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Abstract. In order to use the global available eddy-
covariance (EC) flux dataset and remote-sensing measure-
ments to provide estimates of gross primary productivity
(GPP) at landscape (101–102 km2), regional (103–106 km2)
and global land surface scales, we developed a satellite-
based GPP algorithm using LANDSAT data and an upscal-
ing framework. The satellite-based GPP algorithm uses two
improved vegetation indices (Enhanced Vegetation Index –
EVI, Land Surface Water Index – LSWI). The upscalling
framework involves flux footprint climatology modelling and
data-model fusion. This approach was first applied to an ev-
ergreen coniferous stand in the subtropical monsoon climatic
zone of south China. The EC measurements at Qian Yan
Zhou tower site (26◦44′48′′ N, 115◦04′13′′ E), which belongs
to the China flux network and the LANDSAT and MODIS
imagery data for this region in 2004 were used in this study.
A consecutive series of LANDSAT-like images of the surface
reflectance at an 8-day interval were predicted by blending
the LANDSAT and MODIS images using an existing algo-
rithm (ESTARFM: Enhanced Spatial and Temporal Adaptive
Reflectance Fusion Model). The seasonal dynamics of GPP
were then predicted by the satellite-based algorithm. MODIS
products explained 60% of observed variations of GPP and
underestimated the measured annual GPP (= 1879 g C m−2)
by 25–30%; while the satellite-based algorithm with default
static parameters explained 88% of observed variations of
GPP but overestimated GPP during the growing seasonal by
about 20–25%. The optimization of the satellite-based algo-
rithm using a data-model fusion technique with the assistance

Correspondence to:B. Chen
(baozhang.chen@igsnrr.ac.cn)

of EC flux tower footprint modelling reduced the biases
in daily GPP estimations from about 2.24 g C m−2 day−1

(non-optimized,∼43.5% of mean measured daily value) to
1.18 g C m−2 day−1 (optimized,∼22.9% of mean measured
daily value). The remotely sensed GPP using the optimized
algorithm can explain 92% of the seasonal variations of EC
observed GPP. These results demonstrated the potential com-
bination of the satellite-based algorithm, flux footprint mod-
elling and data-model fusion for improving the accuracy of
landscape/regional GPP estimation, a key component for the
study of the carbon cycle.

1 Introduction

Growing interest in climate change has stimulated recent
research that aims to quantify components of the natural
carbon (C) cycle. The eddy-covariance technique (EC) is
commonly used to directly measure the CO2, water vapour
and energy exchange between the atmosphere and terres-
trial ecosystems (Baldocchi, 2008). Today, there exists more
than 500 EC-flux towers across the continents. EC mea-
surements are a rich source of information on temporal vari-
ability and environmental controls of CO2 exchange between
the atmosphere and terrestrial ecosystems (Law et al., 2000).
These global EC datasets provide investigators with opportu-
nities and information to (1) explore emergent-scale proper-
ties by quantifying how the metabolism of complex ecosys-
tems respond to perturbations in climate variables on diur-
nal, seasonal, interannual and decadal time scales and eluci-
date physical and biological controlling factors (Law et al.,
2000; Baldocchi, 2008); (2) examine the carry-over effects
that may be introduced by either favourable or deleterious
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conditions during antecedent years (Barford et al., 2001);
(3) observe a disturbance and the recovery from it or to span
a natural sequence of ecological development coupled with
fluctuations in climate (Amiro et al., 2006; Stoy et al., 2006);
and (4) test and validate ecosystem process models (Chen et
al., 2007; Urbanski et al., 2007), since most of these mod-
els span timescales from hours to decades. Although the
available EC data have been rapidly accumulating, much of
this information is of limited use because of the difficul-
ties/uncertainties in (i) assessing/interpreting the associated
measuring biases of EC data and (ii) upscaling of the EC
fluxes at the ecosystem (typically less than 1–3 km2 for each
site) to larger scales, e.g. landscape and regional scales.

The EC method is based on measurements of turbulent
fluctuations of the vertical velocity and the concentration of
a passive tracer. Knowledge of the area’s soil and vegetation
that impacts the EC flux is clearly important both in planning
the site tower location and in the interpretation of measured
fluxes (Finnigan, 2004). The adoption of the EC technique
to estimate surface exchange is based on the assumption that
certain meteorological conditions (e.g. horizontal homogene-
ity, steady-state, and non-advection) are satisfied (Gökede et
al., 2004). Since such conditions are often violated in com-
plex terrain, e.g. at flux monitoring sites in forests, correct
interpretation of EC-data is still a matter of some difficulty
(Sogachev et al., 2004). In particular, the spatial variability
of vegetation density influences the lower atmospheric cir-
culation and surface exchange of energy, water and C over
a wide range of scales (e.g., Shen and Leclerc, 1995; Buer-
mann et al., 2001; Cosh and Brutsaert, 2003). As a result, the
evaluation of the spatial representativeness of long-term ac-
cumulated EC-flux measurements is still challenging (Chen
et al., 2009a).

Footprint analysis is a recognized part of the establish-
ment and siting of flux towers and the analysis of their output
(Finnigan, 2004). The interpretation of EC flux measure-
ments over a heterogeneous surface depends largely on the
footprint over which the fluxes are sampled. The temporal
and spatial variability of footprints and the associated influ-
ence of varying site heterogeneities on tower flux measure-
ments has yet to be fully investigated, although this informa-
tion is critically needed for interpretation and for making a
more wider use of the globally available EC datasets which
have been rapidly accumulating.

In order to use EC flux measurements to provide estimates
of components of the natural C cycles at landscape (101–
102 km2), regional (103–106 km2), or hemispheric to global
land surface (107–108 km2) scales, they must be reasonably
“upscaled” using either models and/or remote-sensing mea-
surements (e.g. Earth observation – EO – data). However, it
has been proven that, it is an extremely challenging task to
scale up those EC measurements from stand-level to a region
or global scales because of the large spatial heterogeneity and
temporal dynamics of ecosystems across complex landscapes
and regions and the nonlinearity inherent in ecophysiological

processes (Levy et al., 1999; Chen et al., 2007; Hilker et al.,
2008).

Satellite remote sensing can provide consistent and sys-
tematic observations of vegetation and ecosystems over large
spatial extents on variable spatial and temporal resolutions.
For example, the Moderate Resolution Imaging Spectro-
radiometer (MODIS) is a 36 band spectrometer providing
a global data set every 1–2 days. The spatial resolution
of MODIS (pixel size at nadir) is 250 m for channel 1
and 2 (0.6 µm–0.9 µm), 500 m for channel 3 to 7 (0.4 µm –
2.1 µm) and 1000 m for channel 8 to 36 (0.4 µm–14.4 µm),
respectively. The LANDSAT TM (Thematic Mapper) and
ETM+ (Enhanced Thematic Mapper Plus) sensors onboard
the LANDSAT 5 and 7 platform have acquired images of
the Earth at 30 m spatial resolution with a 16-day repeat cy-
cle. Data from the satellite-borne MODIS are currently used
in the calculation of global weekly gross primary produc-
tivity (GPP) at 1-km spatial resolution (Running et al., 2004;
Coops et al., 2007). These data with variable spatial and tem-
poral resolutions, however, require appropriate methods for
upscaling and interfacing EC-measurements to satellite ob-
servations (Drolet et al., 2008; Hall et al., 2008). It is chal-
lenging to compare the estimated GPP using MODIS satel-
lite data at a 1-km resolution with the EC-derived GPP be-
cause of mismatch between them in spatial scales (Xiao et
al., 2004). Whereas, the LANDSAT imagines have fine reso-
lutions (i.e. 30 m), which are ideal for spatial scaling and the
comparing of C fluxes derived from satellite-borne and from
EC data with the assistance of flux footprint analysis (Chen
et al., 2009a).

The seasonal phenologically dynamics of canopy devel-
opment (leaf flush, expansion, senescence, fall), in relation
to their biophysical, biochemical (e.g., chlorophyll and other
pigments, nitrogen) and optical properties, in turn influence
both biophysical parameters (e.g., albedo, latent and sensi-
ble heat fluxes) and biogeochemical parameters (e.g., pho-
tosynthesis) of the land surface (Xiao et al., 2004; Li et
al., 2007). Therefore, the time series of vegetation indices
have the potential to provide valuable insight into the pro-
cesses (e.g., growing season length and water condition) that
regulate ecosystem C exchange. Clearly, there is a need to
examine those advanced vegetation indices for all available
satellite sensors in relation to leaf phenology and the sea-
sonal dynamics of GPP across the flux tower sites in various
biomes. Limited number of studies had evaluated radiomet-
ric and biophysical performance of vegetation indices from
the LANDSAT data, probably because of the mismatch of
spatial resolutions between the LANDSAT data and EC flux
towers.

The objective of this study is twofold: (1) to examine bio-
physical performance of vegetation indices in relation to sea-
sonal dynamics of CO2 fluxes; and (2) to develop a practical
approach for upscaling GPP to the landscape scale using EC-
tower data and remote-sensing observations and a recently
developed footprint model (Chen et al., 2009a). Qian Yan
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Zhou (QYZ) EC flux tower (26◦44′48′′ N, 115◦04′13′′ E, and
elevation 102 m) located in Southeast China was selected as
an experiment site.

The EC data measured at this tower and the LANDSAT
and MODIS imagery acquired in 2004 were used in this
study. Firstly, a consecutive series of LANDSAT-like images
of the surface reflectance at an 8-day interval were predicted
by the blending of the LANDSAT and MODIS images us-
ing the Enhanced Spatial and Temporal Adaptive Reflectance
Fusion Model (ESTARFM; Gao et al., 2006; Zhu et al.,
2010); Secondly, footprint climatologies of the QYZ tower
across multi-temporal scales (i.e. daily, weekly, monthly and
annual) were calculated using the Simple Analytical Foot-
print model on Eulerian coordinates (SAFE; Chen et al.,
2008, 2009a); Thirdly, weekly GPP maps at a 30-m reso-
lution were produced using a light-use efficiency modelling
approach (e.g. Xiao et al., 2004) in combination with an op-
timization algorithm using the data-model fusion technique
and footprint modelling; and Finally, these year-round esti-
mates of spatially distributed GPP at a 30-m resolution with
and without optimized parameters were integrated with foot-
print weighting factors to the ecosystem-scale and then com-
pared to that directly derived from EC measurements and
MODIS products.

2 Materials and data preparations

2.1 Site description

As part of the Chinese Ecosystem Research Network
(CERN) and China FLUX network, The QYZ Experimental
Station is located in the subtropical continental monsoon re-
gion, the mean annual air temperature and mean annual pre-
cipitation were 17.9◦C and 1485 mm, respectively, accord-
ing to the long-term records of the adjacent weather station
(1985–2004). Most areas in the same latitude zone as QYZ
around the world are arid steppes or deserts. The warm and
humid environment in QYZ is the result of a unique south-
east monsoon. QYZ is located on a gentle undulating ter-
rain with slopes between the crest and valley of the hill from
2.88 and 13.58◦ (Wen et al., 2006). The QYZ ecological ex-
perimental station was established in 1983, at that time the
area was mainly covered with wild grasslands, shrub lands
and some sparsePinus massoniana. After the experimental
station setup, the land covers of QYZ were changed much
by scientists (Huang et al., 2007). The EC flux tower was
established in late August of 2002. The forest cover reaches
90% in the 1-km2 area surrounding the tower and 70% in the
100-km2 area (Liu et al., 2006). The dominating trees in the
flux footprint area arePinus elliottii, Pinus massonianaand
Cunninghamia lanceolata. The stand characteristics at QYZ
based on a survey made in 2005 (Wen et al., 2006) are shown
in Table 1. According to the field measurements in August
of 2003, the leaf area index (LAI) of the plantation was 4.5

Table 1. Stand characteristics at Qian Yinzhou experiment station
in southeastern China∗.

Stand species Pinus Pinus Cunninghamia Plantation
elliottii massoniana lanceolata time

Tree height (m) 12.6 10.5 10.8 1983
Diameter at breast 0.17 0.13 0.14 1983
height (m)
Tree density (m ha−1) 745 880 102 1983

∗ Data are from a survey made in 2005 (Wen et al., 2006).

(Huang et al., 2007). The understory shrub includes mainly
Loropetalum ChinenseandLyonia compta. The soil is red
soil, which weathered from red sand rocks.

2.2 EC flux tower measured data

Year-round half-hourly flux and meteorological measure-
ments made in 2004 were used in this study. These data
include component C fluxes and sensible and latent heat
fluxes and air temperature (Ta), wind direction (WD), wind
speed (u), standard deviation of wind speed (σu), friction ve-
locity (u∗).

2.2.1 Data processing and quality controls

The half-hourly net ecosystem exchange (NEE) was com-
puted as the sum of EC-measured CO2 flux (Fc, positive
upward) and the rate of change in CO2 storage (Sc) in the
air column from the ground to the EC measurement height,
i.e. NEE =Fc+Sc. Fc was calculated asFc=ρ̄a

¯w′c′, where
ρa is the mean molar density of dry air,̄w′c′ is the covari-
ance of vertical velocity (w, in m s−1) and CO2 molar mix-
ing ratio (c, in µmol mol−1), where the over bar and prime
indicate mean and fluctuation, respectively. A coordinate ro-
tation was applied to bring the mean vertical and horizontal
wind speed components to zero for each half hour. Time
lags, due to sample travel time and adsorption in the sam-
ple line, were determined by maximizing the covariance be-
tweenw andc. Sc was computed as̄ρa

∫
∂
∂t

¯c(z)dz based on
the profile measurement of CO2 molar mixing ratio using the
c̄ measured in the half hours before and after the current half
hour. Net ecosystem productivity (NEP) was calculated as
NEP =−NEE.

Half-hourly data were filtered to exclude high rates of er-
rors in the sonic and IRGA error flags typically attributable to
heavy rainfall. After calibration, quality control procedures
were implemented. Fluxes with statistics that did not fall
within reasonable limits and/or occurred during instrumental
function were removed. We only accepted the half-hourly
NEE measurements under well-mixed conditions indicated
by the friction velocity (u∗) being larger than 0.2 m s−1 dur-
ing nighttime. The valid measured half-hourly NEE cover-
age ratios after applying data quality criteria and removing
the data whenu∗ < 0.2 m s−1 during nighttime for 2004 were

www.biogeosciences.net/7/2943/2010/ Biogeosciences, 7, 2943–2958, 2010



2946 B. Chen et al.: Upscaling GPP to the landscape scale

44.7%, which was slightly lower than typical values (∼50%)
for continuous EC-measurement towers (Falge et al., 2001).

2.2.2 Gap-filling, C flux partitioning, time integration
and uncertainties

The missing half-hourly meteorological data were filled by
the combined look-up table and mean diurnal variation meth-
ods (Reichstein et al., 2005). For short gaps (<2 h), the
missing data were linearly interpolated. Ecosystem respira-
tion (Re) was estimated as NEE during periods when GPP
was known to be zero, i.e., at night and during the cold sea-
son. MissedRe at night and daytimeRe (Red) were estimated
as a function of soil temperature and soil moisture with a
yearly interval (Reichstein et al., 2002),

Re = (b1 + b2 Sw)
[
Rref Q

(Ts−Tref)/10
10

]
, (1)

whereRref, b1 andb2 are fitted parameters,Rref is the respi-
ration rate at a reference temperatureTref (here 10◦C was
used), andSw is the soil water content (m3 m−3) at 5 cm
depth, andTs is the soil temperature (◦C) at 5 cm depth.

GPP then was estimated as NEP +Red (warm season peri-
ods when air temperature> 0◦C) or zero (cold season peri-
ods when air temperature< = 0◦C). Gaps in GPP were filled
using an empirical light response curve, fit to the measured
data. The rectangular hyperbolic model (Hollinger et al.,
1999; Lee et al., 1999; Griffis et al., 2003) was used,

GPP= f (Q,t) = pw
α AmaxQ

α Q + Amax
, (2)

whereQ is photosynthetically active radiation (PAR),α is
the quantum yield,Amax is the light-saturated asymptote for
canopy photosynthetic capacity andpw is a time-varying pa-
rameter that quantifies the fractional departure of GPP from
the mean GPP vs.Q relationship. We evaluated the seasonal
variations inpw, α andAmax by fitting Eq. (2) to measured,
daytime NEP andQ data using a flexible, moving window
of 240 measured (not-missing) data points, moved in incre-
ments of 48 points. The width of the moving window was
typically 7–14 days but increased during periods with sig-
nificant data gaps. Gaps in NEP during the daytime were
filled as the difference between modelledRe using Eq. (1)
and modelled GPP using Eq. (2).

Although the methodology used to fill gaps in NEP and
partitioning NEP intoRe and GPP introduced a small degree
of uncertainty in the absolute magnitudes ofRe and GPP,
sensitivity testing showed that the effects on annual NEP,Re
and GPP were relatively small. We also compared our gap-
filled dataset with one produced using the neural network
method of Papale and Valentini (2003) and found that the
two datasets agreed well.

To assign statistical uncertainties to the annual NEP,Re
and GPP, we first estimate an error distribution for each half-
hour, consisting of (i) instrumentation error calculated via

Table 2. Acquired LANDSAT imagery information for the QYZ
site∗.

Acquired Satellite Dataset
Date

3 Oct 2004 Landsat5 TM
18 Apr 2004 Landsat7 ETM+
23 Jul 2004 Landsat7 ETM+
8 Aug 2004 Landsat7 ETM+
25 Sep 2004 Landsat7 ETM+
11 Oct 2004 Landsat7 ETM+
27 Oct 2004 Landsat7 ETM+
28 Nov 2004 Landsat7 ETM+

∗ The scene path and row are 122 and 041, respectively.

daily difference methods of Hollinger and Richardson (2005)
and Richardson et al. (2006), (ii) error associated with the
model fit forRe and GPP, and (iii) error associated with fill-
ingTs andQ during gaps. These error distributions were then
used to generate different 500 simulations of the NEP time
series, from which confidence intervals were bootstrapped
using the Monte Carlo method (Efron and Tibshirani, 1993).
The range of annual NEP estimation was determined using
one-sampling percentile method and at 95% confidence in-
tervals (C.I.). Random sampling of NEP error populations
was used to determine the uncertainties in the annual sums of
NEP. Year-round data were divided into 24 periods (12 sea-
sons, day and night). The uncertainties for gap-filled half-
hourly NEP were estimated by randomly drawing from the
error population defined by half-hours with valid NEP obser-
vations (NEPobserved− NEPestimated). The mean difference
between observations and estimates was 0 and such random
error in the estimates of annual NEP was found to be within
± 30 g C m−2. The biases for valid half-hourly NEP observa-
tions were also estimated by randomly drawing errors from
a double exponential probability distribution with shape fac-
tors for daytime and nighttime measurements from Richard-
son et al. (2006).

2.3 Satellite remote-sensing data and data processing

2.3.1 Aqusition of LANDSAT and MODIS image data

Seven cloud-free LANDSAT scenes (1 scene of TM and
6 scenes of ETM+, Table 2) acquired between mid-April
and the end of November 2004 were available for the study
site and were acquired through the USGS (US Geological
Survey) GLOVIS portal (http://glovis.usgs.gov/). Addition-
ally, 33 eight-day MODIS composite nadir BRDF-adjusted
reflectance (NBAR) products for both the Aqua (MYD09A1)
and Terra (MOD09A1) platforms acquired in 2004 with a
spatial resolution of 500 m and the corresponding GPP prod-
ucts with a 1-km resolution were obtained from the EOS
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Table 3. Optimized VPM model parameters a subtropical plantation coniferous forest at QYZ, China.

Parameter Parameter Description Units Prior Optimized values

symbols values Range Mean SD∗

ε0 the maximum light use efficiency (µmol CO2/µmol PPFD) 0.032 0.021–0.039 0.027 0.06
G a parameter for computing EVI in Eq. (4) – 2.5 1.7–3.6 2.2 0.59
C1 same as above – 6 4.2–8.6 7.2 1.2
C2 same as above – 7.5 5.0–9.3 6.8 1.6
L same as above – 1 0.6–1.1 0.85 0.07
α a parameter for computingWm Eq. (10) – 1.0 0.79–1.06 1.3 0.05
Tmin the minimum temperature for ◦C 0 −1.5–1.7 −0.5 0.06

photosynthetic activities
Tmax the maximum temperature for ◦C 35 30–45 41 4.6

photosynthetic activities
Topt the optimal temperature for ◦C 20 18–25 24 3.1

photosynthetic activities

∗ Standard deviation.

data gateway of NASA’s Goddard Space Flight Center (http:
//redhook.gsfc.nasa.gov).

2.3.2 Image data corrections

The LANDSAT ETM+ data acquired after the 31 May 2003
Scan Line Corrector (SLC) failure. All of the scenes with
SLC− off were gap-filled following the gap-fill algorithm
developed by the USGS Earth Resources Observation Sys-
tems (EROS) Data Center (EDC), which is available athttp:
//landsat.usgs.gov/documents/L7SLCGapFilledMethod.pdf.
The LANDSAT imagery was georeferenced and atmo-
spherically corrected using the cosine approximation model
(COST) of Wu et al. (2005) and radiometrically normalized
following the method of Hall et al. (1991) with respect to the
2004 imagery in order to simplify the data comparison. The
MODIS data were reprojected to the Universal Transverse
Mercator (UTM) projection using the MODIS reprojection
tool (Kalvelage and Willems, 2005), clipped to the extent of
the available LANDSAT imagery, and resampled to a 30-m
spatial resolution using a nearest neighbour approach.

2.3.3 Blending of LANDSAT and MODIS data to
predict consecutive LANDSAT-like imagery
at an 8-day interval

LANDSAT imagery at a 30-m spatial resolution is well-
suited for characterising landscape-level forest structure and
is ideal for comparison of C fluxes derived from satellite-
borne and EC data with assistance of flux footprint anal-
ysis (Chen et al., 2009a). Its 16-day revisit-cycle, how-
ever, generally lengthened by cloud contamination (Ju and
Roy, 2007), can limit LANDSAT’s use for monitoring bio-
dynamics (Ranson et al., 2003; Roy et al., 2008). At the
QYZ site, for instance, there were only 7 scenes available in
2004, which were not sufficient for studying the seasonality

of GPP. In contrast, MODIS has a higher temporal resolu-
tion and coarser spatial resolutions. Combination of LAND-
SAT and MODIS data is able to capitalize on the spatial de-
tail of LANDSAT and the temporal regularity of MODIS
acquisitions. In this research, the LANDSAT (see Table 3,
bands 2, 3 and 4) and MODIS (bands 1, 2 and 3) acquired
in 2004 were blended using the ESTARFM model (Gao et
al., 2006; Zhu et al., 2010) in a 30 km× 30 km area centred
at the QYZ tower. Reflectance data for the selected MODIS
channels with a 500-m resolution were resampled to a 30-m
resolution image and were then fused with the LANDSAT
data to produce 33 synthetic LANDSAT-like images with an
8-day interval encompassing the 2004 growing season. No
significant difference between real (observed) and synthetic
(predicted) reflectance values was found by comparing, on
a channel-by-channel basis, the surface reflectance values of
seven real LANDSAT images with the corresponding clos-
est date of synthetic LANDSAT imagery. Similarly, a pixel-
based regression analysis shows that predicted and observed
reflectance values for the seven LANDSAT dates were highly
correlated (meanr2 = 0.71 for the NIR band;r2 = 0.56 for the
red band;p < 0.01).

2.4 Vegetation indices used in photosynthesis modelling

A number of vegetation indices have been developed for
broad-waveband optical sensors which, used in this study,
include the Enhanced Vegetation Index (EVI), the Normal-
ized Difference Vegetation Index (NDVI) and the Land Sur-
face Water Index (LSWI). NDVI (Tucker, 1979; Field et al.,
1995) was calculated as,

NDVI = (ρnir − ρred)/(ρnir + ρred), (3)

whereρnir, andρred are the reflectance in the near infrared
and red bands, respectively. NDVI is generally related to
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Fig. 1. Flow diagram of the GPP upscaling algorithm based on LANDSAT and EC tower data.

green vegetation cover or vegetation canopy density and
has been shown to be well correlated with green LAI and
biomass (e.g., Sellers, 1985; Myneni et al., 1995).

EVI is similar in design to NDVI but uses spectral in-
formation from the blue band (ρblue). Following Huete et
al. (1997) it was computed,

EVI = G×(ρnir−ρred)/(ρnir+C1×ρred−C2×ρblue+L) (4)

whereG = 2.5,C1 = 6, C2 = 7.5, andL = 1. EVI is found to
be significantly correlated with the fraction of the photosyn-
thetically active radiation absorbed by leaf chlorophyll in the
canopy providing a good surrogate of the spatial variability
index for photosynthesis rate.

LSWI (Xiao et al., 2002) is a useful water index and was
calculated as the normalized difference between the NIR
(0.78–0.89 µm) and AWIR (1.58–1.75 µm) spectral bands:

LSWI = (ρnir − ρswir)/(ρnir + ρswir), (5)

where ρnir and ρswir are the reflectance of near infrared
bands, red bands and short infrared bands, respectively.

The produced consecutive LANDSAT-like predictions of
surface reflectance with an 8-day interval at an area of
30 km× 30 km centred at the QYZ tower in 2004 (totally
33 scenes) were used to derive these three vegetation indices.

3 Approach

3.1 Upscaling framework using data-model fusion
technique and processing steps

An algorithm for estimating landscape and regional C fluxes
(e.g. GPP) includes the following four steps (Fig. 1): (i) A
satellite-based vegetation photosynthesis model (VPM; Xiao
et al., 2004) was adopted to produce GPP maps at a 30 m
resolution using LANDSAT and climate data measured at
the EC tower; (ii) EC flux footprints for the correspond-
ing LANDSAT-like imagery available periods (an 8-day in-
terval) were calculated using a recently developed footprint
model (SAFE; Chen et al., 2009a); (iii) By assuming the

footprint integration of remotely sensed GPP to be com-
parable with the EC-derived GPP values, several key pa-
rameters of the satellite-based VPM model were optimized
using the data-model fusion technique; and (iv) The up-
dated/optimized satellite-based VPM was applied to estimat-
ing landscape/regional GPP, which was compared/validated
with other satellite data (e.g. MODIS products).

3.2 Brief description of the adopted VPM model

Satellite-based studies have used the light-use efficiency (ε)
approach to estimate GPP (Prince and Goward, 1995; Run-
ning et al., 2000, 2004; Behrenfeld et al., 2001) or net pri-
mary production (NPP) (Field et al., 1995; Ruimy et al.,
1999). Significant effort and progress have been made in de-
veloping the satellite-based GPP algorithms (Running et al.,
2004; Xiao et al., 2004, 2005). Similar to the MODIS GPP
algorithm (Running et al., 2004) and the VPM model (Xiao
et al., 2004), the algorithm (Fig. 2) used in this study re-
lies on the light-use efficiency (ε) approach relating GPP to
the amount of absorbed photosynthetically active radiation
(APAR) (Monteith, 1966, 1972) such that,

GPP= ε × f PARchl × PAR, (6)

where PAR is the photosynthetically active radiation (in µmol
photosynthetic photon flux density, PPFD),f PARchl is the
fraction of PAR absorbed by leaf chlorophyll in the canopy,
and ε is the light use efficiency (µ mol CO2/µmol PPFD).
Light use efficiency (ε) is affected by leaf phenology, tem-
perature, and water:

ε = ε0 × Pm × Wm × Tm, (7)

whereε0 is the apparent quantum yield or maximum light
use efficiency (µmol CO2/µmol PPFD) for a given land cover
type or vegetation function type, andPm, Wm andTm are the
modifiers for the effects of leaf phenology, water and tem-
perature on light use efficiency of vegetation, respectively.

Different parameters and inputs for the satellite-based al-
gorithm were estimated in different ways: (i) the fraction of
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Fig. 2. Flow diagram of the major processing steps of the LANSAT-
based GPP algorithm. The definitions of symbols and abbreviations
are given in text.

PAR absorbed by leaf chlorophyll in the canopy (f PARchl)
and the modifiers (Pm, Wm) were estimated using the syn-
thetic LANDSAT-like imagery data; (ii) PAR and tempera-
ture modifier (Tm) were calculated using climate data (either
from tower measurements or climate models); and (iii) the
maximum light use efficiency (ε0) was referred to the land-
cover-related look-up table and then modified/optimized us-
ing EC tower C measurements and footprint climatology.

To accurately estimatef PARchl in forests is a challenge
to both radiative transfer modelling and field measurements.
Significant efforts and progress have been made in develop-
ing advanced vegetation indices that are optimized for the
retrieval off PAR from individual optical sensors (Gobron et
al., 1999; Govaerts et al., 1999). In this study, thef PARchl
within the photosynthetically active period of vegetation was
estimated as a linear function of the EVI,

f PARchl = f (EVI). (8)

The parameterPm was estimated using the NDVI and the
LSWI and is calculated at two different phases, depending
upon the life expectancy of leaves (deciduous versus ever-
green):

Pm=

{
1+LSWI

2 During bud burst to leaf full expansion
1 After leaf full expansion

. (9)

The timings of bud burst and leaf full expansion can be
identified using NDVI. The effect of water on plant photo-
synthesis (Wm) has been estimated as a function of available
soil content in the plant root zone and water vapour pressure
deficit (VPD) in a number of process-based ecosystem mod-
els (e.g. Chen et al., 2007) and remote-sensing based models
(e.g. Running et al., 2000). Soil moisture represents water

supply to the leaves and canopy, and VPD represents evap-
ourative demand in the atmosphere. Leaf and canopy wa-
ter content is largely determined by the dynamics of both
soil moisture and VPD. As the first order of approximation,
here following the alternative and simple approach that uses a
satellite-derived water index (Xiao et al., 2004), the seasonal
dynamics ofWm was estimated,

Wm = α × (1 + LSWI)/(1 + LSWImax), (10)

where α is a magnifier (its default value equals 1.0) and
LSWImax is the maximum LSWI within the plant growing
season for individual pixels. The temperature modifierTm
was estimated at each time step, using the equation devel-
oped for the terrestrial ecosystem model (Raich et al., 1991),

Tm =
(T − Tmin)(T − Tmax)

[(T − Tmin)(T − Tmax)] −
(
T − Topt

)2
, (11)

whereTmin, Tmax andTopt are the minimum, maximum and
optimal temperature for photosynthetic activities, respec-
tively. Their default values are respectively set to be 0, 35 and
20◦C in this study. If air temperature falls belowTmin, Tm is
set at zero.

Theε0 values vary with vegetation types and the informa-
tion aboutε0 for individual vegetation types can be obtained
from a survey in the literature (Ruimy et al., 1995) and opti-
mized using EC tower measurements. According to the work
(Zhang et al., 2006), the defaultε0 value was estimated to be
0.032 µmol CO2/µmol PPFD in this study stand in 2004.

3.3 Modelling daytime footprint and footprint
climatology

We used the SAFE footprint model (Chen et al., 2009a),
based on two-dimensional Eulerian advection-diffusion
equation (Horst and Weil, 1992), to compute the footprint
function. Both atmospheric stability and the wind velocity
power law above the canopy are taken into account in the
model, allowing it to be applicable to all conditions of at-
mospheric stability. The detailed description of the footprint
model and the footprint climatology calculations can been
found in Chen et al. (2009a).

The inputs of the footprint model include the EC sensor
height (hm), canopy height (hc), roughness length (z0), fric-
tion wind speed threshold for EC flux calculation (uth

∗ ), and
half-hourly meteorological variables (WD,u, σu andu∗) and
sensible and latent heat fluxes measured at the EC sensor
height. Values ofhm, hc, uth

∗ and z0 for the QYZ site are
39.6 m, 13 m, 0.2 m s−1 and 0.1 m, respectively.

The flux footprints were calculated at a grid size of
30 m× 30 m (consistent with the LANDSAT spatial resolu-
tion) covering the area (domain) centred on the towers of
6 km×6 km. The model was run at half-hourly time steps
during daytime when photosynthesis is on. The daytime
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half-hourly footprintf (x,y) was rotated along the wind di-
rection and accumulated to yield footprint climatology at 8-
day intervals and at monthly and annual time steps,φ (x,y).
The total footprint8 =

∫ ∫
�5

φ dxdy within the model do-

main (�5) was normalized to equal 1. The calculated foot-
print provides a map of the contribution for the area around
the tower to the integral EC-measured flux component.

3.4 Optimizing the VPM model’s parameters

The EC technique is based on measurements of turbulent
fluctuations of the vertical velocity and the concentration of a
passive tracer. The EC flux tower measured flux (e.g. GPP),
representing an integrated flux over its footprint area (typ-
ically 1–3 km2), is unable to simply compare with the re-
motely sensed GPP based on the LANDSAT (30-m resolu-
tion) or MODIS (1-km resolution) images because their spa-
tial scales do not match. We first up-scale the GPP field at
a 30-m resolution derived from LANDSAT to the ecosystem
scale and then minimize the differences between the mod-
elled and EC-measured GPP using a data-model fusion algo-
rithm to optimize the adopted VPM model’s parameters.

3.4.1 Scaling of remotely sensed GPP to the ecosystem
scale

The ecosystem-scale overall GPP (FGPP,rs) was up-scaled
from the spatial distributed 30-m GPP field (FGPP,rs),

FGPP,φ =

∫ ∫
�5

FGPP,rs (x,y) φpure (x,y) dxdy, (12)

whereφpure is the pure footprint and�5 is the upwind foot-
print source area for the accumulative footprint percentage
of 99%. The footprint functionφpurewas estimated using the
SAFE model andFGPP,rs was estimated from the data-fused
LANDSAT-like images using the adapted VPM model and
both of them were at a 30-m resolution. The footprint inte-
gratedFGPP,φ matches the scale of the EC derived GPP.

3.4.2 Model parameter optimization algorithm

The Ensemble Kalman filter (EnKF) data-model assimilation
technique, known as a stochastic-dynamic system, was used
in this study. The optimum values of the model parameters,
therefore, are assumed to correspond to the minima of the
cost functionJ (x) (Tarantola, 1987),

J (x) =
1
2

[
(O − Y (x))T C−1

o (O − Y (x)) (13)

+ (x − xb)
T P−1

b (x − xb)
]
,

wherex is the vector of unknown parameters andxb is the
a priori values ofx, O is the vector of observations (i.e. EC
derived GPP),Y is the nonlinear model (VPM). The covari-
ance matricesCo andPb describe a priori uncertainties on

observations and on parameters, respectively. Both matrices
are diagonal as we assume these two kinds of uncertainties
to be independent. The model parameters for MODIS and
LANDSAT were respectively optimized using Eq. (13) by
settingY (x) to be the VPM simulated GPP at the MODIS
pixel which contains the QYZ tower and to be the footprint
integrated GPP from the modelled GPP field based on the
synthetic LANDSAT-like images using Eq. (12). Following
Diego et al. (2007), we adopted a gradient-based algorithm
which converges more rapidly than standard Monte-Carlo
methods to solve Eq. (13) for optimizing model parameters,
typically converging to a minimum ofJ (x) within 100 iter-
ations. Nine parameters of the VPM model were optimized
for each MODIS scene and synthetic LANDSAT-like scene
(Table 3) such that the parameters are allowed to vary sea-
sonally with a temporal resolution of approximately 8 days.

3.5 VPM model verification and comparison

GPP fields over a 30 km× 30 km region centred at the QYZ
tower were estimated from all the 33 MODIS reflectance
images (500 m resolution) and the synthetic LANDSAT-
like scenes (30 m resolution) in 2004, respectively, using
the adopted VPM model in two scenarios: with default
static parameters (the priori values in Table 3) and with
the optimized parameters which varied seasonally. The cal-
culated 8-day footprint climatologies overlain on the re-
spective LANDSAT GPP maps and the ecosystem-level
GPP values were estimated using Eq. (12). The footprint
integrated LANDSAT GPP values (VPM estimated with
both optimized and non-optimized parameters) were vali-
dated/compared with the EC derived GPP and also compared
with the MODIS GPP products and the predicted GPP using
the optimized VPM model for the pixel which contains the
QYZ tower. The MODIS GPP values used in this study were
the averages of the 8-day composite GPP values acquired
from the Terra and Aqua platforms because their acquired
time (descending node) over the QYZ site were 10:30 and
13:30 LT (local time), respectively. The MODIS GPP fields
at a 1-km resolution were re-sampled to a 30 m resolution for
comparison with modelled LANDSAT GPP using VPM at a
30-m resolution.

Linear regression analysis between the EC measured GPP
and the remotely sensed GPP was chosen to test the op-
timized VPM model behaviour. Root mean square error
(RMSE) was used to estimate the model errors. The sig-
nificant levels of differences between two data series were
detected usingt-test.

4 Results

4.1 Seasonal variations in C fluxes

As shown in Fig. 3, NEP, GPP andRe exhibited significant
seasonal variability. Photosynthesis was active through the
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Fig. 3. Five-day ensemble means of CO2 component fluxes for the
year of 2004 measured at the Qian Yinzhou flux tower in an ever-
green needleleaf forest, China. Measured net ecosystem productiv-
ity (NEP) was partitioned into gross primary productivity (GPP) and
ecosystem respiration (Re) using procedures described in Sect. 2.2.

year, exhibiting high rates during May to September and
showing low rates subjected to drought events.

4.2 Variations in seasonal footprint climatology

Figure 4 shows the pure mean monthly daytime footprints
and the corresponding cumulative footprint contours for ev-
ery other month in 2004 for QYZ. Most months showed el-
liptical shapes of the footprint distributed along the NNW-
SSE prevailing wind directions while the seasonal variations
in size and orientation of footprint for QYZ were obvious.
The areas of 90% cumulative footprints were less than 1 km2

in the winter months whilst as large as 2.5 km2 in the summer
months.

4.3 Comparing estimated values of remotely sensed and
EC derived GPP

The remotely sensed weekly mean GPP maps at a 30-m res-
olution were produced based on the synthetic LANDSAT-
like imagery data using the VPM model in two scenarios.
Figure 5 shows a comparison between annual mean GPP
maps estimated using VPM with static default parameters
(Fig. 5a) and with optimized dynamic parameters (Fig. 5b)
and MODIS products (Fig. 5c: average of Aqua and Terra).
The GPP fields at a 30-m resolution were up-scaled to the
ecosystem scale by overlaying the weekly footprintφpure us-
ing Eq. (12). The regression analysis results of remotely
sensed (up-scaled from the spatially distributed 30-m GPP
fields predicted by VPM with static default and optimized
dynamic parameters and MODIS products and predicted

Table 4. Characteristics of linear regression analysis (y=ax+b) of
8-day averaged values of remotely sensed GPP versus that of EC-
derived GPP.

LANDSAT LANDSAT MODIS MODIS

default optimized default optimized
R2 0.88 0.92 0.70 0.90
RMSE 2.24 1.18 2.38 1.41
(g C m−2 day−1)
Bias (%)a 43.51 22.92 46.23 27.39
p value <.0001 <.0001 <.0001 <.0001
(one-tailed)
Intercept (b) −6.30 −4.16 −1.12 −4.92
Slope (a) 1.70 1.21 0.70 1.38

a The comparative model bias (%) was estimated as RMSE/Mean× 100% and the EC-

derived mean daily GPP in 2004 at QYZ site was 5.15 g C m−2 day−1.

GPP using MODIS imagery data with optimized VPM) ver-
sus the EC-derived weekly ecosystem-scale GPP are shown
in Fig. 6 and Table 4. MODIS GPP products explained
60% of observed variations of GPP but apparently underes-
timated EC-derived GPP (slope = 0.7). The VPM predicted
MODIS GPP at the tower’s pixel with the optimized param-
eters can explain 90% of the EC derived GPP but with a
large RMSE value of 1.41 g C m−2 day−1. The VPM pre-
dicted LANDSAT GPP with the static default parameters
explained 88% of the variations of GPP but overestimate
EC-derived GPP (slope = 1.7). The VPM model with opti-
mized parameters significantly improved the GPP estimates
(RMSE decreasing from 2.24 to 1.18 g C m−2 day−1, the dif-
ference between these two estimates was significant, student-
testp < 0.001, Table 4).

Figure 7 compares the seasonal dynamics of these four dif-
ferent remote estimates of ecosystem-scale GPP with the EC
derived GPP. The remotely sensed GPP reasonably captured
the seasonal variations of observed GPP. During winter time
(when GPP< =∼3 g m−2 day−1), the remote-sensing algo-
rithms underestimated the measured GPP, while the MODIS
products underestimated the EC-derived GPP through the
year. The estimation of MODIS GPP using the VPM
model with optimized dynamic parameters was improved
with the default static parameters during warmer months
(i.e. when the EC-derived GPP>=∼4 g m−2 day−1). The
non-optimized VPM model using the LANDSAT data over-
estimated the observed GPP from April through to Septem-
ber (when GPP>=∼7 g m−2 day−1). The optimization of
VPM with the combining footprint and data-model assimila-
tion algorithm reduced the differences between the remotely
sensed GPP and the EC-derived GPP.

The annual total GPP values in 2004 at the ecosystem
scale were 1879, 1751, 1979, 1763 and 1361 g C m−2 yr−1

for the EC-derived, predicted using LANDSAT data with and
without optimization and the tower pixel’s GPP of MODIS
with and without (products) optimization, respectively.
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Fig. 4. Mean monthly daytime pure footprints and the corresponding cumulative footprint contours for every other month in 2004 for the
QYZ flux tower in an evergreen needleleaf plantation, China.

The difference in estimated annual GPP between with
and without optimization was 228 g C m−2 yr−1 (=∼−12%
of the observed annual GPP of 1879 C m−2). We note
that the overall annual bias of the non-optimized VPM
model was smaller than that of the optimized model (100
vs. −128 g C m−2 yr−1) due to the modelling error com-
pensation of the overestimation during summer months
while underestimation during winter months using the non-
optimized VPM model (see Fig. 7).

Figure 8 shows the differences in estimated GPP be-
tween without and with the optimized footprint integrated
algorithm (non-optimized – optimized) using the synthetic
LANDSAT-like images in 2004 over a 30 km× 30 km re-
gion centered at QYZ. The estimated GPP values with the
optimized VPM model were systematically lower than that
without optimization and their differences varied from 0 to
371 g C m−2 yr−1 with large spatial variations.
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a b

c

Fig. 5. Remotely-sensed annual total gross primary production (GPP) map for 2004 at a 30-m resolution over a 30 km×30 km region centred
at the QYZ tower modelled using VPM with default(a) and optimized(b) parameters. The MODIS products at 1-km resolution are also
shown for comparison.

Figure 9 shows the spatial variations in the differences
of the estimated annual GPP between derived from LAND-
SAT and MODIS (LANDSAT – MODIS) over the same
region as Fig. 8. The differences of annual GPP be-
tween LANDSAT and MODIS (LANDSAT – MODIS) var-
ied from about−75% to 125% of observed GPP (=−1400 to
2400 g C m−2 yr−1). The estimated GPP values from LAND-
SAT were larger than that from MODIS in the north area
to the tower while lower in the south-east area to the tower
(Fig. 9).

5 Discussion

The performance of a new algorithm based on the advanced
vegetation indices using the LANDSAT data was evaluated
with assistance of a footprint model. A good agreement be-
tween predicted with optimized parameters and EC measured
weekly GPP in 2004 in an evergreen needleleaf forest at QYZ
(R2 = 0.92,p < 0.001, Fig. 6) indicates that there exist a good
quantitative relationship between the LANDSAT vegetation
indices and CO2 flux data, in terms of the seasonal phase and
magnitude of photosynthesis. However, the discrepancies
between remotely sensed and EC-derived daily GPP are still
large (∼22.9%), especially in winter and in summer when
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Fig. 7. A comparison of the seasonal dynamics between the ob-
served and remotely sensed gross primary productivity (GPP) in
2004 in an evergreen needleleaf forest at QYZ, China. The inset
shows the cumulative curves of the five estimations of GPP from
the beginning to the end of the year 2004.

photosynthesis was suppressed by drought (Fig. 7). Those
discrepancies may be attributed to three sources of errors.
The first source is errors in the time-series data of vegeta-
tion indices from LANDSAT satellite images. We used the
synthetic weekly LANDSAT-like data that have no BRDF
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correction or normalization and, thus, the effect of angular
geometry on surface reflectance and vegetation indices re-
mained. The predicted and observed reflectance values were
significantly correlated, however, the former can only ex-
plain the variance of the latter about 71% for the NIR band
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and 56% for the red band. EVI is a semi-empirical mathe-
matic transformation of observed reflectance from individual
spectral bands (blue, red and NIR) of optical sensors (Huete
et al., 2002). The second source is the biases in footprint
climatology estimates, which will lead to uncertainty in the
optimization of VPM model’s parameters and transfer errors
to the scaled ecosystem-level GPP. SAFE applies to most
conditions of atmospheric stability because its mathematical
framework is a stationary gradient diffusion formulation with
height-independent crosswind dispersion and the assumption
of independence of vertical and crosswind dispersion allows
the reduction of the continuity equation to a two-dimensional
advection-diffusion equation. Kljun et al. (2003) reported
a model comparison result showing that in stable or neutral
conditions, when the mean plume height was low, the ana-
lytical models tend to be biased with a long tail, shorter peak
value and the peak location farther from the receptor. To
avoid the model biases resulting from this limitation of the
analytical model, the source area�5 is considered to be all
of the grids (cells) that havef (x,y,zm) larger than the cut-
off point, where a given cumulative fraction5 (e.g. 95%,
or 97%) is achieved (Chen et al., 2009a). The biases in
footprint climatology estimation using SAFE approximated
within 5% by model comparison. The third source is the
errors in EC-derived GPP. The EC measurements themselves
are not free from error. The partitioning of NEE into its com-
ponent fluxes (i.e. GPP andRe) has large uncertainties (Falge
et al., 2001; Chen et al., 2009b). The two major steps to de-
rive GPP are the gap filling of NEE and estimation of day-
time ecosystem respiration, and both of them carried on un-
certainties. The random error in the estimates of annual NEP
at QYZ was found to be within± 30 g C m−2 using multiple
assessing methods. In summary, the biases in estimated GPP
at the landscape scale may be mainly led by the uncertainties
associated with the blended weekly LANDSAT-like data be-
cause of the limited data availability of LANDSAT and the
limitation of the ESTRFM model.

MODIS products underestimated annual GPP by 25–30%
while the VPM model with default static parameter over-
estimated GPP during the growing season about 20–25%.
Their biases in daily GPP estimation (RMSE) were 2.38 and
1.18 g C m−2 day−1 (Table 4), respectively. The bias in GPP
estimates at daily time scale using the optimized VPM model
with assistance of footprint analysis decreased from 2.24
(non-optimized,∼43.5% of mean measured daily value) to
1.18 g C m−2 day−1 (optimized,∼22.9% of mean measured
daily value). The optimized VPM model significantly im-
proved the GPP estimation may be mainly attributed to the
sensitivity of the remote-sensing algorithm to seasonality of
PAR andTm and the parameters in EVI calculation (Eq. 4).
The parameters for estimatingTm in Eq. (11), Tmin, Tmax
and Topt are vegetation-type and climate-zone dependent,
and may vary with different seasonal phases. In the mod-
elling scenario without optimized parameters, we simply as-
sume those parameters have no seasonal variations. This may

lead to ill parameterization ofTm, such as over-corrected
(smaller values ofTm) during the low-temperature periods
while under-corrected (larger values ofTm) during the high-
temperature periods (see Fig. 7).

It is worthy to notice that the footprint integrated LAND-
SAT GPP with optimized parameters is significantly different
from estimated MODIS GPP at the tower’s pixel using the
VPM model with the same optimization algorithm (Fig. 7).
This mainly reflects the high land surface heterogeneity (in-
cluding land cover types, vegetation indices, etc.) within the
EC flux footprint area. The EC flux footprint is generally
less than 1–3 km2 and varies depending on the wind speed,
wind direction and the atmospheric stability. The spatial res-
olutions of MODIS (pixel sizes at nadir vary from 250 m
to 1 km for different channels) are apparently too coarse for
linking the estimated MODIS C fluxes to the EC measured
C fluxes. Caution should be taken in comparing the esti-
mated MODIS GPP with the EC-derived GPP (e.g. Xiao
et al., 2004) because of mismatch between them in spatial
scales. A good agreement between the MODIS annual GPP
at the tower’s pixel and the EC derived GPP does not imply
that the modelled or upscaled landscape/regional GPP using
MODIS imagery data has high accuracy. We obtained higher
accuracy in predicted daily GPP based on LANDSAT im-
agery data at a 30-m resolution than MODIS data at a 500-
m resolution (Table 4) with the same model-parameter opti-
mization algorithm (Eq. 13). We, therefore, concluded that
the LANDSAT imagines with a 30-m resolution are ideal for
optimizing the satellite-based models (e.g. VPM) from EC
data with assistance of flux footprint analysis (Chen et al.,
2009a) and consequently the optimized models can be fur-
ther used to extrapolate the EC measured C fluxes to land-
scape/regional scales. The optimized parameters of VPM
with EC measurements made at the QYZ tower are appro-
priate for similar climate regions with the same dominant
vegetation type of evergreen conifer. However, they may not
be suitable for other ecoregions or other vegetation types be-
cause different vegetation types generally have markedly dif-
ferent functional (e.g. photosynthetic) processes. The algo-
rithm developed in this study for upscaling GPP to the land-
scape and regional scales based on EC-tower measurements
and LANDSAT and MODIS imagery may be applicable to
most of the world-widely distributed EC flux towers (current
more than 500 EC towers across the globe). Its application
to other tower sites may need to be further examined, and it
would also be useful to cross-verify with other independent
upscaling methods (e.g. top-down estimations based on CO2
concentration measurements).

The maximum light use efficiency (ε0) is the basis for the
remote-sensing based algorithms or models and the accu-
rate estimating ofε0 is one of the key steps for using the
satellite data to estimate either GPP or NPP (Running et al.,
1999). In nature,ε0 is determined by many biological and
biophysical factors and soil nutrient conditions. Much atten-
tion should be given to the variability ofε0 among vegetation
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types across a heterogeneous landscape (Li et al., 2007).
Sinceε0 differs significantly among vegetation types, these
differences should be accounted for when estimating GPP
using remotely sensed data. These globally available EC
datasets provide investigators with opportunities to estimate
the ecosystem-scale photosynthetic (includingε0) and respi-
ratory parameters. A widely-used method for those param-
eter estimations is the Michaelis-Menten approach (Falge et
al., 2001). Caution is advised when we apply the EC-derived
ε0 to remote-sensing-based algorithms for GPP estimates be-
cause: (i) there are large uncertainties in the EC-derivedε0;
(ii) the values of EC-derivedε0 vary seasonally and inter-
annually; and (iii) the EC-derivedε0 represents the EC flux
footprint area, whose sizes and orientations vary with time, in
other words, the spatial representation of the EC-derivedε0
is normally different from the satellite image pixels. Making
use of the satellite data with fine resolution (e.g. LANDSAT
data) to estimate GPP, flux footprint modelling should be
involved to optimize the remote-sensing-based algorithms’
parameters, such asε0, Tm, etc. These optimized parame-
ters can then be transfered to the applications of other satel-
lite images with coarse resolution (e.g. MODIS) by apply-
ing data-model fusion techniques. Combining vegetation in-
dices (e.g. EVI, LSWI) from different multi-temporal/spatial
satellite sensors’ data, climate data (PAR, temperature), op-
timized ε0 parameter for individual vegetation types, and
flux footprint modelling and data-model fusion, the remote-
sensing-based algorithms is a powerful tool for estimating
landscape/regional or global GPP.
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