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Abstract. In this study, we quantified the predictive accuracy
loss involved with omitting photosynthetic capacity variation
for a Scots pine (Pinus sylvestrisL.) stand in Flanders, Bel-
gium. Over the course of one phenological year, we mea-
sured the maximum carboxylation capacity at 25◦C (Vm25),
the maximum electron transport capacity at 25◦C (Jm25),
and the leaf area index (LAI) of different-aged needle co-
horts in the upper and lower canopy. We used these mea-
surements as input for a process-based multi-layer canopy
model with the objective to quantify the difference in yearly
gross ecosystem productivity (GEP) and canopy transpira-
tion (Ecan) simulated under scenarios in which the observed
needle age-related and/or seasonal variation ofVm25 and
Jm25 was omitted. We compared simulated GEP with esti-
mations obtained from eddy covariance measurements. Ad-
ditionally, we measured summer needle N content to inves-
tigate the relationship between photosynthetic capacity pa-
rameters and needle N content along different needle ages.

Results show thatVm25 andJm25 were, respectively, 27%
and 13% higher in current-year than in one-year old needles.
A significant seasonality effect was found onVm25, but not
on Jm25. Summer needle N content was considerably lower
in current-year than in one-year-old needles. As a result, the
correlations betweenVm25 and needle N content andJm25
and needle N content were negative and non-significant, re-
spectively. Some explanations for these unexpected correla-
tions were brought forward. Yearly GEP was overestimated
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by the canopy model by±15% under all scenarios. The
inclusion and omission of the observed needle age-related
Vm25 andJm25 variation in the model simulations led to sta-
tistically significant but ecologically irrelevant differences in
simulated yearly GEP andEcan. Omitting seasonal varia-
tion did not yield significant simulation differences. Our re-
sults indicate that intensive photosynthetic capacity measure-
ments over the full growing season and separate simulation
of needle age classes were no prerequisites for accurate sim-
ulations of yearly canopy gas exchange. This is true, at least,
for the studied stand, which has a very sparse canopy and is
exposed to high N deposition and, hence, is not fully repre-
sentative for temperate Scots pine stands. Nevertheless, we
believe well-parameterized process-based canopy models –
as applied in this study – are a useful tool to quantify losses
of predictive accuracy involved with canopy simplification in
modelling.

1 Introduction

Coniferous canopies have a complex heterogeneous struc-
ture, both in terms of foliage architecture and physiology.
For example, needles are unevenly distributed in the canopy
through aggregation into whorls, clumps and cohorts (e.g.,
Čerḿak et al., 1998), while needle physiological properties
vary with canopy position (Peters et al., 2008), needle age
(Wang et al., 1995), and time of growing season (Misson et
al., 2006). Reliable estimates of conifer canopy gas exchange
therefore require an accurate characterization of the canopy
structure in space and time (Monteith, 1975; Stenberg et al.,
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1994). In process-based multi-layer canopy models this con-
dition is typically met as their framework allows for a de-
tailed description of foliage distribution, physiological gra-
dients, and radiation transfer within the canopy. More-
over, they often include photosynthetic capacity and leaf area
changes related to needle age (e.g., Mohren and van de Veen,
1995; Tingey et al., 2001; Weiskittel, 2006) and time in the
growing season (e.g., Ogée et al., 2003). Due to the large
input parameter requirement and number of calculations in-
volved, it is not feasible to represent canopy complexity in
such detail in models simulating canopy gas exchange at the
larger scale such as land surface schemes used in general
circulation models (e.g., Verseghy, 2000; Kowalczyk et al.,
2006). In those models, the canopy scheme is reduced to one
sun/shade layer and needle age-related and seasonal photo-
synthetic capacity variation is mostly not taken into account.
Whereas the use of one/shade layer and the spatial averag-
ing of photosynthetic capacity has been shown not to induce
significant accuracy loss (de Pury and Farquhar, 1997; Wang
and Leuning, 1998), the omittance of needle age-related and
seasonal photosynthetic capacity variation could lead to con-
siderably less accurate estimations of conifer canopy gas ex-
change (Oǵee et al., 2003; also: Wilson et al., 2001 for a
deciduous canopy).

Additionally, the general relationship between photosyn-
thetic capacity and needle nitrogen (N) content (Field and
Mooney, 1986) is not clear along different needle ages in
conifers (Vapaavuori et al., 1995; Warren et al., 2003),
though leaf N content is commonly used as an indicator for
photosynthetic capacity because of its close association with
the amounts of photosynthesis-related N compounds such as
chlorophyll and Rubisco (Evans, 1989).

In this study, we quantified the predictive accuracy loss in-
volved with omitting photosynthetic capacity variation for a
Scots pine (Pinus sylvestrisL.) stand in Flanders, Belgium.
Over the course of one phenological year, we measured the
photosynthetic capacity parameters maximum carboxylation
capacity at 25◦C (Vm25) and maximum electron transport
capacity at 25◦C (Jm25) and the leaf area index (LAI) of
different-aged needles in the upper and lower canopy. We
used these measurements as input for a process-based multi-
layer canopy model with the objective to quantify the dif-
ference in yearly gross ecosystem productivity (GEP) and
canopy transpiration (Ecan) simulated under scenarios in
which the observed needle age-related and/or seasonal vari-
ation of Vm25 andJm25 was omitted. We compared simu-
lated GEP with estimations obtained from eddy covariance
measurements. Additionally, we measured summer needle
N content to investigate the relationship between photosyn-
thetic capacity parameters and needle N content along differ-
ent needle ages.

2 Materials and methods

2.1 Experimental site

The experimental site is an even-aged, 2 ha Scots pine
stand, representing a portion of the 150 ha mixed conif-
erous/deciduous De Inslag forest. The forest is located
in Brasschaat, in the Campine region of the province of
Antwerpen, Belgium (51◦18′33′′ N, 4◦31′14′′ E, altitude,
16 m a.s.l.). The stand was a level II observation plot of the
European program for intensive monitoring of forest ecosys-
tems (EC regulation No. 3528/86), managed by the Flemish
Research Institute for Nature and Forestry (Flanders, Bel-
gium). Ten-year mean annual and growing season (April–
October) temperature at the site are 11.8 and 14.9◦C, re-
spectively. Mean annual and growing season precipitation
are 824 and 505 mm, respectively. Rainfall is fairly evenly
distributed throughout the year. The study site has a flat to-
pography (slope less than 0.3%). The upper soil layer is ca.
1.8 m thick. The soil has been described as a moderately
wet sandy soil with a distinct humus and/or iron B-horizon
(Baeyens et al., 1993). Due to a clay layer at a depth of 1.5
to 2 m the site has poor drainage. The soil is moist and often
saturated, with a high hydraulic conductivity in the upper soil
layer.

The Scots pine stand was planted in 1929 and was 78 years
old at the time of the present study (2007–2008). The present
stock density is 374 trees ha−1 (Xiao et al., 2003). Average
diameter at breast height is 0.3 m and average tree height is
21.4 m. The stand canopy is sparse, with a peak projected
LAI of 1.31 m2 m−2 in 2007 (this study) and a mean canopy
gap fraction of 42%. The canopy has a mean depth of 8.3 m
(Xiao et al., 2003). The pine trees only bear two needle age
classes (current-year needles and one-year-old needles), as
nearly all needles older than two years are dropped in winter
(Janssens et al., 1999). Needle analysis has shown the stand
to be low in magnesium and phosphorus (Van den Berge et
al., 1992; Roskams et al., 1997). However, needle N con-
tent was optimal (>2% in current-year needles; Roskams and
Neirynck, 1999), most probably because the pine stand is lo-
cated in an area with high NOx and ammonia deposition (30–
40 kg ha−1 y−1; Neirynck et al., 2005, 2007), with high NO−3
leaching to the ground water (Neirynck et al., 2008).

2.2 Photosynthetic parameter measurements and
needle N analysis

The photosynthetic parametersVm25 andJm25 were derived
from in situ gas exchange measurements. Platforms on a
41 m high flux tower positioned in the middle of the stand
gave access to the crown of two pine trees growing near the
tower. Gas exchange was measured on attached current-year
and one-year-old needles in the upper and lower crown of
these two pines with a portable open-path gas exchange mea-
surement system (LI-6400, Li-COR, Lincoln, NE, USA).
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Measurements were carried out at five dates in the pheno-
logical year 1 May 2007–30 April 2008, on a monthly ba-
sis (June, July, August, and September 2007; April 2008).
At each sampling, within the first week of the month, be-
tween 15 and 30 needle samples (each 6 to 8 needles, i.e.
3 to 4 fascicles) were placed into the LI-6400 leaf cham-
ber. Foam mounting paths held the needles in the cham-
ber, preventing self-shading. Response curves of needle
photosynthesis to CO2 (An/Ci) were generated at 25◦C un-
der saturating conditions of photosynthetically active radi-
ation (PAR; 1000 µmol m−2 s−1). Photosynthetic responses
were measured at ten CO2 concentrations, in the following
order: 360, 180, 100, 70, 45, 360, 560, 720, 1000, and
2000 ppm. In a number of cases, leaf respiration rate at
25◦C (Rd25) was measured at PAR=0 µmol m−2 s−1, prior
to theAn/Ci curve assessment. During measurements leaf
chamber humidity varied between 50 and 80%. Values for
the photosynthetic parametersVm25 andJm25 were derived
from theAn/Ci curves by fitting the biochemical photosyn-
thesis model of Farquhar (Farquhar et al., 1980) with the least
squares method.

After gas exchange measurements, needles were harvested
and projected needle area was estimated using a binocu-
lar microscope (M5 Wild, Wild Heerbrugg, Gais, Switzer-
land) in combination with an ocular equipped with a retic-
ule (Leitz, Wetzlar, Germany, periplan, GW 10xm). Nee-
dles sampled in June, July, and August 2007 were subse-
quently dried in a dry oven (70◦C, 72 h). After grounding
in a mill (Cyclotech 1093, Sample Mill, Sweden), they were
analyzed for N by a dynamic Flush Combustion Method with
a NC 2100 Soil Analyzer (Carlo Erba Strumentazione, Ro-
dano, Italy). From biomass-based needle N content (Nb) and
projected needle area, area-based needle N content (Na) was
calculated. A list of all symbols and notations used in this
study is given in Table 1.

2.3 Leaf area index measurements

Effective LAI was determined by an optical close-range
remote sensing method, using hemispherical canopy pho-
tographs as described by Jonckheere et al. (2005a, b). The
photographs were taken at 30 points in a systematic sampling
grid within the experimental plot at a biweekly interval from
28 March 2007 till 31 January 2008. Effective LAI measures
were calculated from binarized photographs resulting from
an automatic global thresholding algorithm combined with
a local thresholding algorithm in order to correct for local
light anomalies (e.g., sun flecks, underexposure) in the pho-
tographs (Jonckheere et al., 2005b, 2006). Post correction
for clumping on branch- and tree-level was done by dividing
the measured effective LAI by a clumping factor for Scots
pine (0.83) (Jonckheere et al., 2005a). Daily values were ob-
tained through linear interpolation. The LAI pattern for the
different age classes was reconstructed using litter fall data.
Litter fall was measured at a biweekly interval between May

2007 and December 2007 on 10 places within the experimen-
tal plot with litter collectors (surface area of 0.3 m2) made
from nylon-mesh netting. All litter was oven-dried (48 h,
75◦C), sorted into branches, needles and reproductive or-
gans, and weighed. Current-year needle LAI was calculated
as the sum of needle litter fall and the increase of total LAI
until it reached a maximum (early September 2007). One-
year-old needle LAI was calculated as the difference between
total and current-year needle LAI. A relative distribution of
current-year and one-year-old needle LAI between the up-
per and lower canopy was estimated from destructive sam-
pling in August 2007. This was done by measuring current-
year and one-year-old needle dry weight for four harvested
branches from the upper and lower crown of five trees sur-
rounding the flux tower. These dry weight values were av-
eraged and converted to LAI values by multiplication with
specific leaf area values from a previous site study (Xiao et
al., 2006).

2.4 Gross ecosystem productivity measurements

Gross ecosystem productivity (GEP) was estimated from ver-
tical CO2 flux measurements above the canopy using the
eddy covariance technique (Baldocchi and Meyers, 1998).
The measurements were conducted at the top of the tower
at a height of 41 m, circa 18 m above the canopy. The eddy
covariance system consisted of a sonic anemometer (Model
SOLENT 1012R2, Gill Instruments, Lymington, UK) for
wind speed and an infrared gas analyser (IRGA) (Model LI-
6262, LI-COR Inc., Lincoln, NE, USA) to measure the CO2
concentrations. A detailed description of the experimental
setup can be found in Kowalski et al. (2000) and Carrara et
al. (2003). Half-hourly net ecosystem exchange fluxes were
calculated following the recommendations of the Euroflux
network (Aubinet et al., 2000; Reichstein et al., 2005; Papale
et al., 2006). Gap-filling and separation of net ecosystem ex-
change fluxes into total ecosystem respiration and GEP was
done as described by Reichstein et al. (2005).

2.5 Meteorology

On top of the flux tower, 41 m above ground level, the fol-
lowing meteorological variables were measured at 0.1 Hz:
incoming solar irradiance (I ) (Kipp and Zonen CM6B, the
Netherlands), air temperature (T ) and relative humidity (RH)
(DTS-5A, Didcot Instrument Co Ltd, Abingdon, United
Kingdom), atmospheric pressure (pa) (SETRA Baromet-
ric Pressure transducer Model 278, Setra systems, Boxbor-
ough, MA, USA), and wind speed (v) (Didcot DWR-205G).
Measurement data were converted to half-hourly means and
stored on a data logger (Campbell CR10, United Kingdom).
Data gaps were filled with data from nearby weather stations.
Air vapour pressure deficit (VPD) was derived from mea-
sured RH andT , following Jones (1992). Half-hourly atmo-
spheric CO2 concentration (Ca) was obtained by averaging
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Table 1. List of symbols and notations used in this study, with their units and definition.

symbol units definition

a1 dimensionless empirical scaling parameter
Ab µmol m−2 s−1 gross photosynthesis
Absun(i,j), µmol m−2 s−1 gross photosynthesis ofj -aged needles in the sunlit fraction of a canopy layeri

Abshad(i,j) µmol m−2 s−1 gross photosynthesis ofj -aged needles in the shaded fraction of a canopy layeri

An µmol m−2 s−1 nitrogen-limited gross photosynthesis
Aj µmol m−2 s−1 light-limited gross photosynthesis
Av µmol m−2 s−1 net photosynthesis
Ca ppm atmospheric CO2 concentration
Cs ppm leaf surface CO2 concentration
Ci ppm leaf intercellular CO2 concentration
d m characteristic needle dimension (=needle diameter)
E mol m−2 s−1 transpiration rate
EaVm J mol−1 activation energy forVm
EaJm J mol−1 activation energy forJm
EaRd J mol−1 activation energy forRd
EaKo J mol−1 activation energy forKo
EaKc J mol−1 activation energy forKc
Ecan g H2O m−2 s−1 instant canopy transpiration

g H2O m−2 d−1 daily canopy transpiration
kg H2O m−2 y−1 yearly canopy transpiration

f dimensionless spectral correction factor
fsun(i) dimensionless sunlit LAI fraction of a canopy layeri

fshad(i) dimensionless shaded LAI fraction of a canopy layeri

fVPD dimensionless VPD-function, ranging between 0 and 1
gst mol m−2 s−1 stomatal conductance to CO2
g0 mol m−2 s−1 night-time conductance to CO2
gtot mol m−2 s−1 total leaf conductance to CO2
gbl mol m−2 s−1 leaf boundary layer conductance to CO2
GEP g C m−2 s−1 instant gross ecosystem productivity

g C m−2 d−1 daily gross ecosystem productivity
kg C m−2 y−1 yearly gross ecosystem productivity

H J mol−1 curvature parameter ofJm
I W m−2 incoming solar irradiance
Ib0 W m−2 direct beam irradiance at the canopy top
Id0 W m−2 diffuse irradiance at the canopy top
Id(i) W m−2 diffuse irradiance in a canopy layeri

Isun(i) W m−2 total received irradiance by the sunlit fraction of a canopy layeri

Ishad(i) W m−2 total received irradiance by the shaded fraction of a canopy layeri

J µmol m−2 s−1 actual electron transport rate per unit leaf area
Jm,Jm25 µmol m−2 s−1 maximum electron transport rate per unit leaf area, at prevailing temperature and at 25◦C
kb ppm beam radiation extinction coefficient
kd ppm diffuse radiation extinction coefficient
Kc,Kc25 ppm Michaelis-Menten constant of Rubisco for CO2, at prevailing temperature and at 25◦C
Ko,Ko25 ppm Michaelis-Menten constant of Rubisco for O2, at prevailing temperature and at 25◦C
LAI m2 m−2 leaf area index
LAI c(i) m2 m−2 cumulative leaf area index above a canopy layeri, from the canopy top
LAI sun(i,j) m2 m−2 leaf area index ofj -aged needles in the sunlit and shaded fraction of a canopy layeri

LAI shad(i,j) m2 m−2 leaf area index ofj -aged needles in the sunlit and shaded fraction of a canopy layeri

Nb g g−1 DW biomass-based needle N content
Na mmol m−2 area-based needle N content
O ppm leaf intercellular O2 concentration
pa kPa atmospheric pressure
PAR µmol m−2 s−1 photosynthetically active radiation
PARPSII µmol m−2 s−1 photosynthetically active radiation effectively absorbed by photosystem II
R J mol−1 K−1 universal gas constant
Rd,Rd25 µmol m−2 s−1 leaf respiration rate per unit leaf area, at prevailing temperature and at 25◦C
Rd25/Vm25 dimensionless ratio of leaf respiration rate to maximum carboxylation rate under RuBP saturation at 25◦C
RH % relative humidity
S J mol−1 K−1 electron-transport temperature response parameter
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Table 1. Continued.

symbol units definition

T ◦C air temperature
v m s−1 wind speed
Vm,Vm25 µmol m−2 s−1 maximum carboxylation rate per unit leaf area under RuBP saturation, at prevailing temperature and at 25◦C
VPD kPa air vapour pressure deficit
VPD0 kPa empirical parameter
αPAR dimensionless needle PAR absorptivity
β ◦ solar elevation angle
0 ppm CO2 compensation point
0′, 0′

25 ppm CO2 compensation point in the absence of mitochondrial respiration, at prevailing temperature and at 25◦C
θ dimensionless curvature of leaf response of electron transport to PAR
� dimensionless factor accounting for inter- and intra-crown foliage clumping

20.8 Hz measurements that were conducted on top of the
tower with an Infra Red Gas Analyser (IRGA) (Model LI-
6262, LI-COR Inc., Lincoln, NE, USA). These meteorologi-
cal data were used as input for the canopy model. Precipita-
tion was measured with a rain gauge (Didcot DRG-51) and
recorded half-hourly.

2.6 Canopy model: description

The process-based multi-layer canopy model applied in this
study is a generic model and is described in detail in Ap-
pendix A. The model includes a radiation submodel (Goudri-
aan, 1977) and a leaf physiological submodel (Farquhar et
al., 1980; Leuning, 1995). It simulates gross ecosystem pro-
ductivity (GEP) and canopy transpiration (Ecan) on a half-
hourly time resolution. It is driven by half-hourly input
of I , T , VPD, Ca, pa, and v, and daily input of current-
year and one-year-old needle LAI. At each time step, the
model calculates leaf-level gross photosynthesis (Ab) andE

for current-year and one-year-old sunlit and shaded needles
in each canopy layer. These values are integrated over the
canopy and over time to obtain instant, daily, and yearly GEP
andEcan. Table 2 lists all constant model parameters with
their references.

2.7 Canopy model: parameterization and validation

The parameterization of the canopy model was partially
based on previous site study results and values from the lit-
erature (see Table 2). The stomatal model (Eqs. A15–A16)
making part of the leaf physiological submodel (Eqs. A7–
A20) was parameterized to new site-specific gas exchange
measurements in order to obtain reliable model results.
Therefore, needle-level gas exchange diurnals and responses
to VPD were assessed. On nine occasions throughout the
summer 2007, after a morningAn/Ci curve assessment, nee-
dles were held in the LI-6400 chamber and diurnal gas
exchange courses were tracked under ambient conditions.
Chamber CO2 concentration was set to 360 ppm. Three out

of the nine diurnals included night-time measurements and
on two occasions a day-night-day period (36 h) was covered.
Needle gas exchange responses to VPD were measured on
three needle samples in September 2007. Leaf chamber VPD
was varied within a range of 0.5 up to 4.0 kPa at saturating
PAR (1000 µmol m−2 s−1), chamber air temperature between
20 and 25◦C, and chamber CO2 concentration of 360 ppm.
With these measurements, the stomatal model was parame-
terized. An average input value for the night-time conduc-
tance to CO2 (g0) was directly obtained from the night-time
measurements. An average input value for the empirical pa-
rametersa1 and VPD0 was obtained by fitting the stomatal
model to the gas exchange diurnals and the measured VPD
responses, respectively, through minimization of the sum of
squared differences between simulated and measuredgst.

The full leaf physiological submodel was validated against
the two day-night-day periods. First, the empirical parame-
ter a1 was optimized again to the first day of each period
by fitting the stomatal model through minimization of the
sum of squared differences between simulated and measured
gst. The leaf physiological submodel was subsequently val-
idated to the second day of each period using thisa1 value,
theVm25 andJm25 values derived from theAn/Ci curves as-
sessed on the needles before the continuous measurements
were started, and the other parameter values as given in Ta-
ble 2. The submodel’s performance was judged by evaluating
simulated versus measured half-hourly averaged net photo-
synthesis (An) andE.

2.8 Photosynthetic parameter input scenarios

The canopy model was run for one phenological year (1 May
2007 to 30 April 2008) with the half-hourly meteorological
input and daily LAI input provided in Fig. 1, and the pa-
rameterization given in Table 2. Yearly GEP andEcan were
simulated under fourVm25−Jm25 input scenarios in which
the measured needle age-related and seasonal variation of
Vm25 andJm25 were included or omitted. In the first scenario
(scen-AS), which was the reference scenario, both seasonal
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Table 2. List of input parameter constants, with their reference.

symbol value units reference

a1 2.7 dimensionless optimized to diurnal gas exchange measurements
d 0.0015 m measured
EaVm 32 125 J mol−1 Janssens et al. (1998)
EaJm 37 000 J mol−1 de Pury and Farquhar (1997)
EaRd 71 600 J mol−1 optimized to night-time gas exchange measurements
EaKo 36 000 J mol−1 Medlyn et al. (2002)
EaKc 59 400 J mol−1 Medlyn et al. (2002)
Ea0∗ 37 830 J mol−1 Medlyn et al. (2002)
f 0.15 dimensionless de Pury and Farquhar (1997)
g0 0.015 mol m−2 s−1 measured
H 710 J mol−1 de Pury and Farquhar (1997)
kd 0.7 dimensionless de Pury and Farquhar (1997)
Kc25 405 ppm Medlyn et al. (2002)
Ko25 278 400 ppm Medlyn et al. (2002)
O 205 000 ppm de Pury and Farquhar (1997)
R 8.314 J mol−1 K−1 Jones (1992)
Rd25/Vm25 0.025 (current-year) dimensionless derived from gas exchange measurements

0.03 (one-year-old) dimensionless
S 220 000 J mol−1K−1 de Pury and Farquhar (1997)
VPD0 1.9 kPa optimized to stomatal VPD response measurements
αPAR 0.85 dimensionless Jones (1992)
0 47.0 ppm derived from measuredA/Ci responses
0′ 42.8 ppm Medlyn et al. (2002)
θ 0.5 dimensionless optimized to diurnal gas exchange measurements
� 0.83 dimensionless Jonckheere et al. (2005a)

Fig. 1. Time courses of the half-hourly meteorological variables(a)
incoming solar irradiance (I ), (b) air temperature (T ), (c) air vapour
pressure deficit (VPD), and of(d) leaf area index (LAI) of current-
year needles (black line), one-year-old needles (grey line) and all
needles (dotted line), over the phenological year May 2007–April
2008.

and needle age-related variation were included. In the sec-
ond scenario (scen-A), only needle age-related variation was
included. In the third scenario (scen-S), only seasonal vari-
ation was included. In the fourth scenario (scen-B), which
was the basic scenario, both needle age-related and seasonal
variation were omitted. For the scenarios in which seasonal
variation was included (scen-AS, scen-S),Vm25 and Jm25
measurements from consecutive sampling dates were pooled
when statistically not significantly different, as indicated by
an analysis of variance (ANOVA) post hoc comparison test.
Continuous time courses ofVm25 andJm25 were obtained by
linear interpolation. For the scenarios in which seasonal vari-
ation was omitted (scen-A, scen-B),Vm25 andJm25 input val-
ues were based on the July and August 2007 measurements
only, as photosynthetic capacity measurements for model pa-
rameterization are typically done in summer. Values of the
two dates were pooled. For the scenarios in which needle-
age related variation was omitted (scen-S, scen-B),Vm25 and
Jm25 measurements from current-year and one-year-old nee-
dles were pooled and the weighted average was calculated
with current-year and one-year-old needle LAI as weighting
factor, as in Oǵee et al. (2003). In all fourVm25−Jm25 input
scenarios, current-year and one-year-old needles were given
the same values for the other parameters in the leaf physio-
logical submodel with the exception of theRd25/Vm25 ratio
(see Table 2).

Biogeosciences, 7, 199–215, 2010 www.biogeosciences.net/7/199/2010/



M. Op de Beeck et al.: Yearly gas exchange of a sparse temperate Scots pine forest 205

2.9 Statistics

All statistical analyses were performed using the statisti-
cal package of the ORIGIN® software (version 7, Origin-
Lab Corporation, Northampton, MA, USA) and SAS (ver-
sion 9.1, SAS Institute Inc., Cary, NC, USA). To test for sig-
nificant differences between two or more means, a two-tailed
Student’s t-test or a one-way ANOVA was applied. To un-
ravel the effect of needle age and seasonality onVm25, Jm25,
and theJm25/Vm25 ratio, we performed an analysis of covari-
ance (ANCOVA) with needle age as treatment and the day
of the phenological year (1 May 2007=1) as the covariate.
In case of a statistically significant difference (p < 0.05), the
analyses were followed by post hoc comparisons of all means
by the Tukey-Kramer HSD test. A Monte Carlo technique
was used to estimate the uncertainty on simulated yearly
GEP andEcan from the uncertainty distributions of the in-
put parametersVm25 andJm25. The number of Monte Carlo
model runs under each scenario was set to 500, the mini-
mum number after which the standard deviation on simulated
yearly GEP andEcan converged. We assumed normality of
the probability density function ofVm25 and Jm25, which
was tested for with a Shapiro-Wilk test. The performance
of the leaf physiological submodel was evaluated by the co-
efficient of determination (R2), the slope and the intercept of
the linear regression of simulated versus measuredAn andE,
the root-mean-square-error (RMSE), and Willmott’s index of
agreement (d) (Willmott, 1981). This index ranges from 0 to
1, 1 indicating perfect agreement. Statistical significance for
all tests was set at the 0.05 level. In text and tables, given
errors on means are standard errors (SE).

3 Results

3.1 Meteorological site conditions

Phenological year and growing season mean air tempera-
ture during the study period (May 2007–April 2008) were
10.4 and 13.9◦C, respectively, which are 1.4 and 1.0◦C be-
low the ten-year mean. Phenological year and growing sea-
son total precipitation mounted to 903 and 502 mm, respec-
tively, the former of which is about 10% above the long-term
mean. Growing season total precipitation followed the long
term mean of 505 mm. The study period was characterized
by the absence of extreme air temperatures and dry atmo-
spheric conditions:T virtually never exceeded 25◦C and
VPD hardly exceeded 1.5 kPa (Fig. 1b, c).

3.2 Leaf area index

Total LAI during the study period varied between 0.94 and
1.31 m2 m−2 (Fig. 1d). Total LAI was minimal just before
bud burst in spring 2007 and peaked after full expansion of
current-year needles in late summer. By this time, current-
year needle LAI had increased to 0.55 m2 m−2, contribut-

ing to 42% of total LAI. By the end of autumnal needle
shed, one-year-old needle projected LAI had dropped to 0.39
m2 m−2 and total LAI reached a minimum again. In win-
ter 2007 and spring 2008, current-year needles and one-year-
old needles made up 60% and 40% of total canopy LAI, re-
spectively. Destructive sampling in August 2007 showed a
slightly uneven upper/lower canopy distribution of current-
year and one-year-old needle LAI (58/42% and 47/53%, re-
spectively).

3.3 Upper versus lower canopy

Photosynthetic capacity and needle N content differences be-
tween the upper and the lower canopy were specifically ex-
amined during the first sampling (June 2007), in order to
confirm the findings of a previous site study, which reported
a non-significant canopy effect onVm25 andJm25 (Janssens
et al., 1998) and so to possibly reduce the number of mea-
surements during the following samplings. As current-year
needles were still too small to be sampled, all measurements
were made on one-year-old needles. Maximum carboxyla-
tion capacity at 25◦C was not significantly different between
the upper canopy (67.8±2.3 µmol m−2 s−1; n = 12) and the
lower canopy (71.3±2.5 µmol m−2 s−1; n = 9) (p = 0.47).
Also Jm25 was not significantly different between the up-
per canopy (147.2±2.1 µmol m−2 s−1) and the lower canopy
(157.4±7.9 µmol m−2 s−1) (p = 0.41). In line with the pho-
tosynthetic parameters,Na did not significantly differ be-
tween the upper canopy (648.9±50.6 mmol m−2) and the
lower canopy (573.6±41.2 mmol m−2) (p = 0.13). On the
basis of these results, which were confirmed a posteriori
when considering all data (results not shown), we decided
to pool measurements from the upper and lower canopy.

3.4 Needle-age related and seasonal photosynthetic
parameter variation

Seasonal variations inVm25, Jm25, and theJm25/Vm25 ratio
are depicted in Fig. 2 for current-year needles (white bars)
and one-year-old needles (grey bars). An ANCOVA was per-
formed to unravel the effect of needle age and seasonality on
Vm25, Jm25, and theJm25/Vm25 ratio. The analysis revealed a
significant effect of needle age onVm25 after controlling for
the seasonality effect (p < 0.0001). Maximum carboxyla-
tion capacity at 25◦C was significantly higher in current-year
than in one-year-old needles. AdjustedVm25 means were
81.3±2.5 and 63.1±1.9 µmol m−2 s−1, respectively. More-
over, the seasonality effect was significant (p < 0.0001),
with Vm25 decreasing with day of the phenological year
(slope=−0.07623±0.115 µmol m−2 s−1 d−1). The analysis
also revealed a significant effect of needle age onJm25 af-
ter controlling for the effect of seasonality (p < 0.05). Max-
imum electron transport capacity at 25◦C was significantly
higher in current-year than in one-year-old needles. Adjusted
Jm25 means were 163.3±5.8 and 144.9±4.6 µmol m−2 s−1,
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Fig. 2. Seasonal variation of(a) maximum carboxylation capac-
ity at 25◦C (Vm25), (b) maximum electron transport capacity at
25◦C (Jm25), and(c) the Jm25/Vm25 ratio, for current-year nee-
dles (white bars) and one-year-old needles (grey bars). Error bars
represent SE. In June 2007, current-year needles were too small to
be sampled.

respectively. In contrast withVm25, the seasonality effect
on Jm25 was not significant (p = 0.79). Furthermore, also
a significant needle age effect on theJm25/Vm25 ratio was
detected, after controlling for the seasonality effect (p <

0.001). The ratio was significantly higher in one-year-old
than in current-year needles. The adjusted ratio means were
2.05±0.08 and 2.34±0.07, respectively. The effect of sea-
sonality on the ratio was significant (p < 0.0001), with a pos-
itive relation between the ratio and day of the phenological
year (slope=0.0028±0.0004 d−1).

3.5 Photosynthetic parameters versus needle N content

Based on the measurements in July and August 2007, the
summer relationship between photosynthetic parameters and
needle N content was quantified along the two needle ages
(Table 3). The parametersVm25 andJm25 were significantly
higher in current-year than in one-year-old needles, while at
the same time biomass- and area-based N content (Nb and
Na) were significantly higher in one-year-old needles. As a
result, theVm25/Na ratio and theJm25/Na ratio were much
higher in current-year than in one-year-old needles. Max-
imum carboxylation capacity at 25◦C was even negatively
correlated withNa when considering the data of both needle
ages together (r = −0.61, p < 0.001; Fig. 3a). The corre-
lation betweenJm25 andNa was not significant (r = −0.11,
p = 0.53; Fig. 3b).

Fig. 3. Scatter plots of(a) maximum carboxylation capacity
at 25◦C (Vm25) versus area-based needle nitrogen content (Na),
and (b) potential electron transport capacity at 25◦C (Jm25) ver-
susNa, for current-year needles (open symbols) and one-year-old
needles (filled symbols). Data are from July and August 2007.
r=correlation coefficient.

3.6 Canopy gas exchange simulations

The leaf physiological submodel of the canopy model satis-
factorily reproduced half-hourly averaged net photosynthesis
(An) and transpiration (E), as indicated by theR2 andd val-
ues, being close to 1, and the low RMSE values (Fig. 4).
Predictions ofE were slightly less accurate than predictions
of An. This is most probably due to the fact that, contrary to
An, gst and, hence,E respond very slowly to light changes.
These dynamics could not be fully captured by the submodel
assuming steady state conditions. It should be noted that the
submodel was tested witha1 values optimized to the first day
of each biurnal. If the submodel was tested with the aver-
agea1 value used in the canopy model runs (see Table 2),
it would have been less accurate. Nonetheless, Fig. 4 shows
how well the submodel could behave on the needle-level.

After validating the submodel, the canopy model was
run under the fourVm25− Jm25 input scenarios, for which
the Vm25 and Jm25 input values are given in Table 4.
Under the reference scenario, including both needle age-
related and seasonal variation (scen-AS), simulated yearly
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Fig. 4. Validation of the leaf physiological submodel. Scatter plot of(a) simulated versus measured half-hourly averaged net leaf photosyn-
thesis (An), and(b) simulated versus measured half-hourly averaged transpiration (E). The submodel was validated against the data of the
second day of two day-night-day periods (36 h) of continuous gas exchange measurements. Grey lines are the 1:1 lines. Black lines are the
linear regression curves.R2=coefficient of determination; RMSE=root-mean-square-error;d=Willmott’s index of agreement.

Table 3. Photosynthetic parameters versus needle nitrogen (N) content. Results (mean±SE) for current-year needles and one-year-old
needles, from summer measurements (July and August 2007), withp-values oft-test comparison. For an explanation of the symbols and
parameters, see Table 1.

parameter current year one-year-old
(n = 18) (n = 13) p-value

Vm25 (µmol m−2 s−1) 87.8±2.6 67.4±2.3 < 0.0001
Jm25 (µmol m−2 s−1) 161.6±4.6 143.4±5.9 < 0.05
Nb (g g−1DW) 1.56±0.05 1.85±0.06 < 0.001
Na (mmol m−2) 273.7±13.8 440.3±22.1 < 0.0001
Vm25/Na (µmol mmol−1 s−1) 0.34±0.02 0.16±0.03 < 0.0001
Jm25/Na (µmol mmol−1 s−1) 0.61±0.02 0.33±0.02 < 0.0001

GEP andEcan amounted to 1.561±0.004 kg C m−2 y−1 and
201.8±0.5 kg H2O m−2 y−1, respectively (Table 5). Yearly
GEP andEcan simulated under the scenario including nee-
dle age-related variation only (scen-A) were not significantly
different from these values. Relative to scen-AS, yearly GEP
and Ecan were significantly underestimated under the sce-
nario including seasonal variation only (scen-S), and sig-
nificantly overestimated under the basic scenario, omitting
both needle age-related and seasonal variation (scen-B). The
percentage-wise differences with the scen-AS results, how-
ever, were small (within 2.5%). Measured yearly GEP,
which amounted to 1.352 kg C m−2 y−1, was considerably
overestimated by the canopy model under all scenario’s
(+13.0% to +17.5%).

Daily GEP simulated under scen-AS clearly followed the
seasonal course of measured GEP (Fig. 5a), yet simulated
GEP was slightly lower in spring 2007 and higher from Au-
gust 2007 on (Fig. 5b). Daily GEP courses were very similar
under all scenarios. For reasons of clarity, we depicted the

simulated daily GEP differences with scen-AS instead of ab-
solute daily GEP values (Fig. 5c–e). The seasonal courses
of daily GEP simulated under scen-A and scen-AS were vir-
tually equal (Fig. 5c). Under scen-S, the model simulated
slightly lower daily GEP in summer 2007, relative to scen-
AS (Fig. 5d). Under scen-B, daily GEP values were slightly
higher in early summer (Fig. 5e). The differences in simu-
lated daily GEP were all within 0.5 g C m−2 d−1. Daily Ecan
simulations showed relative patterns analogous to daily GEP
and are not presented to avoid redundancy.

4 Discussion

4.1 Upper versus lower canopy

We did not observe a significant difference between the
photosynthetic parametersVm25 andJm25 or the N content
of upper and lower canopy needles. These findings are
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Table 4. Input values of carboxylation capacity at 25◦C (Vm25; µmol m−2 s−1) and electron transport capacity at 25◦C (Jm25;
µmol m−2 s−1) (value±SE) for the four scenarios. For the scenario including both seasonal and needle age-related variation (scen-AS)
and the scenario including needle age-related variation only (scen-S), values between dashed lines are obtained from pooling the measure-
ments from the consecutive sampling dates underscored by the dashed lines and are constant over period between the consecutive sampling
dates. Values between non-pooled consecutive sampling dates are linearly intrapolated. For the scenario including needle age-related vari-
ation only (scen-A) and the scenario omitting both seasonal and needle age-related variation (scen-B), values are based on measurements
from July and August 2007 only.

 

Page 1/1 

  June July August September April    
  2007 2007 2007 2007 2008    

scen-AS        scen-A  

current-year Vm25  ------  87.8 ± 2.6  -------- 75.5 ± 2.7 63.1 ± 3.5  87.8 ± 2.6  
 Jm25  --------------------  163.1 ± 3.3  ------------------------  161.6 ± 4.5  

one-year-old Vm25  ---------------  68.4 ± 1.7  ----------------- 48.5 ± 3.3  67.3 ± 2.3  
 Jm25  --------------------  146.2 ± 4.2  ------------------------  143.4 ± 5.9  

scen-S        scen-B  
 Vm25  ---------------  71.9 ± 3.5  ----------------- 57.2 ± 3.4  76.2 ± 2.4  
 Jm25  ---------------------  150.7 ± 8.2  ------------------------  151.2 ± 5.3  
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Table 5. Measured and simulated yearly gross ecosystem productivity (GEP; kg C m−2 y−1) and simulated canopy transpiration (Ecan;
kg H2O m−2 y−1) under the four scenarios (mean±SE), with the percentagewise difference andp-values oft-test comparison with scen-AS
results. Also given are the percentagewise difference and thep-values of One Samplet-test comparison of simulated GEP with measured
GEP.n = 500.

yearly GEP yearlyEcan

measured 1.351 % p-value
scen-AS 1.561±0.004 % p-value +15.5 < 0.0001 201.8±0.5 % p-value
scen-A 1.568±0.004 +0.4 0.29 +16.1 < 0.0001 202.9±0.4 +0.5 0.07
scen-S 1.527±0.004 −2.2 < 0.0001 +13.0 < 0.0001 197.2±0.5 −2.3 < 0.0001
scen-B 1.587±0.005 +1.6 < 0.0001 +17.5 < 0.0001 205.9±0.5 +2.0 < 0.0001

corroborated by a previous site study (Janssens et al., 1998).
Though we only sampled one-year-old needles, we have
no reason to assume results would be different for current-
year needles. We believe the absence of any canopy posi-
tion effect is a consequence of the canopy sparsity (maximal
LAI=1.31 m2 m−2, Fig. 1d). In the virtual absence of a light
gradient within the sparse canopy, no vertical canopy N or
photosynthetic capacity profile is (or better, has to be) devel-
oped within the needle age class to optimize canopy photo-
synthesis.

4.2 Needle-age related and seasonal photosynthetic
parameter variation

We found significantly lowerVm25 andJm25 values in one-
year-old needles than in current-year needles, following the
general trend of decreasing photosynthetic capacity with nee-
dle age (Rundel and Yoder, 2000; Niinemets, 2002). This

trend, which sometimes hovers on the edge of significance
(e.g., Letts et al., 2009), was less pronounced forJm25 than
for Vm25. In addition to the effect of needle age, we found
a seasonality effect onVm25, but not onJm25. The sea-
sonal variation ofVm25, however, was weaker than reported
in otherPinusstudies (Ellsworth, 2000; Misson et al., 2006;
Han et al., 2008). Overall, the observedVm25 and Jm25
values are in agreement with previous observations at the
site (Janssens et al., 1998) and with literature values forP.
sylvestris(Wang et al., 1995; Kellom̈aki and Wang, 1997;
Jach and Ceulemans, 2000; Niinemets et al., 2001). The
Vm25 values fall within the higher range of reported values,
summarized by Niinemets (2002) and Katge et al. (2009), but
are typical for N-rich sites.

In general, the needle age-related decline of photosyn-
thetic capacity in conifers is assumed to be caused by (1) de-
creasing needle N content through allocation to younger nee-
dles in order to maximize whole canopy carbon gain (Field,
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Fig. 5. Time courses of(a) daily gross ecosystem productivity
(GEP) simulated under scen-AS (solid line) and measured daily
GEP (short-dotted line),(b) the difference between daily GEP sim-
ulated under scen-AS and measured daily GEP (1 daily GEP), and
1 daily GEP between scen-AS and(c) scen-A,(d) scen-S, and(e)
scen-B. Scen-AS is the reference scenario, including both seasonal
and needle age-related variation inVm25 andJm25. In scen-A, only
needle age-related variation is included. In scen-S, only seasonal
variation is included. In scen-B, both seasonal and needle age-
related variation are omitted.

1983), and (2) decreasing CO2 concentration at the carboxy-
lation sites through declining internal conductance to CO2 as
needles become denser and cell walls thicken when needles
age (Warren, 2006; Niinemets et al., 2009). Although we
measured increasing needle N content with needle age (Ta-
ble 3), our results do certainly not give unequivocal proof
against the first assumption, since our needle samples were
not specifically analyzed for photosynthesis-related N and
might have been “contaminated” (see next paragraph). We
could not verify the second assumption, a declining internal
conductance to CO2 with needle age, with measurements.
Yet, such a decline might explain the observed smaller ef-

fect of needle age onJm25 than onVm25. Both photosyn-
thetic parameters were obtained by optimizing the biochemi-
cal photosynthesis model of Farquhar (Farquhar et al., 1980)
to An/Ci curves. Here, internal conductance was ignored in
the calculation of leaf intercellular CO2 concentration (Ci),
which we assume also to be the CO2 concentration at the car-
boxylation sites. As a consequence, our calculation would
yield a relative overestimation ofCi in one-year-old needles
if internal conductance to CO2 was really lower in one-year-
old needles. This would lead to a relative underestimation of
optimizedVm25 but not ofJm25, as the optimization ofJm25
but not ofVm25 to anAn/Ci curve is largely independent of
Ci . These assumed underlying physiological causes of the
effect of needle age might provide an explanation for the ob-
served seasonality effect as well, as seasonal variation mainly
results from needle ageing within the growing season.

4.3 Photosynthetic parameters versus needle N content

We found that theVm25/Na ratio and theJm25/Na ratio were
much higher in current-year than in one-year old needles.
When considering the data of both needle ages together,
a negative correlation betweenVm25 and Na and a non-
significant correlation betweenJm25 andNa was observed.
These rather unexpected trends should be ascribed to the ob-
served needle N contents, which were lower in current-year
needles than in one-year-old needles. Our observations de-
viate from the general finding that needle N content tends
to decrease with needle age (Field, 1983; Helmisaari, 1990;
Niinemets, 2002), but are not unprecedented forP. sylvestris
(Gielen et al., 2000).

We bring forward two explanations for the observed lower
needle N contents in current-year needles as compared to
one-year-old needles. First, we hypothesize that under
the conditions of high N availability prevailing at the site
(Neirynck et al., 2008) the N demand of expanding current-
year-needles and shoots is partially met by supply of N taken
up at high rates by the roots. This supply of soil-borne N
might partially inhibit or render superfluous the commonly
observed translocation of N stored in now-one-year-old nee-
dles the previous autumn to the expanding current-year nee-
dles (Vapaavuori et al., 1995; Warren et al., 2003). Further-
more, storage of excess N in one-year-old needles, which is
usually limited to autumn (e.g., N̈asholm and Ericsson, 1990;
Vapaavuori et al., 1995), might already occur in summer un-
der conditions of high N availability. As a result, one-year-
old needles still or already contain significant amounts of N
not associated with photosynthesis in summer. Second, we
do not rule out the possibility that our needle samples have
been “contaminated” with extracuticular N originating from
epiphytic nitrophylic microflora occurring on the needle sur-
faces. The abundance of epiphytic microflora on conifer nee-
dles has been shown to positively correlate with the amount
of nitrogen deposition (Bråkenhielm and Qinghong, 1995;
Poikolainen et al., 1998). As nitrogen deposition rates in

www.biogeosciences.net/7/199/2010/ Biogeosciences, 7, 199–215, 2010



210 M. Op de Beeck et al.: Yearly gas exchange of a sparse temperate Scots pine forest

the experimental stand are very high (30–40 kg ha−1 y−1;
Neirynck et al., 2007) and epiphytic microfloral biomass
has been shown to accumulate with needle age (Göransson,
1992; Søchting, 1997), we believe this could contribute to
some extent to the observed higher measured N content in
one-year-old needles.

4.4 Canopy gas exchange simulations

With an average GEP of 1.56 kg C m−2 y−1, our
canopy model produced values very close to the mean
GEP reported for temperate humid evergreen forests
(1.76±0.06 kg C m−2 y−1; the 25 to 75 percentiles lying
at 1.39 and 2.13 kg C m−2 y−1; Luyssaert et al., 2007).
Simulated GEP showed a very similar seasonal pattern as
the eddy covariance-based estimates of GEP made at the
site, yet were higher during most of the year. This was not
really surprising. Eddy covariance-based estimates of GEP
are obtained by subtracting modelled ecosystem respiration
estimates from the measured net ecosystem exchange. In
our case, the respiration model was based on night-time CO2
flux measurements that are subsequently extrapolated to day
time using temperature response functions. Night-time CO2
fluxes are typically underestimated during low turbulent
conditions, but this problem is mitigated by excluding all
wind still hours from the data series and subsequent gap
filling. Alternative methods to partition the eddy covariance
net ecosystem fluxes into the respiratory and photosynthetic
components produced very similar estimates of GEP at our
site (Lasslop et al., 2010). In the latter study, partitioning
was based on subtracting the zero light intercept from a
light-response curve fitted to daytime-only data. The issue
here is that air temperature and vapor pressure deficit at zero
light are different from those at high light. In any case, both
approaches yielded very similar, eddy covariance-based GEP
estimates. A potentially larger problem that may contribute
to underestimated daytime respiration and subsequently
also to underestimated GEP is that the footprint of the eddy
covariance system exceeds the pine stand boundaries and
includes a low-productive heath land. Especially during
night time and early morning, when natural convection is
small, the error associated herewith is potentially large.
Nonetheless, overall, our simulated GEP and the eddy
covariance-based GEP estimates agreed well.

Because the objective of this study was not to simulate the
absolute GEP, but rather to study the effect of more versus
less detailed parameterization on simulated GEP, the simu-
lated GEP differences between the scenarios are more rel-
evant than the absolute differences between measured and
simulated GEP. Only the omittance of needle age-related
photosynthetic parameter variation (scen-S, scen-B) led to
significant differences in yearly GEP andEcan, relative to
the reference scenario. These differences were small (within
2.5%) and, hence, rather trivial from an ecological point of
view. The small differences in yearly GEP andEcan resulted

from small differences in simulated daily GEP andEcan in
spring and summer when climatic conditions favoured gas
exchange (Fig. 5c, d), which was somewhat expected. Even
though the phenological year May 2007–April 2008 was
slightly colder and wetter than the long-term mean, we doubt
differences in yearly GEP andEcan between the scenarios
would become ecologically relevant if simulations were done
under the long-term site meteorological conditions.

In a study similar to ours, Bernier et al. (2001) also found
differences of less than 3% of canopy gas exchange simu-
lated under a scenario including age-related variation (scen-
A) and a scenario with the photosynthetic capacity input of
an average needle age (scen-B), for anAbies balsamea(L.)
stand in Canada. In another analogous study, however, Ogée
et al. (2003) used eddy covariance measurements to validate
canopy fluxes for aPinus pinaster(Ait.) stand in France,
simulated under a scenario including both seasonal and nee-
dle age-related photosynthetic capacity variation (scen-AS)
and a scenario including seasonality only (scen-S). They
found that omitting needle age-related variation resulted in
considerable loss in predictive quality. In search for an ex-
planation for these differing results, we looked into the com-
mon structure of the process-based models applied in our
study (Appendix A) and the studies of Ogée et al. (2003)
and Bernier et al. (2001). It can easily be inferred that the
effect of omitting needle age-related variation on canopy gas
exchange, simulated with process-based models like the ones
applied, depends on the (1) magnitude of the differences of
photosynthetic capacity input values between the needle age
classes, (2) the canopy density, and (3) the shape of the ver-
tical LAI profiles of the different-aged needles in the canopy
(along the light gradient). The three studies do differ in these
aspects indeed. For example, the differences in photosyn-
thetic parameter input values between the needle age classes
were much higher in the study of Ogée et al. (2003) than
in the study of Bernier et al. (2001) and our study. Ogée
et al. (2003) appliedVm25 input values for one-year-old and
two-year-old needles which were about 80% and 60% of
the current-year needle value, respectively. Likewise, the
Jm25 input values amounted only to about 60% and 35% of
the current-year-needle value. In our study, theVm25 and
Jm25 input value for one-year-old needles were 79% and
89% of the current-year-needle input value. In Bernier et
al. (2001), the least active, seven-year-old needles still re-
tained 60% of the photosynthetic capacity of the most ac-
tive, one-year-old needles. As regards canopy density, our
Scots pine stand had a very low LAI (between 0.94 and 1.31
m2 m−2; Fig. 1d), whereas Oǵee et al. (2003) ran simulations
for a stand with a LAI varying between 2.6 and 3.2 m2 m−2,
and Bernier et al. (2001) simulated gas exchange for a stand
with LAI >5.5 m2 m−2. Also, only weakly differing vertical
LAI profiles of current-year and one-year-old needles were
observed in our sparse stand (see Sect. 3.2), whereas the
differences in these LAI profiles were more pronounced in
Ogée et al. (2003) (see Porté et al., 2000), and – although not
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explicitly given – probably in Bernier et al. (2001) as well.
Both the photosynthetic capacity and the vertical LAI profile
of different-aged needle classes, as well as the canopy LAI,
are species- and stand-dependent. Therefore, the effects of
omitting age-related photosynthetic capacity are very stand-
specific and the results for a single stand are hard to gener-
alize. It should be noted that both Ogée et al. (2003) and
Bernier et al. (2001) also accounted for an age-related differ-
ence in light interception efficiency resulting from changes in
shoot structure, by including the ratio of shoot silhouette area
to total needle area (STAR). The averaging of STAR over
needle age might have contributed to the modelled canopy
gas exchange differences in Ogée et al. (2003). For our Scots
pine stand this was of less relevance, as the shoot structure of
current-year and one-year-old needles was very similar.

The omittance of seasonal photosynthetic capacity varia-
tion, i.e. applying summer parameter values instead of full
seasonal courses, did not lead to significant differences in
simulated yearly GEP andEcan, relative to the reference
scenario. Obviously, these differences depend on the mag-
nitude of the seasonal variation. As canopy gas exchange
rates are highest in summer, omitting seasonality could result
in significant overestimations only when needle photosyn-
thetic capacity is considerably lower in spring and autumn
than in summer. Because this was not really the case at our
temperate study site, it is only logical that differences were
not significant in the present study. To the best of the au-
thors’ knowledge, the literature does not report other studies
which calibrated a process-based model with direct leaf-level
photosynthetic capacity measurements to quantify the effect
of seasonal photosynthetic capacity variation on simulated
coniferous canopy gas exchange. Yet, Santaren et al. (2007)
indirectly showed the importance of including seasonal pho-
tosynthetic parameter variation in a study in which a process-
based model was optimized to eddy covariance flux data for
the abovementionedP. pinasterstand in France. The impor-
tance of including seasonal variation has also been shown for
a mixed deciduous forest (Wilson et al., 2001).

5 Conclusions

From our results, we conclude that summer sampling of
the different needle age classes suffices to provide photo-
synthetic parameter input for accurate simulations of yearly
canopy gas exchange. In addition, we reckon caution is re-
quired when assessing relationships between photosynthetic
parameters and needle N content from measurements on dif-
ferent needle age classes. These conclusions are valid, at
least, for the Scots pine stand under study. Through its sparse
canopy and its high nitrogen deposition load, this stand is not
fully representative for temperate Scots pine stands in gen-
eral. Hence, both the experimental and model findings of this
study should not be generalized without caution. Further-
more, we conclude that well-parameterized process-based

canopy models – as applied in this study – are a useful tool to
quantify losses of predictive accuracy involved with canopy
simplification. As they provide a fast means to estimate and
rank sources of canopy gas exchange variation, they might
even be helpful in guiding experimental design.

Appendix A

Canopy model description

The process-based multi-layer canopy model applied in this
study is a generic model and simulates gross ecosystem pro-
ductivity (GEP) and canopy transpiration (Ecan) on a half-
hourly time resolution. It is driven by half-hourly input of in-
coming solar radiation (I ), air temperature (T ), atmospheric
vapour pressure deficit (VPD), air CO2 concentration (Ca),
atmospheric pressure (pa), and wind speed (v), as well as
by daily LAI input of current-year and one-year-old needles.
The model includes a radiation submodel (Goudriaan, 1977)
and a leaf physiological submodel which combines the bio-
chemical photosynthesis model of Farquhar (Farquhar et al.,
1980) with a Ball-Berry-Leuning type stomatal model (Le-
uning, 1995). The canopy is treated as a horizontally multi-
layered structure with a canopy layer depth of 1 m.

A1 The radiation submodel

At each time step, the radiation submodel splits up incoming
irradiance at the canopy top (I ) into direct beam irradiance
(Ib0) and diffuse irradiance (Id0). The sunlit LAI fraction of
each layeri is calculated with Beer’s law:

fsun(i) = exp
(
−kb�LAI c(i)

)
(A1)

Here,kb is the beam radiation extinction coefficient,� is a
factor accounting for inter- and intra-crown foliage clumping
(Nilson, 1971; Sinclair and Knoerr, 1982), and LAIc(i) is the
cumulative LAI above a canopy layeri from the canopy top.
For a spherical needle angle distribution – which we assume
in this study –kb is given by:

kb = 0.5/sinβ (A2)

Here, β is solar elevation angle, which is calculated from
day of the year, time of day, and latitude (Campbell and Nor-
man, 1998). The shaded LAI fraction of each canopy layeri

(fshad(i)) is given by:

fshad(i) = 1−fsun(i) (A3)

Beam radiation intensity does not decline with canopy depth.
Diffuse irradiance declines with canopy depth and is calcu-
lated for every layeri with Beer’s law:

Id(i) = Id0exp
(
kdLAI c(i)

)
(A4)

Here,kd is the diffuse radiation extinction coefficient. The
total received irradiance by a sunlit fraction (Isun(i)) is the
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sum of beam irradiance and diffuse irradiance. Shaded leaves
only receive diffuse radiation:

Isun(i) = cos(5/3)Ib0+Id(i) (A5)

Ishad(i) = Id(i) (A6)

Here,5/3 is the averaged leaf angle for a uniform needle an-
gle distribution. Total received irradiance is converted to total
received PAR. From total received PAR, the leaf physiolog-
ical submodel simulates leaf-level photosynthesis and tran-
spiration for current-year and one-year-old needles in each
canopy layer fraction.

A2 The leaf physiological submodel

The leaf physiological submodel combines the biochemical
photosynthesis model of Farquhar (Farquhar et al., 1980)
with a Ball-Berry-Leuning type stomatal model (Leuning,
1995). The biochemical photosynthesis model of Farquhar
simulates gross photosynthesis under both nitrogen limiting
conditions (Av) and light limiting conditions (Aj). Actual
gross photosynthesis (Ab) is taken as the minimum ofAv
andAj . Net photosynthesis (An) is calculated fromAb and
leaf respiration rateRd:

Ab = min
(
Av,Aj

)
(A7)

An = Ab−Rd (A8)

Nitrogen-limited gross photosynthesis is calculated by:

Av = Vm
Ci −0′

Ci +Kc(O/Ko)
(A9)

whereVm is the maximum carboxylation rate per unit leaf
area under RuBP saturation,0′ is the CO2 compensation
point in the absence of mitochondrial respiration,O is
the intercellular O2 concentration, andKc and Ko are the
Michaelis-Menten constants of Rubisco for CO2 and O2,
respectively. Gross photosynthesis in the case of light-
limitation is calculated by:

Aj = J
Ci −0′

4(Ci +20′)
, (A10)

whereJ is the electron transport rate at a given PAR. The
electron transport rate at a given PAR (J ) is obtained from
the maximum electron transport rate (Jm) by solving the
quadratic equation:

θJ 2
−(PARPSII+Jm)J +(PARPSIIJm) = 0 (A11)

whereθ is a curvature parameter and PARPSII is the fraction
of PAR effectively absorbed by photosystem II. In this study,
PARPSII is calculated from total received PAR at the leaf sur-
face with:

PARPSII= αPAR

(
1−f

2

)
PAR (A12)

whereαPAR is the needle PAR absorptivity andf is a spectral
correction factor.

The parametersVm,Rd, 0′, Kc, andKo are temperature-
dependent and calculated from reference values at 25◦C, ap-
plying an Arrhenius equation:

x = x25exp

(
Ea(T −25)

298R(T +273)

)
(A13)

Herex is the parameter value,x25 is the parameter value at
25◦C, Ea is the activation energy,T is the temperature, and
R is the universal gas constant. ForJm, this equation is ex-
tended to:

x= (A14)

x25exp

(
Ea(T −25)

298R(T +273)

) (
1+exp

(
298S−H

298R

))
(
1+exp

(
(T +273)S−H

(T +273)R

))
where H is a curvature parameter andS is an electron-
transport temperature response parameter. Parameter values
at 25◦C with their activation energies are listed in Table 2.
The leaf respiration rate at 25◦C (Rd25) scales withVm25,
according to aRd25/Vm25 ratio.

A3 The Ball-Berry-Leuning type stomatal model

Stomatal conductance to CO2 (gst) is calculated with a Ball-
Berry-Leuning type model (Leuning, 1995):

gst= g0+a1
Ab

(Cs−0)
fVPD (A15)

Here,g0 is night-time stomatal conductance,a1 is an empir-
ical scaling parameter,Cs is the leaf surface CO2 concen-
tration, 0 is the CO2 compensation point, andfVPD is an
empirical VPD-function, ranging between 0 and 1. In this
study, we apply a hyperbolic VPD-function:

fVPD = (VPD/VPD0)
−1 (A16)

where VPD0 is an empirical parameter. The supply formula
is introduced to calculateCs and to link the photosynthesis
model with the stomatal conductance model:

An = gst(Cs−Ci) (A17)

An = gbl(Ca−Cs) (A18)

Here, Ca is the atmospheric CO2 concentration andgbl is
the leaf boundary layer conductance to CO2. The latter is
calculated from wind speed (v) and the characteristic needle
dimension (d; needle diameter) (Jones, 1992):

gbl = 0.14
v0.6

d0.4
(A19)

The system of equations is solved to obtain a steady-state
solution forAb andgst. Needle transpiration rate (E) is then
calculated by:

E = 1.56gtot(VPD/pa) (A20)
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wheregtot is total leaf conductance andpa is atmospheric
pressure. Total leaf conductance is obtained by summinggst
andgbl, following the rules of adding conductance. The fac-
tor 1.56 converts conductance to CO2 to conductance to H2O.

Calculated gross photosynthesis values forj -aged nee-
dles in the sunlit and shaded fractions of canopy layersi

(Absun(i,j), Abshad(i,j)) are multiplied with the respective LAI
values (LAIsun(i,j), LAI shad(i,j)) and summed to obtain in-
stant gross ecosystem productivity (GEP). Similarly, calcu-
lated transpiration forj -aged needles in the sunlit and shaded
fractions of canopy layersi (Esun(i,j), Eshad(i,j)) are inte-
grated to obtain instantEcan:

GEP= (A21)
n∑

i=1

1∑
j=0

(
Absun(i,j)LAI sun(i,j) +Abshad(i,j)LAI shad(i,j)

)
Ecan= (A22)

n∑
i=1

1∑
j=0

(
Esun(i,j)LAI sun(i,j) +Eshad(i,j)LAI shad(i,j)

)
Instant GEP andEcan are then integrated over time to obtain
daily and yearly GEP andEcan.
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