t) (1)

wherex and y represent grid coordinates andt represents
time. High-frequency time variations of photosynthesis and
respiration are assumed to be well understood and easily
modeled processes, i.e. due to diurnally varying quantities
such as radiation, temperature, or longer term variations in
modeled quantities such as soil moisture etc. Photosynthesis
and assimilation are derived using a coupling of equations
based upon the work of Farquhar, Collatz, and Ball (Farquhar
et al., 1980; Collatz et al., 1992; Ball et al., 1987) while soil
respiration is based upon a rather simple function of temper-
ature and soil moisture and constrained in such a way that
annual NEE is equal to zero (Raich et al., 1991; Denning et
al., 1996).

Several papers have provided comparisons of models to
observations, largely by using eddy flux towers to measure
true fluxes of water, carbon, and energy (Baker et al., 2003,
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Fig. 1. Dominant SiB3 biome classes for the first biome patch de-
rived from MODIS 12 Landcover product.

2008; Hanan et al., 2005). Longer-term, more persistent bi-
ases are estimated by solving for unknown multiplicative bi-
ases in each component flux after smoothing in space and
time. While these biases could result from incorrectly mod-
eled short term processes, such as errors in the daily develop-
ment of the planetary boundary layer, or short-term processes
not in the model such as seasonal fertilization and irrigation,
the main purpose is to capture longer-term processes not ex-
plicitly modeled such as land use change (Robertson et al.,
2000; Peterson et al., 1998), disturbances, anthropogenic fer-
tilization effects (Oren et al., 2001), managed forestry (Till-
man et al., 2000), and large scale carbon removal (Ciais et al.,
2007). This modeling is accomplished by convolving thein-
fluencefunctions generated from a lagrangian particle disper-
sion model, LPDM (Uliasz and Pielke, 1991; Uliasz, 1993,
1994; Uliasz et al., 1996; Zupanski, 2007), with gridded
Gross Primary Productivity (GPP) and total Ecosystem Res-
piration (ER) at each time step in SiB3-RAMS. The LPDM
transport scheme reverses advection derived from RAMS at
very fine time scales and parameterizes vertical turbulent dif-
fusion according to a Gaussian process. A large advantage of
this model is the ability to simulate transport of atmospheric
constituents at sub grid scales, reducing representation error
that might be caused by associating an observing tower with
a 40 km grid cell in the model. By tracking particles upwind,
backward in time, from the towers, one may make inferences
about the contribution of upstream GPP and ER sources.

In particular, we have estimated regional fluxes from at-
mospheric mixing ratios by assuming that the model of the
component fluxes is biased, and that the biases are smoother
in time and space than the fluxes themselves:

NEE(x,y,t) = (1 + βRESP(x,y)) ER(x,y,t) (2)

− (1 + βGPP(x,y)) GPP(x,y,t)

The model domain, shown in Fig. 1, consists of most of
the United States as well as a large portion of Canada and the
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northern portions of Mexico. Both SiB3 and RAMS were
run on a single 150×90 grid of 40 km cells, with SiB3 uti-
lizing 3 patches per cell to capture subgrid-scale variability
in land cover. RAMS meteorology was nudged with 40 km
forecast meteorology from the National Center for Environ-
mental Protection’s Eta model throughout the domain using
a 4 Dimensional Data Assimilation (4DDA) scheme to pro-
duce more reliable wind fields. Soil classes were calculated
from 5 min “%clay/% sand/% silt“ soil data from the Inter-
national Geosphere-Biosphere Programme (IGBP). Biomes
were extracted from the UMD classification scheme of the
MODIS 12 Landcover 1 km product and mapped to the most
similar SiB biome class for all cells and for each of the three
patches used. An exception are the C4 vegetation classes,
grasses and crops, which were projected onto the MODIS
biomes from (Wang et al., 2006). The crop characteriza-
tion is admittedly simple and more work is currently being
done to incorporate more accurate crop maps and more real-
istic crop modeling into SiB (Lokupitiya et al., 2009). SiB
has traditionally calculated fPAR, which defines the fraction
of photosynthetically available radiation that is absorbed by
the plant canopy, and Leaf Area Index (LAI) using satellite
derived NDVI fields. The code was changed to use fPAR
and LAI fields derived by the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) (Mu et al., 2007) and av-
eraged over appropriate biome-areas based upon the three
patch scheme. SiB3 was run with these 8-day fPAR and LAI
products that were provided by the Numerical Terradynamics
Simulation Group at the University of Montana who gener-
ated it for use in constructing the official Moderate Resolu-
tion Imaging Spectroradiometer GPP product.

Modeled carbon dioxide at the tower is calculated as the
sum of 3 component fluxes convoluted bytime and tower
dependent transport.

CO2(time, tower) = (3)

Transporttime, tower

Boundary Inflow(x,y,time)
+ Fossil Fuel(x,y,time)
+ Domain Biogenic Fluxes(x,y,time)


The boundary inflow component was calculated by con-

volving the influence functions from the LPDM model
over boundary CO2 fields derived using a global biosphere-
transport model. At any point in time, the boundary inflow is
the average of all upstream particles located in a 3 dimen-
sional 40 km thick rectangular “ring” around the domain.
CO2 resulting from the transport of fossil fuels to the tow-
ers is calculated by convolving the influence functions from
the LPDM model with surface fossil fuel flux estimates. In
particular, the boundary CO2 fields were calculated by com-
bining transport from the Parameterized Chemistry Transport
Model (PCTM) (Kawa et al., 2004; Parazoo, 2007) and pre-
calculated archived hourly SiB3 fluxes (Baker et al., 2007)
on a 1.25-degree by 1-degree global grid. The model was
spun up for 2000–2004 and the CO2 was centered around
the Northern Hemispheric mean CO2 for 2004. In addition

to this, results from the CarbonTracker project, which pro-
vide globally optimized CO2 concentration fields, are used
for comparison purposes.

Fossil fuel fields were constructed using recently available
high resolution Vulcan fossil fuel inventory fields (Gurney
et al., 2008), at a 10 km horizontal spatial scale and hourly
temporal scale. Previously available fossil fuel flux fields
were derived by distributing country-level fossil fuel sources
spatially as a function of population at a 1-degree resolu-
tion (Andres et al., 1995). The Vulcan fields provide many
improvements including the incorporation of mobile emis-
sion sources and power plants, often located in areas distant
from high density population centers, increased temporal res-
olution allowing the modeling of diurnal variability, and in-
creased spatial resolution allowing better delineation of high
density population centers. The sensitivity to the new fos-
sil fuel fields is tested by running inversions using both the
Vulcan fields as well as the Andres et al. (1995) fields.

The effect of this on boundary inflow estimates is that the
PCTM-SiB3 calculated boundary CO2 fields lacks the effect
of sources or sinks in 2004. Given the consensus opinion of
an annual mean sink for carbon resulting from the biosphere,
this means that the CO2 fields used will be biased somewhat
by the effect of not including this expected global sink. We
investigate the effect of this by including a comparison of
the inversion using CarbonTracker optimized CO2 concen-
tration fields for boundary inflow, which includes the effects
estimated sources/sinks outside of the regional modeling do-
main. As of this time, carbon dioxide resulting from forest
fires is not included in the global PCTM-SiB3 inflow or do-
main SiB3 runs, but is included in the CarbonTracker inflow
providing one more contrast between the two fields.

2.2 Observational data

Half-hourly averaged calibrated CO2 observations were pro-
vided for eight measuring sites (WLEF, Harvard Forest; Ur-
banski et al., 2007; ARM, BERMS, Fraserdale, Western
Peatland, WKWT, and Argyle – ME) for 2004 (Parazoo,
2007). Gerbig et al. (2003) found mean standard deviations
on the order of 0.6 to 1 ppm when viewing morning and af-
ternoon vertical profiles of CO2 in the mixed layer. As a con-
sequence, robust afternoon snapshot observations, at 12, 2, 4,
and 6 p.m. LT, are used in order to avoid inversion model sen-
sitivity to poor atmospheric transport modeling of extremely
stable and stratified nocturnal atmospheric conditions near
the ground. One exception is the WKWT tower in Moody,
TX. For most days, data at this tower consistently showed
high CO2 concentrations in the 12 p.m. LT records that were
more consistent with typical morning CO2 than with well-
mixed afternoon CO2. For this tower, mixed boundary layer
conditions appeared to be better represented by snapshot ob-
servations shifted by 2 h: 2, 4, 6, and 8 p.m. LT. The first
10 days of the year are not comparable due to a lack of
transport preceding 2004. In all there were 2433 missing
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observations, resulting in 4 (observations/day)× 8 (tow-
ers)× 355 (days)− 2433 (missing) = 8927 observations.

In a previous pseudo-data inversion using a very similar
model (Zupanski et al., 2007), the errors on the observations
were assumed to be 1 ppm for afternoon observations. Nev-
ertheless, relative to the inversion techniques presented in the
next section, the errors on these observations should include
errors due to calibration error, mapping error, transport er-
ror, and representation error. For this inversion, transport er-
ror and representation error are likely the largest components
which are notoriously tricky to quantify. Investigations into
the sensitivity of inversion test results combined with initial
maximum likelihood estimation results suggest errors in the
range of 5–6 ppm are appropriate for this particular inver-
sion. For the remaining inversions, the errors are assumed to
be identical and independently distributed (i.i.d.) mean zero
errors with standard deviation set to 5.5 ppm. This is a sim-
ple assumption and we certainly do not expect to the error to
be completely homogeneous across towers although at what
scale the observation error should be estimated is still some-
what uncertain. We also note that there certainly is expected
to be autocorrelation in the errors within a daily time frame
so that the “effective” number of observations is likely much
less than 4 each day. The end result is that the observational
error term over multiple observations is probably estimated
as being somewhat lower than reality. For example, a mean
of 4 afternoon observations has an estimated 2.75 ppm er-
ror, based on Gaussian 5.5 ppm independent errors for each
observation. In reality, the error of the mean observation is
probably larger due to likely temporal correlation in the ob-
servation errors.

2.3 Climatic conditions for 2004

The 2004 year was the 6th wettest in the contiguous United
States over the preceeding 110 years (1894–2004). It was
also warmer than on average. Nevertheless, there was a great
amount of variability in precipitation and temperature as a
function of location and season. Drought continued in the
west through the summer of 2004, essentially prolonging
a multi-year period of drought conditions. The spring was
also very dry for the southeast, extending a period of dry
conditions from late in 2003. However, summer brought in-
creased precipitation to the east and southeast, culminating in
enormous amounts of rain in late summer and early fall due
to an extremely active hurricane season. The south (Texas,
Louisiana, Mississippi, Arkansas, Oklahoma, and Kansas)
had the wettest summer on record and was much cooler than
average. These conditions were important as they provided
initial conditions for SiB3 that involved soil moisture in-
duced plant stress over large areas of the United States.

2.4 Inversion technique

Standard multivariate Gaussian assumptions are made and
data are assimilated using a modified Kalman Filter algo-
rithm (Kalman, 1960). In particular, for an initial length
n CO2 measurement vectory representing the first set of
measurements, lengthm unknown CO2 flux bias vectorβ
(dimensionless),n×n observation error covariance matrix
6 (ppm2), n×m Jacobian flux-transport matrixG (ppm),
length m prior flux bias estimateβ0 (dimensionless), and
m×m model-prior mismatch covariance matrix60 (dimen-
sionless), the Bayesian statistical assumptions are a Gaussian
distribution on the “measurement” errors as well as a Gaus-
sian distribution on the a priori distribution ofβ, i.e.:

y|β, 6 ∼ N(Gβ, 6) (4)

β ∼ N(β0, 60)

The posterior distribution of the flux bias vector can be
solved for analytically and is:

p(β|y, 6)∝ −
1

2
(5)[

(Gβ − y)T 6−1(Gβ − y) + (β − β0)
T 6−1

0 (β − β0)
]

∼ N

((
6−1

0 + GT 6−1G
)−1(

6−1
0 β0 + GT 6−1y

)
,((

6−1
0 + GT 6−1G

))−1
)

With a little bit of algebra, one can rewrite the mean of the
posterior distribution of the mean, giving the Kalman-filter
updating equation for the mean.

E[β] = β0 +

(
GT 6−1G + 6−1

0

)
GT 6−1(y − Gβ0) (6)

The posterior mean and variance ofx are then fed into
the next filter step with a new set of measurements. This
particular inversion estimates biases over 7-day periods using
available data from that 7-day period of time. Therefore, bias
estimates for both ecosystem respiration and GPP as well as
corresponding variance estimates are available for all of 2004
with the bias estimates changing with a weekly resolution.

Two difficulties often arise when using filter-style correc-
tion schemes. The filter estimates can drift away from re-
alistic values if the data are not plentiful or precise enough
to constrain it. Secondly, the nature of the Kalman filter at
each step is to create posterior variance estimates that are in
general smaller than the prior estimates. This can essentially
cause the filter to get “stuck”, when an explicit dynamical
model of the biases is not available, and thus produce unreal-
istically small posterior variance estimates around the biases.
There is generally no easy solution to this problem. Artifi-
cially inflating the posterior variance at each filter step is one
method in which one can try to circumvent (Zupanski et al.,
2007). This accommodates the fact the biases are likely to
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change in reality and it allows the filter to consider a wider
range of possibilities for the bias factors. However, it does
not necessarily constrain the biases to any particular “rea-
sonable” region of values allowing the bias estimates to drift
into unrealistic parameter space. Therefore, we have chosen
to weight the filter at each step with a “grand” prior. This
effectively handles both of the preceding problems. With re-
spect to our inversion, there will be three pieces of informa-
tion at each step, the grand prior which is derived from the
forward SiB3-RAMS model with an error assumption, the
local prior which is derived from the previous filter step’s
posterior flux bias distribution, and the data which forms the
statistical likelihood function. In some sense, this new piece
of the covariance structure provides a bound upon how much
the inversion can “learn” about the bias structure.

In order to quantify, we denote the grand prior as a mul-
tivariate Gaussian distribution aroundβgrandwith covariance
matrix σ 2

grand6grand, and additional weight factorw, and we
rewrite the expression given in Eq. (4) as:

p(β|y, 6) ∝ −
1

2

[
(Gβ − y)T σ−2

obsI (Gβ − y) (7)

+ (β − β0)
T σ−2

0 6−1
0 (β − β0) + (β − βgrand)

T

× wσ−2
grand6

−1
grand(β − βgrand)

]
Thusβ is distributed as a multivariate Gaussian with pa-

rameters:

Mean(β)= E[β] (8)

=

(
w−1σ−2

grand6
−1
grand+ σ−2

0 6−1
0 + GT σ−2

obsIG
)−1

×

(
wσ−2

grand6
−1
grandβgrand+ σ−2

0 6−1
0 β0 + GT σ−2

obsIy
)

Variance(β) = E[β2
] − (E[β])2

=

((
wσ−2

grand6
−1
grand+ σ−2

0 6−1
0 + GT σ−2

obsIG
))−1

Equation (7) specifically separates out the variance scalars,
σ 2

grand, σ
2
0 , andσ 2

obs from the covariance matrices, leaving the
covariance matrices essentially scaled to 1. Thew weight is a
redundant factor and is simply included to facilitate easier in-
terpretation of tightening/loosening of the grand prior covari-
ance (around the SiB3 derived a priori carbon fluxes). Un-
less otherwise specified, this weight,w, on the grand covari-
ance matrix is set to 2. This means that the initial variance
around the grand prior is increased, thus providing a weaker
constraint. For the initial filter step, only the grand prior is
used. After that point, there exist both a grand prior and a
prior (from the posterior of the previous filter step). The in-
version is further constrained by the assumption of spatially
correlated errors in the grand prior, i.e. the covariance matrix
6grandwill take on the following form.

6grand=

[
6Respg, prior 0

0 6Assimn, prior

]
(9)

The respiration and GPP covariance matrices are each
formed from the exponential covariance function, whereti,j
is the distance between pointsβi andβj .

Cov(βi, βj ) =

{
σ 2

0 (1 − α0) exp
(

− ti,j
h0

)
,i 6= j

α0σ
2
0 , i = j

(10)

Theh0 parameter is the decorrelation length scale parame-
ter, giving the distance at which the covariance between two
points is equal toσ 2

0 (1−α0)e
−1. The σ 2 parameter is the

scalar variance parameter and determines the variance of the
marginal distribution of the particular flux component. The
parameterα0 controls what percentage of the covariance can
be attributed to spatial covariance, as opposed to spatially in-
dependent errors, often termed “nugget” variance. While the
“nugget” parameter is an important parameter if one is fitting
a rigorous statistical spatial model to the errors, for regular-
ization purposes it is often set to zero which is what we will
do for the remainder of the paper.

It is important to note that the use of a high resolution
grid for the inversion certainly does not imply that mean-
ingful inferences can be made at the finest scale. Assumed
decorrelation length scales of 500 km and greater certainly
imply a strong constraint upon the solution effectively giv-
ing somewhat smoothed solutions spatially. For example,
while 540 parameters are used spatially, there are only 8 tow-
ers providing information at any point in time (assuming no
missing data) and those are only afternoon observations. In
effect, if the wind is coming from N.W. portion of the domain
to all the towers, then the inversion can only learn about the
N. W. portion of the domain and only within the confines of
the differences in upstream sampling footprints and the dif-
ferences in the observed CO2 at the towers. For example,
based upon a 1000 km decorrelation length scale smoothing
scheme with a two week assimilation cycle, the effective de-
grees of freedom of the data used in the paper might only be
between 2 and 7, with the E dimension being estimate be-
tween 15 and 30 (Park and Xu, 2009). This can be visualized
by noticing the scale of the corrections in many of the figures
in the paper.

It was shown in Schuh et al. (2009), that under isotropic er-
ror type conditions (for assumed and “true” errors) that this
inversion model is robust to small spatial scale random de-
viations in flux bias and that post-aggregated (in space) es-
timates can be very good even when using a fairly sparse
network of towers observing CO2. The usefulness of the
high resolution grid allows one to separate the impact of a
tower residual across space more effectively. For example, if
a tower only saw a corner of a somewhat large inversion re-
gion than the correction imposed on that corner is essentially
projected onto the entire inversion region. This essentially
arises from a lack of uniform sampling over every inversion
“grid cell”. The effect of this potential error is of course de-
pendent upon the “actual” structure of the errors which is
not often known. Nevertheless, regardless of whether one
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chooses to assume isotropic error conditions through a spatial
smoothing such as ours, or larger inversion regions similar to
Peters et al. (2007), given the unconstrained nature of the in-
version problem, it is always important to assess the impact
of varying certain unknown parameters in the inversion, such
as the choice of inversion regions: grid vs biome, localization
schemes, the spatial decorrelation length scales, the weight
given to the “grand” prior, and the fixed CO2 contributions
from both the boundary inflow and fossil fuel sources.

2.5 Sensitivity

The inversion essentially guarantees some improvement in
prediction of observed CO2 (Eq. 5). However, when using
a regression style approach in a heavily unconstrained envi-
ronment, this improvement can often be overstated because
of the great freedom the inversion has to fit the data. There-
fore, it is often desirable to go beyond simply comparing
observed carbon dioxide at the towers to model-based pre-
dicted carbon dioxide. Comparing model observations to in-
dependent observations not used in the inversion, comparing
models which predict similar quantities, as well as testing the
sensitivity of the model to variations in unknown parameters
are all methods of generating more confidence in estimates.

We used a variety of different procedures to test the sensi-
tivity of the inversion. Therefore, we first test the sensitivity
of the inversion to varying the inflow of CO2 at the bound-
aries. To do this, we derive boundary inflow to the 8 towers
using the LPDM model and optimized carbon dioxide con-
centration fields from the CarbonTracker project (Peters et
al., 2007). Inversion results are then compared with the re-
sults derived from the LPDM model and the PCTM inflow.
Secondly, we vary several different variance parameters and
derive annual domain-summed NEE and tower observation
based RMSE based upon the varied parameters. Thirdly, we
use a re-sampling procedure in which we create 45 differ-
ent observation data subsets by holding out a randomly se-
lected 50% of the observation data for each. Each set of data
is run through the weekly inversion scheme and the sensi-
tivity of the predicted CO2 at the towers and the estimated
flux biases is explored. This provides estimates of the vari-
ability of the flux correction factors and can be used to as-
sess the sensitivity of the source/sink to the constraint pro-
vided by the data. Using the held out data as independent
evaluation data and the complementing data as training data
for the inversion, one may also derive a more accurate esti-
mate of Root Mean-Squared Error (RMSE) of the inversion-
optimized fluxes. We test the impact of the high resolution
Vulcan fossil fuel inventory on the inversion results by com-
paring inversion results relying upon Vulcan to those results
utilizing the Andres et al. (1995) fossil fuel inventory.

SiB3 has been evaluated at many sites and over many time
periods, nevertheless, the particular model run used for the
a priori flux estimates was not optimized to fit the flux data
at any site in particular. Even though there is a mismatch in

representation, with the flux towers representing footprints
of less than a square kilometer and the inversion results rep-
resenting flux estimates on the scale of thousands of square
kilometers, we believe that these comparisons are of value,
especially in locations that are more spatially homogeneous
than others, such as grasslands and large forest reaches. This
is then the fourth comparison we make.

3 Results

As was indicated in the previous section, there are a num-
ber of variables that the inversion will likely be sensitive to
and therefore the results are expected to be quite variable.
For results, we choose to present one particular case with a
fixed set of inversion inputs as an initial case study and then
use it to compare the effect of varying the boundary inflow
and the source of the domain fossil fuel fluxes. With refer-
ence to the preceding section and Eq. (7) in particular, the
following values are used for these inversions:σgrand=0.25,
σ0=0.25,σobs=5.5 ppm,w=2, h0=1000 km. In particular, a
value ofσgrand=0.25 would mean that we expect that approx-
imately 68% of the GPP and ER biases are within±25% of
the original SiB3 estimated fluxes, with 95% within±50%.
This variation when combined with positive spatial correla-
tions was shown to provide a reasonable a priori range of
annual domain-summed NEE. These deviations must gener-
ally be kept to less than 30–40% to ensure that posterior ER
and GPP fluxes are not reduced by more than 100%, which
makes no conceptual sense. We then test the sensitivity of
the results over a number of varying inversion inputs using
the PCTM boundary conditions and the Vulcan fossil fuel
flux field.

3.1 General structure of results

CO2 can be predicted by invoking the relationship shown in
Eq. (3). The predicted mean observed CO2 is derived as
Gx̂ where x̂ represents one (for the prior fluxes) plus the
inversion-optimized flux biases. Using the PCTM boundary
conditions and the Vulcan fossil fuel inventory, a comparison
of the inversion-corrected posterior predictions at the towers
to the observations is shown in Fig. 2. For domain-summed
temporal plots, NEE is calculated via Eq. (2) while ER and
GPP are calculated via the two respective summands on right
hand side of that equation. These domain-summed temporal
results are shown in Fig. 3.

The observed carbon dioxide concentrations contain infor-
mation that infers a dampening of the a priori annual GPP
cycle, and hence the a priori annual ER cycle (due to the
strong correlation of the annual sums of each). Since both
GPP and ER are significantly dampened, it is not surprising
that the NEE signal is dampened as well. Furthermore, the
data suggest a weak temporal shift in the prior NEE signal.
This manifests itself as a stronger, but more gradual onset
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Figure 3:  Time series plots of carbon dioxide residuals based upon SiBRAMS prior (red) and 

inversion posterior (blue).  
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Fig. 2. Time series plots of carbon dioxide residuals based upon SiBRAMS prior (red) and inversion posterior (blue) (observations – model).
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single inversion while the confidence intervals are derived from an ensemble of 100 inversions. 

 
Fig. 3. Plots of prior and posterior estimates for GPP, ER, and NEE.
Results are shown for a single inversion while the confidence inter-
vals are derived from an ensemble of 45 inversions.

of spring, followed by a weaker overall carbon sink over the
middle and late summer periods. It was brought to our at-
tention by Steve Wofsy (Harvard U.) that this discrepancy
in a priori and a posteriori GPP and respiration fluxes could
arise from a bias in the meteorological data that was driv-
ing SiB3 to produce the a priori fluxes, in particular biases
in shortwave radiation. Upon investigation and comparison
of several different reanalysis products to recently available
Ameriflux radiation observations, it does appear that nearly
all of the reanalysis products investigated had somewhat uni-
formly, and far from insignificant, positive biases in short-
wave radiation. This certainly could play a role in the a pri-
ori GPP and respiration fluxes being significantly larger than
they should be. This is currently being investigated under
the guise of the North American Carbon Program (NACP)
by Daniel Riccuito (Oak Ridge National Laboratory), and a
manuscript is currently in preparation describing further the

differences found between observations and reanalysis prod-
ucts and the possible effect on biospheric carbon flux esti-
mates. Nevertheless, this is an a priori estimate of fluxes,
and although we certainly would like it to be close to the
posterior estimate, it simply represents the best knowledge
we currently have about the processes.

We use the resampling procedure, that was first mentioned
in Sect. 2.5, to account for variability that might be associ-
ated with over fitting the model and which provides addi-
tional variability to the standard covariance estimates of the
biases given in Eq. (6). Forty-five different inversions are
run, each based upon a different subsample of the observa-
tions. Assuming temporal independence of the errors in the
filter, one may simulate properties of the annual NEE proba-
bility density functions (pdf) for each of these 45 inversions
by using the posterior covariance provided at each step of the
Kalman Filter for each inversion. A 95% Confidence Inter-
val (CI) for the entire domain can be calculated at each step
of the filter for each of the 45 inversions. The CI shown in
Fig. 3 then characterizes variability in the NEE by selecting
the 95% CI of each set of 95% CIs for each weekly time step.

The ensemble mean of the domain summed annual NEE
flux is approximately−0.68 Pg/yr while the standard devi-
ation of this estimate is about 0.11 Pg/yr. It is important
to note that this standard deviation estimate does appear to
be too small, giving tighter bounds on the flux than found
in other inversion papers (Gurney et al., 2002; Peters et al.,
2007). An additional source of variability in the estimate is
discussed later (Sect. 3.4) and likely provides another 0.1–
0.15 Pg/yr to this standard deviation estimate. The spatial
representation of these sources and sinks can be seen in
the first panel of Fig. 7. Depictions of this variability in
a spatial framework are shown in Fig. 4. This variability
is partitioned into two pieces, variability associated with the
spread of mean estimates over the 45 inversions (measure of
over fitting) and variability associated with summing up the
posterior variances at each filter step (regular KF variance)
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Table 1. Biases in Tower CO2 partitioned by season.

Tower Winter.Prior.Bias Winter.Posterior.Bias Summer.Prior.Bias Summer.Posterior.Bias

AMT (ME,USA) −3.87 −1.03 8.10 2.10
ARM (OK,USA) −4.40 0.14 −3.81 0.17
BERM (SASK,CAN) −5.09 −0.92 8.07 3.88
FRA (ONT,CAN) −6.99 −1.31 9.68 3.92
HVD (MA,USA) −0.52 −0.49 4.74 −0.09
WKWT (TX,USA) 0.86 0.35 0.30 1.11
WLEF (WI,USA) −5.15 0.33 3.47 0.88
WPL (ALB,CAN) −3.76 0.54 2.89 0.69
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Figure 5: Uncertainty in annual NEE.  The left panel is the result of running 100 inversions each 

using a randomly selected 50% of the data  and then calculating the variance of each cell’s mean 

estimate, over the 100 inversions, and summing over each of the weekly filter cycles.  Finally, the 

square root of this summed variance (standard deviation) is displayed and is a measure of the 

uncertainty of the mean estimate due to model over-fitting.  For the right panel, the summed annual 

variance in NEE is calculated for each inversion, from the weekly filter estimates, and the the 

square root of this (standard deviation) is shown for each cell.  These plots aim to provide a 

measure of the uncertainty of each cell’s NEE estimate, incorporating the correlation between ER 

and GPP in each cell, but not incorporating the spatial correlation in the covariance matrices. 

Square root of the diagonal of the covariance matrix (standard deviation) of Annual NEE (gC/m
2
) 

Fig. 4. Uncertainty in annual NEE. The left panel is the result of running 100 inversions each using a randomly selected 50% of the data
and then calculating the variance of each cell’s mean estimate, over the 100 inversions, and summing over each of the weekly filter cycles.
Finally, the square root of this summed variance (standard deviation) is displayed and is a measure of the uncertainty of the mean estimate
due to model over-fitting. For the right panel, the summed annual variance in NEE is calculated for each inversion, from the weekly filter
estimates, and the the square root of this (standard deviation) is shown for each cell. These plots aim to provide a measure of the uncertainty
of each cell’s NEE estimate, incorporating the correlation between ER and GPP in each cell, but not incorporating the spatial correlation in
the covariance matrices.

evaluated over all 45 inversions. Besides the spatial display
of posterior variance information for NEE, which roughly
tracks the convolution of the sampling footprint of the net-
work and the prior ER/GPP signals, the results show that
over fitting the model may provide a significant source of
variability comparable to that which is normally constructed
from each filter step’s posterior covariance matrix.

The residuals from the model fit are generally symmet-
ric and do not appear to deviate substantially from normal-
ity (Fig. 5). There is a slight but pronounced positive skew
to the residuals indicating that when the residuals deviate
most strongly from zero, the observed CO2 is greater than the
modeled CO2. Biases remain in the inversion process, likely
a result of residual pdfs’ deviations from symmetry. Sites in
the north and northeastern portion of the domain appear to be
most sensitive to this, in particular AMT and Harvard Forest
(Table 1). These sites seem to be affected more by a strong

a priori seasonal cycle than the other sites. Additionally, we
note that the these towers are in relatively close proximity to
the most populated areas of North America and it is possible
that occasional spikes in anthropogenic emissions from the
northeast coast of the United States could impact tower con-
centrations. Weekly chi-square statistics were calculated to
diagnose the model’s performance. Values near to one indi-
cate that the assumed errors are being estimated reasonably,
a priori. The weekly chi-square innovation statistics are gen-
erally near 0.5 from January through May and then around 1
for the summer and remainder of year. The innovation statis-
tics show more temporal variability in the summer time. The
low value in the winter time in indicative of some hetero-
geneity in the model-data residuals, seasonally, and that the
assumed errors in the winter might be too large. In essence,
this might weight the model too heavily towards the prior
which might imply that magnitude of the winter time NEE
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Fig. 5. Estimated probability density functions for modeled CO2 residuals (observations – model), broken out by season and tower.

adjustment, which is generally a C sink under our a priori
flux scenario, might be too weak.

3.2 Sensitivity and robustness of results to inflow

Inflow of CO2 from the boundaries has typically been a large
concern of regional models (Gerbig et al., 2003; Peylin et al.,
2005). In extremely limited domain problems, the variance
of the CO2 coming in from the boundary can easily dwarf
the changes inside the domain due to local biotic uptake and
release. Therefore it is of interest to gauge the sensitivity
of the inversion to varying boundary inflows. The bound-
ary conditions included in this model were constructed from
a global simulation using SiB3 and PCTM (Parazoo et al.,
2007). The CarbonTracker project has provided CO2 mix-
ing ratio data based upon globally optimized fluxes (Peters
et al., 2007). SiB3 has no annual source/sinks whereas Car-
bonTracker includes an annual source/sink estimated from
observations of CO2. A plot of the difference between the
two inflows is shown in Fig. 6. The inflow annual mean
and temporal pattern is very similar for PCTM and Carbon-
Tracker with the main difference being a seasonally stronger
cycle in the PCTM-SiB3 results, likely a result of the under-
lying biosphere model, SiB3, providing a stronger seasonal
GPP/NEE signal than the corresponding CASA model used
in CarbonTracker. In addition to running comparison inver-
sions between these two CO2 inflow estimates, we also run
the inversion with a fixed inflow estimate of 378 ppm repre-
senting the annually averaged PCTM inflow over the period

of the simulation in order to show the necessity of reasonable
boundary inflow values in calculating source/sink estimates.

Figure 7 shows a comparison plot of maps of the annual
mean NEE estimate based upon CarbonTracker (w/CASA),
PCTM (w/SiB3), and the fixed inflow condition. The re-
sults are similar for the CarbonTracker and PCTM inflows.
Both results have similar spatial and temporal characteris-
tics but differ mainly in magnitude. The PCTM-based in-
version results in a sink of 0.1–0.2 Pg/yr more than that of
the CarbonTracker-based result. The PCTM-based boundary
conditions do not account for the expected global carbon sink
outside of the inversion domain, which forces the inversion
to increase the North American sink to compensate. This
results in the PCTM-inflow based inversion having a larger
annual sink estimate than the CT-inflow based inversion. The
sink estimated with the PCTM inflow was 0.65 Pg/yr while
the sink estimated with the CarbonTracker inflow was esti-
mated at 0.48 Pg/yr. It does seem somewhat surprising that
the results from the two inflows are still close, within approx-
imately 30% of one another. This indicates that local obser-
vations may be affected significantly more by local fluxes
than by larger scale fluxes in distant locations outside of the
model boundary.

3.3 Sensitivity of results to fossil fuel inventory

Until the release of the Vulcan fossil fuel inventory in 2008,
most researchers were reliant upon the Andres et al. (1995)
fossil fuel inventory, which was released at annual time
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Fig. 6. Figure shows the effect of boundary inflow CO2 upon tower CO2 concentrations. In particular, this figure shows the “difference”
between estimates of CO2 arriving at tower due to two distinct boundary inflows (1420 sequential “12/2/4/6 p.m.” observation sequences for
each of 8 towers).

scales and at a 1-degree resolution over the globe. For many
large-scale inversion applications, this inventory is adequate.
However, for higher resolution studies within the United
States, the Vulcan fossil fuel inventory provides a dramatic
improvement in both space and time accounting of fossil
fuel fluxes. The main difference between these inventories is
the redistribution of some fossil fuel sources from population
centers to more distant locations representing mobile sources
and power plants. The Vulcan fossil fuel flux estimates are
at a much higher resolution in both time and space. Previ-
ous inversions had to grapple with the fact that some observ-
ing stations are located within enormous fossil fuel flux re-
gions. For example, a semi-rural location like Harvard Forest
would very likely be located in the same grid cell as the large
metropolitan city of Boston. Given no sub-annual temporal
resolution to the fossil fuel fluxes, an observing tower located
at Harvard Forest was often seeing a 24 h continuous stream
of fossil fuel fluxes arising from a city over 100 km away.
However, the 10 km horizontal resolution of the Vulcan in-
ventory allows these to be separated and additionally pro-
vides a diurnal and seasonal estimate of these fluxes, which
is important for inversions based upon hourly observations.

In order to gauge the impact of incorporating the Vul-
can data, we first contrasted the contributions to each of the
8 towers from each of the inventories. For many of the sta-
tions, the afternoon differences between the two were very
small. Differences at the ARM site in Oklahoma, the WLEF

site in Wisconsin, the Canadian sites, and the Argyle, Maine
site were on the order of a few ppm. Differences at the
Moody, Texas tower were in the range of−5 to 5 ppm. While
the differences across most towers were relatively small, the
differences at Harvard Forest were between−25 and 30 ppm!

The difference in the annual NEE estimate is shown in
Fig. 8. The effect on the inversion is far from trivial with
differences of up to 150 g/m2 per year recorded along the
northeast coast of the United States, similar in magnitude to
the maximum annual sinks estimated by the inversion. These
differences are a result of coarse fossil fuel flux fields pro-
viding artificially high sources of CO2 to the Harvard Forest
tower which must be neutralized via a large local sink.

3.4 Sensitivity and robustness of results to prior
variance structure

A test of the sensitivity and effect of the prior upon results
is important because of the use of an informative Bayesian
prior, that is, a prior flux estimate in which the inversion will
likely be sensitive. With reference to Eqs. (5) and (7), the
w, σ 2

0 , andh0 parameters are varied and results are shown
in Fig. 9. These figures show that results are sensitive to
nearly all of these parameters, providing different degrees of
RMSE and sink strength depending upon the particular com-
bination. In particular, sink estimates range between 0 and
1 Pg/yr. The ensemble of estimates, over the various possible
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Fig. 7. Inversion estimates for three different inflow scenarios, one
without modeled annual source/sink (PCTM w/SiB), one with mod-
eled source/sink (CarbonTracker w/CASA), and a uniform fixed
378 ppm inflow. Negative values denote land uptake of carbon.
Summed annual NEE is−0.65, −0.48, and 0.38 PgC/yr, respec-
tively.
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Figure 8:  Difference in annual sink inferred by 
inversions based upon the Vulcan fossil fuel inventory 
and the Andres et al. [1995] fossil fuel inventory.  
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stronger using Andres inventory.  Spatially-summed 
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Fig. 8. Difference in annual sink inferred by inversions based upon
the Vulcan fossil fuel inventory and the Andres et al. (1995) fos-
sil fuel inventory. Positive values (purple) indicate carbon sinks
were stronger using Andres inventory. Spatially-summed annual
difference between Vulcan-based NEE estimate for 2004 and An-
dres (1995) based NEE estimate for 2004 is less than 0.01 PgC.

a priori variance parameters, has a standard deviation of
approximately 0.2 PgC/yr. This likely contributes another
0.1 to 0.15 PgC/yr (depending upon the existence of corre-
lation between the variance shown here and earlier variance
estimates due to jackknife resampling and the Kalman filter
posterior variances) to the initial standard deviation estimate
of 0.11 Pg/yr given earlier. This would give an adjusted stan-
dard deviation estimate of approximately 0.2–0.25 PgC/yr to
the posterior annual NEE estimate shown in Fig. 3.

An RMSE-weighted average of the sink estimates show
a sink of 0.57 PgC/yr, 20% higher than our single case sce-
nario that we have followed throughout these results. Values
very near the lower left of the plot are somewhat unrealis-
tic since low spatial correlation (h0) and a low variance on
the prior (σ 2

0 ) will not provide a reasonable enough range
around the prior to provide a realistic posterior sink estimate
which generally is thought to range between 0 and 1.5 PgC/yr
(Schimel et al., 2000; Gurney et al., 2002) inter-annually.
Increasing either the variance multiplier (alongx-axis) or
the spatial decorrelation length scale (alongy-axis), or both
jointly, increases the error variance around the a priori mean
allowing more realistic domain-wide summed posterior flux
estimates. Therefore if one “de-weights” these sink estimates
occurring in the lower left hand portions of the panels in
Fig. 9, the RMSE-weighted sink will likely increase to more
than 0.57 PgC/yr.
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mately 0.55 PgC/yr (a). Nevertheless, qualitatively, this represents a maximum departure from the prior and thus must be viewed with some
skepticism due to the likelihood of overfitting the data.

The weight of the grand prior (w) has two effects. First,
it constrains solutions back towards the prior, essentially an-
choring the Kalman filter so that, over time, it does not drift
too far from the prior. Given the fact that this grand prior
is fixed in time, it also provides a degree of variance infla-
tion (over the regular KF) by providing a lower bound on the
prior variance for each filtering step. It is interesting to note
that, for cases in which the global prior is weaker (bottom
two panels), the maximum sink estimate occurs on the inside
of the plot bounds and not at the boundary. The Kalman filter
becomes more entrenched without the grand prior since there
is no lower limit on the prior variability at each inversion fil-
ter step and there is no inflation. Therefore it is likely that the
initial reduction in respiration and associated “sink” of car-
bon in the early months of the year becomes entrenched and
leaves a strong sink signature on the rest of the year resulting
in the largest sink estimates. We did not test any additional
forms of variance inflation on the model and acknowledge
that additional efforts are needed to construct more robust
filter techniques.

3.5 Comparison to CarbonTracker flux estimates

Given the fact that the majority of the underlying observa-
tions supporting the inversion were also used in the Carbon-
Tracker project, one would expect posterior flux estimates to
be somewhat similar. One of the most important differences
between these inversions and CarbonTracker is the optimiza-
tion of encompassing global fluxes, which affect CO2 con-
centrations within our domain. However, this can be mit-
igated somewhat by the use of optimized CO2 concentra-
tions from CarbonTracker in the inversion. Under this sce-
nario, one would expect the inversion results to be similar to

CarbonTracker but there are still many differences. As can
be seen in Fig. 10, the carbon fluxes in the priors, CASA and
SiB3, play an important role in the posterior estimates. The
posterior estimates of both inversion models display the sig-
nature of the a priori fluxes prominently. These results would
lead one to believe that either the data does not provide suf-
ficient constraint or the covariance structure is specified too
tightly around the prior.

The results can be aggregated up to SiB biomes (Fig. 1)
which are presented in Table 2. The aggregated results show
somewhat close agreement with Peters et al. (2007). Be-
cause of the differences in land cover classifications between
Peters et al. (2007) and the State of the Carbon Cycle Re-
port (SOCCR, 2007), it is difficult to directly compare re-
sults. Furthermore, as was shown earlier, the magnitude of
the domain-wide annual NEE sink is very sensitive to inflow
assumptions although the spatial configuration of the sources
and sinks seem much more robust. In this fashion, the pro-
portion of the annual sink due to forests, both conifers and
deciduous, ranges between 30% and 37% depending upon
inflow choice. This is certainly within the confidence bounds
of the estimate given in the SOCCR report as well as very
similar to the estimates given in Peters et al. (2007).

One of the most significant contrasts is the placement of
the carbon sink on agricultural lands. Peters et al. (2007)
shows a large effective sink in the northern Great Plains cen-
tered near the state of Iowa where there are very large ex-
panses of corn fields. Our results indicate a strong effec-
tive sink in the southern portion of the Great Plains more
in the vicinity of large wheat growing operations. On-
going research in this region of the United States (http://
www.nacarbon.org/nacp/mci.html) seems to validate the ex-
istence of an effective sink in the northern Great Plains while
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Table 2. Total Posterior Net Ecosystem Exchange by Biome (negative indicates “into biosphere”).

Biomes Using CarbonTracker boundary Using PCTM boundary

Conifers (Evergreen Needle) −83 TgC −111 TgC
Mixed Deciduous Broadleaf and Needle, Braodleaf Deciduous, Evergreen Broadleaf −49 TgC −124 TgC
Grasslands and Agriculture −261 TgC −337 TgC
Shrublands, Desert and Ground Cover −43 TgC −54 TgC
Total −436 TgC −626 TgC
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Fig. 10. July-August-September comparison. Top panels concern CarbonTracker and lower panels concern our inversion. Left panels show
a priori NEE, middle panels show inversion adjustment, and right panels show a posteriori NEE.

agricultural statistics and other recent work (Riley et al.,
2009) seem to validate a possible southern Great Plains ef-
fective sink as well.

3.6 Comparison to filled level 4 Ameriflux data at
Southern Great Plains

Posterior respiration and GPP estimates from the model can
also be compared to Ameriflux level 4 data. As indicated
earlier, there is a spatial representation mismatch in doing so
due to the fact that the model estimate is an average over ap-
proximately 1600 km2 and the associated flux tower estimate
is over a much smaller footprint, likely less than 1 km2. Nev-
ertheless, some useful comparisons and observations can be
made. Figure 11 shows comparisons of the model to the ob-
servations for weekly ER and GPP at three Ameriflux sites,
which appear in the more observation constrained portion of
the model domain. The ARM site is one of the more con-
strained sites in the domain and lies in a relatively homoge-
nous landscape making it an excellent candidate for analysis.

The prior site NEE estimate appears to be improved on av-
erage by the posterior flux estimates. In particular, the prior
model is corrected significantly in the summer when it pre-
dicts significant respiration occurring. Clearly one can see an
early spring winter wheat signal in the observations, forming
a significant amount of carbon drawdown over an 8–10 week
period. SiB3 necessarily balances GPP and ER annually and
is thus forced to redistribute this carbon into respiration in
other portions of the year. This is the likely reason for dis-
placement of the prior estimate in the summer. The posterior
corrects for a large portion of this but the large distance be-
tween the prior and observed fluxes make a complete correc-
tion difficult. Just as important, but perhaps more subtle, is
the fact that the inversion is able to provide significant cor-
rections to ER and GPP separately. SiB3 appears to signif-
icantly overestimate GPP. However, due to the annual NEE
balance constraint, SiB3 will overestimate ER as well, pro-
viding an NEE signal that appears very reasonable. If the
forward model is only compared to NEE estimates at various
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sites then this fact can be easily overlooked but is likely very
important to biosphere dynamics on certain time scales.

3.7 Evaluation of annual NEE source/sinks against
ancillary data and hypotheses

Using two sets of boundary conditions, we arrived at a final
sink estimate of 0.5–0.7 PgC/yr±0.25 PgC/yr. This is similar
in strength to CarbonTracker’s sink estimate of 0.69 PgC per
year (0.79 PgC/yr “natural” sink minus implicit 0.1 PgC/yr
“fire” contribution) and other estimates currently emerging
from an ongoing top-down synthesis project. It is clearly
possible that other globally based inversions provide more
constraint on certain areas of North America, such as the Pa-
cific Northwest forest regions of North America, the South-
eastern United States, or extreme Northeast Canada. Both of
these areas have large annual GPP signals and are thus capa-
ble of being a strong source/sink of CO2. However, our inver-
sion results show a generous sink in the coastal N. W. forests
while CarbonTracker shows little sink there. Furthermore,
CarbonTracker’s sink is largely located in the agricultural
Midwest of the United States (and a portion of Canada), an
area reasonably constrained by the observation network we
have used.

On the other hand, perhaps the globally based sink esti-
mates are too high. The recently completed SOCCR report
provides an inventory-based sink estimate for North America
of approximately 0.66 PgC per year (land sink) using a vari-
ety of data sources collected over the last ten to fifteen years.
Uncertainty is presented as a 95% confidence interval, 0 to
1.32 PgC. This is similar to what we have recovered in these
inversions. However, this is a mean sink estimate over many
years and 2004 is believed to be a year in which the sink in
North America was very strong, likely putting the SOCCR
estimate closer to 0.8–0.9 PgC/yr, the upper range of their an-
nual estimates. Stephens et al. (2007) called into question the
magnitude of the Northern Hemispheric (and North Ameri-
can) global annual NEE sink which has been a cornerstone
of inversion results for the last 10 years (Fan et al., 1998;
Gurney et al., 2002; Peters et al., 2007) indicating that it may
be much smaller than previously assumed. In any case, the
rapid expansion of the calibrated CO2 tower network (cur-
rently over 30 towers in North America) should soon provide
significant additional data constraints to researchers perform-
ing atmospheric CO2 based inversions.

The spatial character of the annual NEE estimate has sev-
eral distinctive features. The most definitive feature of the
annual NEE estimate shown in Fig. 7 is the large sink lo-
cated over Texas, Louisiana, Arkansas, and portions of Ok-
lahoma. This sink is located largely between, and to the east
of, the ARM and WKWT sites in south central portion of
the domain. At first glance this may appear to be an arti-
fact of incorrect transport, poor boundary conditions, or in-
correct fossil fuel emissions specifications. However, sum-
ming the ARM NEE observations for the year provides a
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Fig. 11. Comparison of posterior fluxes of GPP, ER, and NEE with
Ameriflux Level 4 flux tower data for ARM Site in OK. Pay partic-
ular attention to the fact that they-axes are different scales.

sink estimate of approximately 275 g/m2, similar to the es-
timates the inversion produces to the south of the ARM site
(Fig. 7). A likely hypothesis for this sink is the lateral export
of crops, primarily winter wheat that draws most of its car-
bon from the atmosphere in the spring and then is harvested
and exported in early summer. The WKWT tower concentra-
tions have proven to be somewhat difficult to model given a
number of factors. CO2 observations at the top of the tower
did not appear to be well mixed until well after 12 p.m. LT.
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Additionally, the tower is located relatively closely to both
the model boundary and the ocean and is in close proxim-
ity to fossil fuel sources of major metropolitan areas and oil
refining facilities near Houston and Galveston.

The aforementioned sink also extends to the east and
northeast of the ARM tower. This is an area of significant
crop production, with corn and soybeans being grown exten-
sively in the northern portions while soybeans, rice, and other
crops are grown to the south in the Arkansas/Mississippi re-
gion. This area is also covered by heavily managed forest
regions, which produce large annual harvests of wood pri-
marily for paper pulp. These managed forests are largely
composed of very young productive loblolly pine trees pro-
viding a major source of carbon sequestration. This area is
known for quite variable precipitation patterns and it would
seem to reasonable to assume that young productive forests
in this area would be very productive under the unusually wet
and cool conditions of 2004.

It is interesting to note that the most intensely cultivated
portion of the Midwestern United States, centered on the
state of Iowa, shows little to no sink. This is an area typically
planted extensively with corn, which has been shown to be
an extremely effective consumer of atmospheric CO2. The
a priori estimate of NEE based upon SiB3 included a very
strong summer time sink of carbon over the Iowa region us-
ing a C4 photosynthesis scheme from Collatz et al. (1992).
Lokupitiya et al. (2009) illustrated that a phenology-based
model for the fluxes agricultural crops provided flux esti-
mates much closer to those of eddy covariance towers in the
region. Additionally, the area of crop production in the a pri-
ori model was very crude and did not match the spatial ex-
tent of crops, or the mix of different crop types, as given by
United States Department of Agricultural maps. The general
consensus, as mentioned by Peters et al. (2007), is that this
sink occurs over a relatively small intensively farmed area
of the country while the agricultural products produced (the
effective sink) are distributed out uniformly over the coun-
try, effectively spreading out the associated respiration sig-
nal. Emerging research from the Mid-Continent Intensive
portion of the North American Carbon Program appears to
support this hypothesis to some extent (Tris West, personal
communication, 2009). Therefore, it is likely that the “miss-
ing” sink in this area can be attributed to a poor agricultural
crop prior in SiB3 and/or a lack of CO2 measurements in
the vicinity. Although the existence of a sink is widely sup-
ported by agricultural crop statistics, the strength of the sink
is currently unknown and its estimation is complicated by a
number of factors.

First, annual NEE estimates from the corn-planted
Bondville, IL Ameriflux site indicate a sink on the order
of 500–600 g/m2. Soybeans can be expected to provide
sinks of about half of this. Assuming steady state con-
ditions over several years, these types of sinks can be at-
tributed directly to the harvest. Approximately 20% of the
corn harvest and 35% of the soy harvest is exported overseas,

mostly for animal feed, while half of the corn and soy re-
tained in the United States is used to feed livestock domes-
tically (National Corn Growers Association website:http:
//www.ncga.com/files/pdf/2009WOC.pdf, Soy Stats,http://
www.soystats.com). Most of the carbon in this livestock
feed is then returned to the atmosphere as CO2 and CH4
at locations where it is consumed by livestock. Almost
70% of the feedlots in the United States are located in
just 3 states: Texas, Kansas, and Nebraska (http://www.
cattlenetwork.com). This may provide a partial explana-
tion for the lack of an agriculturally-induced sink over Ne-
braska and Kansas, states with very high crop production
and intense livestock operations, and the existence of sinks
over portions of Arkansas, Mississippi, Missouri and Illi-
nois, states with relatively high crop production but with
significantly less livestock operations. A rapidly evolving
ethanol industry in the area further complicates the pic-
ture. Currently, this is an area of intense research (http:
//www.nacarbon.org/nacp/mci.html)and one may expect a
much more complete picture to emerge concerning the car-
bon balance of the Midwest United States within a few years.
An important point to keep in mind is that the addition of a
carbon sink in the Midwest United States would likely be
correlated with weakened sinks (or increased respiration) in
other areas of the domain in order to constrain the annual
domain wide source/sink estimate.

Forested regions in the northwestern United States and
boreal forests of Canada show slight sinks. However, vari-
ability estimates surrounding these sink estimates are typ-
ically much smaller than the variability estimates of simi-
lar sink magnitudes in the Midwest or southeastern United
States showing relatively more confidence in the sink de-
spite the lack of proximity to the observing towers. The sink
estimate in the northwestern United States is not surprising
since the northwestern coastal mountains of California, Ore-
gon and Washington have been intensely managed over the
last 50 years and are expected to provide a sink of carbon
for many decades into the future (Alig et al., 2006). The es-
timate for the boreal forest regions appears much harder to
objectively evaluate. Most studies have indicated that Cana-
dian ecosystems should currently be a weak sink, although
the projection of this weak sink into the future is highly un-
certain. The inversion results show a fairly carbon neutral
Canada on average, but shows the boreal forests of central
Canada and the boreal and coastal forests of western Canada
as slight sinks while the agricultural plains of Canada and
the forests of eastern Canada provide slight sources. It is in-
teresting to note that areas to the south of the two Canadian
towers show an annual source of carbon in an area just to the
east of large expansive forest ecosystems of British Columbia
that have recently experienced unprecedented bark beetle in-
vasions and tree mortality. It is important to note that for-
est fires were not included in the SiB3 domain run for the
regional inversion. Average carbon emissions from Cana-
dian forest fires were estimated at 27±6 Tg/yr (Amiro et al.,
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2001), a non-trivial amount that could increase the strength
of the boreal forest sink predicted by the inversion.

4 Conclusions

GPP, ER, and NEE flux corrections implied by this in-
version provide posterior annual NEE estimates similar to
those provided by a number of independently derived mod-
els including CASA (via CarbonTracker optimized) and the
MODIS 17 GPP product. NEE estimates for the entire do-
main appear on the low side of estimates derived from global
models, which is understandable given the lack of constraint
on some key regions of high annual GPP, and hence poten-
tially high annual NEE. This was corroborated by a compar-
ison to INTEX aircraft data which shows the existence of
a deficit in GPP over the southeast which would, when all
other things are considered equal, inflate the domain-wide
sink closer to levels estimated from global models such as
CarbonTracker. Results are relatively sensitive to a number
of parameters in the inversion setup, which is also to be ex-
pected with an inversion constrained by such a sparse ob-
serving network. Using a temporally uniform boundary con-
dition seems to produce a very unrealistic annual sink on the
order of 0.38 Pg per year, supporting the notion that regional
inversions require realistic boundary inflow of CO2. How-
ever, much to our surprise, we find that two completely in-
dependent boundary inflow estimates provide similar results
with the main difference being an approximately 30% dif-
ference in magnitude. This leads us to believe that, while
probably not preferable to optimized global CO2 fields, the
inclusion of annual NEE balanced models (such as SiB3) in
global models used to provide boundary inflow estimation
does not significantly damage inversions based upon it.

In the course of trying to improve NEE estimates, we were
able to find that the inversion was able to provide some de-
gree of correction to the individual summands of NEE, ER
and GPP, which are generally highly correlated at many dif-
ferent scales in time and space. Considering that SiB3 cur-
rently calculates ER as a relatively simple function of soil
moisture and temperature such that annual ER equals an-
nual GPP, the significant adjustment inferred upon GPP may
prove to be valuable estimation of other quantities of inter-
est in the biosphere. For example, while photosynthesizing,
plants must generally release water to compensate, meaning
that artificially high GPP may infer artificially high water ex-
change with the atmosphere and possibly associated latent
heat fluxes.

The agricultural Midwestern United States appears to play
a large role in the inversion results, providing a large sink.
However, the sink does not correlate exactly with crop pro-
ductivity, when compared to crop production maps from
the United States Department of Agriculture, and several
states with significant crop production such as Nebraska,
Kansas, and Iowa, appear to be in approximate annual carbon

balance. While the magnitude of this difference between
carbon neutral states with crops and carbon sink states with
crops is likely influenced by the lack of data in the inversion
and the general unconstrained nature of the solution at fine
scales, the discrimination between them seems likely to stay.
One hypothesis proposed is the lateral movement of crops
which has been shown to be a major portion of the carbon
budget globally (Ciais et al., 2007). The main crops of in-
terest in the domain are wheat, soy and corn. Soy and corn
are grown across large expanses of the north-central Mid-
west and are primarily used to feed livestock. These livestock
are typically fed in feedlots in the states of Iowa, Colorado,
Nebraska, Kansas, and Texas, generally located to the west
and south of the areas of growth and harvest. The end re-
sult would be that eastern states within the Midwest would
be a sink because of the near complete export of crops grown
there. However, states in the western portion of the Midwest
would receive the majority of these crops where they would
be fed to cattle and other animals, returned to the atmosphere
as CO2 and CH4 and largely balance any local sinks due to
crop production.

Technical considerations concerning the inversion could
also affect these results. In particular, a large amount of
missing data for the WKWT (Moody, TX) tower leaves the
southern boundary inflow unconstrained beyond the normal
PCTM inflow. This could result in the inflation of an Okla-
homa/Texas sink to account for a positive bias in the inflow
at the southern boundary, particularly after 1 July 2004 when
the Midwest receives its heaviest influence from the Gulf of
Mexico. The WLEF tower was also missing most of its ob-
servations for June, a time of intense drawdown for croplands
to the south of the site.

In 2004, the southern states of Texas, Oklahoma, Kansas,
Louisiana, Arkansas, and Mississippi had an extremely wet
summer, potentially mitigating some degree of drought and
providing an increase in GPP for the region which includes
managed forests, a large percentage of the United States’ ex-
ported wheat crop, and soybeans and other crops along the
lower Mississippi river valley. Additional research is needed
to determine if any of these could represent a plausible hy-
pothesis that would result in the net carbon neutrality of
large crop growing states in the western portions of the Great
Plains and the expansive southern and Mississippi river val-
ley sink predicted by the inversion.
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