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Abstract. Assessing moisture contents of lichens and
mosses using ground-based high spectral resolution spec-
trometers (400–2500 nm) offers immense opportunities for
a comprehensive monitoring of peatland moisture status by
satellite/airborne imagery. This information may be valu-
able for present and future carbon balance modeling. Pre-
vious studies are based upon point measurements of vege-
tation moisture content and water table position, and there-
fore a detailed moisture status of entire northern peatlands is
not available. Consequently, upscaling ground and remotely
sensed data to the desired spatial resolutions is inevitable.
This study continues our previous investigation of the impact
of various moisture conditions of common sub-Arctic lichen
and moss species (i.e.,Cladina stellaris, Cladina rangife-
rina, Dicranum elongatum, andTomenthypnum nitens) upon
the spectral signatures obtained in the Hudson Bay Low-
lands, Canada. Upscaling reflectance measurements of the
above species were conducted in the field, and reflectance
analysis using a singularity index was made, since this study
serves as a basis for future aircraft/satellite research. An at-
tempt to upscale current and new spectral reflectance indices
developed in our previous studies was made as well. Our
findings indicate that the spectral indexC. rangiferinais to
a lesser amount influenced by scale since it has a smallR2

values between the log of the index and the log of the resolu-
tion, reduced slopes between the log of the index and the log
of the resolution, and similar slopes between log reflectance
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and log resolution (α) of two wavelengths employed by the
index. Future study should focus on concurrent monitoring
of moisture variations in lichens and mosses both in situ and
from satellite and airborne images, as well as analysis of frac-
tal models in relations to the upscaling experiments.

1 Introduction

Spatial scaling of land surface processes has been acknowl-
edged as one of the most complicated and challenging issues
in environmental sciences (Chen, 1999). Scaling refers to the
use of information available at one scale to derive processes
that occur at a finer (down-scale) or a coarser (up-scale) scale
(Ehleringer and Field, 1993; El Maayar and Chen, 2006).
Downscaling is generally required for the use of available
information at a given resolution to a system where some
processes operate at a finer resolution (El Maayar and Chen,
2006). When a desired operational spatial resolution for
mapping a variable is coarser than the size of the ground
data sample and the size of the remotely sensed data pixels,
upscaling or aggregation of the ground and remotely sensed
data is required; that is, there is a need to infer spatial infor-
mation from a finer to a coarser spatial resolution (Wu and
Qi, 2000).

Since land surfaces are typically heterogeneous and non-
linear systems, in the process of upscaling, information at
one spatial resolution may deduce information at another
(Chen, 1999; Ehleringer and Field, 1993; Simic et al., 2004;
Williams et al., 2008). Therefore, it is important to exam-
ine the relationships between fine and coarse scales. With
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Table 1. Current and new spectral indices for detection of vegetation moisture content. Ref represents reflectance values in percentage (the
wavelengths units are in nm), and min and avg refer to minimum and average, respectively. The meanR2 values (of all sites and dates)
between the log of these spectral indices and the log of the spatial resolution are in the following increasing order:C. rangiferina(0.44),
MSI (0.49), simple ratio (0.52), NDII (0.54),C. stellaris(0.55), NDWI (0.55), and WBI (0.67).

Index Formula Reference

WBI Ref920 / min(Ref960−1000) Penuelas et al., 1997
Simple Ratio Ref1600 / Ref820 Ceccato et al., 2001
MSI avg Ref1550−1750 / avg Ref760−800 Vogelmann and Rock, 1986
NDII (Ref820–Ref1600) / (Ref820+ Ref1600) Hardisky et al., 1983
NDWI (Ref860– Ref1240) / (Ref860+ Ref1240) Gao, 1996
C. rangiferina (Ref1080–Ref1480) / (Ref1080+ Ref1480) Neta et al., 2010a
C. stellaris (Ref900– Ref1470) / (Ref900+ Ref1470) Neta et al., 2010a

no appropriate attention, major errors can be made in the up-
scaling process (Chen, 1999; Williams et al., 2008). Upscal-
ing uncertainties are defined as variances of spatial data that
are associated with ground data, images, and maps. When
spatial data are scaled up from finer to coarse scales, the un-
certainties will be propagated to the final products (Wang et
al., 2004). Chen (1999) suggests that major causes for the
errors in a surface parameter retrieved at coarse resolutions
are associated with the averaging process of a radiative signal
received by a sensor. Transferring algorithms from one reso-
lution to another without incurring considerable errors is one
of the greatest challenges in remote sensing (Chen, 1999).

Our previous studies (Neta et al., 2010a, b) examined the
spectral response of common sub-Arctic lichen and moss
species (i.e.,Cladina stellaris, Cladina rangiferina, Di-
cranum elongatumand Tomenthypnum nitens) to varying
field moisture conditions, and its relation to the water table
position, in the Hudson Bay Lowlands, Canada (a northern
peatland). Since plants’ moisture content and the water table
position have a great impact on greenhouse gas emissions,
they are important variables in carbon balance studies. How-
ever, these studies are based upon point measurements (Bu-
bier et al., 1997; Walter et al., 2001). Point measurements of
vegetation moisture content, as well as water table position
are quite informative. However, these measurements cannot
describe moisture conditions of northern peatlands over large
spatial scale. Consequently, changes in northern peatlands
moisture conditions, and accordingly variability in the water-
table position, are not acknowledged (Walter et al., 2001).

Since it is fairly complex and costly to conduct com-
prehensive inter-annual moisture measurements across en-
tire peatlands, other inexpensive, large spatial scale methods
should be considered. As established by Hay et al. (1997), re-
mote sensing may be useful in distinguishing and evaluating
temporal and spatial variations in moisture status of northern
peatlands. While a fairly small point size is normally mea-
sured on the ground, airborne and satellite data have greater
spatial resolutions. Consequently, upscaling ground and re-

motely sensed data to the desired spatial resolutions is in-
evitable. Therefore, in this study we present the results of
our upscaling reflectance experiments in the field, in contin-
uation to our laboratory reflectance measurements, presented
in our previous studies (Neta et al., 2010a, b). The objec-
tive of the upscaling experiments includes the examination
of the reflectance obtained at different spatial resolutions in
order to upscale the information derived by current spectral
indices and our new species specific spectral indices devel-
oped in our previous studies (Table 1; Neta et al., 2010a,
b). The methods and results of this study can be applied in
other environments and may serve as a basis for future air-
borne/satellite based measurements.

2 Study area

The study area is located in the Hudson Bay Lowlands, ap-
proximately 20 km southeast of the town of Churchill, and
2.4 km southwest of the Churchill Northern Studies Cen-
tre (CNSC), in north-eastern Manitoba, Canada (58.72◦ N,
93.83◦ W, Fig. 1). The Hudson Bay Lowlands is the sec-
ond largest contiguous peatland worldwide (after the West
Siberian Lowlands in Russia), that covers approximately
324 000 km2 of land, largely to the south and southwest of
the Hudson Bay (Fig. 1). The terrain is flat, poorly drained
and underlain by marine silts, clays and permafrost. Wet-
lands embrace 50–75% of the Hudson Bay Lowlands and fall
into two broad classes; (1) fens comprising primarily sedge
(Carex spp.) and brown moss, and (2) raised bogs supporting
lichen-moss-heath vegetation (Ricketts et al., 1999).

Continued uplifting of the land surface due to isostatic re-
bound creates belts of raised beaches. This isostatic rebound
is a result of the crust being depressed from the weight of
the Laurentide ice sheet during the most recent Wisconsin
glaciation (approximately 20 000 years before the present
day). The tundra vegetation near the present day coastline
gives way to isolated copse of white spruce and larch, and
then open crown white and black spruce forest as one moves
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Fig. 1 – The location of the study area (red square) and the town of Churchill (red point) in 

the Hudson Bay Lowlands, north-eastern Manitoba, Canada. The Hudson Bay Lowlands is the 

second largest contiguous peatland worldwide (after the West Siberian Lowlands in Russia), 

where wetlands embrace 50-75% of the area (Ricketts et al. 1999). The green area in this map 

represents the contiguous peatland that covers approximately 324,000 km2 of land (modified from 

the source map of University of Maine Canadian-American Center Cartography, 2005). 
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Fig. 1. The location of the study area (red square) and the town
of Churchill (red point) in the Hudson Bay Lowlands, north-eastern
Manitoba, Canada. The Hudson Bay Lowlands is the second largest
contiguous peatland worldwide (after the West Siberian Lowlands
in Russia), where wetlands embrace 50–75% of the area (Ricketts
et al., 1999). The green area in this map represents the contiguous
peatland that covers approximately 324 000 km2 of land (modified
from the source map of University of Maine Canadian-American
Center Cartography, 2005).

inland. The thick underlying peat deposits form peat plateau
made up of high center ice-wedge polygons which cover
approximately 12 000 km2 within the province of Manitoba
(Ricketts et al., 1999).

3 Upscaling experimental design

Upscaling spectral measurements using the ground-based
Ocean Optics spectrometers USB4000 (spectral coverage
of 400–900 nm, and spectral sampling intervals of 0.2 nm)
and NIR256 (spectral coverage of 900–2400 nm and spectral
sampling interval of 6.8 nm) were conducted in the field in
the summer of 2007 (30 June to 19 August). To avoid the
noise observed in the edge of the spectrum (as a result of
low signal to noise ratio), we refer to the 400–850 nm, and
1000–2300 nm regions, only. These upscaling experiments
were conducted in days with clear clouds sky conditions,
to obtain steady illumination conditions, which are required
for the conversion of spectral measurements to absolute per-
cent reflectance (Sanderson et al., 1998). It should be noted
that clear clouds sky conditions are rather exceptional in this
study area, and therefore, only a small number of days were
available for accurate upscaling spectral measurements in the
field. Furthermore, the sensor was leveled in nadir position

above the target, to reduce inaccuracies in spectral readings.
However, wind conditions in this study area are relatively un-
stable, and that might influence the accuracy of the results as
well (i.e., decrease the signal to noise ratio, or saturate the
reflectance).

Prior to each measurement, reference spectra from a
highly reflective (99%) Lambertian spectralon white re-
flectance panel (“white reference”) was collected in order
to convert spectral measurements to absolute percent re-
flectance (Eq. 1). For this purpose, a measurement of the
noise inherent in the instrument (“dark”) was made with no
illumination (Eq. 1).

To determine the canopy spectral reflectance as an abso-
lute percentage of the incident light, the following formula
was applied (following Sanderson et al., 1998):

Reflectance(%) =
Radt arg et−Raddark

Radwhite−Raddark
×100 (1)

where, Radtarget, Raddark and Radwhite represent the radiance
spectra of the target, dark, and the white reference, respec-
tively.

Four representative sites (named 101, 102, 103, and 106)
were selected in the raised bog area, near Churchill, Mani-
toba (58.72◦ N, 93.83◦ W) for the upscaling experiments. At
a constant height (2.20 m), various scales were employed by
modifying the sensor’s field of view from 3◦, 8◦, 10◦, and
14◦ to 24.8◦. As a result, the spatial resolution (i.e., the di-
ameter of the circle) was changing from 11.7, 31.3, 39.2, 55
to 98.5 cm, respectively.

4 Upscaling reflectance using a singularity index

As established by Cheng (2006), in multifractal models the
singularity exponent is an index quantifying the scaling in-
variance property. In this study, the singularity index is re-
lated to the spectral reflectance properties Ref, obtained at
different spatial resolutionsε, and defined as

Ref(ε) = cεα (2)

wherec is a constant andα is the exponent. The density
function introduced by Cheng (2008)ρ(ε) can be defined as

ρ(ε) = Ref(ε)/εE
∼ cεα−E (3)

whereE is the dimension of the pixel (e.g.,E = 2 for a
two dimensional map). The value of the singularity index
α varies within a finite range fromαmin to αmax. The indexα
can be estimated by the least squares method to fit a straight
line to a set of values of Ref(ε) againstε in log-log space.
The valuesα and log(c) can be taken as the slope and the
intercept of the straight line, respectively. The standard error
and correlation coefficient involved in the estimation can be
calculated from the least squares fitting and these indices can
be used for evaluating whether power-law relationships ex-
ist (Eqs. 2 and 3). The power-law relations usually hold true
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Fig. 2 – Data obtained in July August 12, in site 106, using the wavelength range of 400-

850 nm, at various spatial resolutions; a. Reflectance. b. Log reflectance. c. First-order derivative. 

d. slope between log reflectance and log resolution. 
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Fig. 2. Data obtained in 12 August 2007, in site 106, using the
wavelength range of 400–850 nm, at various spatial resolutions;
(a) Reflectance. (b) Log reflectance. (c) First-order derivative.
(d) slope between log reflectance and log resolution.

for a certain range of spatial resolutions, denoted as (εmin,
εmax), and the singularity index is the average values for the
smallest pixel with the size ofεmin. The singularity index
estimated from Eq. 3 has the following properties (Cheng,
2008):

1. α = E, if ρ(ε) ∼ constant, independent of pixel sizeε.

2. α <E, if ρ(ε) ∼ cεα−E is a decreasing function ofε.

3. α >E, if ρ(ε) ∼ cεα−E is an increasing function ofε.

Cases 2 and 3 correspond to singular situations in which the
density functionρ(ε) → ∞ or ρ(ε) → 0 asε → 0. In the
case ofρ(ε) → ∞, it implies that within the pixel of sizeε
there is an anomalously high density (Cheng, 2008).

The singularity index usually has finite values aroundE.
For a conservative multifractal measure, the dimension of
the set withα = E is close toE (box-counting dimension),
which means that the areas on a map with continuous back-
ground values occupy the greatest part of the map. The di-
mensions of the other areas withα 6= E are given by the frac-
tal spectrum functionf (α) < E. This implies that the areas
with singular values (anomalies) are relatively small in com-
parison with the areas with nonsingular values (background

R2 between log reflectance and log resolution
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Fig. 3 – R2 between log reflectance and log resolution between 400-850 nm, obtained on 

August 12, 2007, in site 106 (n = 5, significance level < 0.05, and critical value R2 > 0.65). 
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Fig. 3. R2 between log reflectance and log resolution between 400–
850 nm, obtained on 12 August 2007, in site 106 (n = 5, signifi-
cance level< 0.05, and critical valueR2 > 0.65).

values). Based on a statistical point of view, the majority of
values on the map whereα ∼ E follows either normal or log-
normal distributions, whereas the extreme values on the map
with singularityα 6= E may follow Pareto Distributions (i.e.,
power law probability distribution) (Cheng, 2008).

Equation 3 shows that the average density function defined
in a pixel sizeε follows a power-law relationship with the
scale unit (spatial resolution of sizeε). The exponentα−E

characterizes the local singularity of the function – how the
values changes as the scale unit decreases. Onceα 6= E, the
density is dependent on the scale unit. In this case, the con-
stantc becomes a useful quantity independent of pixel size
and remains unchanged when pixel size reduces. This value
of c, (c = Ref/εα) can be considered as the measure of the
densityρ(ε) in the space ofα dimension; for example, if Ref
stands for spectral reflectance (%) with spatial resolution of
sizeε (cm), thenc has the unit (%/cm)α. It becomes the or-
dinary density value in nonsingular locations whereα = 2.
This decomposition ensures that any complex measure de-
composes into an absolutely continuous measure and a sin-
gular measure (Cheng, 2008).

To examine changes in reflectance at various scales,
Figs. 2–5 are presented as a representative example (obtained
at site 106 on 12 August 2007), while our ultimate objec-
tive is to upscale current reflectance indices, along with our
new developed indices (Table 1; Neta et al., 2010a, b). The
reflectance (%), log of the reflectance, and the first-order
derivative of the reflectance obtained at various scales, along
with the slope (i.e., singularity indexα) between the log of
the reflectance and the log of the spatial resolution, and the
coefficient of determinations (R2) between the log of the re-
flectance and the log of the spatial resolution, were plotted
(Figs. 2–5). It should be noted that the slope between the
log of the reflectance and the log of the spatial resolution
between 400–850 nm (Fig. 2) was calculated for the greater
scales only (i.e., 31.3 cm to 98.5 cm), since the reflectance
obtained of the 11.7 cm resolution is an outlier, as seen in
Fig. 2. The log of the reflectance is presented since the log
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Fig. 4. Data obtained in 12 August 2007, in site 106, using the
wavelength range of 1000–2300 nm, at various spatial resolutions;
(a) Reflectance. (b) Log reflectance. (c) First-order derivative.
(d) slope between log reflectance and log resolution.

function emphasizes the scale, and thus, variations that are
difficult to distinguish within the reflectance curve are better
distinguished by the log reflectance diagram. The singularity
indexα may imply on changes in reflectance as a function of
different scales, and whether the reflectance is influenced by
scale.R2 values between the log of the reflectance and the
log of the spatial resolution are also presented, since it can
be used for evaluating whether power-law relationships ex-
ist. That is, to obtain reflectance that is independent of scale,
power-law relationship must exist (Cheng, 2008).

5 Results

5.1 Upscaling reflectance analysis

Tucker (1979), Ceccato et al. (2001) and Liang (2004),
established that the visible reflectance (400–700 nm) is
greatly influenced by leaf pigments, while leaf cell structure
and biomass control the near-infrared (NIR) region (700–
1300 nm). Figure 2 indicates a peak reflectance centered
at approximately 550–560 nm, which is attributed to chloro-
phyll concentration according to Tucker et al. (1979), Cec-
cato et al. (2001), and Liang (2004). This peak reflectance
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Fig. 5. R2 between log reflectance and log resolution between
1000–2300 nm, obtained on 12 August 2007, in site 106 (n = 5,
significance level< 0.05, and critical valueR2 > 0.65).

is enhanced within the greater spatial resolutions (i.e., 31.3
to 98.5 cm), while it is lower within the 11.7 cm scale. Since
this increased reflectance is attributed to chlorophyll pres-
ence, it is possible that within the greater spatial resolutions,
greater concentrations of chlorophyll are present, which in
turn increase the reflectance in these scales. The reduced re-
flectance observed between 440–500 nm and 670–690 nm (in
all scales) displays chlorophyll absorption bands, according
to Liang (2004), Tucker (1979), and Campbell (1996).

As established by Ayala-Silva et al. (2005), the red edge is
produced by the combination of strong absorption by chloro-
phyll in the red region and strong reflectance in the NIR
range. This strong absorption is revealed in the 690 nm
range, while a steep slope is observed between the red and
NIR regions, at all scales (Fig. 2). Tucker (1979) and Liu
et al. (2004) suggest that steep rises in reflectance of veg-
etation between 650 and 1100 nm are correlated with total
chlorophyll concentration and water content. Ayala-Silva et
al. (2005) established that maturity can have an impact on
vegetation reflectance in the range of 500–800 nm, where
older leaves have significantly higher reflectance than young
leaves. Data obtained in site 101, indicate an increased re-
flectance between 500–800 nm, as the summer season is pro-
gressing (data of all sites and dates are not presented here,
and are available upon request), while this pattern is not in-
dicated in sites 103, and 106 (due to weather conditions,
site 102 includes one day of measurements only). There-
fore, it is possible that vegetation maturity has some influ-
ence on the reflectance obtained in this range, while, other
factors (e.g., moisture availability, and chlorophyll concen-
trations) may influence the reflectance. In addition, the re-
flectance peak seen around 764 nm (Fig. 2) may be associ-
ated with reflectance of O2 and water, as stated by Gupta et
al. (2000) and Liu et al. (2004). However, we did not con-
duct O2 and chlorophyll measurements since these are be-
yond the scope of our study. Furthermore, Tucker (1980),
Ceccato et al. (2001), and Liang (2004), assert that vegeta-
tion moisture content largely controls the spectral reflectance
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Fig. 6 – Up-scaling current spectral indices; the log of the spectral indices WBI (water band 

index), Simple ratio, MSI (moisture stress index), NDII (normalized difference infrared index), and 
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Fig. 6. Up-scaling current spectral indices; the log of the spectral
indices WBI (water band index), Simple ratio, MSI (moisture stress
index), NDII (normalized difference infrared index), and NDWI
(normalized difference water index) are plotted against the log of
the spatial resolution, in site 106 on 12 August 2007 (n = 5, signifi-
cance level< 0.05, and critical valueR2 > 0.65).

of the shortwave infrared (SWIR) region (1300–2500 nm).
Reflectance data of our sites display several water absorption
features, centered at approximately 1300 nm, 1650 nm, and
2100 nm (Fig. 4).

The reflectance observed in the 400–850 nm and 1000–
2300 nm range is increasing proportionally to the spatial
resolution. This increase in reflectance is emphasized be-
tween 11.7 cm resolution and the larger scales (i.e., 31.9 cm,
39.2 cm, 55 cm and 98.5 cm), while the greater scales indi-
cate minor reflectance variations only. The higher reflectance
observed in the greater scales may be related to the incident
irradiance of the area; that is, the larger the area or the spatial
resolution, the greater the radiance that is returned into the
sensor, and so is the reflectance (Unsworth, 2008). This may
also be related to the anisotropic reflection of the surface,
where the reflectance is uneven at different incident angles.
Other factors may also influence the higher reflectance ob-
tained at greater scales. This may be related to various mois-
ture conditions at different scales, as well as different dis-
tributions of vegetation species; different species may hold
various quantities of water in the canopies, and the SWIR
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Fig. 7 – Up-scaling the new spectral indices; the log of the spectral indices C. rangiferina 

and C. stellaris are plotted against the log of the spatial resolution, in site 106 on August 12th, 

2007 (n = 5, significance level < 0.05, and critical value R2 > 0.65). 
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Fig. 7. Up-scaling the new spectral indices; the log of the spectral
indicesC. rangiferina(which is identical to the spectral indexD.
elongatum), andC. stellarisare plotted against the log of the spatial
resolution, in site 106 on 12 August 2007 (n = 5, significance level
< 0.05, and critical valueR2 > 0.65).

region is mostly influenced by moisture. In addition, varia-
tions in pigments and biomass influence both the visible and
near-infrared regions.

Figures 2 and 4 indicate that the first-order derivative of
the reflectance between 400–850 nm and 1000–2300 nm, is
matching the changes in reflectance along the electromag-
netic spectrum. For example, between 460–680 nm and
1400–1700, there is almost no change in the reflectance
(i.e., the first-order derivative is nearly flat and close to 0),
while a sharp change is observed between 760–770 nm, and
1800–1900 nm. Overall, the first-order derivative displays
change in reflectance along the spectrum, while different
scales present similar change in reflectance. Therefore, lit-
tle information regarding change of reflectance as a result of
different scales is available.

The singularity indexα (i.e., the slope between the log of
the reflectance and log of the spatial resolution, presented
in Figs. 2 and 4) reveals valuable information regarding the
change in reflectance as a function of changing scale. Ac-
cording to Cheng and Agterberg (2009), and Cheng (2008),
onceα = 2 the density functionρ(ε) is approximately con-
stant. Therefore, the reflectance Ref is independent of the
spatial resolutionε. Onceα < 2, the densityρ(ε) is a de-
creasing function ofε, that is, Ref is reduced in smaller
scales. Whenα > 2, the densityρ(ε) is an increasing func-
tion of ε, and thus, may indicate greater Ref in smaller spatial
resolutionsε. As indicated in Figs. 2 and 4,α (the slope be-
tween the log reflectance and the log resolution) is< 2 for
all wavelengths range (i.e., 400–850, and 1000–2300 nm).
Therefore, the densityρ(ε) is a decreasing function of the
spatial resolutionε, and Ref is reduced in the smaller scales
(Figs. 2 and 4).

The singularity indexα (Figs. 2 and 4) reveals addi-
tional information regarding the change in reflectance as
a result of changing scale. Asα is increasing, so is the
change in reflectance as a result of changing spatial resolu-
tion. For example, Figs. 2 and 4 indicate thatα between
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Fig. 8 – The absolute difference between the slopes obtained by the wavelengths of the 

indices WBI (water band index), Simple ratio, MSI (moisture stress index), NDII (normalized 

difference infrared index), and NDWI (normalized difference water index), are plotted against the 

R2 between the log of these indices and the log of the spatial resolution. These slopes are 

between the log reflectance and log spatial resolution obtained at the 920 nm and 960-1000 nm 
range for the WBI, 820 nm and 1600 nm for the Simple ratio, 1550-1750 nm and 760-800 nm 

range for the MSI, 820 nm and 1600 nm for the NDII, and 860 nm and 1240 nm for the NDWI (n = 

11, significance value < 0.05, critical value R2 > 0.28). 
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Fig. 8. The absolute difference between the slopes obtained by the
wavelengths of the indices WBI (water band index), Simple ratio,
MSI (moisture stress index), NDII (normalized difference infrared
index), and NDWI (normalized difference water index), are plot-
ted against theR2 between the log of these indices and the log of
the spatial resolution. These slopes are between the log reflectance
and log spatial resolution obtained at the 920 nm and 960–1000 nm
range for the WBI, 820 nm and 1600 nm for the Simple ratio, 1550–
1750 nm and 760–800 nm range for the MSI, 820 nm and 1600 nm
for the NDII, and 860 nm and 1240 nm for the NDWI (n = 11, sig-
nificance value< 0.05, critical valueR2 > 0.28).

500–650 nm, 700–800 nm, 1350–1450 nm, 1850–1930 nm,
and 2200–2300 nm is fairly small, and therefore, minor
changes in reflectance are caused by different scales (Figs. 2
and 4). Moderateα values are displayed between 450–
500vnm, 650–700 nm, 800–850 nm, 960–1350 nm, 1450–
1490 nm, 1800–1850 nm, and 1930–2200 nm. The greatest
α values are seen between 400–450 nm, and 1490–1800 nm.
That is, in these wavelengths, changes in reflectance are to a
great extent influenced by the scale. In order to transfer infor-
mation from finer to coarse resolution as accurate as possible,
wavelengths with smallα values should be considered, since
minor variations in reflectance as a result of changed scale,
occur in these wavelengths.

In addition to the singularity indexα, R2 values between
the log reflectance and the log resolution are important fac-
tors; these values can be used for evaluating whether power-
law relationships exist (n = 5, significance level< 0.05,
and critical valueR2 > 0.65). To determine whether the
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Fig. 9 – The absolute difference between the slopes obtained by the wavelengths of the 

new species specific indices C. rangiferina and C. stellaris, are plotted against the R2 between 

the log of these indices and the log of the spatial resolution. These slopes are between the log 

reflectance and log spatial resolution obtained at the 1080 nm and 1480 nm range for C. 

rangiferina index, and 900 nm and 1470 nm for the C. stellaris index (n = 11, significance value < 

0.05, critical value R2 > 0.28). 
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Fig. 9. The absolute difference between the slopes obtained by the
wavelengths of the new species specific indicesC. rangiferinaand
C. stellaris, are plotted against theR2 between the log of these in-
dices and the log of the spatial resolution. These slopes are be-
tween the log reflectance and log spatial resolution obtained at the
1080 nm and 1480 nm range forC. rangiferinaindex, and 900 nm
and 1470 nm for theC. stellaris index (n = 11, significance value
< 0.05, critical valueR2 > 0.28).

reflectance is independent of scale, power-law relationship
must exist (Cheng, 2008). The coefficient of determina-
tions (R2) between the log reflectance and the log spatial
resolution were plotted for the 400–850 nm (Fig. 3) and the
1000–2300 nm regions (Fig. 5). If the data follow power-
law relationships (i.e.,R2 > 0.65 then the slope between log
reflectance and log resolution may indicate the degree of
non-linearity; greatR2 values have fewer errors, while re-
ducedR2 values denote that slope calculations are inaccu-
rate. Overall, it is indicated thatR2 values of both 450–
850 nm (Fig. 3) and 1000–2300 nm (Fig. 5) regions of the
spectrum, are significant (R2 > 0.65). These suggest that
since power-law relationships exist, the calculation of the
slope contain few errors.

5.2 Up-scaling spectral reflectance indices

Seeing as this study serves as a basis for future air-
craft/satellite studies, an attempt to upscale current spectral
reflectance indices (i.e., WBI, Simple ratio, MSI, NDII, and
NDWI) along with the new species specific spectral indices
(i.e., C. stellarisandC. rangiferina) developed in our pre-
vious studies (Neta et al., 2010a, b) was made. Figures 6–7
present an example of these spectral indices at various scales,
obtained in site 106, on 12 August 2007. For upscaling
plants’ moisture content from finer to coarser resolutions it is
suggested to use an index that is independent of scale. That
is, theR2 values of such index will be nearly or equal to
0. Alternatively, the slope between the index values and the
spatial resolution will be small or close to 0.

TheR2 and the slope between the log of the indices and
the log of the spatial resolution were analyzed to examine
the relationship between the spectral indices and the scale
(Figs. 6–7). That is, to what extent do these indices change
as a result of varying scales. Furthermore, the slope between
the log of the reflectance and the log of the spatial resolution
(i.e., the singularity indexα; Figs. 2 and 4) was examined
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whether wavelengths applied in these indices have similarα

values, and how is it related to the scale.
The meanR2 values (of all sites and dates) between the

log of these spectral indices and the log of the spatial reso-
lution are in the following increasing order:C. rangiferina
(0.44), MSI (0.49),Simple ratio(0.52), NDII (0.54),C. stel-
laris (0.55), NDWI (0.55), and the WBI (0.67). According
to these results, the spectral indexC. rangiferina is less in-
fluenced by scale. The mean slopes (for all sites and dates)
between the log of the above spectral indices and the log of
the spatial resolution are in the following increasing order:
MSI (−0.286), Simple ratio (−0.1774), NDWI (−0.0599),
C. stellaris(−0.0534), WBI (0.106), NDII (0.119), andC.
rangiferina (0.2717). In this case, theC. stellaris index is
less influenced by scale, as this value is the closest to 0.

In order to examine the above indices in terms of scale in-
dependence,α values (presented in Figs. 2 and 4) of each
wavelength (or wavelength range) of the above indices, was
analyzed. The absolute difference values (i.e., subtraction)
between theα values of two wavelength (or wavelength
range) of each spectral index, are plotted against the R2 be-
tween the log of these indices and the log of the spatial reso-
lution (Figs. 8–9).

The general trend observed in Figs. 8–9 (with the excep-
tion of the indices NDII and NDWI) is that as the absolute
difference inα values is reduced, so is theR2 between the log
of these indices and the log of these spatial resolutions. That
is, asα values of two wavelengths (or wavelength range) em-
ployed by each index become similar, theR2 between these
indices and the spatial resolution is reduced; a ratio between
the reflectance of two wavelengths with similarα values is
neutralizing the scale effect. Therefore, asα values become
similar, the spectral index is less influenced by scale; at dif-
ferent scales the results of these spectral indices are similar,
and thus these indices are independent of scale. As a result,
an index that is less influenced by scale is one that includes
two wavelengths with similarα values.

It can be summarized that an index that is less influenced
by scale will have smallR2 values between the log of the
reflectance and the log of the resolution, reduced slopes be-
tween the log of the index and the log of the resolution, and
similarα values of the two wavelengths employed by the in-
dex. This analysis may help define indices that are scale in-
dependent.

Of the new spectral indices, it was found that the wave-
lengths employed byC. rangiferina index (Table 1), have
similar slopes versus those of theC. stellarisindex, and as a
result, the values of theC. rangiferina index are to a lesser
amount affected by the scale. Furthermore, as indicated in
our previous study (Neta et al., 2010a), theC. rangiferinain-
dex improved moisture content detection of both speciesC.
rangiferina andD. elongatum.Therefore it is suggested to
use this index for upscaling purposes.

6 Summary and conclusions

Monitoring moisture conditions of lichens and mosses along
with the water-table position by remote sensing technology
may provide valuable information for present and future car-
bon balance modeling. However, previous studies are based
upon point measurements of vegetation moisture content and
water table position. These measurements cannot describe
moisture conditions of northern peatlands over large spa-
tial scale, and consequently, upscaling ground and remotely
sensed data to the desired spatial resolutions is inevitable.
The results of this study suggest the following:

1. The singularity indexα is < 2 for all wavelengths range
(i.e., 400–850, and 1000–2300 nm), indicating that the
reflectance is reduced in the smaller scales. The higher
reflectance observed in the greater scales may be related
to the incident irradiance of the area, or the anisotropic
reflection, as well as the vegetation distribution, vegeta-
tion density, vegetation pigments, moisture content and
biomass.

2. The coefficient of determinations (R2) between the log
reflectance and log resolution can be used for evaluat-
ing whether power-law relationships exist. If the data
follow power-law relationships (i.e.,R2 > 0.65), thenα
may indicate the degree of non-linearity; greatR2 val-
ues have fewer errors, while reducedR2 values denote
that slope calculations are inaccurate.R2 values be-
tween 450–850 nm, and 1000–2300 nm are significant
(i.e., R2 > 0.65). These suggest that the calculation of
the slope contains few errors.

3. An index that is independent of scale is expected to have
smallR2 values between the index values and the reso-
lution, smallR2 values between the log of the index and
the log of the resolution, reduced slopes between the log
of the index and the log of the resolution, and similarα

values of two wavelengths employed by the index. Of
all spectral indices studied here, it was found that the
spectral indexC. rangiferinais to a lesser amount. in-
fluenced by scale. In addition,C. rangiferinaindex im-
proved moisture content detection of bothC. rangife-
rina andD. elongatum, and therefore it is suggested to
use this index for upscaling purposes.

4. Future research should focus on concurrent monitoring
of moisture variations in lichens and mosses both in situ
and from satellite and airborne images, as well as anal-
ysis of fractal models in relations to our upscaling ex-
periments.
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