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Abstract. A simple prognostic tool for gas hydrate (GH)
quantification in marine sediments is presented based on a di-
agenetic transport-reaction model approach. One of the most
crucial factors for the application of diagenetic models is the
accurate formulation of microbial degradation rates of par-
ticulate organic carbon (POC) and the coupled formation of
biogenic methane. Wallmann et al. (2006) suggested a ki-
netic formulation considering the ageing effects of POC and
accumulation of reaction products (CH4, CO2) in the pore
water. This model is applied to data sets of several ODP sites
in order to test its general validity. Based on a thorough pa-
rameter analysis considering a wide range of environmental
conditions, the POC accumulation rate (POCar in g/m2/yr)
and the thickness of the gas hydrate stability zone (GHSZ
in m) were identified as the most important and independent
controls for biogenic GH formation. Hence, depth-integrated
GH inventories in marine sediments (GHI in g of CH4 per
cm2 seafloor area) can be estimated as:

GHI = a ·POCar·GHSZb
·exp(−GHSZc/POCar/d)+e

with a = 0.00214, b = 1.234, c = −3.339,

d = 0.3148, e = −10.265.

The transfer function gives a realistic first order approxi-
mation of the minimum GH inventory in low gas flux (LGF)
systems. The overall advantage of the presented function is
its simplicity compared to the application of complex numer-
ical models, because only two easily accessible parameters
need to be determined.
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1 Introduction

Submarine gas hydrates (GH) are assumed to be abundant
in continental margin sediments worldwide. They have at-
tracted increasing interest in marine geosciences for various
reasons: (i) the use of GH as additional energy source (e.g.
Bohannon, 2008; Hester and Brewer, 2009), (ii) the climate
effect of melting GH and CH4- release into sea water and
the atmosphere induced by seafloor warming (e.g Dickens
et al., 1995; Kennett et al., 2003; Milkov, 2004; Reagan and
Moridis, 2009), and (iii) the potential of dissociating GH trig-
gering slope failure events (Xu and Germanovich, 2006).

Various geochemical and geophysical methods have been
developed and applied to quantify GH-inventories on var-
ious scales, however, global predictions made since the
early 1980’s vary extremely by several orders of magnitude
(5.5× 1021 g of CH4, Dobrynin et al., 1981; 1.4× 1017 g
of CH4, Soloviev, 2002). At present, an inventory between
6.7× 1017 and 3.3× 1018 g of CH4 (500–2,500 Gt of C) as
estimated by Milkov (2004) still seems to be the most real-
istic (c.f. Archer et al., 2008). In general two different main
types of marine GH occurrences are distinguished: high gas
flux systems (HGF) and low gas flux systems (LGF) (Milkov,
2005). HGF are usually characterized by higher amounts of
GH, generally focused in permeable layers and along frac-
tures: Kastner et al. (2008a) estimated up to 67 vol.% of pore
space filled by GH in sediments at the continental margin of
India. Even higher concentrations of up to 90 vol.% pore
saturation are reported for sediments in the Nankai Trough
(Uchida et al., 2004). Such high concentrations are the re-
sult of upward migrating fluids and gases from greater sed-
iment depth which are often enriched in thermogenic CH4
(Sassen et al., 2001; Liu and Flemmings, 2007). In con-
trast, LGF seem to represent the main reservoirs for GH on
a global scale. The GH in these systems consists mostly
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of biogenic CH4, which is produced within and below the
GHSZ. LGF encompass by far the largest area of active and
passive continental margins with estimated average concen-
trations of about 2 vol.% (Milkov, 2005). However, a still
outstanding issue is how to explain and to predict the amount
and distribution at a given location.

Since about a decade, numerical transport-reaction mod-
elling has increasingly been used to constrain rates of GH
formation and to predict GH inventories at ODP drilled sites
and on global scales (e.g. Davie and Buffett, 2003; Torres
et al., 2004; Buffett and Archer, 2004; Hensen and Wall-
mann, 2005; Klauda and Sandler, 2005; Wallmann et al.,
2006; Archer et al., 2008). A striking advantage of transport-
reaction models is that rates of GH formation can be con-
strained by control parameters such as the particulate organic
carbon (POC) input, POC degradation, sedimentation rate,
pore water diffusion and advection, heat flow, etc., which can
be calibrated against measured pore water and solid phase
data. However, the majority of the available models are
highly complex and depend on the knowledge of numerous
site specific data. Hence, it is desirable to develop simpler
approaches, which only require the availability of a few key
parameters. The input and degradation of POC are critical
parameters in this regard as they are the driving force for CH4
formation (Davie and Buffett, 2001). Bhatnagar et al. (2007)
performed a rigorous numerical model study of LGF sys-
tems and found out that GH formation mainly depends on
(i) the thickness of the GH stability zone (GHSZ), (ii) the
Damkohler number, representing the ratio of methane pro-
duction to methane diffusion, and (iii) the first Peclet number,
representing the ratio of fluid advection to methane diffusion.
While the GHSZ can be easily calculated, specifically the es-
timation of the rate of methane production is problematic,
which makes the result of Bhatnagar et al. (2007) difficult to
use without applying models of the same complexity.

In order to address this problem comprehensively, system-
atic investigations are required that relate the amount of GH
formed in the sediments to generally available key parame-
ters. In the present study, we test the validity of a numerical
model which uses a second order rate law for POC degrada-
tion (Wallmann et al., 2006) by using geochemical pore water
and solid phase data from a number of ODP drill sites. Based
on this, we conducted systematic numerical model runs cov-
ering a broad range of environmental conditions and geolog-
ical settings in order to derive a simplified approach for the
prediction of sub-seafloor GH inventories.

2 Numerical modelling

2.1 Model description

The transport-reaction model developed by Wallmann et
al. (2006) is based on a one-dimensional, numerical approach
implemented in Wolfram Mathematica. Here, only a short
summary of the model is presented; for an extensive descrip-

tion the reader is referred to the original publication by Wall-
mann et al. (2006).

The model considers steady state compaction of the sed-
iment, diffusive and advective transport of dissolved con-
stituents, input and degradation of POC and particulate or-
ganic nitrogen (PON) via sulphate reduction and methano-
genesis, anaerobic oxidation of methane (AOM), as well as
the formation of NH4, dissolved inorganic carbon (DIC) and
CH4. The model calculates the solubility of CH4 in pore wa-
ter with respect to the stability field of GH and considers the
formation and dissociation of GH as well as the formation
and dissolution of free CH4 gas (FG) in pore water.

The POC-degradation rate is calculated as a function of
POC input. The rate and reactivity of POC decrease with
depth due to age-dependent alteration and inhibition by the
accumulation of degradation products (i.e. DIC and CH4) in
the pore water:

RPOC=
KC

C(CH4)+C(DIC)+KC
· (1)(

0.16·
(
ageinit +agesed

)−0.95
)
·C(POC),

whereRPOC is the degradation rate,KC is the inhibition coef-
ficient for POC degradation,C(CH4), C(DIC), andC(POC)
are the concentrations of the dissolved and solid species.
The central term is an age-dependent term after Middel-
burg (1989) with ageinit as the initial age of the POC, and
agesed as the alteration time of POC since entering the sed-
iment column. Specifically the predetermined parameters
Kc and ageinit are crucial for limiting POC degradation at
higher concentrations of CH4 and DIC. Based on results from
the Sea of Okhotsk and ODP Site 997 (Blake Ridge) Wall-
mann et al. (2006) could show that theKc value seems to be
fairly constant (30 to 40 mM) while ageinit is quite variable
(see Sect. 3). All other required parameters agesed, C(CH4),
C(DIC), andC(POC) are generated as model outputs.

Dissolved methane concentrations in pore water are
largely determined by its solubility with respect to gas hy-
drate and free gas. Methane-seawater equilibrium curves in
sediment are calculated after Tishchenko et al. (2005) us-
ing ambient pressure, temperature, and salinity information.
When methane concentrations exceed the solubility condi-
tions for GH or FG, GH is precipitated or FG accumulates
in the pore volume. GH dissociates when it is buried below
the three-phase equilibrium curve. The upward transport of
the gas phase is not considered in the model. All general
equations, parameterizations and boundary conditions of the
model are provided in the appendix (Tables A1–A4).

2.2 Validation of the numerical model

The major purpose of applying the model to data from var-
ious ODP sites is to prove if a generalised parameterisation
of POC kinetics is feasible to receive good fits to data from
diverse geological environments. Therefore, the model was
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Table 1. Parameters, constants and coefficients of the modelled ODP Sites 1041 (Costa Rica), 685 and 1230 (Peru), 1233 (Chile), 1014
(California), 995 (Blake Ridge), and 1084 (Namibia). The values for the different model runs (constant POC input, varying POC input and
fluid flow) are listed as a, b, and c. The porosity is calculated after Berner (1980) with the porosity at the surface (80), at the lower boundary
(8f ), and the coefficient for the decrease of porosity (px).

Region Costa Rica Peru Chile California Blake Ridge Namibia
ODP Site 1041 1230 685 1233 1014 995 1084

Water depth [m] 3305 5086 5070 838 1165 2779 1992
Seafloor temperature [◦C] 1.9 1.7 1.4 5 4.1 3.6 3.5
Thermal gradient [◦/km] 21.6 34.3 42 45 58 36.9 48
Sedimentation rate (ω0) [cm/kyr] 13.1 100 14.7 110 79 40 24
Sediment thickness [m] 750 270 620 120 500 900 620
N:C ratio of organic matter 16/160 16/106 16/106 16/145 16/170 16/140 16/170
NH4 adsorption coefficient (KADS) a/b/c 1.3/1.9/– 0.1/–/– 0.1/–/0.1 0.8/0.7/0.1 0.01/–/– 0.3/0.6/– 0.1/–/0.1
[cm3 pore water/g solids]
POC [wt.%] a/b/c 1.6/1.2–3.0∗/– 2.8/–/– 3.2/–/3.2 1.2/1.1-2.1∗/0.9–2.1 5/–/– 1.6/0.25-1.9∗/– 8/–/8
Initial age of POC (ageinit) [kyr] a/b/c 100/100/– 40/–/– 45/–/20 0.8/1.5/3 50/–/– 180/25/– 43/–/43
POC inhibition constant (KC) [mmol/l] a/b/c 43/44/– 45/–/– 43/–/45 50/45/45 25/–/– 45/45/– 45/–/45
Fluid Flow [mm/yr] c – – 0.16 1.1 – – 0.18
Porosity 80 0.7 0.76 0.76 0.77 0.8 0.76 0.85
8 8f 0.52 0.65 0.56 0.62 0.6 0.52 0.7

1/px 20 000 5000 17 000 1800 4000 17 000 4000

∗ Scenarios for variable POC input over time were calculated at the Costa Rica, Chile, and Blake Ridge sites using the equations below:
POC (t)1041= 1.55+1.55·exp[-(t-0.81·tmax)

2/20 000/tmax]-0.45·exp[-(t-0.87·tmax)
2/60 000/tmax]

POC (t)1233= 1+1.3·exp[-(t-1.05·tmax)
2/2000/tmax]

POC (t)995= 1.7+0.9·exp[-(t-0.97·tmax)
2/300 000/tmax]-2.9·exp[-(t-1.1·tmax)

2/200 000/tmax]
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Figure 1. Location of the ODP Sites used for the validation test of the numerical model: Blake 

Ridge (Site 995), Califormia (Site 1014), Costa Rica (Site 1041), Namibia (Site 1084), Peru 

(Sites 685, 1230), and Chile (Site 1233). 
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Fig. 1. Location of the ODP Sites used for the validation test
of the numerical model: Blake Ridge (Site 995), Califormia (Site
1014), Costa Rica (Site 1041), Namibia (Site 1084), Peru (Sites
685, 1230), and Chile (Site 1233).

applied to data from various ODP Sites (Fig. 1): 1041 (Costa
Rica), 685 and 1230 (Peru), 1233 (Chile), 1014 (California),
995 (Blake Ridge), and 1084 (Namibia). GH were previously
recovered and/or confirmed at ODP Sites 1041, 685, 1230
and 995. All required environmental information comprising
for example water depth (hydrostatic pressure), geothermal
properties (heat flow), seafloor temperature and sedimenta-
tion rate for each site was obtained from the respective ODP

reports (D’Hondt et al., 2003; Kimura et al., 1997; Lyle et al.,
1997; Mix et al., 2003; Paull et al., 1996; Suess et al., 1988;
Wefer et al., 1998) and is summarised in Table 1. Overall,
GH-containing sedimentary strata with varying thicknesses
of 200 to 800 m were recovered from these sites. At Site
1041 the bottom of the stability zone (BSZ) is not reached
within the sedimentary deposits. In general, the overall POC
concentrations are high (>0.5 wt.%) and the SO4-penetration
depth is low and accompanied by a strong increase of sub-
surface NH4- and CH4-levels.

Each of the standard models was run into steady state by
fitting the model to concentration-depth profiles of the dis-
solved species SO4 and NH4 and the solid species POC and
PON assuming that, in general, the present day pore water
profiles are representative for the sedimentary history of the
system. Standard runs consider constant POC input over
time as well as sediment burial and molecular diffusion as
the only transport processes (a-model runs). Additional runs
with variable POC input (b-model runs) and fluid advection
(c-model runs) were performed as specified below (Table 1)
in order to comply with site-specific conditions.

All model results (including predicted GH volumes) and
measured concentrations of SO4, NH4, POC, and PON (if
available) are shown in Figs. 2–7. The boundary condi-
tions used in this study are listed in Table A4 of the Ap-
pendix. For all models the concentrations at the upper
boundary of the dissolved species SO4, CH4 and NH4 have
been prescribed to fixed values corresponding to the standard
seawater composition (Dirichlet conditions). At the lower
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Figure 2. Model results for ODP Site 1041 off Costa Rica for two different model runs: a) 

constant POC input, and b) varying POC input over time. Average GH concentrations (GH) 

are provided in vol.% of pore space, and as depth-integrated mass per area seafloor (GHI in g 

of CH4/cm2). 
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Fig. 2. Model results for ODP Site 1041 off Costa Rica for two different model runs: a) constant POC input, and b) varying POC input over
time. Average GH concentrations (GH) are provided in vol.% of pore space, and as depth-integrated mass per area seafloor (GHI in g of
CH4/cm2).

boundary zero-gradient conditions are chosen for the a- and
b-models (Neumann conditions). For the c-models, which
consider advective fluid flow from below, the concentrations
of the dissolved species have been determined as Dirichlet
conditions. Therefore, the SO4- concentration at the lower
boundary was set to zero, NH4-concentration was taken from
the respective ODP data, and CH4-concentration was taken
from the output of the respective a-model. The input of
POC at the upper boundary is given by a fixed concentration,
which is modulated into a time-dependent function consid-
ering variations in the POC input over time for the b-models
(Table 1):

POC(x = 0) = f (t) (2)

The PON input was determined by fitting the N:C ratio of or-
ganic material to the respective POC-PON-data at each site.

Pore water SO4 and NH4 are the most important parame-
ters for fitting the model. POC and PON usually show more
natural variability, and hence are more difficult to constrain.
At the depth where CH4-saturation with respect to methane
hydrate is reached GH starts to precipitate. Average GH con-
centrations without considering fluid flow are generally be-
low 1 % of the pore volume (Figs. 2–7). These comparatively
low concentrations are in agreement with recent studies at
locations which are not affected by intense fluid or gas flow
(Milkov, 2005; Tŕehu et al., 2004).

2.2.1 Site-specific results

Costa Rica

ODP Site 1041 is located at the active, erosive continental
margin of Costa Rica at a water depth of about 3300 m. The

site is characterised by relatively low sedimentation rates of
about 13 cm/kyr (Kimura et al., 1997). Measured data at
this location are largely represented by the standard model
(Fig. 2). However, POC and PON data indicate consider-
able variations in the input of organic material over time. In
order to evaluate to which extent such variations may affect
GH inventories a second run was performed where the POC
input at the sediment surface was varied over time (see Ta-
ble 1). The result is a better fit of POC and PON data than
in the a-model, which, however, only affects estimated GH
concentrations by about 20 % of the total GH amount. Slight
deviations from the measured NH4 profile in both runs may
be explained by lateral advection of fluids (Hensen and Wall-
mann, 2005), which may explain local GH enrichments be-
tween 115 and 165 mbsf at this site (Kimura et al., 1997).
However, because this process is probably of minor impor-
tance and also very difficult to constrain, it will not be further
addressed in this study.

Peru

The ODP Sites 1230 and 685 are located on the lower slope
of the Peru margin at about 5100 m water depth (D’Hondt et
al., 2003). Both sedimentary sequences are part of the ac-
cretionary wedge that forms due to subduction of the Nazca
plate. The sedimentation rates are about 100 cm/kyr and
14.7 cm/kyr, respectively (D’Hondt et al., 2003; Suess et al.,
1988). GH was reported at site 685 in discrete layers at 99
and 165 mbsf (Suess et al., 1988) and at site 1230 between
82 and 148 mbsf (D’Hondt et al., 2003). At Site 1230, SO4
and NH4 profiles are well reproduced by the standard model
(Fig. 3). An average of the measured POC concentrations
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Figure 3. Model results for ODP Sites 1230 and 685 off Peru for two different model runs: a) 

constant POC input, and c) constant POC input with advective fluid flow.  
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Fig. 3. Model results for ODP Sites 1230 and 685 off Peru for two different model runs:(a) constant POC input, and(c) constant POC input
with advective fluid flow.

was used as the POC input value in order to comply with
the considerable scatter observed in the depth profile. The
GH content is 0.64 vol.% on average and extends from about
60 to 260 mbsf, which excellently matches with the depth
interval reported for GH findings (D’Hondt et al., 2003).
However, the sedimentary sequence recovered at the nearby
Site 685 is considerably thicker (620 m) and indicates that
NH4 decreases with depth (Fig. 3). A model run without fluid
flow results in a NH4-profile which is not supported by the
data, but reveals GH concentrations purely based on in situ
degradation rates (Fig. 3). Average GH inventories in the no-
flow scenarios are approximately the same at both locations,
and hence give an approximation of minimum GH invento-
ries. Based on drilling results (D’Hondt et al., 2003) and sim-
ilar to findings offshore Costa Rica (Hensen and Wallmann,
2005), upward advection of deep-seated NH4-depleted fluids
is a likely explanation for the observed decrease in NH4. In
a second model run, we applied an upward advection rate of
0.16 mm/yr and varied the model parameterisation accord-
ingly in order to fit the model to the NH4 data (Table 1). In
agreement with previous studies (Buffett and Archer, 2004;
Hensen and Wallmann, 2005) GH inventories in this sce-
nario increase significantly from 26 g of CH4/cm2 (a-model)
to 66 g of CH4/cm2 (c-model) considering fluid flow.

Southern Chile

Site 1233 is located in a small forearc basin on the upper
continental margin (840 mbsf) offshore southern Chile, be-
longing to the southern end of the Nazca subduction system.
The area is characterised by very high sedimentation rates
of about 100 cm/kyr. Although the pore water chloride pro-
file may indicate the presence of GH in the sediment no GH
findings are reported (Mix et al., 2003). The standard model
does not produce a good fit to the POC, PON and NH4-data
and does not predict any formation of GH (Fig. 4). The mis-
match is obviously caused by changes in the POC input over
time and, considering the down-core decrease of NH4, most
likely fluid advection. Increasing the POC input over the past
20 000 years (derived from the POC-data and the sedimenta-
tion rate), however, improved the fit to the data, but did not
change the result with respect to GH accumulation. Addi-
tional consideration of fluid flow results in a good fit to the
data (c-model in Fig. 4) and predicts the presence of minor
amounts of GH between 60 and 80 mbsf. All in all, the in situ
production of CH4 is most likely not sufficient to produce GH
at this site, which is in agreement with field observations.
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Figure 4. Model results for ODP Sites 1233 off Chile for three different model runs: a) 

constant POC input, b) varying POC input, and c) varying POC input combined with 

advective fluid flow. 
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Fig. 4. Model results for ODP Sites 1233 off Chile for three different model runs:(a) constant POC input,(b) varying POC input, and(c)
varying POC input combined with advective fluid flow.

California

Site 1014 was drilled in a water depth of 1165 m in the Tan-
ner Basin, which belongs to the band of California Border-
land basins and is characterised by high organic matter in-
put, a high sedimentation rate of 79 cm/kyr, and an extended
oxygen minimum zone between 500 and 1500 m water depth
(Lyle et al., 1997). The standard model revealed a good fit
to the measured data (Fig. 5). However, the scatter in the
POC input over time was not resolved in the a-run. An av-
erage input value of 5 wt.% of POC produced an excellent
fit to the measured NH4 profile, and hence is obviously a
good approximation of the overall POC degradation. In spite
of the high POC accumulation, GH are not reported for this
site. Most likely this is due to the high geothermal gradi-
ent of 58◦/km resulting in a thin GHSZ (175 m). The model
predicts minor amounts of GH above the BSZ.

Blake Ridge

The Blake Ridge ODP Site 995, which was drilled into a
large drift deposit located at the passive continental margin
of the south-eastern United States at a water depth of 2779 m,
has been studied in detail with respect to GH in the past (e.g.
Dickens et al., 1997; Egeberg and Dickens, 1999). Using an
average sedimentation rate of 40 cm/kyr (Paull et al., 1996)

and a constant POC and PON input in the basic a-model run
does not comply with the measured data and did not predict
any GH formation (Fig. 6). In addition, a very high initial
sediment age of 180 kyr had to be used in order to achieve
POC degradation rates that enable a good fit to the measured
NH4 profile. Using a reduced POC/PON input for the Late
Quaternary (Paull et al., 2000) required higher overall degra-
dation rates in order to fit the NH4 data and predicted GH
formation in the depth range reported previously (Paull et
al., 1996). Moreover, Wallmann et al. (2006) used the same
model approach as in the present study and predicted roughly
the same amount of in situ formed GH for the nearby ODP
Site 997 (on average 0.3 vol.%∼= 5.1 g of CH4/cm2). How-
ever, overall GH inventories may be much higher (up to sev-
eral 8 vol.%∼= 137 g of CH4/cm2; Paull et al., 2000) due to
local enrichments caused by upward migration of free gas
formed below the BSZ (Wallmann et al., 2006).

Namibia

Site 1084 is located on the upper continental margin off
Namibia, a region which is characterised by intense up-
welling and enhanced POC deposition. Likewise, average
POC concentrations of>5 wt.% are observed throughout the
entire core, resulting in high degradation and GH formation
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Fig. 5. Model results for ODP Site 1014 off California with(a) constant POC input. The dotted line indicates the free gas (FG) contents
below the base of the GHSZ (BSZ) in % of the pore space.
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Figure 6. Model results for ODP Site 995 at Blake Ridge for two different model runs: a) 

constant POC input, and b) time varying POC input. 
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Fig. 6. Model results for ODP Site 995 at Blake Ridge for two different model runs:(a) constant POC input, and(b) time varying POC
input.

rates. The sedimentation rate at this site is 24 cm/kyr (Wefer
et al., 1998). Similar to Sites 685 and 1233 (Figs. 3 and 4)
the NH4 profile indicates upward fluid advection at this lo-
cation. Indeed, during the drilling no findings of gas hydrate
have been reported. Applying fluid advection to the model
leads to a better fit of the NH4 profile and predicts about 60%
higher GH amounts (Fig. 7).

The results above clearly demonstrate the general validity
of the kinetic model. The model is able to reproduce the con-
centrations of solid and dissolved species of the ODP Sites in
a generalised way, while all parameters of the kinetic rate law
(Eq. 1, Table 1) are kept almost constant. Hence, the model
serves as a useful basis for a systematic analysis of biogenic
GH formation and the derivation of an analytical transfer
function to predict submarine GH inventories. Overall, GH
concentrations resulting from all model runs at the ODP Sites
without fluid flow vary between 0 and 26 g of CH4/cm2 (0 to
1.6 vol.%). In some cases, fitting the NH4 profiles required
the implementation of upward fluid flow, which increases the
GH amount up to 66 g of CH4/cm2 (∼2.2 vol.%; Fig. 3). Al-

though very significant in terms of GH formation, fluid flow
is very difficult to constrain and predict on regional to global
scales, and hence was neglected in the following systematic
analysis. Consequently, all results presented here have to be
regarded as minimum estimates, which only reflect pure bio-
genic methane and GH formation within the GHSZ.

3 Sensitivity analysis of the standardised numerical
model

In order to identify the most important parameters, which
significantly control the formation of GH, a sensitivity analy-
sis was performed with parameter variations covering a wide
range of natural environments. This analysis is based on a
standardised model set up (Table 2), which is defined by the
average values of the environmental and chemical conditions
(i.e. water depth, thermal conditions, POC concentration,
POC initial age (ageinit), porosity, sedimentation rate, inhibi-
tion constant of POC degradation (KC)) of the ODP models
(Table 1). Critical parameters for generalization purposes are
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Figure 7. Model results for ODP Site 1084 off Namibia for two different model runs: a) 

constant POC input, and c) constant POC input combined with advective fluid flow. 
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Fig. 7. Model results for ODP Site 1084 off Namibia for two different model runs:(a) constant POC input, and(c) constant POC input
combined with advective fluid flow.

Table 2. Input parameters and boundary conditions for the standard model using average values of all specific ODP models. The range of
parameter values used for the sensitivity analysis are also shown.

Standard model Sensitivity
(average of ODP models) analysis

Water depth [m] 2516 500–5500
Seafloor temperature [◦C] 3.1 1–6.5
Thermal gradient [◦/km] 44.2 10–65
GHSZ [m] 450 50–2000
POC accumulation rate [g/m2/yr] 4.3 0.7–40

– POC input [wt.%] 2.3 0.5–5.5
– Sedimentation rateω0 [cm/kyr] 32 9.5–200

Initial age of POC (ageinit) [kyr] 43.7 43.7
Porosity8 (80, 8f , 1/px) 0.75, 0.59, 5000 0.75, 0.59, 5000
NH4 adsorption coefficient (KADS) [cm3/g] 0.52 0.52
POC Inhibition constant (KC) [mmol/l] 43.7 43.7

the ageinit andKC since they may have a substantial effect on
GH formation rates. In general, highKC and low ageinit val-
ues favour higher degradation rates of organic matter, going
along with enhanced formation of NH4, CH4, GH, a shal-
low sulphate penetration depth, and vice versa. A sensitivity
analysis of ageinit confirms that the accumulation of GH gen-
erally increases with decreasing initial POC ages (Fig. 8).
The effects are strong at high sedimentation rates and com-
parably small in slowly accumulating sediments. Most of
the ageinit values applied in the ODP models are about 40–
50 kyr, with a few exceptions to higher (a- and b-model of
Site 1041 and a-model of Site 995) and lower initial ages
(Site 1233), and hence an average value of all ODP models
(43.7 kyr) was used in the standard model. The averageKC

value in the ODP model runs is 43.7 mM with a quite narrow
range of 25 to 50 mM, which is in agreement with results of
Wallmann et al. (2006).

Subsequently, the effect on the GH formation was anal-
ysed by varying water depth, thermal conditions, sedimen-
tation rate, and POC concentration of the standard model.
In these scenarios, the thermal gradient ranges from 10 to
65◦/km, the seafloor temperature from 1 to 6.5◦C, and the
water depth from 500 to 5500 m. The total sediment thick-
ness was always chosen to be thick enough to include the
entire GHSZ. The POC input concentration has been varied
from 0.5 to 5.5 wt.%. The sedimentation rate ranges from 9.5
to 200 cm/kyr. All parameter variations are listed in Table 2.
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Fig. 8. Effect of the POC initial age (ageinit) on the accumulation
of gas hydrates in marine sediments at two different sedimentation
rates (ω).

In Figure 9 the relation between the tested parameters and
the calculated GH amount is summarised. The amount or
inventory of gas hydrates (GHI in g of CH4/cm2) is calcu-
lated by integrating the hydrate concentrations in each layer
over the entire model column. The seafloor temperature
and the thermal gradient show a negative correlation with
GHI because higher temperatures reduce the extension of
the GH stability field. Similarly, the GHSZ thickens with
increasing water depth because of increasing environmen-
tal pressure. Overall, a thick GHSZ causes a longer resi-
dence time of POC, and hence favours the formation of bio-
genic CH4 within it. The sole effect of the sedimentation rate
on the GH formation is comparatively low. For sedimenta-
tion rates up to 75 cm/kyr there is a positive correlation with
GHI (up to 2.6 g of CH4/cm2) because of increasing burial of
POC. However, as discovered previously by Davie and Buf-
fett (2001), further increasing sedimentation rates (without
increasing POC input at the sediment surface) lead to de-
creasing GH inventories; this transition into a negative trend
when reaching a critical maximum at about 60 cm/kyr is due
to the reduced residence time of the degradable POC within
the GHSZ, and hence limits the enrichment of CH4 and GH.

The sulphate methane transition zone (SMT) shows no
clear and useful relationship to GH formation (Fig. 9). Bhat-
nagar et al. (2008) showed for advective systems (HGF) that
there should be a link between present-day CH4 fluxes across
the SMT and the occurrence of gas hydrate in the deeper
subsurface, if certain environmental conditions governing the
gas hydrate system have remained constant over long periods
of time. The SMT is affected by the methane flux from below
and the sulphate reduction occurring in the uppermost sedi-
ment layers. Hence, high rates of POC degradation at shal-
low depth will consume much of the sulphate, but simulta-
neously reduce the potential of methane formation at greater
depth. The results presented in Fig. 9 indicate that the SMT
decreases with increasing sedimentation rate up to a certain
threshold value (∼7.5 m) and increases, if this value is ex-
ceeded (see above). This may suggest an inefficient use of
POC by sulphate reduction at very high sedimentation rates.
Essentially, our results indicate that the SMT is not a simple
measure for the abundance of GH; at least not in LGF set-
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Figure 9. Sensitivity analysis of the standard model: For each model run (red dots) only one 

input parameter was varied. Additionally, the output parameter SO4-CH4-transition depth 

(SMT) as a result of increasing the POCar is shown. 
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Fig. 9. Sensitivity analysis of the standard model: For each model
run (red dots) only one input parameter was varied. Additionally,
the output parameter SO4-CH4-transition depth (SMT) as a result
of increasing the POCar is shown.

tings. This is in line with results of Kastner et al. (2008b)
and Dickens and Snyder (2009). The latter authors, however,
pointed out that pore water chemistry data may help to un-
derstand the formation of the underlying gas hydrate system,
but generally not as a proxy for the amount and distribution
of gas hydrate.

The other tested parameters display clear functional rela-
tionships to the calculated GH concentration (Fig. 9). How-
ever, for the derivation of a simple and useful transfer func-
tion it is crucial to limit the set of parameters to those which
have (i) a strong effect on the formation of GH and (ii) are
widely available and easy to determine. Moreover, the sen-
sitivity analysis above suffers from a lack of systematics; for
example POC concentration and sedimentation rate or water
depth and bottom water temperature have been treated as in-
dependent parameters although they are correlated. Hence,
in order to perform a refined and more robust analysis, we
summarised the parameters defining the temperature and
pressure conditions (water depth, thermal gradient and sed-
iment surface temperature) into one parameter which then
defines the thickness of the GHSZ (in the following just
GHSZ). In addition, the general correlation between POC
concentration and sedimentation rate (Henrichs 1992; Tromp
et al., 1995; Burdige, 2007) was accounted for by combining
these parameters into the POC accumulation rate (POCar).
Since all other parameters are either intrinsically considered
(because they are not independent), such as the SMT, or may
have only a minor additional effect on GH formation, such
as the porosity, they have been excluded from the subsequent
analysis.

4 Derivation of the transfer function

In a second and more detailed parameter analysis the ef-
fect of POCar and GHSZ was analysed in a number of runs
of the standardised numerical model by covering a wider
range of natural variations of these parameters than in typ-
ical continental margin environments: GHSZ from 100 to
2000 m (Dickens, 2001) and POCar from 0.8 to 37.4 g/m2/yr
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Fig. 10. POC concentrations vs. sedimentation rates after Seiter
et al. (2004) (blue dots), Colman and Holland (2000) (yellow dots),
and the ODP Sites used in this study (red dots) (references are listed
in the text). The black line indicates the function derived for the
sensitivity analysis of the numerical model.

(Seiter et al., 2005). The GHSZ was varied by changing the
thermal gradient from 10 to 65◦/km, the seafloor temperature
from 1 to 6◦C, and the water depth from 500 to 6000 m. In
order to identify possible interdependencies between POCar
and GHSZ, crosswise variations were calculated. Because
the POCar is defined by the POC concentration and the sed-
imentation rate, the input concentration of POC was derived
by an analytical function of the sedimentation rate based on
data from Seiter et al. (2004) and Colman and Holland (2000)
(Fig. 10). Although the plot reflects a large range of natural
variations of POC concentrations at the sediment surface (av-
erage of the upper 10 cm), POC shows a general correlation
with the sedimentation rate, which can be expressed by:

POC= −2.8·exp(−44.5·ω)+3.0 (3)

where POC is in wt.% andω is the sedimentation rate in
cm/yr. Equation (3) was applied for sedimentation rates be-
tween 10 and 200 cm/kyr, which corresponds to POC con-
tents between 1.2 and 3.1 wt.% and POCar variations be-
tween 0.8 and 37.4 g/m2/yr. The great advantage of this
approach is that POC data are ubiquitously available from
global compilations (e.g. Premuzic et al., 1982; Seiter et al.,
2004; Romankevic et al., 2009), which enable a reasonable
estimate of the sedimentation rate, and hence of POCar at al-
most any location of the seafloor. However, it must be noted
that the POC concentration at the sediment surface does not
always reflect the long-term average, which is at least deter-
mining the formation potential of GH. Nevertheless, at the
Chile margin and Blake Ridge sites (Figs. 4 and 6), which
show a significant change of POC input over time, the over-
all effect on the formed GH quantities is comparatively low,
which indicates that the estimation of POCar from recent val-
ues will give a reasonable approximation.
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Fig. 11. Parameter analysis of the two key control parameters
POCar and GHSZ:(a) relation of GHSZ and GH accumulation for
varying POCar;(b) relation of POCar and GH accumulation for
varying GHSZ.

The functional relationship between the GHSZ and GHI is
shown in Fig. 11a. Generally, the plot shows that at constant
POCar the amount of GH increases with the thickening of the
GHSZ, because of the longer residence time of the degrad-
able material within a thicker GHSZ. Higher POCar causes
more GH being formed in the sediment and the gradient in-
creases for higher POCar. It is remarkable, however, that
GHI increases only for POCar up to 10–15 g/m2/yr. The gra-
dient decreases again for POCar>15 g/m2/yr (dark blue and
black lines in Fig. 11a), most likely because for such high
POCar (sedimentation rates>70–100 cm/kyr) the residence
time of organic matter within the GHSZ decreases signifi-
cantly. Overall, this effect is in agreement with results of
Davie and Buffet (2001) and Bhatnagar et al. (2007).

In general, higher POCar leads to a higher POC degrada-
tion rate and therefore to enhanced formation and saturation
of CH4 in the pore water (Fig. 11b), which has been observed
in numerous studies before (e.g. Wallmann et al., 2006;
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 Fig. 12. Crossplot of the depth integrated GH masses estimated

by the transfer function and the numerical models (sensitivity- and
parameter analyses). The solid line shows the 1:1 correlation, the
dotted lines the 50% deviation interval. The standard deviationσ

and the correlation coefficient r are indicated.

Malinverno et al., 2008). Similar to the test of the sedimen-
tation rate (Fig. 9) and analogous to Fig. 11a, the amount of
GH decreases after reaching a critical maximum in POCar of
10 to 15 g/m2/yr. The decrease of the GH concentration after
reaching this maximum is considerably stronger at a GHSZ
of 1353 m compared to a thinner GHSZ of 376 m. Over-
all, GH inventories increase to higher values with a thicker
GHSZ (e.g. at a POCar of 15 g/m2/yr, 115 g of CH4/cm2 for
a GHSZ of 1353 m compared to 10 g of CH4/cm2 for a GHSZ
of 376 m).

The cross-plots of both parameters indicate minimum val-
ues of POCar and GHSZ, which are required to form GH.
If the GHSZ is too thin, the residence time of POC within
the GHSZ is too short for sufficient degradation, and conse-
quently the saturation level of dissolved CH4, which is nec-
essary to produce GH, will not be reached. The figure also
indicates the minimum thickness of the GHSZ to form GH;
for example this is 500 m at POCar of 2 g/m2/yr or 250 m
at POCar of 6 g/m2/yr. Overall the model implies that hy-
drates may form only when the GHSZ exceeds 150 to 200 m
(Fig. 11a). This result is in good agreement with the general
depth of the BSR at LGF on the upper continental margins
of >200 m (e.g. 240 mbsf on the northern Cascadia margin;
Riedel et al., 2006; 200 mbsf on the Svalbard margin; Hus-
toft et al., 2009). However, GH can still be formed at a lower
thickness of the GHSZ if fluid flow and/or gas ebullition are
involved (e.g. Torres et al., 2004; Haeckel et al., 2004). Like-
wise minimum values can also be derived for POCar. As
outlined before, if the input of POC is too small due to lower
sedimentation rates, most of the POC is degraded by sulphate

reduction, and hence only little or no GH can form. Fig-
ure 11b shows that a POCar of∼0.8 g/m2/yr (corresponding
to a SR of 10 cm/kyr and an initial POC concentration of
1.2 wt.%) is a threshold value, below which CH4 can not be
sufficiently accumulate in most continental margins (GHSZ
thinner than 1200 m).

Each of the model series indicated in Fig. 11 can be fitted
by the following two types of equations: the GHSZ-GH re-
lation (Fig. 11a) is best expressed by a potential function of
the general form:

GHI = (s ·GHSZu), (4)

where GHI is the depth-integrated inventory of GH [g of
CH4/cm2]. GHSZ is in [m]. The POCar-GHI relation
(Fig. 11b) is approximated by a Maxwell-type equation of
the form:

GHI = v ·POCar·exp(−wx/POCar/y)+z (5)

The differences between the fit-functions in both series of
runs are caused by variation of the coefficientss, u, v, w, x,
y andz. The choice of coefficients depends on POCar (Eq. 4,
Fig. 11a) and GHSZ (Eq. 5, Fig. 11b).

For the derivation of a general transfer function of POCar
and GHSZ, Eq. (4) and Eq. (5) were combined by including
the GHSZ-term (Eq. 4) into Eq. (5) in order to ensure that
the gradients increase with increasing GHSZ and to consider
the decrease of GH concentrations beyond a threshold value
of POCar (Fig. 11b). A second GHSZ-term was included
in the exponent to reproduce the shift of the GH maximum
for thicker GHSZ. The constants were determined using the
method of least squares for all data resulting from the param-
eter analysis. The resulting transfer function is (solid lines in
Fig. 11):

GHI = a ·POCar·GHSZb
·exp(−GHSZc/POCar/d)+e, (6)

with a = 0.00214, b = 1.234, c = −3.339,

d = 0.3148, e = −10.265.

GHI is the depth-integrated GH inventory in [g of CH4/cm2],
POCar is the accumulation rate of POC in [g/m2/yr], and
GHSZ is the thickness of the GH stability zone in [m]. Neg-
ative GHI values generated by the transfer function indicate
the absence of GH in the considered sediment column.

5 Test and application of the transfer function

To perform a preliminary test and verification of the accuracy
of the transfer function (Eq. 6) we calculated the GH content
for all parameterizations of the model runs of the sensitivity
and the parameter analyses. The transfer function reproduces
the modelled data quite well; most data points plot along the
1:1 correlation line (Fig. 12). The general scatter is moder-
ate, however, it is more pronounced at lower concentrations,
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where errors of more than 50 % occur. Overall, the standard
deviation (σ) of the function is 8.5 g of CH4/cm2 and the
correlation coefficient (r) is 0.99.

In addition, the function has been applied to the ODP
Sites of Costa Rica, Peru, Chile, California, Blake Ridge
and Namibia, using the parameterization given in Table 1.
The results are listed in Table 3. The GH amounts calcu-
lated with the transfer function are all between 0 and 25 g of
CH4/cm2 and are consistent with the results of the ODP-Site
models without the additional upward fluid flow (a- and b-
models). Additionally, the validity of the transfer function
was tested by comparing its results with several published
studies based on direct observations, geochemical modelling
and other methods (resistivity logs, chlorinity anomalies, and
seismic velocity analysis; Table 4). For a better comparison
the published GH concentrations have been converted into
the unit g of CH4/cm2 (using a mean porosity of 0.5 and
the thickness of the GH occurrence zone at the respective
sites), representing the depth integrated mass of GH per unit
of seafloor area.

Overall, the GH concentrations obtained with the transfer
function are in accordance with the results of several mod-
elling studies in LGF systems, such as for the northern Cas-
cadia margin or Blake Ridge. However, there exist signif-
icant deviations for sites where local enrichments (usually
restricted to permeable layers) were considered in the esti-
mate (see examples of Blake Ridge, Northern Cascadia or
Indian Margin). For example, at sites 995 and 997 at Blake
Ridge the transfer function reveals only about 50% or 20%,
respectively, of the estimates based on chloride anomalies
(Paul et al., 1996). The latter are, however, significantly af-
fected by strong negative chlorinity peaks, which are related
to distinct GH enrichments, most likely caused by fluid ad-
vection. Since this is not implicitly considered in the preced-
ing systematic model study, the transfer function underesti-
mates GH inventories in such cases.

The transfer function does not predict any GH for Hydrate
Ridge, which is in line with results of Torres et al. (2004) and
Tréhu et al. (2004) who state that strong GH enrichments at
the summit (Sites 1249–1250) are due to enhanced gas flux.
Away from the summit (Sites 1244–1248) there is almost no
indication for GH formation.

An estimate of 29 g of CH4/cm2 was made for Site 1040
offshore Costa Rica (Hensen and Wallmann, 2005) applying
a geochemical model, which considers fluid flow and a dif-
ferent kinetic approach for POC degradation. However, the
transfer function does not predict any GH at this site consid-
ering a POCar of 2.3 g/m2/yr, because of the low sediment
thickness above the décollement (380 m). At Site 1041 the
sediment thickness within the GHSZ is about 750 m, which
results in an amount of 10.7 g of CH4/cm2 using the transfer
function, which is still in the expected range.

Table 3. Comparison of the GH amounts of the ODP sites calcu-
lated in the different model runs: a) constant POC input, b) varying
POC input, c) time-dependent POC input and advective fluid flow,
with the transfer function, using the input data of the ODP mod-
els. In order to use the transfer function (Eq. 6) the data of the
a-models included in Table 1 were used to calculate POCar. The
GHSZ was deduced from BSR depths given in the respective ODP
initial reports, or calculated by the respective thermal- and pressure
information.

ODP Site/ GHI (numerical model) GHI (transfer function)
model [g of CH4/cm2] [g of CH4/cm2]

1041 a) 6.2 10.7
b) 7.3 10.7

1230 a) 10 1.4
685 a) 26.4 22.7

c) 66 22.7
1233 a) 0 0

b) 0 0
c) 0.12 0

1014 a) 0.55 0
995 a) 0 15

b) 3.0 15
1084 a) 23.7 3.5

c) 39.7 3.5

Kastner et al. (2008a) estimated the average GH concen-
tration at site 17 NGHP (Andaman Sea) to be about 17.5%
(340 g of CH4/cm2). The total variation is, however, very
pronounced, ranging from 1 to 76 vol.% (21 to 1625 g of
CH4/cm2). Specifically the very high percentages of pore
filling are restricted to distinct ash layers, implying a litho-
logical control on gas migration and GH formation. How-
ever, the amount calculated by the transfer function (27.2 g
of CH4/cm2) is within the lower range of concentrations and
may represent the regional background of biogenic GH for-
mation in this region. Kastner et al. (2008a) also report a
similar range of GH concentrations for sites 10/21 NGHP
(Indian continental margin), which is not included in Ta-
ble 4. Because GH occurrences at this location are restricted
to shallow depths (25–160 mbsf) only and essentially formed
by fracture controlled gas migration (Kastner et al.; 2008a),
the application of the transfer function would reveal no for-
mation of GH.

It should be emphasized again that the function gives
mostly lower GHI values than obtained by other methods at
high gas flux sites since the ascent of methane with rising
fluids and gases is not considered in the model. These ad-
ditional transport pathways are not included in the transfer
function because fluid and gas flow are strongly variable in
space and time, and hence very difficult to constrain and to
generalize. At present, the function predicts the potential of
GH formation via biogenic CH4 formation within the GHSZ
only. In addition to this, it should be pointed out that – owing
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Table 4. Comparison of the GHI amount calculated with the transfer function to other published results (of average GH contents) obtained
from several approaches, such as seismic velocity calculations, chlorinity, resistivity log or a combination of several of these methods. Other
results obtained by numerical modelling are also shown. In order to use the transfer function (Eq. 6) at the sites which have been not
modelled, POC values and sedimentation rates were taken from the ODP initial reports, or POCar was calculated using Eq. (3). The GHSZ
was deduced from BSR depths given in the respective ODP initial reports. Published gas hydrate concentrations have been converted from
vol.% of pore space to g of CH4/cm2 (considering a mean porosity of 0.5 and the thickness of the gas hydrate-enriched sediment at each site)
representing the depth integrated mass of GH per unit area of seafloor.

GHI [g of CH4/cm2] Approach Reference
Setting transfer function published data

Blake Ridge
Sites 995/997 15/7.8 81-113∗ Seismic velocity Paull et al., 1996;

Dickens et al., 1997
Site 995 15 29.7∗ Chlorinity Paull et al., 1996
Site 997 7.8 42.0∗ Chlorinity Paull et al., 1996
Site 997 7.8 26.2∗∗ Numerical model Davie and Buffett, 2003
Site 997 7.8 5.1∗∗ Numerical model Wallmann et al., 2006

Hydrate Ridge
Sites 1244–1248 0 < 19 Various approaches Tréhu et al., 2004
Site 889 0 13∗∗ Numerical model Davie and Buffett, 2003

Northern Cascadia
Sites 1325-1327 0–0.5 0.4∗∗-0.8∗∗ Numerical model Malinverno et al., 2008
Sites 1325-132 0–0.5 57∗ Various approaches Torres et al., 2008

Costa Rica
Site 1041 10.7 29∗∗ Numerical model Hensen and Wallmann, 2005

(for nearby ODP Site 1040)
Chile
Site 859 10 < 17.5 Seismic velocity Brown et al., 1996
Site 859 10 < 40 Chlorinity Brown et al., 1996

Andaman Sea
Site17 (NGHP) 27.2 374∗(21 to 1625) Chlorinity Kastner et al., 2008a

∗ Considering focused GH enrichments in distinct layers.
∗∗ Results of numerical modelling considering fluid flow.

to the simplicity of the approach – it is based on a number
of simplifications which may bias the result at any specific
site. Two important assumptions may be mentioned here,
which are: (i) the systems are at or close to steady-state
and (ii) POCar can be sufficiently assessed by the relation
between POC content and sedimentation rate (Fig. 10). As
outlined above, the model results (Figs. 2–7) indicate, how-
ever, that, on average, the error caused by false estimations
of these parameters is relatively low. In any case, there are
no useful alternatives available to these assumptions in order
to derive a generalized approach of estimating sub-seafloor
GH concentrations.

6 Conclusions

In this study we performed a systematic analysis of the key
control parameters of biogenic GH formation using the nu-
merical model presented by Wallmann et al. (2006). The de-
rived transfer function is based on two ubiquitously avail-
able parameters, the POC accumulation rate (POCar) and the
thickness of the gas hydrate stability zone (GHSZ). Hence,
we provide a simple prognostic tool for GH quantification in
marine sediments which enables the estimation of GH inven-
tories formed by in situ produced CH4 without the need of
detailed information concerning the geological condition or
running complex numerical models. Hence, the extrapola-
tion to regional scales is comparatively simple.

It must be pointed out that the transfer function does not
account for effects of fluid advection and methane gas ascent
(HGF sites), which means that it will typically predict mini-
mum estimates, and hence may deviate from estimates based
on measured quantities at any specific site. However, at low
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Table A1. Summary of the physical properties.

Physical properties Equation

Porosity 8 = 8f +(80–8f )· e−px·x

Burial of solids ω =
ωf ·(1−8f )

1−8

Burial of pore water due v =
8f ·ω

8
to sediment compaction

Burial of pore water and vff =
8f ·ωf −v0·80

1−2·ln(8)

fluid flow advection
Molecular diffusion DS = 82

·DM

Diffusion of GH in sediments DS =
DM

1−2·ln(8)

gas flux sites (LGF), which represent the most common set-
ting on a global scale, testing the function has shown that
reasonable GH inventories are predicted.

Appendix A

Model description, rate laws and boundary
conditions

All important rate laws, equations and coefficients that were
used for the numerical model are listed in Table A1, A2,
A3 and A4. Further information is provided by Wallmann
et al. (2006).

The porosity of the sediment column (8) decreases from
the surface (80) to infinite depth (8f ) of the model. The ex-
ponential decrease is defined by the depth x and the attenua-
tion factor px. The transport of the sediment and the species
POC, PON, GH, FG and adsorbed NH4 (ADS) is given as the
burial of solids (ω) and is determined by the sedimentation
rate at infinite depth (ωf ). The transport of the pore water
(v) is defined by the sedimentation rate and the reduction of
the velocity caused by the decreasing pore space due to sedi-
ment compaction. Additional fluid flow (vff ) is included by
the upward fluid velocity (v0). The transport of the dissolved
species (CH4, SO4, NH4 and DIC) is defined by the burial of
the pore water and the molecular diffusion (DS). The diffu-
sion term of each species respects the effect of tortuosity and
depends on their specific diffusion coefficient.

Table A2. Summary of the rate laws of processes used in the mod-
elling.

Process Rate law

POC degradation RPOC=
KC

C(CH4)+C(DIC)+KC
·(

0.16·
(
ageinit +agesed

)−0.95
)
·C(POC)

Methanogenesis RM = 0.5·
KSO4

KSO4+C(SO4)
·RPOC

Anaerobic oxidation RAOM = kAOM ·C(CH4) ·C(SO4)

of methane (AOM)

Sulphate reduction RSR= 0.5·
C(SO4)

KSO4+C(SO4)
·RPOC

GH formation If CSAT < CSOL and If C(CH4)/CSAT > 1:
RGH = kGH ·(C(CH4)/CSAT−1)

GH dissociation If CSOL< CSAT or If C(CH4)/CSAT < 1 :

RGHD = kGHD ·(CSAT/C(CH4)−1) ·C(GH)

FG formation If CSOL< CSAT and If C(CH4)/CSOL> 1 :

RFG= kFG·(C(CH4)/CSOL−1)

FG dissolution If CSAT < CSOL or If C(CH4)/CSOL< 1:
RFGD= kFGD·(CSOL/C(CH4)−1) ·C(FG)

PON degradation RPON= RPOC·(N : C −ratio)

Ammonium adsorption RADS = kADS ·(1−
ADS

C(NH4)·KADS
)

GH precipitates as soon as CH4 in pore water is supersat-
urated. The concentration of CH4 is controlled by the rate
of methanogenesis (RM), AOM (RAOM), the coupled SO4-
reduction (RSO4) and POC degradation (RPOC), and the con-
centrations of CH4 (C(CH4)), DIC(C(DIC)), SO4 (C(SO4)),
POC (C(POC)) and the formation und dissolution rate of
GH (R(GH)) and FG (R(FG)). The formation and dissolution
rates of GH and FG (RGH, RFG, RGHD and RFGD) depends
on the the saturation of CH4 in the pore water, the relation of
GH stability (CSAT) to FG stability (CSOL), and the concen-
trations of GH and FG (C(GH) andC(FG)). The stability of
GH and FG is calculated as an three-phase equilibrium after
Tishchenko et al. (2005). If the saturation level of CH4 in
pore water is reached, the formation of GH or FG is starting.

The degradation rate of PON (RPON) is depending on
RPOC. The NH4 formation rate is defined by the PON degra-
dation rate and the adsorption rate of NH4 (RADS).
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Table A3. Summary of the rate expressions of the specific species
used for the differential equation system.

Rate expressions for solid phase and pore water species

POC R(POC) = −RPOC
PON R(PON) = −RPON
SO4 R(SO4) = −RSR−RAOM
CH4 R(CH4) = RM −RAOM −RGH+RGHD−RFG+RFGD
GH R(GH) = RGH−RGHD
FG R(FG) = RFG−RFGD
NH4 R(NH4) = RPON−RADS
DIC R(DIC) = RPOC+RAOM

ADS R(ADS) = RADS ·
dS ·(1−8)

8

Table A4. Boundary conditions and constants used for all model
runs. Nomenclature after Wallmann et al. (2006).

Parameter/Coefficient Value

Kinetic constant for AOM (kAOM) [cm3/ mmol /yr] 1
Kinetic constant for NH4 adsorption (kADS) [mmol/cm3/yr] 0.0001
Monod constant for SO4 reduction (kSO4) [mmol/cm3] 0.001
Kinetic constant for GH precipitation (kGH) [wt.%/yr] 0.005
Kinetic constant for GH dissolution (kGHD) [1/yr] 0.02
Kinetic constant for FG precipitation (kFG) [vol.%/yr] 0.5
Kinetic constant for FG dissolution (kFGD) [1/yr] 0.5
SO4concentration upper/ lower boundary [mmol/l] 28/0
CH4concentration upper boundary [mmol/l] 0
NH4concentration upper boundary [mmol/l] 0
Density of dry solids dS [g/cm3] 2.5
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