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Abstract. Several experiments have shown a decrease of
growth and calcification of organisms at decreased pH lev-
els. There is a growing interest to focus on early life stages
that are believed to be more sensitive to environmental dis-
turbances such as hypercapnia. Here, we present experimen-
tal data, acquired in a commercial hatchery, demonstrating
that the growth of planktonic mussel (Mytilus edulis) larvae
is significantly affected by a decrease of pH to a level ex-
pected for the end of the century. Even though there was no
significant effect of a 0.25–0.34 pH unit decrease on hatch-
ing and mortality rates during the first 2 days of develop-
ment nor during the following 13-day period prior to settle-
ment, final shells were respectively 4.5±1.3 and 6.0±2.3%
smaller at pHNBS ∼7.8 (pCO2 ∼ 1100–1200 µatm) than at a
control pHNBS of ∼8.1 (pCO2 ∼ 460–640 µatm). Moreover,
a decrease of 12.0± 5.4% of shell thickness was observed
after 15d of development. More severe impacts were found
with a decrease of∼0.5 pHNBS unit during the first 2 days
of development which could be attributed to a decrease of
calcification due to a slight undersaturation of seawater with
respect to aragonite. Indeed, important effects on both hatch-
ing and D-veliger shell growth were found. Hatching rates
were 24±4% lower while D-veliger shells were 12.7±0.9%
smaller at pHNBS ∼ 7.6 (pCO2 ∼ 1900 µatm) than at a con-
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trol pHNBS of ∼ 8.1 (pCO2 ∼540 µatm). Although these re-
sults show that blue mussel larvae are still able to develop a
shell in seawater undersaturated with respect to aragonite, the
observed decreases of hatching rates and shell growth could
lead to a significant decrease of the settlement success. As
the environmental conditions considered in this study do not
necessarily reflect the natural conditions experienced by this
species at the time of spawning, future studies will need to
consider the whole larval cycle (from fertilization to settle-
ment) under environmentally relevant conditions in order to
investigate the potential ecological and economical losses of
a decrease of this species fitness in the field.

1 Introduction

The atmospheric partial pressure of CO2 (pCO2) will con-
tinue to increase with projected values for the end of this
century ranging from 500 to 1000 µatm, depending on the
considered CO2 emission scenario (IPCC, 2007). Because
about one third of anthropogenic CO2 emissions (from fos-
sil fuel, cement production and land-use changes) has been
stored in the oceans since the industrial revolution (Sabine
et al., 2004), seawater pH has already declined by 0.1 unit
compared with pre-industrial values (Orr et al., 2005) and
it is projected to decrease by another 0.35 unit by the
end of the century (Caldeira and Wickett, 2003). Ocean
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acidification may have profound impacts on marine biota.
Beside the direct effect of decreasing pH on the physiology
and metabolism of marine organisms through a disruption of
inter-cellular transport mechanisms (see Pörtner et al., 2004
for a comprehensive review), calcareous organisms are par-
ticularly sensitive due to the decreasing availability of car-
bonate ions (CO2−

3 ) driven by increasingpCO2. Indeed, this
generates a decrease of the calcium carbonate saturation state
(�):

� =
[CO2−

3 ][Ca2+
]

K ′
sp

, (1)

whereK ′
sp is the stoichiometric solubility product, which is

a function of temperature, salinity, pressure and the mineral
phase considered (calcite, aragonite or high-magnesian cal-
cite). Cold waters will become undersaturated with respect to
aragonite (�aragonite< 1) in a few decades (Orr et al., 2005).
Since the seminal paper of Broecker and Takahashi (1966)
reporting a dependency of calcification rates on CaCO3 sat-
uration state, several experimental studies have investigated
the effect of apCO2 increase on the growth of calcifying
organisms. Most studies have investigated primary produc-
ers (corals, coralline algae and coccolithophores) and have
shown a very large range of responses (Feely et al., 2004;
Kleypas et al., 2006; Doney et al., 2009).

Among calcifying species, molluscans are very impor-
tant both in ecological and economical terms. Shellfish are
ecosystem engineers governing energy and nutrient flows in
coastal ecosystems, providing habitats for many benthic or-
ganisms and constituting an important food source for, for
instance, birds, crabs, starfishes and fishes (Gutiérrez et al.,
2003; Norling and Kautsky, 2007). Moreover, with an av-
erage annual increase of 7.7% over the last 30 years, global
shellfish aquaculture production reached 13.1 million tons in
2008, corresponding to a commercial value of US $ 13.1 bil-
lion (FISHSTAT Plus vers. 2.31). The Pacific oyster (Cras-
sostrea gigas) was the most cultivated species in 2008 with
a volume of 6.5 million tons or 9.5% of the total world
aquaculture production while mussel production represented
1.9 million tons (US $ 390 million). A negative impact of
ocean acidification on the growth of these species would,
therefore, not only have major consequences for coastal bio-
diversity and ecosystem functioning and services, but will
also cause a significant economic loss (Gazeau et al., 2007;
Cooley and Doney, 2009).

The bivalveMytilus edulisis a benthic invertebrate typical
of the North Atlantic coast of North America, Europe, and
other temperate and polar waters around the world. They
live in intertidal areas attached to rocks and other solid sub-
strates. This species reproduces by means of a planktonic lar-
val stage (meroplanktonic species). Eggs are fertilized in the

1FAO: Fisheries Department, Fisherie Information, Data and
Statistics Unit. FISHSTAT Plus: Universal software for fishery sta-
tistical time series, Version 2.3, 2000.

water column and, thanks to their internal energetic resources
(lecithotrophic phase), develop to the ciliated trochophore
stage and to the D-shaped veliger (shelled) stage within few
days depending on the temperature conditions (Pechenik et
al., 1990). These veliger larvae start to feed in the water col-
umn and gain weight until they reach the pediveliger phase
(after few weeks) during which they try to find a place to
settle. Larvae become competent to settle at a shell length
of ∼ 260 µm but can delay metamorphosis and remain in the
planktonic compartment until they reach∼ 350 µm (Sprung,
1984). Once the settling conditions are favourable, meta-
morphosis occurs, plantigrade larvae attach to the substrate
thanks to the secretion of the byssus and start to secrete the
adult (dissoconch) shell.

Several studies have focused on the effect of projected pH
levels on the growth of benthic (e.g. Gazeau et al., 2007; Ries
et al., 2009) and planktonic (Comeau et al., 2009, 2010a, b)
molluscs. Most of these studies have demonstrated a negative
effect of ocean acidification on the growth of these organisms
although recent experiments (Ries et al., 2009) have sug-
gested a more complicated story with species-specific sen-
sitivities to decreasing pH levels and positive effects on cal-
cification rates in some cases. Early life stages of calcifying
organisms are generally considered to be more sensitive to
environmental disturbances (Raven et al., 2005). Moreover,
amorphous calcium carbonate and aragonite have been iden-
tified as the main CaCO3 mineralization form in molluscs
larval stages (Medaković, 2000). Therefore, as aragonite is
50% more soluble than calcite, these aragonitic larval stages
are expected to be more sensitive to ocean acidification than
calcitic organisms. Indeed, several recent studies have fo-
cused on the effect of ocean acidification on the early de-
velopment of mollusc species (Kurihara et al., 2007; Ellis et
al., 2009; Kurihara et al., 2008; Miller et al., 2009; Parker
et al., 2009; Talmage and Gobler, 2009; Watson et al., 2009)
and most of them have reported negative impacts of decreas-
ing pH levels on the growth and development of these organ-
isms. So far, there have been no studies on the effect of ocean
acidification on the larval development of the blue mussel
(Mytilus edulis), the second most cultivated bivalve species
in the world afterCrassostrea gigas. Blue mussel aquacul-
ture is very important in The Netherlands and consists al-
most entirely of bottom-culture, carried out on leased sites
in the Wadden Sea and in the Oosterschelde estuary (Smaal,
2002). In the Oosterschelde estuary, mussel beds (both wild
and from aquaculture) play a major role in the cycling of nu-
trients and are able to filter the entire volume of the basin in
4–5 days (Prins and Smaal, 1994). In the last two decades,
there has been an overall decline in available mussel seed due
to intense fishing strategies that has forced local farmers to
initiate the production of spats through hatchery techniques
(Pronker et al., 2008). The present study aims to investigate
the effects of future ocean pH levels on the development of
Mytilus edulisearly larval stages in a commercial hatchery.
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2 Material and methods

2.1 Test animals and experimental conditions

To investigate the effect of rising atmospheric CO2 on
mussel (Mytilus edulis) larvae, experiments were carried
out in mesocosms at the commercial hatcheryRoem van
Yerseke(Yerseke, The Netherlands) between 18 October and
27 November 2007. A group of approximately 150 ripe,
bottom-cultured mussels from the Oosterschelde, a tidal in-
let, were kept at a constant temperature (10◦C) for about
4 months. These animals originated from a same age-class
and were fished in the tidal inlet and cultivated for about
2 years on commercial production plots. Before spawning,
mussels (male and female) were cleaned with 1 µm filtered
seawater and placed in a spawning tank. Mass spawning was
initiated by rapidly raising water temperature from 10◦C to
19◦C. Fertilized eggs were retained on a submerged 30 µm
sieve. During each experiment (see below), six enclosures
were used, each of them containing 130 l of filtered (1 µm)
seawater from the Oosterschelde. Three enclosures were
continuously bubbled with ambient air (pCO2 ∼ 380 µatm)
while the three others were bubbled with a mixture of ambi-
ent air and pure CO2. The flow rates of CO2 were regulated
by means of digital thermal mass-flow controllers in order to
reach the desired seawater pH.

2.2 Bioassay

In a first experiment (experiment #1), the effects of a pH
decrease from∼ 8.1 (control; pCO2 ∼ 460–640 µatm) to,
successively,∼ 7.8 (pCO2 ∼ 1100–1200 µatm) and∼ 7.6
(pCO2 ∼ 1900 µatm) were investigated during the first two
days of development (from eggs to D-shape larvae). After
fertilization (see above), embryos (57.7±4.9 µm of diame-
ter) were counted, divided into 6 groups and transferred to
the enclosures (3 controls, 3 low pH) at a density of approxi-
mately 10 embryos ml−1. Embryos were maintained in batch
conditions (no feeding, no water flowing) until the popula-
tion reached the D-veliger stage (initial development of the
shell, reached in about 2 days).

In a second experiment (experiment #2), larvae were ex-
posed to pH values of∼ 8.1 and∼ 7.8 during the two weeks
development period following the D-veliger stage. Em-
bryos were grown at environmental pH (∼ 8.0–8.1) during
2 days, then counted and evenly transferred to the 6 enclo-
sures (3 controls, 3 low pH) at a density of approximately
10 embryos ml−1. Cultivation period lasted for 13 days
(day 2 to day 15 of development) until the population reaches
the pediveliger stage. Larvae were fed in a continuous flow-
through system with a mixture ofIsochrysissp. (T-Iso,
CCAP 927/14) andChaetoceros muellerii(CCMP 1332)
(2:1, based on cell counts) at a concentration of approxi-
mately 80 000 cells ml−1. From day 4 to the end of the ex-
periment, larvae were fed with a mixture ofIsochrysissp.,

Pavlova lutherii (CCAP 931/1) andChaetoceros muellerii
(2:1:2, based on cell counts) at a concentration of approxi-
mately 150 000 cells ml−1.

2.3 Sampling and analytical measurements

At the end of experiment #1 (day 2) and three times a week
during experiment #2, the enclosures were emptied, cleaned
with a mixture of diluted acetic acid and HCl and rinsed with
seawater. Water from the tanks was passed through a 90 µm
sieve and larvae were concentrated in 2 l jars. A sub-sample
of 50 ml was fixed in a 5% neutralized-formalin seawater so-
lution to determine the larval abundance, hatching rates (% of
D-veliger larvae) and size. After sampling during experiment
#2, we made sure that pH was constant and at the desired pH
level before reintroducing the larvae in the enclosures.

Larval abundance was estimated based on triplicate count-
ing of 500 µl sub-samples, under a binocular microscope.
Larvae shell length (measured on 100 individuals) was mea-
sured (anterior to posterior dimension of the shell parallel to
the hinge) under a microscope (20×; 0.01 µm precision in
length measurement). Shell thickness was estimated from
scanning electron micrograph (SEM) images acquired us-
ing the JEOL JSE 820 microscope at Cambridge Univer-
sity. Dried larval shells were mounted onto double sided
carbon tape and sectioned using a flat edge needle. Loose
organic matter and residual shell were removed with a dry
paintbrush. Larval shells were removed using a wet paint-
brush, reoriented and remounted onto fresh tape attached
to aluminium stubs and gold coated. Shell thickness was
determined on 20 individuals of each replicate treatment.
Hatching rates were defined as the percentage of “normal”
D-shape larvae following the criteria proposed by His et
al. (1997), after observation of a minimum of 500 larvae.

During the two experiments, pH, temperature and oxygen
concentrations were continuously monitored in each enclo-
sure using Metrohm and Consort electrodes, which were cal-
ibrated daily on the N. B. S. scale for pH (pH 4 and 7). Salin-
ity was measured at the beginning of each incubation pe-
riod (3) in each enclosure. Daily measurements of total al-
kalinity (TA) in the 6 enclosures were performed by Gran
electro-titration on 50 ml samples filtered on GF/F mem-
branes. Titrations of TA standard provided by A. G. Dick-
son (batch 82) were within 0.22 µeq kg−1 of the nominal
value (2334.8 ± 3.3 µeq kg−1; n = 5). pCO2 was com-
puted from pHNBS and TA using the software package CO2
1.1 (M. Frankignoulle) and the thermodynamic constants of
Mehrbach et al. (1973). The solubility products for calcite
and aragonite were from Morse et al. (1980).

2.4 Statistical analysis

For final shell length (experiment #1 and #2) and shell thick-
ness (only experiment #2), differences between replicates of
each treatment as well as between control and low pHNBS
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Table 1. Environmental parameters and carbon chemistry of experimental seawater during the course of the different experiments.pCO2 and
related carbonate parameters were computed from mean pHNBS and total alkalinity during each incubation.

Experiment #1: day 0 to day 2 Experiment #2: day 2 to day 15

Control-1 Low pH-1 Control-2 Low pH-2 Control Low pH

Measured parameters

Temperature (◦C) 16.6±1 16.7±0.8 16.5±1 16.2±1.2 19.5±0.3 19.2±0.4
Salinity 32.1±0.1 31.9±0.2 32.0±0.1 32.1±0.1 31.4±0.3 31.5±0.1
Oxygen (% of saturation) 100±3 94.7±2.6 96.4±2.5 97.6±0.6 91.3±6.9 91.8±4.4
pHNBS 8.15±0.01 7.81±0.01 8.09±0.01 7.58±0.01 8.03±0.03 7.78±0.05
Chlorophyll-a (µg l−1) – – – – 29.12±8.87 31.12±12.55
Total alkalinity (meq kg−1) 2.486±0.006 2.483±0.006 2.436±0.006 2.437±0.004 2.402±0.02 2.403±0.02

Calculated parameters

pCO2 (µatm) 468 1124 537 1929 642 1213
DIC (mmol kg−1) 2.254 2.397 2.237 2.432 2.218 2.321
(HCO−

3 ) (mmol kg−1) 2.071 2.273 2.073 2.312 2.062 2.200

(CO2−

3 ) (mmol kg−1) 0.166 0.084 0.144 0.049 0.135 0.080
�aragonite 2.75 1.38 2.39 0.81 2.30 1.37
�calcite 5.12 2.58 4.45 1.52 4.27 2.54

treatments were tested using one-way ANOVA after testing
for normality (Kolmogorov-Smirnov test). No significant
differences were found in any of these parameters between
the replicate tanks within each experimental condition. For
hatching rates and abundances, as only one value was es-
timated per replicate, this latter was used to obtain grand
means and standard deviations (SD) values for each treat-
ment. Since normality tests could not be applied due to the
small sample size, differences of hatching rates between con-
trol and low pHNBS conditions were tested by means of un-
paired Student’s t-tests using a Welch correction that does
not assume equal variance between the two groups (Graph-
pad Instat software). For all tests, differences were consid-
ered significant atp < 0.05. In the following section, data
are presented as means± SD.

3 Results

The environmental parameters as well as parameters of the
carbonate chemistry are shown in Table 1. During ex-
periment #1, pHNBS was maintained, during the first set
of incubations, at 8.15± 0.01 (Control-1) and 7.81± 0.01
(Low pH-1) corresponding topCO2 values of 468 and
1124 µatm, while during the second set of incubations, larvae
were kept at pHNBS 8.09±0.01 (Control-2) and 7.58±0.01
(Low pH−2), corresponding topCO2 values of 537 and
1929 µatm. During experiment #2, seawater pHNBS was
maintained at 8.03±0.03 (Control,pCO2 = 642 µatm) and
7.78±0.05 (Low pH,pCO2 = 1213 µatm). Results obtained
during these 2 experiments are presented in Figs. 1, 2 and 3.

Data used for these figures as well as experimental abiotic
parameters (pHNBS, TA and temperature) measured at the
time of sampling are presented in the Supplement Table 1.
In the Oosterschelde tidal inlet (1998–2006, monthly mea-
surements, 5 stations), surface pHNBS varied annually be-
tween 8.00 and 8.24, while TA varied between 2.334 and
2.567 meq kg−1 (data not shown). In the fall (that is the time
of the experimental period), pHNBS and TA in the tidal in-
let were, on average, 8.04 and 2.436 meq kg−1, respectively.
Significantly higher pHNBS values have been obtained for the
control tanks in our experiments due to the continuous bub-
bling with external air (∼380 µatm), especially during exper-
iment #1 that was performed in batch conditions. During
experiment #2, the continuous flow-through system did not
allow such an efficient equilibration with air, leading to sig-
nificantly lower pHNBS values (8.03±0.03), closer to envi-
ronmental levels. It must be stressed that thepCO2 levels for
low-pHNBS treatments were slightly outside the range pro-
jected for the end of the century (500–1000 µatm) and must
be considered as extreme conditions. The objective of the
experiment was to test the effect of a∼0.3 pHNBS unit de-
crease on these organisms and, in that sense, experimental
conditions were successfully set up and controlled.

During experiment #1, a seawater pHNBS decrease of 0.34
unit (pHNBS = 7.81; �aragonite= 1.38) had a significant ef-
fect on mussel larvae development (Fig. 1). Although no
significant effect was found on hatching rates (unpaired Stu-
dent’s t-test,p > 0.05), the average shell lengths at the end
of the 2-day incubation period at pHNBS 7.81 were signifi-
cantly lower (ANOVA, n = 100, p < 0.001) than at higher
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Fig. 1. Proportion of embryos that developed to D-shape larvae
(A) and average length of D-shape shell(B) at the end of the two
incubation periods during experiment #1, in control (black bars)
and low pH (white bars) seawater. During the first incubation,
seawater pHNBS was maintained at 8.15±0.01 (Control-1) and at
7.81±0.01 (Low pH-1). During the second incubation, pHNBS lev-
els of 8.09±0.01 and 7.58±0.01 were used (Control-2 and Low
pH-2 respectively). Errors bars represent standard deviations of the
triplicate enclosures. **Significant difference between control and
low-pH groups.

pHNBS. The relative decrease in shell length after 2 days has
been estimated to 4.5±1.3%. In contrast, a decrease of 0.51
unit (pHNBS = 7.58; �aragonite= 0.81) had large effects on
both the hatching and growth rates. The hatching rates de-
creased by 24± 4% (unpaired Student’s t-test,p < 0.001),
while D-veliger shells were 12.7±0.9% smaller (ANOVA,
n = 100, p < 0.001). From day 2 to day 15 (experiment
#2, Figs. 2 and 3), a decrease of seawater pHNBS by 0.25
(pHNBS = 7.78; �aragonite= 1.37) also did not have signifi-
cant effects on larvae survivorship (unpaired Student’s t-test,
n = 3,p > 0.05) while a significant effect was found for final
shell length (ANOVA,n = 100, p < 0.001), corresponding
to a relative decrease of 6.0±2.3%. This relative decrease
of shell length was statistically significant after day-13 of de-
velopment. Growth rates, calculated as the difference in shell
length between 2 sampling times divided by the time elapsed
(d), decreased with increasing shell length (Fig. 2c) under
both control and low-pH conditions. Statistically significant
linear relationships between growth rates and initial shell
length showed a shift to lower growth rates under low-pH
conditions which was maintained throughout the experimen-

Fig. 2. Abundance(A), average shell length(B) and shell growth
rate as a function of initial shell length(C), during experiment #2
(13 days, from D-shape to pediveliger larvae), in control (solid line,
black dots) and CO2 (dotted line, white dots) seawater. Seawater
pHNBS was maintained at 8.03± 0.03 and 7.78± 0.05 in control
and low pH enclosures, respectively. Errors bars represent standard
deviations of the triplicate enclosures.

tal period. Effects on final shell thickness (Fig. 3) were more
important with a significant (ANOVA,n = 20, p < 0.001)
relative decrease of 12.0±5.4%.

4 Discussion

In the past few years, several papers have reported on the
impacts of seawater acidification on the growth and devel-
opment of shellfish early life stages. Kurihara et al. (2007,
2008) have demonstrated that a pHNBS decrease to∼ 7.4
(−0.7 as compared to control values) caused a significant
alteration of Crassostrea gigasand Mytilus galloprovin-
cialis early (up to 6 d) larval development, with significant
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Fig. 3. Average shell thickness at the end of experiment #2 for lar-
vae on Day 15 of development, in control (pHNBS = 8.03±0.03;
black bars) and low pH (pHNBS = 7.78±0.05; white bars) seawa-
ter. Errors bars represent standard deviations of the triplicate enclo-
sures. **Significant difference between control and low-pH groups.

decreases in hatching rates and shell growth. It has to be
noted that at this pH level, which is much lower than the
levels projected for the end of the century, the seawater was
clearly undersaturated with respect to aragonite (�aragonite∼

0.68). Parker et al. (2009) studied the synergistic effects of
ocean acidification and temperature on the fertilization and
early (up to 48 h) embryonic development of the Sydney rock
oyster (Saccostrea glomerata). These authors found that both
fertilization and embryonic development success were di-
minished at lowered pH values in the range of projected lev-
els for 2100 (pCO2 levels of 600, 750 and 1000 µatm) while
temperature revealed an optimal level (26◦C) below and
above (i.e. 18, 22 and 30◦C) which embryonic developmen-
tal rates decreased. Talmage and Gobler (2009) performed
a multi-species comparison of the effects of ocean acidifi-
cation on growth and metamorphosis (from 4 to 18 days
of development). They actually showed that, although the
growth of the 3 studied species (Mercenaria mercenaria,
Argopecten irradians, andCrassostrea virginica) was neg-
atively affected, they did not exhibit the same sensitivity to
a decrease of up to 0.6 pH unit. This species-specific sensi-
tivity to ocean acidification has also been observed by Miller
et al. (2009) who showed that the development (from 96 h
to ∼ 30 d) and growth of the Eastern oyster (Crassostrea vir-
ginica) was significantly reduced at lowered pH levels (up to
a 0.4 pHNBS unit decrease), while the Suminoe oyster (Cras-
sostrea ariakensis) did not appear to be sensitive to the same
acidified conditions.

In this study, we show that ocean acidification has a signif-
icant effect on the blue mussel larval development although
the observed decrease in growth rates both in terms of length
and thickness was not accompanied by a decrease of hatch-
ing rates and an increase in mortality rates as long as seawater
remained oversaturated with respect to aragonite. Although
no effect on hatching and mortality rates have been observed
after 2 d and after 15 d of development, the consequences,
in the field with the presence of predators, of a potential de-

crease of shell resistance and/or an augmentation of the time
spent in the water column (delay in settlement) due to a re-
duction in growth as observed for a 0.25–0.34 pH unit de-
crease, are still unknown. Since the experimental period did
not extend to the settlement and metamorphosis of the or-
ganisms, it is impossible to know if the observed decrease in
growth rates would translate in a miniaturization of the spats
and/or an increase of the time spent in the planktonic com-
partment. Nevertheless, both effects could have major con-
sequences for the survival of the populations. Suspension-
feeding benthic invertebrates can be important predators of
pelagic larvae. In the Oosterschelde estuary, it has been
shown that larviphagy from adult bivalves is a major source
of mortality for bivalve larvae (Troost et al., 2009). However,
several studies showed that, thanks to their shell, larvae could
be rejected unharmed with the feces (Mackenzie, 1981). A
reduction of the shell both in terms of length and thickness
has therefore the potential to increase mortality rates during
the planktonic larval stage. Finally, decreases in size dur-
ing the early developmental stages of marine organisms have
been shown to effect juvenile fitness by reducing competi-
tive ability and increasing postsettlement mortality (Anil et
al., 2001).

The conditions at which the larvae were exposed in our
experiment must be regarded as optimal. In the field, mus-
sels usually spawn in spring when the water temperature is
∼ 8–18◦C and chlorophyll-a concentrations vary between
0.5 and 19 µg l−1 (April–June, 5 stations, monthly measure-
ments; see Table 1 for experimental levels). Therefore, as
both experimental parameters were significantly higher than
the ones encountered in situ at the time of spawning, the ex-
trapolation, to the field, of our laboratory-based observations
on the effects of decreasing pH on the blue mussel larval de-
velopment, must be performed with caution. Indeed, Parker
et al. (2009) have shown that the effects of ocean acidifica-
tion on the growth of Sydney rock oyster larvae were greater
at sub-optimal temperatures. Moreover, as food availability
is a very critical parameter in limiting larval development, the
fact that, in the present experiment, food concentrations were
optimal could have led to a high resistance of mussel lar-
vae to decreasing pH levels. The experimental pH level used
for the control incubations in this study also does not reflect
the conditions experienced by larvae in situ. Indeed, at the
time of spawning, the spring bloom occurring in the Ooster-
schelde estuary, drives seawaterpCO2 to values below atmo-
spheric equilibrium corresponding to an average pH level of
8.27±0.09 (April–June, 5 stations, monthly measurements),
a value much higher than the one used as a control during the
incubations. In order to evaluate the potential effect of ocean
acidification on this species fitness, there is a great need to
conduct future experiments under conditions similar to the
ones experienced by the organisms in the field.

At pHNBS ∼ 7.6, both hatching success and growth rates
(as estimated by shell length decrease after 2 d of devel-
opment) exhibited an important decrease coinciding with a
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slight undersaturation of seawater with respect to aragonite.
At this point, it can only be speculated that the observed de-
crease in larval developmental success for a∼ 0.5 pHNBS unit
decrease is due to the seawater undersaturation with respect
to aragonite. It must be stressed that our data do not al-
low discriminating between the physiological impact of pH
decrease alone via a disruption of inter-cellular transport
mechanisms and the impact on calcification resulting from
aragonite undersaturation, on the larval development of this
species. More studies are needed to disentangle these differ-
ent aspects of the potential effect of ocean acidification on
marine organisms.

As the different pressures exerted by the environment and
predators in the field result in a considerable mortality, ap-
proaching 99% (Bayne, 1976) during the free-swimming lar-
val period, an additional 24% decrease in hatching rates as
observed at a pHNBS of 7.6 can therefore compromise the
survival of the population. Indeed, relatively small fluctua-
tions in the abundance of these larval stages are known to reg-
ulate the size of the population (Green et al., 2004). Shellfish
predominantly inhabit coastal regions, which usually exhibit
lower pH values than the open ocean because of permanent
or episodic low pH water inputs from rivers (Salisbury et al.,
2008), from upwellings (Feely et al., 2008) and due to intense
rates of organic matter degradation and/or nitrification (Hof-
mann et al., 2009). While many estuaries already have high
and variablepCO2, atmospheric CO2 enrichment will shift
the baseline toward even higher values (Miller et al., 2009)
that could lead to extended periods of undersaturation with
respect to aragonite, although it has recently been suggested
that, in some areas, eutrophication can counter the effects
of ocean acidification (Borges and Gypens, 2010). There-
fore, these species will most likely be exposed to suboptimal
growth conditions in the coming years. In order to assess
socio-economic and ecological effects of ocean acidification
on shellfish, it is therefore crucial to predict accurately the
evolution of pH as well as the saturation state of the ocean
and its coastal waters with respect to aragonite in the near
future.

Our observation of no significant effect of a∼ 0.3 pHNBS
unit decrease on both hatching rates and survivorship stands
in contrast with results obtained by Parker et al. (2009)
on Saccostrea glomerataduring the first 48 h of develop-
ment and by Talmage and Gobler (2009) onMercenaria
mercenariaand Argopecten irradiansbetween the veliger
and metamorphosed stages (18–20 days). Our results are
consistent with those from Talmage and Gobler (2009) on
Crassostrea virginicawho observed significant effects on
growth rates but no significant effects on mortality for a
∼ 0.3 pH unit decrease. Altogether, these different studies re-
veal, similar to what is observed for adult stages, that the ef-
fects of ocean acidification of molluscans early life develop-
ment are species-specific (Kurihara, 2008) and that the sen-
sitivity of the organisms might depend on the pH variability
at which they are naturally exposed in the field.

It is important to notice that even under aragonite under-
saturated conditions, mussel larvae were able to produce a
shell, highlighting that molluscs exert a control over calci-
fication (McConnaughey and Gillikin, 2008) and are there-
fore not completely dependent on environmental conditions.
This does not appear as a surprise since most freshwater mol-
luscs are clearly well adapted to such conditions and bivalve
growth has been showed by Tunnicliffe et al. (2009) under
the extremely undersaturated conditions of deep hydrother-
mal sites. Most calcifying species, including molluscs, are
able to concentrate Ca2+ and CO2−

3 ions at the site of cal-
cification. Adult molluscs appear to use conventional cal-
cification physiology by pumping protons from the calci-
fication site (extrapallial fluid), largely through Ca2+/2H+

exchange catalyzed by Ca2+ ATPase (McConnaughey and
Gillikin, 2008). The elevation of pH in the extrapallial fluid
(Misogianes and Chasteen, 1979) allows an elevation of the
concentration of CO2−

3 that favours calcification. However,
as this mechanism requires energy, this can lead to sub-
stantial energy shifts from other processes and to important
costs for the growth of the organism as observed by Wood
et al. (2008) for the brittlestarAmphiura filiformis. Although
the regulation of calcification by this mechanism is well doc-
umented for adults, few studies have focused on the mech-
anisms of larval calcification and on the capacity of bivalve
larvae to regulate calcification rates by controlling the car-
bonate chemistry at the site of calcification. There is, how-
ever, some indication that biomineralization ofMytilus edulis
larvae is physiologically controlled, as the activity of the car-
bonic anhydrase, an enzyme that catalyses the reversible hy-
dration of CO2 to HCO−

3 and H+, reaches a maximum at the
end of each developmental stage connected with biominer-
alization (Medakovíc, 2000). This study also reported that
these larvae, as showed for other molluscs and echinoderms
larvae (Weiss et al., 2002), produce mainly amorphous cal-
cium carbonate during the first 2–3 days of development and
aragonite in the following days. As the solubility of amor-
phous calcium carbonate is 30 greater than that of aragonite
(Brečevíc and Nielsen, 1989), early larval stages should be
much more vulnerable than older larval stages and adults that
precipitate aragonite and/or calcite. Again, the fact that 2-
days old larvae were able to produce a shell under aragonite
undersaturation highlights the strong regulation capacity of
these organisms under sub-optimal growth conditions.

As mentioned previously, in the Oosterschelde estuary,
adults are exposed to a relatively narrow range of pH with
winter pH levels never falling below∼ 7.9 and high pH lev-
els in springtime (∼ 8.3) when spawning and larval devel-
opment occur. There is, therefore, a great need to evaluate
the adaptive capacity of this species to low pH conditions.
This could be achieved by comparing the responses, to a de-
crease in seawater pH, of populations originating from areas
with contrasting environmental conditions with respect to the
carbonate chemistry and/or by performing such experiments
over several generations.

www.biogeosciences.net/7/2051/2010/ Biogeosciences, 7, 2051–2060, 2010



2058 F. Gazeau et al.: Effect of ocean acidification on the early life stages of the blue musselMytilus edulis

Finally, in the present study, we show that shell increase,
by linear extension, which is the most commonly measured
parameter in ocean acidification related studies for mol-
luscs larvae, should not be the only measured parameter if
one wants to investigate the effects of acidification on shell
growth. Indeed, shell thickness appeared to be affected as
well with a relative decrease twice the relative decrease ob-
served in shell length. This is consistent with Miller et
al. (2009) findings who estimated a much higher decrease
of shell weight (estimated as the amount of calcium in the
shells) than shell area (respectively−42 and−16% between
pre-industrial and end of 21st century projected pH level for
C. virginica). However, it must be stressed that, in our study,
shell thickness measurements could not be performed on D-
veliger (2 days old) larvae and appeared to be limited to large
pediveliger larvae using our protocol. Calcium content in the
shells, as an estimator of shell weight, is also an interest-
ing parameter to follow and has been successfully applied
by Miller et al. (2009). However, again, this technique has
been applied to large larvae, and there is still a need to test
its validity for smaller veliger larvae. Finally, more precise
techniques such as45Ca labelling, recently used on pteropods
(planktonic molluscs; Comeau et al., 2009) are promising
and might be valuable tools to accurately evaluate the effect
of ocean acidification within the range of expected levels for
2100 on calcification rates of mollusc early life stages.

Supplementary material related to
this article is available online at:
http://www.biogeosciences.net/7/2051/2010/
bg-7-2051-2010-supplement.pdf.
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