
Biogeosciences, 7, 3177–3186, 2010
www.biogeosciences.net/7/3177/2010/
doi:10.5194/bg-7-3177-2010
© Author(s) 2010. CC Attribution 3.0 License.

Biogeosciences

Percolation properties of 3-D multiscale pore networks:
how connectivity controls soil filtration processes

E. M. A. Perrier 1, N. R. A. Bird2, and T. B. Rieutord3

1UMI UMMISCO, Centre IRD Ile de France, and RNSC (French National Network for Complex Systems),
Bondy Cedex, 93143, France
2Department of Soil Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
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Abstract. Quantifying the connectivity of pore networks is a
key issue not only for modelling fluid flow and solute trans-
port in porous media but also for assessing the ability of soil
ecosystems to filter bacteria, viruses and any type of living
microorganisms as well inert particles which pose a contam-
ination risk. Straining is the main mechanical component of
filtration processes: it is due to size effects, when a given
soil retains a conveyed entity larger than the pores through
which it is attempting to pass. We postulate that the range of
sizes of entities which can be trapped inside soils has to be
associated with the large range of scales involved in natural
soil structures and that information on the pore size distri-
bution has to be complemented by information on a critical
filtration size (CFS) delimiting the transition between per-
colating and non percolating regimes in multiscale pore net-
works. We show that the mass fractal dimensions which are
classically used in soil science to quantify scaling laws in ob-
served pore size distributions can also be used to build 3-D
multiscale models of pore networks exhibiting such a criti-
cal transition. We extend to the 3-D case a new theoretical
approach recently developed to address the connectivity of 2-
D fractal networks (Bird and Perrier, 2009). Theoretical ar-
guments based on renormalisation functions provide insight
into multi-scale connectivity and a first estimation of CFS.
Numerical experiments on 3-D prefractal media confirm the
qualitative theory. These results open the way towards a
new methodology to estimate soil filtration efficiency from
the construction of soil structural models to be calibrated on
available multiscale data.
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1 Introduction

Filtration of impure water by soils has been studied from
many points of view and at many different scales. Filtration
processes involve several biological, chemical, and physical
mechanisms which are directly or indirectly linked to pore
sizes and whose exhaustive study is far beyond the scope
of the present paper. In the present paper we will not ad-
dress all the components of filtration processes, but only the
straining component. “Straining is a matter of particle size
alone, with the particle either larger or smaller than the pore
through which it is attempting to pass” (AFS, 2009). Brad-
ford et al.(2006, 2009) report recent experimental evidence
that indicates that straining may explain many of the reported
limitations of former filtration theories that did not include
the potential influence of physical factors such as soil pore
size distribution and surface roughness and that the latter can
play an important role in colloid deposition and microbe re-
tention.

Our objective is to propose a new model of straining ef-
ficiency based on the knowledge of the multiscale nature of
the pore size distribution observed in many soils, and on new
developments on percolation properties in multiscale pore
networks (Bird and Perrier, 2009). We will consider in this
methodological paper any type of particles so-called “con-
taminant entities” that we would like to trap inside the soil
(bacteria, viruses, fungi, any type of colloid, etc.).

A first approach to straining processes could be
monoscale. Let us consider a simplified, water-filled porous
medium, with pores of a given linear sizer: entities of size
bigger thanr will not be allowed to enter the soil (surface
filtration) whereas all entities of size smaller thanr can po-
tentially be dispersed by water inside the soil. If there exists
a path for water to percolate through the network of pores of
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sizer, and if we neglect clogging processes, the same paths
will allow water flow and the convective transport of entities
through the soil. Conversely if no path occurs, the porous
medium will become not only a perfect filter for all entities
(depth filtration) but also impermeable to water flow.

More realistic models of depth filtration (Price et al., 2009)
account for the irregular 3-D geometry of the pore space, by
introducing large pores and small throats. McGechan (2002)
also introduces a broad range of pore sizes whose distribu-
tion is derived from hydrodynamical properties, in a mathe-
matical model, and he concludes that large entities filtered by
straining might be very rare. On the contrary,Bradford and
Bettahar(2005) consider from experimental grounds “that
straining may play a much more significant role than pre-
viously thought”.

In real soils, visualisation techniques can give some in-
formation at observable scales. In their review,Keller and
Auset(2007) report recent results obtained at the pore scale
which show that some filtration processes are colloid-size de-
pendent (the reduction in pathways for biocolloids as a func-
tion of their size lead to earlier breakthrough) and some other
ones may be flow-velocity dependent (one observes that the
largest entities are located in the central flow streamlines and
the smallest at the interfaces) contrary to previous knowl-
edge. Let us note that the velocity of fluid flow depends
in turn on the pore size distribution and on the connectiv-
ity of the pore network.Keller and Auset(2007) conclude
that the interception of biocolloids by the porous media are
so far poorly understood at the microscopic scale despite the
increasing power of observation techniques during the last
decade.

In the present theoretical paper, we will neglect all dynam-
ical properties of filtration processes to focus on the link be-
tween the size of filtered entities and the size of pores, using
a simple percolation model in a new, multiscale approach.

It is well-known that the range of pore sizes occurring
in most soils is very large, and fractal geometry has been
widely used to quantify a pore size distribution by means of
a power-law function with few parameters: e.g. the largest
pore size and a fractal dimension in a mass fractal model
(e.g. Rieu and Sposito, 1991; Perrier et al., 1996; Bird and
Dexter, 1997). The range of living or inert “entities” which
can be encountered in soil ecosystems is of the same order
of magnitude for obvious geometrical reasons (Marilleau et
al., 2008; Blanchart et al., 2009). By the way let us note that
McGechan(2002) wrote: “The fractal approach may have
the potential to indicate irregularities in pore shape which
will restrict colloid movement, but such a procedure has not
so far been attempted.” Let us also note that the irregularity
of the pore-solid boundary is well described by mass frac-
tal models, where the actual “geometrical fractal object” is
the fractal interface of dimensionD, and the so-called “frac-
tal pore size distribution” is a mere power-law distribution
whose exponent depends onD (Perrier et al., 1999).

The knowledge of the pore size distribution alone
(e.g. from 2-D image analysis) is not enough to predict soil
hydraulic properties: water flow strongly depends on the con-
nectivity of the 3-D network made of interconnected pores of
different sizes (Perrier et al., 1995; Bird and Dexter, 1997).
In the same way, the knowledge of soil depth filtration prop-
erties requires an estimation of available pathways inside
soils (Price et al., 2009).

The issue can be considered as a double connectivity is-
sue. Water will percolate through a soil sample if there exists
a continuous path connecting one side to the opposite one.
Entities will be filtered by the soil sample if there exists no
continuous path of sufficiently large pores connecting their
entrance location to the exit one. The critical size for filtra-
tion (CFS) will be defined as the size of the largest contam-
inant entities which will not be trapped in the soil because
they will find a continuous path of pores of size CFS to con-
vey them towards the exit.

One might address the issue in 2-D, as didKaiser(1997)
for directed percolation for clogging in a porous medium, but
we have shown (Bird and Perrier, 2009) that realistic models
of soil connectivity can be achieved only in 3-D. So we will
work in 3-D, on the case study of a 3-D mass fractal. We will
show here that previous results obtained in 2-D can be ex-
tended to the 3-D case using new renormalisation functions
and we provide an improved algorithm for numerical simu-
lation.

The first section will present theoretical arguments based
on renormalisation functions to show qualitatively how fil-
tration depends on the structural-geometrical parameters of
the 3-D model. The second section will present the results
from numerical experiments carried out on 3-D prefractal
media to evaluate the CFS value as a function of structural-
geometrical parameters. The final section will discuss how
far these first results open the way towards a new methodol-
ogy to estimate soil filtration efficiency from the construction
of soil structural models to be calibrated on available multi-
scale data.

2 Theory

Standard percolation theory in random monoscale 3-D net-
works has been established long ago and details can be found
in textbooks (Stauffer and Aharony, 1992).

In a simple cubic site percolation lattice, sites are occu-
pied with pores with a fixed probabilityp. The percolation
threshold, which delimits connected from disconnected large
networks, has been determined by numerical simulations up
to the 7th decimal, (e.g.,Tiggermann, 2001).

pc = 0.3116077... (1)

The existence of such a threshold can be proved using renor-
malisation theory (e.g.,Lesne, 1998) and an easy estimation
of its numerical value can be obtained as the fixed point of
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a renormalisation function. For a 3-D cubic site percolation
network, the renormalisation function is (Turcotte, 1992):

f (p) = 4 p2
− 6 p4

+ 4 p6
− p8 (2a)

and the threshold estimate is given by the solution off (p) =

p, that is:

pc est = 0.281838... (2b)

Unfortunately, as mentioned in the introduction, the
monoscale approach does not suit well the reality of soils.
Bird and Perrier(2009) recently applied a renormalization
approach to a multiscale fractal network, and their first re-
sults were analysed in the 2-D case. The generalization to
the 3-D case is straightforward. As in the 2-D case, the new
renormalization functions for the multiscale pore and solid
networks become:

fpore (p) = (1 − q) f (p) + q (3a)

fsolid (p) = (1 − q) f ( p) (3b)

whereq is the scaling parameter of the mass fractal model
(see next paragraph) andf (p) is given in the 3-D case by
Eq. (2a). Repeated application of these functions through

pi+1 = pi (4)

yields the change in probability of connection in each phase
as more levels of structure,i, are added to the fractal (Fig. 1).

The classical random mass fractal model we adopt is well
documented in the soil science literature (Bird and Dexter,
1997; Rappoldt and Crawford, 1999; Sukop et al., 2002). It
is based on ann×n×n grid. We choose the simplest case,
namelyn = 2. Pores are assigned with probabilityq to each
grid element. Those which remain unoccupied are then sub-
divided using a finer grid, and smaller pores assigned as be-
fore in a recursive way. The resulting structure can be char-
acterized by its fractal dimension given by:

D =
log

(
(1 − q)n3

)
log (n)

(5a)

and its porosity afteri iterations is given by:

8 = 1 − (1 − q)i (5b)

Adding levels in a mass fractal model increases the porosity
: if the number of levelsi tends towards infinity, the porosity
tends towards 100%. A realistic model involves an upper cut-
off of scale associated to a maximum pore sizermax as well
as lower cutoff of scalermin, that is a finite level of iterations
in a so-called prefractal model (Sukop et al., 2002).

The probability to percolate for a given fractal model of
parameterq is also an increasing function of the numberi

of iteration levels, but in a non-trivial and non-linear man-
ner which has been depicted in previous studies (Bird and
Perrier, 2009).

From a qualitative point of view, the 3-D model behaves
in a quite similar way, but the connectivity of a real soil is
better modelled and it has been shown that the 3-D approach
is mandatory to account for plausible connectivity values for
both the pore network enabling transport and the solid net-
work enabling structure stability.

Figure 1 depicts graphically the iteration process given in
Eq. (4) for both the solid and pore phases. Through this we
may observe how the connectivity of the network evolves
for different values ofq (and henceD). The renormalisa-
tion functionsfporeandfsolid are represented respectively by
blue and brown curves. For the pore phase we start with a
probability of occupationp = q. We then pass vertically to
the curvefpore (p), yieldingp′. We then cross to the diago-
nal linep′

= p, effectively swappingp′ for p. We may then
repeat the above procedure, resulting in iteration of Eq. (4).
Similarly for the solid phase we start with a probability of
occupationp = 1−q and use the curvefsolid (p). Both iter-
ative schemes exhibit fixed points where the functionf in-
tersects the diagonalp′

= p. For high values ofq (Fig. 1a,
q = 0.4) and low values ofD, one can see that only 3 levels
enable the pore network to percolate with a probability close
to 1 (0.99998) whereas the probability to percolate for the
solid phase drops towards zero (0.00096) with only 7 itera-
tions. Such a structure clearly has no relevance in terms of
modelling soil. For a critical value ofq (q = 0.28011, see
Fig. 1b), the diagonal becomes tangent to thefsolid curve.
This is called a tangent bifurcation and leads to a new fixed
point to which iterates are attracted. The probability for the
solid phase to be well connected is then high for an arbitrary
number of fractal iterations. Whenq decreases from this first
tangential value towards 0 (from Fig. 1c to f), the probability
for the solid network to percolate always remains high and
the soil structural model is very stable.

As regards “entities filtration” as well as ”water infiltra-
tion” processes, we now focus on the connectivity of the 3-
D pore network enabling water flow and particle transport.
Whenq goes on decreasing (Fig. 1c to e), one passes through
a critical transition when the diagonal becomes tangent to
the fpore curve. Before reaching the tangent bifurcation (at
q = 0.06917), one needs more and more levels for the pore
network to percolate.

Once we have reached the tangent bifurcation, the proba-
bility of pore connection approaches a new fixed point which
is too small to represent a viable model of soil, irrespective
of the number of levels of pore structure included. Indeed, as
in 2-D previous studies, we can achieve in this regime struc-
tures with porosities arbitrary close to 100% with arbitrary
low connection probabilities.

More generally, the result of the theoretical analysis on the
filtration issue is the following: Filtration is linked to perco-
lation of the pore network. In the mass fractal model, the
type of percolation behaviour of the pore network does not
depend on the value of porosity but on the critical parameter
q (associated with a given fractal dimension through Eq. (5a)
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Fig. 1. Iterations using the renormalisation functions of a 3-D mass fractal defined respectively by Eq. (3) for the pore network (blue curve)
and the solid network (brown curve). Figure 1a to 1f depict the results of the upscaling renormalization process for varyingq, each step in
the step functions plotted respectively in red or brown represents an iteration level in the fractal model using Eq. (4).

oncen is fixed). If q = 1, the pore network always perco-
lates! Whenq decreases from 1 to 0, a graphical analysis
of the renormalisation function (Eq. 3a) with successive val-
ues forq, shows that we needed more and more iteration
levels i to reach a probability greater than 0.9999 to perco-
late (1 iteration forq = 0.8, 2 iterations forq = 0.5, 4 itera-
tions for q = 0.3, etc. until reaching the tangent bifurcation
atq = 0.06917, where one would need an infinite number of
iterations). Table 1 shows also from numerical experiments
how the probability to percolate depends first onq, then on
i for a givenq. by focusing on the range[0.2, 0.01] for
q values. For large values ofq and a plausible range of pore
sizes (i = 10), the porosity is unrealistic (8 = 89% ifq > 0.2,

see Table 1 or Eq. 5b) and the solid phase is not even con-
nected ifq > 0.28011. . . (Fig. 1a and b). For small values of
q (from q < 0.2 in Fig. 1c toq = 0.06917 in Fig. 1e) and
if only a few iterations are carried out in the fractal model,
the probability for the pore network to percolate will be very
small. As regards filtration and the entities of large size
which can be located in the largest pores, they will find no
path to go through the fractal cube (see also computer sim-
ulations in Fig. 2). If further iterations are added, the mul-
tiscale pore network will enable fluid percolation by adding
smaller pores allowing only percolation of water conveying
entities of small sizes.
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Table 1.Numerical experiments.n = 2.

q \ i 1 2 3 4 5 6 7 8 9 10

0.2 0.15 0.42 0.84 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.1 0.04 0.09 0.19 0.42 0.81 1.00 1.00 1.00 1.00 1.00
0.09 0.03 0.07 0.15 0.30 0.69 0.98 1.00 1.00 1.00 1.00
0.08 0.02 0.05 0.10 0.20 0.41 0.82 1.00 1.00 1.00 1.00
0.07 0.02 0.04 0.08 0.14 0.26 0.49 0.91 1.00 1.00 1.00
0.06 0.01 0.03 0.05 0.08 0.19 0.27 0.54 0.92 1.00 1.00
0.05 0.01 0.02 0.03 0.04 0.09 0.130.24 0.37 0.80 1.00
0.04 0.01 0.01 0.02 0.03 0.04 0.07 0.100.13 0.21 0.43
0.03 0.00 0.00 0.01 0.02 0.01 0.03 0.02 0.04 0.040.06
0.02 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.00
0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(a) Probabilitypf for a fractal cube to percolate as a function of the iteration leveli,
for varying values ofq. Results obtained from 100 computer runs.
Critical transitions for an array of fractal cubes occur whenpf = pc (Eq. 1), which can
be observed between :
– (1) two successive levels with cells coloured gray in the table rows defining two class
of pore sizes.
– (2) two successive cells coloured yellow for the table columns defining an interval of
q values.

q \ i D 1 2 3 4 5 6 7 8 9 10

0.2 2.68 0.20 0.36 0.49 0.59 0.67 0.74 0.79 0.83 0.87 0.89
0.1 2.85 0.10 0.19 0.27 0.34 0.41 0.47 0.52 0.57 0.61 0.65
0.08 2.86 0.09 0.17 0.25 0.31 0.38 0.43 0.48 0.53 0.57 0.61
0.08 2.88 0.08 0.15 0.22 0.28 0.34 0.39 0.44 0.49 0.53 0.57
0.07 2.90 0.07 0.14 0.20 0.25 0.30 0.35 0.40 0.44 0.48 0.52
0.06 2.91 0.06 0.12 0.17 0.22 0.27 0.31 0.35 0.39 0.43 0.46
0.05 2.93 0.05 0.10 0.14 0.19 0.23 0.27 0.30 0.34 0.37 0.40
0.04 2.94 0.04 0.08 0.12 0.15 0.19 0.22 0.25 0.28 0.31 0.34
0.03 2.96 0.03 0.06 0.09 0.12 0.14 0.17 0.19 0.22 0.24 0.26
0.02 2.97 0.02 0.04 0.59 0.08 0.10 0.11 0.13 0.15 0.17 0.18
0.01 2.99 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

(b) D and porosity values calculated from Eqs. (5a) and (5b).

We will see in the following section how a critical CFS
can be defined by the pore size associated to the minimum
number of iterations enabling the probability to percolate to
reach a value beyondpc = 0.31... (Eq. 1), which is to the
value enabling a random array of fractal cubes to percolate.

The present theory is mainly qualitative, because the well-
known discrepancy between the reference thresholds calcu-
lated by means of computer values and the values calcu-
lated from renormalisation (resp. Eqs. 1 and 2b) increases
also with the number of embedded levels in the model. The
next section will give the results of numerical experiments
designed from the present theoretical analysis.

3 Numerical experiments

3.1 Percolation algorithm

A novel algorithm has been developed to better handle per-
colation in large 3-D fractal structures by accounting for the
presence of large clusters of connected voxels.

A classical algorithm is based on the initialisation of a 3-D
array of conducting or non conducting cells, and on the ex-
haustive search for connected conducting cells from one side
of the array to the opposite side. Such an algorithm was used
by Bird and Perrier (2009) for 2-D networks. Unfortunately
this algorithm is severely limited by memory, as it is neces-
sary to use large arrays to record the status of the network.

The new algorithm is more efficient in terms of memory
allocation.
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(a) The pores are coloured white and the solids
brown. Water coloured blue was injected from
the hidden vertical side, and connected paths
occurred when some cells are coloured blue on
the opposite front side.

(b) Visualisation of the cluster of connected
blue “water-filled” interior cells of the 5th size
class which defines the CFS of this example.

(c) Visualisation of the cluster of green interior
cells of the 3rd size class, it is not connected to
the exit and contaminant entities with a larger
size would be trapped.

(d) Visualisation of the cluster of connected
green interior cells of the 4th size class, which
again would retain trapped contaminant entities.

Fig. 2.A 3-D illustration for a random realisation of a fractal cube defined byn = 2, q = 0.1 andi = 10 iterations. Only the first 5 levels and
associated 5 pore sizes are drawn. No pores of the 1st level occurred due to lowq value.

It works in successive steps of an upscaling scheme based
first on the detection of conducting clusters from a local
search of neighbours around each conducting cell, then on
the merging of the connected clusters. The whole array per-
colates when two cells from opposite sides belong to the
same infinite cluster. This scheme enables a partition of the
whole cubic array inton3 subcubes. The upscaling cluster
scheme can be applied first in any subcube, then the inte-
rior cells can be erased from the computer memory because
only the boundary cells of each subcube are relevant when

the whole array is reconstructed. One can work on the sub-
cubes independently, enabling parallel computing. The last
improvement of the algorithm then consists in generalizing
the decomposition into subcubes, using a recursive, down-
scaling approach. This is well adapted to the fractal model
because some subcubes can be at once identified as conduct-
ing clusters or non conducting clusters at each scale. Thus
the new algorithm takes also advantage of the fractal hierar-
chical structure to avoid neighbours computer search and to
spare some computer running time.
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The results have been compared with the classical algo-
rithm and the result of a simulation on any given array are
identical (over 1000 tests). (By the way the estimation of the
percolation threshold from a set of 1000 simulations on ran-
dom cubic arrays is identical to the classical values found in
textbooks).

In the future, because the hierarchical iterative space par-
tition used by the novel algorithm enables the parallelisation
of the code to be run on computer clusters, the new algorithm
should become much superior as regards both memory han-
dling and running time, and even in the random non fractal
case.

3.2 Simulations

We carried out numerical simulations on prefractal cubic
models of linear sizeL developed over 10 iterations, to rep-
resent a plausible range of scales as regards the modelling
of many soil pore size distributions. Thus the largest pore
sizermax corresponds toi = 1 and the smallestrmin to i = 10,
which meansrmax =

L
n

and rmin =
L

n10 . Taking L = 1 mm
gives a range of pore sizes from millimeter to micron scale.

Table 1a gives the probability to percolate estimated from
100 runs of the percolation algorithm forn = 2 and values of
q ranging from 0.2 to 0.01. Forq = 0.2, one can check that
the probability for the pore network to percolate reaches 1
from leveli = 5, which matches very well the theoretical re-
sult given in Fig. 1c. For smaller values ofq, one observes
the expected discrepancy between numerical estimates given
by the renormalisation approach and the direct computer sim-
ulations: The percolation regime occurring below the tangent
bifurcation, (where even an infinite level of iterations will not
allow percolation) appears only aroundq = 0.04... that is for
smallerq values than the one predicted by the theory (around
qc = 0.07). The results are nevertheless qualitatively similar.
For small values ofq (q = 0.03), the probability to percolate
is very low (it equals only 0.06 ati = 10 iterations), what-
ever the total porosity value (the total porosity is here already
26%, Table 1b). One knows from previous theoretical argu-
ments that further iterations would increase the porosity to-
wards the 100% limit for infinite iterations whereas one does
not expect percolation at all! As regards filtration, the prin-
ciple is illustrated on Fig. 2. The visualization of a computer
simulation is shown on an arbitrary statistical realization of
a mass fractal model (n = 2, q = 0.1, thusD = 2.85 from
Eq. 5a) developed over 10 iterations. The first 5 levels only
are plotted in Fig. 2 for sake of visual resolution (Fig. 2a).
From Table 1a, the probability to percolate reaches 1 at level
i = 7, so we could predict that water will almost certainly
go through this modelled soil as soon asi = 7. Percolation
may happen at any level: Fig. 2b exhibits a continuous path
of pores conducting water from one side to the other one
at i = 5, where the probability of occurrence of such a path
is 0.48 (Table 1a). Entities whose size is larger than the size
of pores of level 3 have a probability to be trapped of 0.81,

since the probability for the pore sub-network of level 3 to
be connected equals 0.19 (Table 1a) and they are actually
trapped on Fig. 2c. In a similar way, entities whose size is
larger than the size of pores of level 4 have a probability to
be trapped of 0.52 (1−0.48) and they are actually trapped on
Fig. 2d.

The following question is: can we actually define a CFS
value using such a statistical fractal model? The answer is
the following: The CFS value is the size associated to the
transition between a non percolating regime and a percolat-
ing regime, when the probability to percolate switches from
a value belowpc to a value abovepc, wherepc is given by
Eq. (1). Why?A representative soil sample cannot be mod-
elled by a simple (pre)fractal cube with a few pores of size
rmax. Thus we can design an improved model of a real soil
by means of the juxtapostion of random fractal cubes, that is
a random 3-dimensional array of fractal cubes. To actually
build this array, the maximum pore size of each fractal cube
has to be selected as the maximum pore size occurring in the
real soil (by image analysis or from the air entry value in wa-
ter retention data). The second parameter of the fractal model
is its dimensionD (calculated from the pore size distribution
scaling). Each pre-fractal-sub-cube has a probabilitypf to
percolate given in Table 1a. Then, from Eq. (1), the random
array of fractal sub-cubes percolates when this probabilitypf
is higher thanpc.

A graphical solution is given by Fig. 3.
For q = 0.05, we have 7 filtering (non percolating) levels,

and 2 more levels which permit water flow through the pore
network and transport of particles of size smaller than a CFS
corresponding to leveli = 8, (4 micron). Forq = 0.2, we
have two 1 filtering levels, and 8 more levels permitting wa-
ter flow and transport of particles of size smaller than CFS
corresponding to leveli = 2 (0.25 mm) The higherq (and the
smallerD for the samen = 2), the higher the connectivity,
but the larger the CFS or the smaller filtering efficiency.

The model is discrete. The CFS values are found among
the sizes associated with each iteration leveli. They can be
visually estimated from Fig. 3 or numerically from two suc-
cessive gray cells in any row of Table 1. Conversely, the ac-
tual criticalqc values where the transition between the non-
percolating regimes occurs are estimated by a simple linear
interpolation in theq-interval defined by two successive yel-
low cells in any column of Table 1 or by inverse simulations
by means of numerical trials and errors onq values. The re-
sultingqc values are given in Table 2, as well as associated
Dc values from Eq. (5a).

The associated changes in CFS as a function ofD are plot-
ted in Fig. 4, which shows the good qualitative agreement
between renormalization theory and numerical experiments.
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Fig. 3. Numerical experiments: Probability pf for the pore network in the fractal cube to percolate as a function of iteration leveli (plotting
Table 1a simulated results) for varying values of parameterq in the fractal model (and associated values of fractal dimensionD and porosity
calculated in Table 1b). The straight linepf = pc (Eq. 1) delimits the transition between the percolating and non percolating regimes for a
random array of fractal cubes.

Table 2. Critical qc estimated by a linear interpolation in the [q1,
q2] interval defined by two successive yellow cells in each column
of Table 1 and probabilitiespfq1 andpfq2. Dc is calculated from qc
using Eq. (5a).

i CFS q1 q2 pfq1 pfq2 qc Dc

1 0.5 0.311 2
2 0.25 0.1 0.2 0.09 0.42 0.167 2.46
3 0.125 0.1 0.2 0.19 0.84 0.118 2.74
4 0.0625 0.09 0.1 0.3 0.42 0.091 2.82
5 0.0313 0.07 0.08 0.26 0.41 0.073 2.86
6 0.0156 0.06 0.07 0.27 0.49 0.062 2.89
7 0.0078 0.05 0.06 0.24 0.54 0.052 2.91
8 0.0039 0.04 0.05 0.13 0.37 0.048 2.92
9 0.0019 0.04 0.05 0.21 0.8 0.042 2.93
10 0.0009 0.03 0.04 0.06 0.43 0.037 2.94

4 Discussion and conclusion

The results of the present study are both theoretical and
methodological.

From the theoretical point of view, we have shown that the
multiscale percolation approach developed byBird and Per-
rier (2009) extends to the 3-D case in a straightforward way,
and that a 3-D mass fractal model can allow for both percola-
tion of the pore network to enable fluid flow and percolation
of the solid phase to ensure stability.

From the methodological point of view, we have shown
that we can define a critical filtration size CFS from two
types of information: information on the pore size distri-
bution and information on the connectivity of the pore net-
work. Information on the pore size distribution is easily
available from image analysis (2-D representative soil sec-
tions are enough) see Bartoli et al. (1999) for how to measure
the pore distribution and also Perrier et al. (2006) for how to
compute the mass fractal dimension for an 2-D image of the
pore-solid interface. Information on the connectivity of the
pore network is more difficult to obtain in a direct way. 3-D
image analysis (Gryse de et al., 2005) offers some potential
but the present state of available tools and their resolution ex-
cludes access to the whole range of pore scales. One could
also try to work, in an indirect way, on a pore network cal-
ibrated by inverse modelling of hydrological properties de-
pending on soil connectivity (e.g.Johnson et al., 2003; Price
et al., 2009) but again neglecting the whole range of scales
involved in water flow and particle transport. The present
approach is based on an alternative approach, that is the con-
struction of a very simple 3-D model developed with a mul-
tiscale approach. The methodology is based here on a widely
used model of soil geometry, the mass fractal model, and it
can be summarized by the four following steps:

1. Using image analysis to determine the pore size distri-
bution andrmax.

2. Relying on the simple mass fractal model estimateD.
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(a) Simulation (using Table 2 values)

(b) Renormalization (From Eqs. 3 and 4)

Fig. 4.CFS as a function ofD.

3. Building a tridimensional multiscale pre-fractal model
of dimensionD to account for pore network connectiv-
ity at various scale.

4. Estimating CFS.

As regards potential use on experimental data, let us con-
clude here with general considerations:Bradford et al.
(2003) mentioned that “Few studies have examined the in-
fluence of soil pore size distribution characteristics on col-
loid straining. . . ” and that “they were unaware of any models
that explicitly account for straining”. They first estimated the
percentage of pore space smaller than a critical straining pore
size from capillary pressure curves which depend indirectly
on connectivity (Bradford and Bettahar, 2005). We propose
here a new methodology which explicitly accounts for con-
nectivity by means of a geometrical model of a multiscale
pore network, and which could be easily tested using com-
plementary data using different sizes of contaminant entities
in soils with a broad pore size distribution.

The distribution of the solid particles sizes has also
been found to have a high impact on straining (Xu and
Saiers, 2009; Diaz et al., 2010). Diaz et al.(2010) showed

that, according to experimental observations, “straining was
shown to contribute highly to bacterial retention in all the
soils that they tested, in particular in the soils with a broader
grain size distribution and more irregular shape”. Future
modelling work will address the scaling relationships be-
tween pore and solid size distributions. The popular mass
fractal model is but one example of a multiscale porous
structure. Others exist, including the PSF model (Perrier et
al., 1999; Bird et al., 2000) which accounts for broad ranges
in size of both soil pores and soil particles, as well as for the
irregularity of the solid-pore interface. Again models such
as these can be substituted into the above methodology to
provide alternative approaches to estimation of straining effi-
ciency. We consider this work opens the way towards a new
methodology to estimate straining efficiency in soils using
complex networks calibrated on available multiscale data.
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