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Abstract. We report the first estimates of pools and dy-
namics of microbes, roots, plant litter and soil organic car-
bon (SOC) in three dominant types of China’s vast decid-
uous forest area:Betula platyphylla, Quercus liaotungen-
sis, andQuercus alienavar. acuteserrata. Organic matter
degradation rates overshadowed litter inputs as the main de-
terminant of the soil carbon stocks. Across the three forests,
rates of litter decomposition were also indicative for turnover
rates of SOC. Litter and SOC decay was faster in the sub-
tropical than in the warm-temperate forests. Among the lat-
ter, SOC turnover was highest in the forest producing the
higher-quality litter. Microbial biomass was, as expected,
correlated with SOC content. Microbial activity, in contrast,
was highest at the sub-tropical forest, despite the lower SOC
availability, lower fraction of labile SOC, and lower soil mi-
crobial biomass. These results may contribute to increased
understanding of controls over belowground carbon cycling
in deciduous forests.

1 Introduction

With the significant increase in atmospheric greenhouse gas
concentrations and the potential for global climate change,
studies of the terrestrial carbon cycle have gained attention
over the last 20 years (Houghton et al., 2001; Callesen et al.,
2003). Soil carbon is an important terrestrial carbon reser-
voir and plays a key, yet poorly understood role in the global
carbon cycle and its feedback to climate change (Post et al.,
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1982; Davidson and Janssens, 2006). Therefore, the study of
soil organic carbon (SOC) dynamics is critically important
to our ability to understand the global carbon cycle and its
response to future global change (Davidson et al., 2000).

Deciduous broad-leaved forests are an important forest
type and the status of these forests as carbon sources or
sinks has previously been assessed (Curtis et al., 2002;
Stephenson and van Mantgem, 2005). Asia white birch
(Betula platyphylla; about 22◦–53◦ N, 90◦–135◦ E), East-
Liaoning oak (Quercus liaotungensis; about 26◦–53◦ N, 90◦–
135◦ E) and Sharptooth oak (Quercus alienavar. acuteser-
rata; about 22◦–39◦ N, 92◦–125◦ E) are widely distributed in
mountainous areas in the temperate and sub-tropical zone of
China (Delectis Flora Reipublicae Popularis Sinicae Agen-
dae Academiae Sinicae Edita, 1979, 1998) and dominate im-
portant forest types in China (Chen, 1997). However, de-
spite their high importance for the carbon budget of east Asia
(Fang et al., 2007; Feng et al., 1999), soil carbon dynamics,
including soil carbon pool sizes and turnover rates, have so
far not been reported for these kinds of forests.

In this study, we compared pools and dynamics of fine
roots, soil carbon pools, and soil microbes among Asia white
birch, East-Liaoning oak, and Sharptooth oak forests. We
applied density fractionation (e.g. Elliott and Paustian, 1996;
Zimmermann et al., 2007) to soil samples of the different
forests to address the pool sizes and kinetics of fast- and
slow cycling organic matter pools. The overall objective of
this study was to examine soil carbon quantity and quality in
these important forest types. The specific objectives of this
study were: (1) to determine the total SOC pool and its com-
ponents in the three forest types, and (2) to determine the
rates of carbon cycling through the litter and SOC pools.
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2 Materials and methods

2.1 Site description

Three deciduous broad-leaved forest types were assessed in
this study: (1) Asia white birch forest; (2) East-Liaoning oak
forest; and (3) Sharptooth oak forest. All three forests were
growing on clay-poor soils (less than 5%), with pH values
varying between 6.5 (Sharptooth oak) and 6.9 (Asia white
birch and East-Liaoning oak). Similar clay contents and pH
values across the three sites are favourable for comparisons
of SOC pools, although we acknowledge that different clay
mineralogies may exhibit different SOC stabilization poten-
tials (Six et al., 2000). The study sites of Asia white birch and
East-Liaoning oak were located in the Donglingshan Moun-
tains, Beijing (39◦48′–40◦00′ N, 115◦24′–115◦36′ E). These
two sites were situated in the warm temperate climate zone,
and the two sites were characterized by a warm temperate,
semi-wet monsoon climate. Long-term mean annual precip-
itation in this area was 612 mm and mean annual air tem-
perature was 4.8◦C. The soil in both stands was classified
as a Eutric cambisol (FAO-WRB, 1998), with a depth of
about 60 cm. The Sharptooth oak forest was located in the
Shennongjia Mountains, Hubei Province (31◦15′–31◦57′ N,
109◦–110◦58′ E). This forest was located in the sub-tropical
zone, and was characterized by a sub-tropical monsoon cli-
mate, with mean annual precipitation of 1514 mm and mean
annual air temperature of 10.6◦C. The sandy-loam soil in
this forest is classified as a Haplic cambisol (FAO-WRB,
1998) with a depth of some 100 cm.

A 0.25 ha plot of 60-year-old Asia white birch forest
(39◦57′01′′ N, 115◦25′07′′ E, elevation 1380 m a.s.l.) was se-
lected for this study. The inclination of the site was 32◦.
The Asia white birch forest was dominated by Asia white
birch, admixed with associated species (Betula utilis and
Populus alba), and an abundance of shrubs includingSor-
bus pohuashanensis, Lonicera japonica, Prunus armeniaca,
Corylus mandshurica, Acer mono, Abelia biflora, Leptoder-
mis oblonga, Spiraea sargentiana, Macrocarpium officinalis.
Tree density at the plot was 1234 trees ha−1, with a mean di-
ameter at breast height (DBH) of 13.2 cm and a mean tree
height of 8.5 m.

We also selected a 0.25 ha plot of 60-year-old East-
Liaoning oak forest (39◦57′04′′ N, 115◦25′04′′ E, elevation
1200 m a.s.l.), with an inclination of 28◦. This East-
Liaoning oak forest was dominated by East-Liaoning oak,
and admixed withB. utilis as associated tree species and
some shrubs (S. sargentiana, A. mono, Lespedeza bicolor,
L. japonica, C. mandshurica, andDeutzia scabra). Tree den-
sity was 1262 stems ha−1, with a mean DBH of 12.2 cm and
a mean tree height of 6.8 m.

Last, a 0.25 ha plot of 55-year-old Sharptooth oak forest
(31◦30′09′′ N, 110◦30′29′′ E, elevation 1994 m a.s.l.) was se-
lected for the study. The inclination of the site was 30◦. The
Sharptooth oak forest was dominated by Sharptooth oak, ad-

mixed with associated tree species such as:Cornus japonica
var. Chinensis, Platyearya strobilacea, Carpinus lurczani-
nowii, andViburnum betulifolium, and shrubs including:In-
docalamuslessellalus, ViburnumSP.,Lilsea SP.,Rhus Chi-
nensis, AbeliaSP.,LespedezaSP., andCoriaria sinica. Tree
density was 1296 trees ha−1, with a mean DBH of 12.4 cm
and a mean tree height of 7.5 m.

Primary forests of Asia white birch and East-Liaoning oak
have been intensely disturbed by human activities and disap-
peared completely. The contemporary Asia white birch and
East-Liaoning oak forests are secondary and are currently
protected and naturally regenerating (Chen, 1997). Sharp-
tooth oak forests were much less disturbed by human activ-
ities, and although our study site was not a primary forest,
it has been less intensively managed/disturbed than the other
two study sites. For all three species, leaves tend to appear
by the end of April, and most of the litterfall occurs between
early September and end of October.

2.2 Soil analyses

For the determination of bulk density, five soil cores were
taken at different depths (0–5, 5–15, 15–30, 30–45, 45–
55 cm) in all plots in May 2006. A special coring device for
the determination of bulk density (volume = 100.0 ml) was
applied. In July 2006, surface organic horizon mass was
quantified with a metal cylinder inserted down to the mineral
soil (n=5). Five soil columns were collected in each plot for
the determination of light fraction organic carbon (LF-OC),
heavy fraction organic carbon (HF-OC) and total SOC. These
samples were randomly taken by coring with a sharp-edged
metal cylinder with an inner diameter of 3 cm and a length
of 10 cm. Samples were separated according to depth (0–5,
5–15, 15–30, 30–45, 45–55 cm) and the fresh samples were
passed through a 2-mm sieve and manually cleaned of any
visible plant tissues. Density fractionation of SOC physically
separates soil into low- and high-density fractions, referred
to as LF-OC and HF-OC. LF-OC is commonly referred to
as a plant-derived and less stable fraction with high C con-
centration (Golchin et al., 1994). HF-OC is assumed to be
a more stable and high-density organo-mineral fraction, hav-
ing lower C concentrations (Golchin et al., 1995). The LF-
OC was determined using the density fractionation method
(Sollins et al., 1984). Air-dried soils were passed through
a 2 mm mesh sieve and 5.0 g (dry weight equivalent) of air-
dried soils was transferred to a tube and dispersed in 20 mL
of NaI solution adjusted to a density of 1.7 gmL−1. The
suspension in the tube was shaken thoroughly for 15 min,
and after standing overnight, separated light and heavy frac-
tions. The light fractions at the surface of the density liq-
uid were aspirated, and trapped onto a membrane filter pa-
per (Whatman, Grade 1:11µm), rinsed with deionized wa-
ter, and then oven-dried at 50◦C and weighed. Total SOC
and LF-OC were determined with the dichromate oxidation
method (Lovell et al., 1995). Briefly, 0.2 g of ground soil
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was digested with 5 ml of 2 M K2Cr2O7 and 5 ml of concen-
trated H2SO4 at 170◦C for 10 min, followed by titration of
the digests with 2 M standardized FeSO4. The HF-OC was
determined by subtracting LF-OC from the total SOC.

2.3 Soil microbial biomass carbon and activity

Five soil core samples per plot were randomly collected for
determination of soil microbial biomass carbon (SMB-C)
and soil microbial activity (SMA) in May, July and Septem-
ber 2006. Samples were taken from the 0–15 cm mineral soil
layer using a sharp-edged metal cylinder with an inner diam-
eter of 10 cm and a length of 15 cm. Each sample was la-
beled, and then stored at 2◦C in a cooler for transport to the
laboratory. In the laboratory, the fresh samples were passed
through a 2-mm sieve and manually cleaned of any visible
plant tissues.

Soil microbial biomass carbon (SMB-C) was measured us-
ing the chloroform fumigation-extraction method (Vance et
al., 1987). Twenty grams (dry weight equivalent) of fumi-
gated and non-fumigated soil samples were extracted with
0.5 M K2SO4. Extracts were filtered through 0.45-µm filters
and frozen at−20◦C before analysis of extractable carbon
by dichromate digestion as described by Lovell et al. (1995).
SMB-C was calculated as the difference in extractable carbon
of fumigated and non-fumigated soil samples. To correct for
incomplete extractability, a conversion factor (Kec) of 0.38
was used to obtain SMB-C (Vance et al., 1987).

Soil microbial activity (SMA), i.e. soil microbial respira-
tion, was estimated by determining CO2 evolution over a 2-
week incubation period. First, 20.0 g (dry weight equivalent)
of soil was brought to 60% of the water holding capacity and
incubated at 25◦C for 2 weeks. Respired CO2 was captured
in 5.0 ml of 0.5 M NaOH suspended inside a Mason jar, and
the NaOH solution was subsequently titrated to determine
the amount of CO2 evolved (Hu and van Bruggen, 1997).

2.4 Forest floor mass and litterfall

The three forests exhibited a moder type of litter layer
(Müller, 1889). Forest floor mass was measured on five ran-
domly located, 0.5 m×0.5 m subplots from each plot in May,
June, July, August, September, and October 2006 and in
April 2007. Forest floor mass was sorted into coarse woody
debris and surface organic matter. Litterfall was trapped and
collected in May, June, July, August, September, and Oc-
tober 2006 and in April 2007 using five randomly located
0.45 m×0.35 m rectangular baskets, and sorted into woody-
and non-woody fractions. Dry litter mass was determined
after oven-drying at 75◦C for 2–3 days.

2.5 Fine root biomass, production and turnover rate

Fine root (<2 mm) biomass was determined in each plot by
core sampling (Roberts, 1976) to a depth of 55 cm in May,
July and September 2006. At each sampling date, 10 sam-
ple columns were randomly excavated using a sharp-edged
metal cylinder with an inner diameter of 10 cm and a length
of 20 cm. Samples from different depths (0–5, 5–15, 15–30,
30–45, 45–55 cm) were separated and labeled. Fine roots
were manually removed from the soil samples and washed.
Live and dead root fragments were subsequently separated
by visual inspection. The xylem of dead roots looks darker
and deteriorated, the degree of cohesion between the cortex
and the periderm decreases, and root tips become brittle and
less resilient (Janssens et al., 2002). Dry biomass was deter-
mined after oven-drying at 75◦C for 2–3 days.

Fine root (<2 mm) production during the growing sea-
son was estimated with a modified in-growth core technique
(Lund et al., 1970). The 10 holes created by the root biomass
in each plot were refilled early May 2006 with native soil
obtained from the root biomass experiment and their bound-
aries were marked with sticks. The in–growth cores were
harvested at the end of October 2006. Soil samples from
different depths (0–5, 5–15, 15–30, 30–45, 45–55 cm) for
each in-growth core were labeled, and fine root biomass was
subsequently estimated using exactly the same procedures as
described above. Total fine root production was estimated as
the sum of live and dead roots present in the in-growth core
in end October 2006.

Fine root turnover rate is defined here as the rate of the
total amount of fine root produced in the growing season over
the mean standing biomass of fine roots (Aber et al., 1985).
Mean fine root biomass was estimated as the average of live
root biomass on May, July and September 2006.

2.6 Decomposition of leaf litter, fine roots, LF-OC,
HF-OC and SOC

Decomposition rates of leaf litter and fine root, LF-OC,
HF-OC and SOC were determined using the nylon bag
(or litterbag) method (Wen, 1984; Lin et al., 1992, 2005;
Arunachalam et al., 1996). Recently fallen leaves, fine root
and soil from the 0–10 cm mineral soil layer were collected
from the forests. The fresh soil samples were first passed
through a 2-mm sieve. Each nylon bag had a dimension of
10 cm×15 cm and a mesh of 1 mm for leaf litter and fine
roots, and of 48 µm for soil. 40 nylon bags for Asia white
birch and East-Liaoning oak forests and 35 nylon bags for
Sharptooth oak forest containing 3 g of air-dried leaves and
fine roots, and 100 g of air-dried soil were placed in nylon
bags and the edges heat-sealed, respectively. In the Asia
white birch and East-Liaoning oak forests these nylon bags
were inserted on 2 May and collected after 0, 30, 59, 91, 123,
151, 179 and 365 days. In the Sharptooth oak forest nylon
bags were inserted 10 May and collected after 0, 29, 66, 90,

www.biogeosciences.net/7/275/2010/ Biogeosciences, 7, 275–287, 2010



278 C. W. Xiao et al.: Belowground carbon pools and dynamics in deciduous forests

Table 1. Initial chemical content of leaf litter, fine root litter, light fraction organic carbon (LF-OC), heavy fraction organic carbon (HF-OC)
and total soil organic carbon (SOC) in the 0–10 cm mineral soil layer used in the decomposition experiments in Asia white birch and East-
Liaoning oak forests of warm temperate zone and Sharptooth oak forest of sub-topical zone. Values represent mean± standard error (n=5).
Different letters in each row are significantly different (P <0.05) according to the least significant difference test.

Asia white birch East-Liaoning oak Sharptooth oak

C (g kg−1) 458±9 441±9 450±8
Leaf litter N (g kg−1) 12.4±0.8a 9.1±0.4b 10.7±0.6ab

Lignin (g kg−1) 219±10b 263±12a 253±11a
Soluble Phenolics (g kg−1) 36.3±1.5b 44.8±2.2a 42.2±1.8a
C:N 37.3±1.6b 48.9±2.0a 42.4±1.7b
Lignin:N 18.0±1.6b 29.4±2.4a 24.0±2.1ab

C (g kg−1) 443±9 434±9 448±9
Fine root N (g kg−1) 7.4±0.4 6.6±0.3 7.0±0.3

Lignin (g kg−1) 308±10 332±16 321±15
Soluble Phenolics (g kg−1) 20.3±0.9 23.4±1.1 22.6±1.1
C:N 60.7±2.8 65.9±2.5 64.1±2.2
Lignin:N 42.1±1.7 50.4±2.7 46.3±3.5

C (g kg−1 soil) 14.2±0.2a 10.1±0.2b 7.9±0.1c
LF-OC N (g kg−1 soil) 0.45±0.01a 0.27±0.01b 0.23±0.01c

C:N 31.8±0.8b 37.6±0.9a 35.2±1.1a

C (g kg−1 soil) 40.9±0.4a 35.2±0.3b 30.8±0.3c
HF-OC N (g kg−1 soil) 2.52±0.06a 2.06±0.03b 1.84±0.02c

C:N 16.2±0.3b 17.1±0.2a 16.7±0.3ab

C (g kg−1 soil) 55.1±0.5a 45.3±0.3b 38.7±0.2c
Total SOC N (g kg−1 soil) 2.97±0.07a 2.33±0.03b 2.07±0.03c

C:N 18.6±0.3 19.4±0.2 18.8±0.3

121, 174, 365 days. Five nylon bags were collected at each
sampling date. Mass of leaf litter and fine roots in each nylon
bag was determined after oven-drying at 75◦C for 2–3 days.
LF-OC, HF-OC and total SOC of soil in each litterbag were
determined using the density fractionation method described
above.

At the onset of the decomposition experiments, we also
determined total C and N, lignin and soluble phenol of leaf
and fine root material, and total N of LF-OC, HF-OC and of
total SOC. Total C was determined by the standard method of
wet-combustion, and total N by semi-micro Kjeldahl method
(Bao, 1999). Lignin was determined with the thioglycolic
acid method (Dean, 1997). Soluble phenol concentrations
were analyzed using a combination of methanol extraction
and the Folin-Ciocalteau assay (Waterman and Mole, 1994).
Initial chemical characteristics for the substrates used in the
decomposition studies are shown in Table 1.

2.7 Statistical analysis

Data management and statistical analyses were performed
using SPSS software (SPSS, Chicago, IL). The decay con-
stant (K) and the average rate of litter loss were determined
by fitting the following exponential function:Xt = X0e

−kt

(Olson, 1963). One-way ANOVA was used to test for signif-
icant differences of initial chemical content of leaf litter, fine
root, and LF, HF and total soil, soil bulk density, surface or-
ganic, coarse woody debris, LF-OC, HF-OC and total SOC,
fine root biomass, production and turnover rate. Repeated
Measures Analysis of Variance was used to detect the signif-
icant differences of seasonal variation of forest floor mass,
SMB-C, SMA and fine root biomass. Multiple comparisons
were also performed to permit separation of effect means us-
ing a least significant difference test at a significance level of
P <0.05.
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Table 2. Soil organic carbon inputs and pools in Asia white birch and East-Liaoning oak forests of warm temperate zone and Sharptooth
oak forest of sub-topical zone. Values represent mean± standard error (inputs in g C m−2 yr−1; pools in kg C m−2; n=5). Different letters
in each row are significantly different atP <0.05. Labile carbon was assumed to include non-woody surface litter and light-fraction SOC.
Recalcitrant carbon was estimated as woody debris plus heavy-fraction SOC.

Asia white birch East-Liaoning oak Sharptooth oak

Carbon inputs
Woody debris 30±3a 23±2b 28±2a
Above ground litter fall 142±8a 100±6b 134±7a
Fine root turnover 165±15a 133±12b 173±17a
Total 337±23a 256±18b 335±24a

SOC pools
Surface layer 0.6±0.1a 0.6±0.1a 0.5±0.1b
SOC 16.1±0.4a 14.5±0.3b 13.2±0.2c
Total 16.7±0.4a 15.1±0.3b 13.7±0.2c

Proportion labile 0.19 0.16 0.15
Proportion recalcitrant 0.81 0.84 0.85
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Fig. 1. Seasonal changes of forest floor mass in Asia white birch
and East-Liaoning oak forests of warm temperate zone and Sharp-
tooth oak forest of sub-topical zone from May 2006 to April 2007.
Vertical bars indicate standard errors of means (n=5).

3 Results

3.1 Soil carbon pools

The seasonal evolutions of the forest floors in the three in-
vestigated forests were relatively similar (Fig. 1), exhibiting a
continuous slow decrease until October, when annual leaf lit-
terfall commenced. Nonetheless, total forest floor mass was
significantly (P <0.05) higher in the temperate Asia white
birch and East-Liaoning oak than in sub-tropical Sharptooth
oak forest (Table 2); a difference that was mainly related
to differences in the non-woody fraction of the surface or-
ganic horizon (Fig. 2). There was no significant difference in
coarse woody debris among the three forests (Fig. 2). In the
Asia white birch and East-Liaoning oak forest, coarse woody
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Fig. 2. Vertical distribution of soil bulk density, light fraction or-
ganic carbon (LF-OC), heavy fraction organic carbon (HF-OC) and
total soil organic carbon (SOC), and carbon of coarse woody debris
(CWD) and surface organic (SO) horizon in Asia white birch and
East-Liaoning oak forests of warm temperate zone and Sharptooth
oak forest of sub-topical zone. Horizontal bars indicate standard er-
rors of means (n=5). Different letters within a soil layer are signif-
icantly different (P <0.05) according to the least significant differ-
ence test. Absence of letters implies that no significant differences
were detected.

debris comprised about 30% of the forest floor mass, whereas
in the less disturbed Sharptooth oak forest coarse woody de-
bris accounted for 36% of the forest floor mass. In contrast
to the non-woody fraction of the forest floor, seasonal fluctu-
ation of woody debris was very little (data not shown).

In the various soil layers down to 55 cm, LF-OC, HF-
OC and total SOC differed significantly among the studied
forests (P <0.05, Fig. 2; Table 2). In accordance with the
carbon stores in the surface horizon, we observed the largest
SOC pool in Asia white birch and the lowest in Sharptooth
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Table 3. Mean annual decay/mineralization constants (k) of leaf litter and fine root, and light fraction organic carbon (LF-OC), heavy fraction
organic carbon (HF-OC) and total soil organic carbon (SOC) in Asia white birch and East-Liaoning oak forests of warm temperate zone and
Sharptooth oak forest of sub-topical zone. Values represent mean± standard error derived from eight-time sampling with five replicates
for Asia white birch and East-Liaoning oak forests, and seven-time sampling with five replicates for Sharptooth oak forest. Mass loss per
year was estimated as: 100× (initial mass – final mass)/initial mass. Different letters in each column are significantly different (P <0.05)
according to the least significant difference test.R2, multiple coefficient of determination and significance level of the exponential model
(∗P <0.05;∗∗P <0.01) are also given.

k R2 Loss % year−1

Leaf litter Asis white birch 0.399±0.100 0.728∗∗ 33.05±1.28b
East-Liaoning oak 0.267±0.069 0.715∗∗ 23.14±1.12c
Sharptooth oak 0.483±0.125 0.751∗ 39.26±1.37a

Fine root Asis white birch 0.623±0.132 0.787∗∗ 45.93±1.29b
East-Liaoning oak 0.556±0.110 0.810∗∗ 42.14±1.01b
Sharptooth oak 0.845±0.214 0.757∗ 58.49±1.48a

LF-OC Asis white birch 0.162±0.042 0.715∗∗ 14.81±0.80b
East-Liaoning oak 0.151±0.038 0.725∗∗ 13.80±0.64b
Sharptooth oak 0.224±0.061 0.732∗ 20.71±0.98a

HF-OC Asis white birch 0.0475±0.012 0.710∗∗ 4.67±0.67
East-Liaoning oak 0.0431±0.011 0.729∗∗ 4.13±0.62
Sharptooth oak 0.0547±0.016 0.710∗ 5.49±0.77

Total SOC Asis white birch 0.0758±0.02 0.711∗∗ 7.29±0.69ab
East-Liaoning oak 0.0662±0.017 0.726∗∗ 6.29±0.62b
Sharptooth oak 0.0868±0.024 0.716∗ 8.60±0.79a

oak forests. Although LF-OC and HF-OC differed among
these forests in parallel to total SOC, the relative differ-
ences in LF-OC were more pronounced than those in HF-
OC (the proportion of labile components was lower where
total SOC was lowest; Table 2). In absolute terms, labile C
amounted to 3.2 g C m−2 in Asia white birch, 2.4 g C m−2 in
East-Liaoning oak and 2.1 g C m−2 in Sharptooth oak. In rel-
ative terms, the difference in the labile C pools thus amounts
to 50%.

The chemical composition of the various SOC pools also
differed among forest types (Table 1). If C:N ratio, lignin:N
ratio, or soluble phenolics concentrations are used as prox-
ies determining the chemical recalcitrance to microbial de-
cay (Swift et al., 1979; Melillo et al., 1982), then the East-
Lioning oak forest produced the most recalcitrant organic
matter and the Asia white birch the least recalcitrant.

3.2 Microbial biomass and activity

In accordance with the SOC availability, mean SMB-C of the
two temperate forests was significantly higher than that of
the sub-tropical Sharptooth oak forest (P <0.05, Fig. 3a). In
contrast, SMA exhibited exactly the opposite trend, and this
throughout the entire growing season (P <0.05, Fig. 3b). In
all three forests, both SMB-C and SMA were significantly

higher in July than in May and September 2006 (P <0.05,
Fig. 3a and b).

The mass loss patterns of decomposing leaf litter, fine
roots, LF-OC, HF-OC and total SOC are shown in Fig. 4.
Fine roots decomposed fastest (42–58% mass loss per year;
Table 3), followed by leaf litter, LF-OC, Total OC, and last
HF-OC that decomposed with an annual mass loss of 4.1–
5.5%. Across all litter and SOC types, the decay constant and
mass loss rates decreased from Sharptooth oak, Asia white
birch to East-Liaoning oak. Differences in decomposition
rates were, however, significant only for leaf litter mass, fine
root mass, LF-OC and total SOC, and not for HF-OC (Ta-
ble 3, Fig. 4).

3.3 Fine root biomass and production

As with microbial biomass, integrated fine root biomass in
the soil layers down to 55 cm was significantly higher in
July than in May and September (P <0.05, Fig. 5) in all
three forests. Statistically significant differences in fine root
biomass among the forests occurred in the 0–35 cm soil lay-
ers in May, and in the 5–25 cm soil layers in July and Septem-
ber (P <0.05, Fig. 5).

Integrated over all depths and averaged over the growing
season, mean fine root biomass was 0.33±0.02, 0.30±0.02
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Fig. 3. Soil microbial biomass carbon and soil microbial activity
in the 0–15 cm mineral soil layer in Asia white birch and East-
Liaoning oak forests of warm temperate zone and Sharptooth oak
forest of sub-topical zone in May, July and September 2006. Ver-
tical bars indicate standard errors of means (n=5). Different letters
within a month are significantly different (P <0.05) according to
the least significant difference test.

and 0.26±0.01 kg C m−2 in Asia white birch, East-Liaoning
oak and Sharptooth oak forests, respectively. However, it
should be kept in mind that in the first two forests, almost the
entire soil profile was sampled, whereas in the Sharptooth
oak forest, where soil depth was around one meter, total fine
root biomass was underestimated by sampling only to a depth
of 55 cm.

Fine root production in the 0–55 cm soil layer decreased
from Sharptooth oak, Asia white birch to East-Liaoning oak
forests, and significant differences were observed in the 0–
25 cm soil layers (Fig. 6). Integrated over all depths, fine root
production was lowest in East-Liaoning oak forests (Table 2).

Fine root turnover rate was thus significantly higher in the
sub-tropical Sharptooth oak forest (0.67±0.06 year−1) than
in the temperate Asia white birch (0.50±0.04 year−1) and
East-Liaoning oak forests (0.44±0.04 year−1).

3.4 Soil carbon inputs and their residence times

The seasonal patterns of litterfall were very similar among
the different forests, with the majority of the annual litter
production in September and October. Seasonal fluctuations
in branch litterfall were, however, very little. Annual above-
ground litter inputs were significantly (P <0.05) higher in
Asia white birch and Sharptooth oak forests than in the East-
Liaoning oak forest (Table 2). In agreement with above-
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ground litterfall, below-ground litter production, estimated
as being equal to fine root production (under the assumption
of interannual steady state in fine root biomass), was also
higher in Asia white birch and Sharptooth oak than in East-
Liaoning oak (Table 2).

The quality of leaf litter for decomposition decreased in
the same order as the quantity of litter inputs. For every mea-
sured proxy for the quality of leaf litter for decomposition
(soluble phenolics, C:N ratio, lignin:N ratio, lignin content),
East-Liaoning oak exhibited the lowest quality litter and Asia
white birch the highest (Tables 1 and 3). In contrast to leaf
litter, however, fine root quality differed only very slightly
among the three tree species.

The residence time of the surface litter inputs in the forest
floor (calculated as the ratio of the maximum carbon con-
tent in October over the carbon loss between October and
September), is much shorter in the sub-tropical Sharptooth
oak forest (3.6 years) than in the Asia white birch forest
(4.3 years). The East-Liaoning oak forest (5.4 years) has
the longest residence time in the forest floor. This pattern
is also obtained when the forest floor residence time is cal-
culated from the ratio of forest floor mass over leaf litter in-
puts. According to this computation, the Sharptooth oak for-
est floor exhibited a mean residence time of less than three
years, whereas carbon resides for more than four years in the
forest floor of the East-Liaoning oak forest.

When considering the total unprotected SOC (surface
litter+LF-SOC), the residence times calculated as the ratio of
the carbon stock over the total litter inputs (above+root litter
inputs) follow the same pattern as those in the surface layer.
According to these calculations, labile carbon resides in the
litter and LF-OC for slightly more than 4 years in the Sharp-
tooth oak forest, up to 6.5 years in the East-Liaoning oak
forest, with Asia white birch as an intermediate (5.8 years).
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Fig. 5. Vertical distribution of fine root biomass in Asia white
birch and East-Liaoning oak forests of warm temperate zone and
Sharptooth oak forest of sub-topical zone in May, July and Septem-
ber 2006. Horizontal bars indicate standard errors of means
(n=5). Different letters within a soil layer are significantly different
(P <0.05) according to the least significant difference test. Absence
of letters implies that no significant differences were detected.

4 Discussion

4.1 Decomposition of various SOC types

Decomposition of litter and SOC is an important process
contributing to carbon and nutrient cycling (Vogt et al., 1991;
Christensen, 2001; Cornelissen et al., 2007) and is mediated
primarily by climate and organic matter quality (Harmon et
al., 1990; Sinsabaugh et al., 2002; Fioretto et al., 2007). We
assessed decomposition rates by means of litter bags. Lit-
ter bag results are prone to errors (both overestimations and
underestimations are possible; Swift et al., 1979). One of
these errors is the loss or dissolved or particulate through the
mazes in the mesh bags. This may be especially relevant in
our study, because the Sharptooth oak forest was exposed to
much higher precipitation than the other two forests. The
reader should bear this potential pitfall in mind, because if
important, this would have influenced the calculated turnover
rates reported in the results section.

In all three forests, the quality of the SOC for microbial
decay decreased in the sequence fine roots, leaf litter, LF-
OC and HF-OC, as indicated both by decay constants as by
the chemical analyses. Moreover, independent of the type
of SOC (from fresh litter to HF-SOC), Sharptooth oak al-
ways exhibited the fastest decay rates and East-Liaoning oak
the slowest. Thus, it appears that the decomposability of
the deposited litter is a proxy for the decomposability of
the SOC derived from it. It can also not be excluded that
the priming mechanism (i.e. a stimulation of decomposition
of more recalcitrant material by the addition of labile sub-
strates; Kuzyakov et al., 2000) was more pronounced where
the deposited litter was most labile (Subke et al., 2004). Al-
though priming could explain why the order of decay con-
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differences were detected.

stants across sites is sustained with depth or with substrates
of varying recalcitrance, it can not explain why also the
chemical proxies varied accordingly. Hence, priming may
contribute, but cannot be the sole process explaining why
SOC decomposition is highest where litter decomposition is
highest.

In agricultural systems, turnover time of LF-OC typically
varies from a few months to a few years, while in natu-
ral ecosystems turnover times of LF-OC may amount to
decades and centuries, depending on local conditions (Post
and Kwon, 2000; Leifeld et al., 2009; Schulze et al., 2009).
In contrast, HF-OC is stabilized through mineral surface in-
teractions and micro-aggregation (Torn et al., 1997; Kögel-
Knabner et al., 2008) and its turnover time is on the or-
der of decades to millennia (Leifeld et al., 2009; Schulze
et al., 2009). In agreement with observations in other stud-
ies (Sollins et al., 1996; Swanston et al., 2002), the decay
constants of LF-OC were considerably higher than those of
HF-OC in all three studied forests. This difference in de-
cay constants is likely mainly attributable to the stabiliza-
tion by the mineral surfaces, but was nonetheless also related
to the differences in C:N ratio and lignin:N ratio, two prox-
ies for decomposability (Melillo et al., 1982). The observed
C:N ratio’s of the LF-OC were 31–38, and thus within but in
the lower end of the range (24–86) observed in forest soils
(Strickland and Sollins, 1987; Swanston and Myrold, 1997).
The C:N ratio’s of HF-OC (16–17) were much lower than
those of LF-OC, consistent with other studies (Whalen et al.,
2000; Tan et al., 2007). Although the C/N ratio was cor-
related with decomposition rate constants within all of our
organic matter types, it cannot explain the differences among
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substrates (the more recalcitrant substrates have lower C/N).
It is clear that the lower decomposition rates of HF-OC rel-
ative to LF-OC are due to the stronger stabilization mecha-
nisms, and that the higher N contents are related mainly to
the longer residence times and associated degrees of humifi-
cation.

4.2 What determines the differences in SOC stocks?

The observed total soil organic carbon stocks (14–
17 kg m−2) were within, but at the low end of the range
reported for forest ecosystems (8–48 kg m−2; Dixon et al.,
1994). The relatively small pools compared to other forests
is, however, probably due to the shallower soils in our study
compared to the review by Dixon et al. (1994) and to the low
clay contents and thus low potential for SOC stabilization
(Torn et al., 1997; K̈ogel-Knabner et al., 2008). Total soil
carbon stocks were lowest in Sharptooth oak forest, high-
est in Asia white birch, and intermediate in East-Liaoning
oak forests. However, it should be kept in mind that in the
two temperate forests, the entire soil profile was sampled
(bedrock at about 55 cm), whereas in the sub-tropical Sharp-
tooth oak forest, where soil depth was around one meter, total
SOC was underestimated by sampling to the same depth as
in the other forests.

In soils with similar clay contents (as the three study sites
included in this study) and assuming similar dominant clay
minerals at the sites, one could argue that the stabilization
potential of SOC is similar. Under these conditions, SOC
contents are determined by the balance of soil carbon inputs
and carbon losses. Would it then be possible to explain the
observed differences in the SOC stocks with those in the lit-
ter inputs and decomposition rates? One prerequisite is for
sure that carbon losses other than decomposition do not ex-
port substantial amounts of C. Given the steep slopes at the
sites, it is likely that part of the deposited litter is transported
to the valley bottoms during heavy rains, although we did
not observe substantial transport of litter, we can not exclude
that this potential loss of surface litter may have confounded
our turnover estimates. Nonetheless, all three sites exhibited
similar slopes and thus likely similar degrees of erosion and
litter transfers, implying that the site comparison is still rele-
vant.

The sub-tropical Sharptooth oak and temperate Asia white
birch forest exhibited very similar amounts of litter input,
both above- and below-ground. Given the higher quality for
decomposition in the Asia white birch forest, as indicated
by the chemical composition and decay constants of the lit-
ter and LF-OC, one would expect lower SOC stocks in the
Asia white birch forest. However, the opposite is observed.
Both in the forest floor as in the LF-OC, the residence time in
the Asia white birch forest is 50% higher than in the Sharp-
tooth oak forest and hence, the SOC stocks are 22% higher
in the Asia white birch forest (despite the similar litter in-
puts). Under the assumption that differences in SOC stabi-

lization mechanisms are negligible, this result indicates that
the negative effects of the poorer SOC quality on its decay in
the Sharptooth oak forest are overshadowed by the positive
effects of the more favorable to decomposition sub-tropical
climatic conditions.

Does this imply that the differences in chemical compo-
sition are unimportant in these deciduous forests? When
comparing the two temperate forests, it becomes clear that
chemical quality does play a critical role. Although micro-
climate may have differed, climatic differences are proba-
bly minor and thus do not confound the observations. Total
litter inputs are 33% higher in the Asia white birch – than
in the East-Liaoning oak forest, yet the total SOC content
is only 11% higher. This discrepancy between site differ-
ences in litter inputs and carbon stocks is attributable solely
to processes occurring in the surface organic layer. Below-
ground, the 25% difference in root litter inputs is reflected in
the LF-OC pool, which exhibits a very similar relative differ-
ence between both forest types (+29%). In contrast, above-
ground litter fall is 40% higher in the Asia white birch than
in the East-Liaoning oak forest, whereas the forest floor does
not significantly differ in carbon content between both forest
types (statistically insignificant difference of 7%). Because
leaf litter is of much higher quality in the Asia white birch
forest and leaf litter decomposition proceeds much faster, the
higher above-ground carbon inputs are almost completely
offset by the higher carbon losses due to the difference in
above-ground litter quality.

Thus, litter quality is a very important determinant of SOC
cycling in these temperate forests, but among our study sites
less so than the effect of climate. Nonetheless, we would like
to re-iterate that this reasoning only holds if erosion and litter
export by heavy rains are comparable in the two temperate
sites (which are likely given the same climate, slopes, and
soil types).

4.3 Soil microbial biomass and activity

Soil microbial biomass represents an important labile pool of
nutrients and carbon (Henrot and Robertson, 1994). Changes
in the size of the microbial biomass pool may indicate
changes in the substrate availability that are otherwise not
easily detectable. In this study, SMB-C and SMA were
higher in July than in May and September in all three forests,
reflecting that substrate availability must have varied consid-
erably during the growing season. Similar findings were also
observed in other studies (Wardle, 1998; Michelsen et al.,
2004; Shishido et al., 2008).

Soil microbial biomass of the sub-tropical Sharptooth oak
forest was lower than that of East-Liaoning oak and Asia
white birch forests. This pattern reflected well that of the la-
bile SOC pools, confirming that substrate availability might
be an important control over the size of the SMB-C pool
(Wardle, 1992).
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In contrast to SMB-C, SMA was higher in the Sharptooth
oak forest than in the Asia white birch and East-Liaoning
oak forests. This pattern was very surprising given that SMA
was determined in the lab under similar climatic conditions,
and that the Sharptooth oak soil contained the least available
SOC, which also was less degradable than the SOC in the
Asia white birch soil. Based on the observed SOC quantity
and quality, we would have expected the highest SMA in the
Asia white birch, and lower ones in the Sharptooth oak forest
because of the lower SOC availability. We can only speculate
why the SMA observations contrasted our expectations. One
potential explanation could be that the environmental condi-
tions in the lab during the SMA experiments resembled the
climatic conditions in the sub-tropical Sharptooth oak for-
est much better (both in terms of temperature and soil mois-
ture) than in the two temperate-zone forests. Soil microbial
population may adapt either physiologically or structurally
to temperature (e.g. Bradford et al., 2008) and perhaps the
warm and moist conditions during the lab incubations were
more optimal for the microbial populations in the subtropical
soil, and supra-optimal for those in the temperate soils.

4.4 Fine root dynamics

Our estimates of mean fine root biomass (between 510
and 660 g dry matter m−2) were well within the range re-
ported by Vogt et al. (1996) for fine root biomass in temper-
ate broadleaved forests (243–999 g dry matter m−2). Fine
root growth at our study sites (270 to 350 g dry matter
m−2 year−1) was much higher relative to that of a temperate
oak forest in a more moderate, maritime climate (Quercus
robur; fine root productivity of 180 g dry matter m−2 year−1;
Curiel Yuste et al., 2005). Luyssaert et al. (2007) reported a
fine root productivity average across 52 temperate deciduous
forests of 440 g dry matter m−2 year−1 (recalculated from
carbon units assuming that dry matter contains 50% carbon).
Although our sites are all below this global average, they are
all well within the 25–75% percentile range (204–460 g dry
matter m−2 year−1) reported in the review by Luyssaert and
co-workers (2007).

Fine root biomass and - production both decreased with
soil depth. Similar findings have been observed in many
studies (Vogt et al., 1981; Olsthoorn, 1991; Xiao et al., 2003;
Konôpka et al., 2006) and have been attributed to declining
nutrient availability and changing physical conditions with
depth. Also fine root turnover declined with depth (data
not shown). Averaged over all depths, turnover of roots
<2 mm at our sites (0.45 to 0.67 year−1) was lower than the
global mean turnover rate (0.8 year−1) for forest fine roots
<2 mm reported in the review by Gill and Jackson (2000),
but nonetheless well within the range for broadleaf forests in
similar climates (0.2–1.4 year−1).

It should be noted that estimates of fine root productiv-
ity are notoriously difficult and that different techniques can
produce largely different estimates, even within the same site

(Gill and Jackson, 2000; see Milchunas, 2009 for an inter-
comparison study of most applied techniques). As stated by
Milchunas (2009), the ingrowth core technique applied here
may produce either over- or underestimations, depending on
specific methodological details. It is therefore extremely dif-
ficult to quantify the accuracy of our root production – (and
thus also root turnover) estimates. Nonetheless, because we
applied the same methodology at all three sites, it is fair to
assume that the relative differences can provide valuable in-
formation. The faster root turnover in the Asia white birch
forest relative to the East-Liaoning oak forest, for instance,
thus provides important information. Rates of root turnover
are influenced by climate (Vogt et al., 1986; Hendrick and
Pregitzer, 1993; Pregitzer et al., 2000) and nutrient avail-
ability (Crick and Grime, 1987; Schoettle and Fahey, 1994;
Janssens et al., 2002), amongst others. Root functioning is
optimal when the resource capture efficiency (uptake of nu-
trients or water per unit C cost) is maximized (Eissenstat and
Van Rees, 1994). Rapid fine root turnover constitutes a large
energy and nutrient cost for the plant, while long lifespans
result in reduced rates and lower efficiency of resource up-
take (Schoettle and Fahey, 1994). Rapid root turnover may
be advantageous in nutrient-rich environments, where re-
source capture efficiency is likely to be maximized by reduc-
ing root longevity, thus simultaneously increasing nutrient
uptake capacity and reducing root maintenance costs (Crick
and Grime, 1987). In contrast, increased longevity would
be more favourable under highly competitive, nutrient-poor
conditions because nutrient losses through root mortality will
need to be avoided.

The difference in root turnover in our two temperate
forests can not be climate driven and might thus be related
to faster decomposition rates and thus nutrient cycling. The
higher fine root turnover rate observed in the sub-tropical
Sharptooth oak forest might be due merely to the warmer
and wetter conditions, that favour root production (Gill and
Jackson, 2000). However, as discussed above, the more
favourable climate also accelerates decomposition and thus
nutrient availability to roots (Wardle, 1992; Zaman et al.,
1999; Gill and Jackson, 2000; Tu et al., 2003; Xiao et al.,
2007). Hence, it is impossible to state from this limited num-
ber of forest sites whether climate or nutrient cycling is the
dominant control over root turnover.

In conclusion, our results show that there are obvious dif-
ferences in pool size and decomposition rates of litter and
SOC, SMB-C and SMA, and fine root biomass, production
and turnover rate among Asia white birch, East-Liaoning oak
and Sharptooth oak forests. These results provide basic infor-
mation in estimating the effectiveness of belowground car-
bon dynamics and sequestration in the three forests.
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