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Abstract. For at least the past several decades, North Car-
olina’s Neuse River Estuary (NRE) has been subject to water
quality problems relating to increased eutrophication. Re-
search initiated in the past several years have addressed the
nutrient processes of the water column and the passive diffu-
sion processes of the benthic sedimentary environment. Re-
suspension of bottom sediments, by bioturbation, tides, or
winds, may also have a significant effect on the flux of nu-
trients in an estuarine system These processes can result in
the advective transport of sediment porewater, rich with ni-
trogen, phosphorus and carbon, into the water column. Thus,
estimates of nutrient and carbon inputs from the sediments
may be too low.

This study focused on the potential change in bottom wa-
ter nutrient concentrations associated with measured resus-
pension events. Previous research used short-lived radionu-
clides and meteorological data to characterize the sediment
dynamics of the benthic system of the estuary. These tech-
niques in conjunction with the presented porewater invento-
ries allowed evaluation of the depth to which sediments have
been disturbed and the advective flux of nutrients to the water
column. The largest removal episode occurred in the lower
NRE as the result of a wind event and was estimated that the
top 2.2 cm of sediment and corresponding porewater were re-
moved. NH+

4 advective flux (resuspended) was 2 to 6 times
greater than simply diffusion. Phosphate fluxes were esti-
mated to be 15 times greater than the benthic diffusive flux.
Bottom water conditions with elevated NH+

4 and PO3−

4 in-
dicate that nutrients stored in the sediments continue to play
an important role in overall water quality and this study sug-
gests that the advective flux of nutrients to the water column
is critical to understand estuarine nutrient cycling.
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(corbettd@ecu.edu)

1 Introduction

In most estuaries, the amount of nutrients supplied by ex-
ternal sources (e.g. atmospheric deposition, river runoff, ni-
trogen fixation) has consistently been shown to supply less
than that required by primary producers (Dugdale and Go-
ering, 1967; Haines, 1976; Windom et al., 1975; Nixon,
1981; Stanley and Hobbie, 1981; Fisher et al., 1982; Boyer
et al., 1988). The remainder of the nutrient supplies must,
therefore, come from in situ regeneration and recycling. A
major component of this internal recycling is exchange at
the benthic boundary. The benthic environment is particu-
larly important due to the large portion of organic matter that
reaches the sediment surface after settling out of the water
column. This organic matter is then remineralized, a pro-
cess during the decomposition of organic matter where in-
organic nutrients, such as nitrogen and phosphorus, are re-
leased, thus increasing their concentrations in the interstitial
waters. The newly regenerated nutrients are then transported
back to the water column through exchange with overlying
waters. In most shallow-water systems, surficial sediments
and the overlying water are continually interacting, exchang-
ing and redistributing particles and solutes, making this re-
cycling process extremely important for understanding nutri-
ent dynamics in the estuarine environment (Wells and Kim,
1989; Rizzo, 1993; Rizzo and Christian, 1996; Luettich et
al., 2000). However, the exchange of solutes from the sed-
iments to the overlying water is often quantified assuming
the benthic environment is passive, ignoring extremely dy-
namic events such as resuspension that would move nutrients
rapidly to the water column. This study provides an estimate
of the additional flux of nutrients that are released to the wa-
ter column associated with sediment resuspension events in
the Neuse River Estuary (NRE), North Carolina. Through
the use of short-lived radioisotopes, meteorological data and
in situ physical measurements (e.g., turbidity, currents) to de-
termine the spatial and temporal variability and magnitude
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Figure 1 

Fig. 1. Sediment processes in an estuary influence the nutrient load
to surface waters. Nutrients may be introduced to the water col-
umn through both passive (diffusion, desorption, etc.) and advec-
tive (groundwater advection, resuspension, biological mixing, etc.)
processes (modified from Giffin and Corbett, 2003).

of resuspension events the following specific objectives were
addressed: (1) evaluate the benthic contribution of nutrients
to the water column by characterizing changes in porewater
concentrations during both passive and disturbed periods at
selected sites; and (2) determine the overall effectiveness of
sediment resuspension and remobilization in introducing di-
agenetic end-products from porewaters into overlying coastal
waters.

2 Background

2.1 Sediment resuspension and nutrient delivery

The seasonal storage and remobilization of sediments in
rivers is a worldwide phenomenon that has been described
for rivers ranging in size from small streams (Emmett et al.,
1983; Meade et al., 1990) to the Amazon (Meade et al.,
1985). During the sediment storage phase, rates of sediment
deposition to the seabed may be relatively high and the re-
sulting sediment deposits remain undisturbed for periods of
weeks to months. These conditions and time scales are con-
ducive to a number of significant chemical transformations
(i.e. remineralization, oxic/anoxic cycles, etc.) within the
bottom sediments. Determining what role sediments play on
basin-scale nutrient dynamics and elucidating the factors that
control net nutrient exchanges have important implications
for understanding nutrient flux and production dynamics in
both estuarine and coastal oceanic environments.

Estuarine sediments and associated porewaters are ex-
posed to complex biogeochemical and physical processes
(Fig. 1) that influence sediment/porewater composition as
well as material (e.g. nutrients) fluxes to the water column.

Estuarine sediments normally have an oxic zone of 5 mm or
less and is often absent below 1 mm (Fenchel, 1992). Below
this zone, several reductive processes occur which degrade
organic material in a known sequence. In addition, river cur-
rents, winds, and tides are some of the physical processes that
have impacts on sediment deposition, and ultimately nutrient
distribution. In shallow estuaries, winds create waves that
in turn develop orbital velocities with enough force to resus-
pend sediments and release their porewaters to the overlying
water column. Winds can also break down stratification and
force nutrient-rich bottom water to the surface, promoting al-
gal blooms. Resuspended sediment in these shallow estuaries
has other impacts, through light limitation and consequent
reductions in primary production.

Studies that compared the nutrient flux associated with
stable (passive) sediments and recently resuspended sedi-
ments found significantly higher fluxes associated with the
latter (Fanning et al., 1982; Kristensen et al., 1992; Son-
dergaard et al., 1992; de Jonge et al., 1995). The basic
processes and driving forces of resuspension and sediment
transport have been described in detail (e.g., Hakanson and
Jansson, 1983; Carper and Bachman, 1984; Hilton et al.,
1986; Bengtsson et al., 1990; Luettich et al., 1990; Wey-
henmeyer et al., 1997; Douglas and Rippey, 2000). Lam
and Jaquet (1976) suggested that threshold current veloci-
ties of 2–3 cm s−1 were sufficient to resuspend non-cohesive
clay and silt particles, although other studies have found that
current velocities must exceed 10 cm s−1 to move uncon-
solidated fine particles (Postma, 1967; Douglas and Ripley,
2000). Studies conducted in the lower NRE have shown near
bottom currents as high as 20 cm s−1, with an average cur-
rent at or below 5 cm s−1 (Woods, 1969; Luettich et al., 2000;
Giffin and Corbett, 2003; Dillard, 2008). Thus, resuspension
may be prevalent throughout the year in the NRE. However,
wind-induced waves, producing orbital movement in the wa-
ter column, are the dominant process causing resuspension
of sediments in this system (Dillard, 2008).

2.2 Water quality in the NRE

Massive summer fish kills in 1995 drew public attention to
deteriorating water quality in the Neuse River and its es-
tuary (Luettich et al., 2000). For at least the past several
decades, North Carolina’s NRE (Fig. 2) has been subject to
water quality problems relating to increased eutrophication,
a condition caused by loading of excessive nutrients, primar-
ily nitrogen. Eutrophication has been shown to lead to stress
and loss of fisheries, losses in biodiversity, and alteration of
food webs (Nixon, 1981). Sources of nutrient enrichment to
the estuary are from fertilizers, precipitation, livestock, and
point sources (Spruill et al., 1998). Fertilizer and precipi-
tation are listed as the primary nitrogen sources with pre-
cipitation contributing as much as 15 to 32% of new nitro-
gen (Paerl et al., 2002). This nutrient loading has resulted in
toxic algal blooms and bottom water hypoxia/anoxia in this
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Figure 2 
Fig. 2. Sampling locations in the Neuse River Estuary were selected
over various salinities, ranging from oligohaline to mesohaline en-
vironments. Stations are numbered with the lowest number (NR-1)
upriver, increasing sequentially down-estuary.

shallow and dynamic system (Luettich et al., 2000) mostly
as the result of increased agriculture, industrialization, and
urban development. In addition, seasonal pulsing of nutri-
ents, salinity and temperature stratification and proximity to
these nutrient sources all act to further aggravate this con-
dition. Much of the nutrient-related research in the NRE
has focused on water column processes and passive diffu-
sion of the sedimentary environment, stating that diffusion
is one of the dominant transport processes delivering nutri-
ents to the water column (Fisher et al., 1982; Luettich et al.,
2000). These studies have employed benthic flux chambers,
typically Plexiglas cylindrical chambers placed over a known
area of sediment and equipped with inlet and outlet ports to
collect water samples at varying time intervals. Fick’s law
has also been applied to concentration gradients across the
sediment/water interface to quantify the nutrient flux from
the sediment bed. Fick’s law is used to simulate the rate
of diffusive mass transport (Kirkham and Powers, 1972). In
these examples, experiments were specifically designed to
prevent any porewater exchange due to the disturbance of the
sediment bed, e.g. sediment resuspension. Therefore, these
estimates are based on a quiescent benthic environment and
have not yet accounted for the nutrient contribution associ-
ated with any disturbance of the sediments due to winds or
waves. It is important to note that Wells and Kim (1989)
believe that most of the surface sediments within the Neuse
River trunk estuary will be deposited and resuspended many
times before permanent accumulation on the bottom. This
is due to the fine-grained nature (silts and muds) of the sed-
iments, the shallow water character of the sediment basin,

 

 

Figure 3 

Fig. 3. Discharge and precipitation for the study year. Precipitation
data is from New Bern, NC and discharge data is from the gaging
station at Fort Barnwell (approximately 33km upstream from New
Bern) on the Neuse River. Note that sediment removals occurred
during periods of increased precipitation and river discharge.

and the high levels of wind stress on the basin (Riggs et al.,
1991). Thus, it is necessary to understand the dynamics of
these resuspension events, including the aerial extent over
which they occur and the frequency, and the potential impact
they may have on surface.

3 Study area

The NRE (Fig. 2) is a drowned river valley draining large
basins originating in the Piedmont which eventually flows
through the coastal plain and then empties into Pamlico
Sound. The watershed covers approximately 16 000 km2 and
the average depth is about 4.6 m (Matson et al., 1983) sup-
plying a large portion of freshwater flow to Pamlico Sound.
At the mouth of the Neuse, the average annual discharge has
been calculated at 150 m3 s−1 (Wells and Kim, 1989). Dur-
ing this study, measurements of daily discharge at Fort Barn-
well, a US Geological Survey river gauging station just up-
stream of where the river meets the estuary (e.g., New Bern),
ranged from a low of approximately 14.2 m3 s−1 to a high of
255 m3 s−1. Peak flows typically occur during the spring;
however during this study, they occurred primarily in late
summer 2001 and in late winter of 2002 (Fig. 3). Low flow
occurred during late fall and early winter instead of typically
during late summer and early fall.

The distribution of surficial sediments within this estu-
ary is influenced by the bathymetry of the basin and flow
processes. Fine to medium grained sands are found at the
shorelines, while finer grained sands and silts and organic
rich muds (ORM) are found in the deeper portions (Pilkey et
al., 1998). ORM has been typified as being chemically ac-
tive organic-rich sediment acting as both a nutrient sink and
source (Riggs, 1996). As a sink, these sediments provide a
depositional site for carbon and nitrogen. These sediments
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Table 1. Sampling location downstream distances from New Bern and diffusive flux variability (mg N or P m−2d−1) for all stations.

Distance Downstream NH+4 PO3−

4 Average Salinity
Station Number (km) High Low Mean High Low Mean

NR-1 5 12.4 3.8 8.8 5.6 1.8 2.6 8.0± 4.6
NR-2 13.3 25.2 1.3 13.3 9.7 0.1 3.5 9.5± 3.8
NR-3 21.7 64.6 2.1 17.8 8.2 0.4 3.0 11.9± 2.9
NR-4 32.5 13.2 1.5 8.9 3.9 0.1 1.9 12.8± 2.7
NR-5 49.2 31 6.1 16.6 6.8 0.7 3.2 15.3± 3.1
NR-6 69.2 22 10.4 15.6 7.3 0.3 4.0 16.6± 3.0

then enable enhanced remineralization, which provides a
reservoir of these nutrients to porewaters where they become
a source available for both passive and advective flux to the
overlying water column.

Sample locations were chosen near the center of the river
in the finer grained ORM areas. Six sites (Fig. 2) were lo-
cated in the NRE covering a salinity range of 0–10 in the
vicinity of the Trent River tributary up to the mesohaline wa-
ters near the juncture with Pamlico Sound. Distances down-
stream from New Bern are shown in Table 1.

4 Methods

Samples were collected approximately every 6–7 weeks at
six locations in the NRE (Fig. 2) in 2001 and 2002 (Fig. 3).
Cores were collected by push core from a small boat with a
PVC coring device outfitted with a one-way check valve and
a ∼10 cm diameter clear acrylic tube (core tube). The sam-
ple core tube was gently pushed into the bottom sediments
to obtain a vertical column of sediment without disturbing
the interface. Cores were subsectioned along the length of
the core (∼19 cm). The upper two subsections extruded in
the field were 2 cm thick and the remaining subsections were
3 cm each. A 20 ml sample of each subsection was taken
for porosity calculations. The remaining sediment from each
extruded interval was immediately transferred to centrifuge
tubes and sealed (with no air space) with a tight fitting plas-
tic end cap and stored on ice. Upon return to the laboratory,
samples were centrifuged and syringe filtered to separate the
dissolved phase from the solid phase. Dissolved samples
were analyzed for total and organic/inorganic nitrogen and
phosphate.

Water column samples were collected from just above
the bottom and near the surface at each site using a peri-
staltic pump. Conductivity, temperature, salinity, and dis-
solved oxygen (DO) were measured at these same intervals
using YSI meters. Water samples were filtered through pre-
weighed combusted Whatman GFF filters (0.7 µm; 47 mm
diameter) and filters were saved for total suspended solid
analysis. Dissolved fractions were collected (after in-line fil-

tration) in acid-cleaned polyethylene bottles. Samples were
kept on ice until analysis.

Surface water and porewater samples were analyzed for
ammonium (NH+4 ) using the Solorzano method (Solorzano,
1969) and for dissolved nitrate plus nitrite (NO−

3 +NO−

2 ) and
phosphate (PO3−

4 ) using US EPA (1979) and American Pub-
lic Health Association (1995) methods. Previous studies
have shown that nitrite is barely detectable in comparison
to nitrate (Luettich et al., 2000) therefore NO−

3 +NO−

2 results
are presented as nitrate (NO−

3 ). Filters were dried at 105◦C
for at least 24 h.

5 Results

5.1 Water column nutrients

The physical parameters, salinity, DO, and TSS were
strongly influenced by low flow conditions that limited dis-
charge through the end of 2001 (Fig. 3). A distinct saltwa-
ter wedge could be seen in the upper region of the estuary
throughout most of the year with high salinities in the bottom
water up to∼15, and relatively lower salinities in the surface
water ranging from several to more than 10. The lower estu-
ary showed little difference in surface and bottom salinities,
typically ranging from 10 to 20, indicating well mixed con-
ditions. Temporally, the wedge showed a steady increase in
salinity up-estuary until fall and early winter where it exhib-
ited a slight decrease. DO levels in surface water maintained
well above hypoxic conditions (<2 mg l−1) with levels above
5 mg l−1 throughout the entire sampling period. Hypoxic
conditions were observed with nearly anoxic levels in bot-
tom waters of the upper estuary (Stations 1–3) and in por-
tions of the lower estuary (Stations 4 and 5). For much of the
year the lowest levels were observed at Station 2 with con-
centrations<1 mg l−1 for 5 of the 6 sample periods. This
area is close to the locations of documented fish kills that
occurred during the sampling timeframe. TSS ranged from
a median of 5.5 to 7.2 mg l−1 for 5 of the 6 sample periods.
During the high flow period in February 2002 (Fig. 3) the me-
dian reached 33.3 mg l−1, thus showing that TSS is strongly
influenced by river discharge. Temperature measurements

Biogeosciences, 7, 3289–3300, 2010 www.biogeosciences.net/7/3289/2010/



D. R. Corbett: Resuspension and estuarine nutrient cycling 3293

 

 

Figure 4 

Fig. 4. Concentrations (ug N or P l−1) of (A) NH+

4 , (B) NO−

3 ,

and (C) PO3−

4 in bottom waters of the Neuse River estuary for May
2001 through early spring 2002. Contours are interpolated between
sampling events (i.e., time) and sites.

showed a consistent temporal distribution in both surface and
bottom waters, ranging from a high of 28◦C in the summer
to a low of 9◦C in the winter. There was only slight vari-
ation of a few degrees Celsius in the water column between
surface and bottom waters occurring primarily in the summer
months when bottom waters were slightly cooler. Spatial dis-
tributions were fairly uniform throughout the estuary.

Ammonium (NH+

4 ) concentrations in the surface water,
ranging from 2 to 166 µg N l−1, were typically greater up-
estuary decreasing toward the estuary mouth. The highest
levels were in August and December and lowest in October.
Ammonium exhibited the same distribution in bottom wa-
ters (Fig. 4), ranging from 3 to 418 µg N l−1, as it did in sur-
face waters; however concentrations were more elevated in
the summer months. Nitrate concentrations in surface water
were highest in August and lowest in October, ranging from 1
to 467 µg N l−1, with a generally decreasing trend downriver
towards the estuary mouth. Bottom water NO−

3 concentra-
tions (Fig. 4) ranging from 0.1 to 72 µg N l−1, were highest
in February and showed the same spatial pattern as surface
water concentrations. Surface water phosphate concentra-
tions were highest in the summer months and lowest in win-
ter and spring, ranging from 0.1 to 246 µg P l−1, with a spa-
tial distribution that exhibited a mid-estuary maximum. The
same temporal trend (Fig. 4), ranging from 2 to 616 µg P l−1,
was observed in the bottom waters. However, concentrations

were highest in the upper reach of the estuary and gradually
declined towards the mouth of the estuary.

5.2 Porewater nutrients and diffusive flux

Vertical profiles of porewater NH+4 concentrations for the top
10 cm of sediment cores exhibited increasing concentrations
with depth for all stations with only a few exceptions. The
NH+

4 concentrations ranging from 0.5 at the mid-estuary lo-
cations to 15.7 mg N l−1 at NR-6 in the Neuse (Fig. 5) gener-
ally displayed a temporal distribution with highest levels in
late summer and lowest in spring. The lowest NH+

4 level was
in the surficial sediment at NR-4 in May while the highest
was at depth (7–10 cm) at NR-6 in August. Levels generally
increased downstream to Station 2, an area of documented
fish kills, and then decreased towards Cherry Point where
they once again gradually increased to their highest levels
near the river mouth. The distribution of PO3−

4 concentra-
tions, ranging from 0.2 to 13.1 mg P l−1 (Fig. 6), displayed
the same general trends as porewater NH+

4 concentrations.

Porewater nitrate and nitrite (not illustrated) ranging from
0.002 to 0.06 mg N l−1 exhibited the same spatio-temporal
distribution as surface water NO−3 and NO−

2 . It can readily
be seen that nitrate-nitrite concentrations, as intermediates in
sediment N redox reactions, compose a very small amount
of the total porewater nitrogen in comparison to ammonium,
generally representing<1% of the totalN . Although cores
were not sectioned under anN -environment and therefore
someN -species change associated with redox variations can-
not be ruled out, the dominance of ammonium in porewaters
do not support significant oxygenation of the sediment dur-
ing sampling.

The flux across a sediment interface has traditionally been
assumed to be controlled by molecular diffusion and can
be calculated using the following widely used variation of
Fick’s first law of diffusion (Berner, 1980):

J = φ0Ds

(
∂C

/
∂Z

)
z=0 (1)

whereφ0 is the porosity,DS is the effective wet bulk sedi-
ment diffusion coefficient in the sediments (m2 min−1) cor-
rected for temperature and tortuosity and (δC/ δZ)z=0 is the
porewater nutrient concentration gradient in the uppermost
sediments. Porosity values were typically∼0.9 in the upper-
most sediments. Using this relationship, diffusive flux (Ta-
ble 1) was determined at all stations for the high, low and
mean passive flux. Diffusive NH+4 flux was predominantly
highest during the summer months and lowest in spring with
an overall mean of 13.5 mg m−2 d−1. Diffusive PO3−

4 flux
followed the same temporal distribution as the NH+

4 , how-
ever the overall mean was an order of magnitude less at
3.0 mg m−2 d−1. Highest diffusive fluxes for NH+4 and PO3−

4
were typically found in the mid-estuary, e.g. NR-3.
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Fig. 5. Porewater concentrations for NH+

4 in the NRE for May 2001 through February 2002. 
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Fig. 6. Porewater concentrations for PO3−

4 in the NRE for May 2001 through February 2002.

5.3 Sediment resuspension in the NRE

Resuspension events in the NRE were investigated by us-
ing short-lived radioisotopes to understand short-term sed-
iment dynamics (see Giffin and Corbett, 2003). Samples
from all sediment cores were analyzed for234Th (t1/2 = 24.1

days) and7Be (t1/2 = 53.3 days) by direct gamma count-
ing. Gamma counting was conducted on one of two low-
background, high-efficiency, high-purity Germanium detec-
tors (Coaxial- and Well-type) coupled with a multi-channel
analyzer. Sediment7Be and 234Th inventories were cal-
culated from downcore activities (Canuel et al., 1990).
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Variations in the inventories of short-lived nuclides between
sampling periods provide evidence of no deposition, re-
moval, or new deposition (see Giffin and Corbett, 2003). Al-
though changes in salinity and precipitation may alter the
inventory of 234Th and 7Be, respectively, Giffin and Cor-
bett (2003) argued that changes in the radiochemical inven-
tory were most likely driven by variations in sedimentation.
Comparisons of total234Th inventory to bottom water salin-
ity in the estuary, especially the upper portion where seasonal
variation is greatest, did not demonstrate large variations as-
sociated with salinity changes (Giffin and Corbett, 2003).
Therefore,234Th inventory fluctuations are thought to be as-
sociated with sediment delivery and transport. The daily pre-
cipitation data show a fairly uniform distribution throughout
the year of the study with the notable exception of the low
precipitation of the October to November timeframe. Com-
parison of this data to the7Be total inventory showed no ob-
servable decline during the late fall when precipitation was
at its lowest (Giffin and Corbett, 2003). A major source of
7Be to the estuary is sediments delivered through basin-wide
runoff. The area of the basin is relatively large compared to
that of the estuary, reducing the effects of short-term rainfall
variations. Giffin and Corbett (2003) found7Be to be a bet-
ter tracer of resuspension events in this system and attributed
it to the time scale of sampling relative to the mean life of
the nuclides and a greater source of7Be associated with the
watershed size.

The amount of sediment resuspended in a removal episode
can be calculated using the difference in the total radionu-
clide inventory lost between two sampling events (account-
ing for decay between sampling) in dpm cm−2 and estimat-
ing the surface activity that is resuspended (dpm g−1, an av-
erage of the top 5 cm was used). This calculation gives the
amount of sediment resuspended (g cm−2) assuming the sed-
iment can be transported. Using a simple relationship devel-
oped by Hjulstrom (Pipkin, 1994), where the grain size and
current velocity are known, the critical erosion velocity can
be evaluated. Grain size analysis showed primarily silts and
fine sands at surface with downcore median diameters of 23–
155 um in the NRE with no fining sequences vertically or
laterally throughout the estuaries (Giffin and Corbett, 2003).
Variations in7Be and234Th inventories provided good indi-
cations of deposition and removal processes in this estuarine
environment indicating that the main deposition area for the
NRE occurs primarily around NR-3 and NR-4. The largest
sediment removal was observed during August 2001 at sta-
tions NR-4 through NR-6 and another significant removal
was seen during February 2002 at stations NR-2, NR-5, and
NR-6. These areas are most susceptible to wind driven sedi-
ment disturbances. The removal in August 2001 at NR-6 had
a 7Be inventory loss of 0.8 dpm cm−2 in the top several cen-
timeters where the7Be activity measured was 1.8 dpm g−1

or an approximate loss of 0.4 g cm−2. Grain size analysis at
this site (NR-6) determined that sediments primarily consist
of unconsolidated silt and very fine sand. Observed current

measurements have shown that velocities of 20 cm s−1 are
common, which on a Hjulstrom diagram are sufficient to ini-
tiate transport of these sediment sizes. Accounting for the
bulk density of the sediment removed indicates that the re-
moval involved the top 2.2 cm of sediment. Utilizing mete-
orological data and in situ instrumentation (Hydrolab Min-
isonde with turbidity sensor and ADCP), increases in tur-
bidity were recorded during periods of resuspension as mea-
sured by7Be and it was determined that these resuspension
events occurred primarily during wind events≥ 4 m s−1 (Gif-
fin and Corbett, 2003). Peak events occurred mostly during
the winter months as the result of northwesterly and north-
easterly winds since these have the greatest fetch. Recent
monitoring data suggest that an average of 55 resuspension
events occur throughout the NRE on an annual basis (Dillard,
2008).

6 Discussion

6.1 Water column nutrient dynamics

The physical parameters DO, salinity, and temperature
strongly influence biotic and water quality conditions in this
estuarine system (Leuttich et al., 2000) and may be impor-
tant in determining influences on bottom water nutrient con-
centration changes that result from resuspension events. Low
DO conditions seem to correspond with contemporaneous in-
creases of bottom water salinity and increased stratification
in the upper estuary. Temperature changes, ranging from
9◦C in the winter to 28◦C in the summer, influenced sea-
sonal changes in porewater nutrient distributions by increas-
ing the available nutrient flux during the summer months.
This is primarily due to increased microbial activity during
the warmer conditions (Klump and Martens, 1981; Fisher
et al., 1982; Hopkinson et al., 1999). Physical and chemi-
cal processes such as sediment resuspension, river discharge,
and enhanced oxic conditions can influence nutrient concen-
trations in the water column, especially in the bottom wa-
ter. Elevated NH+4 levels in the bottom water correlated with
oxygen depletion (see Luettich et al., 2000). These elevated
concentrations also corresponded with periods of sediment
removal in the system. However, this is also a period of high-
est remineralization and diffusive flux.

Surface water showed elevated levels of NO−

3 that could
be the result of increased basin runoff since most of the NO−

3
input has been documented to occur during periods of high
discharge (Christian et al., 1989; Boyer et al., 1994; Luet-
tich et al., 2000). Similar results have been reported in other
estuaries (Holmes et al., 2000). Additionally, increased ni-
trification during periods of sediment resuspension can con-
tribute to these elevated NO−3 levels. Nitrate levels in the
bottom water showed depletion during summer months, es-
pecially in the upper part of the estuary, due to a possible
combination of benthic and plankton uptake (Christian et al.,
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1991). Oxygen depletion, as indicated by the low DO con-
centrations in this area, could also account for this obser-
vation. The greater concentrations of NH+

4 and PO3−

4 with
depletion of NO−3 in the bottom waters could also partially
be the result of heterotrophic consumption of organic matter
sinking from surficial waters and denitrification (Cruzado et
al., 2002). Nitrate concentrations typically constituted less
than 20% of the total nitrogen budget available in the bottom
waters during this study.

Several studies over the last two decades have sampled
for these nutrients on a regular basis in the NRE (Chris-
tian et al., 1991; Luettich et al., 2000). In general, results
showed NO−3 ranging from 20 to 350 µg N l−1 in the latter
half of the 1980’s. Ammonium concentrations ranged from
10 to 73.4 µg N l−1 and PO3−

4 from 9 to 147 µg P l−1. In
the 1990’s, NO−3 concentrations in surface water were typ-
ically >600 µg N l−1 in the upper estuary during the sum-
mer with occasional occurrences exceeding 1000 µg N l−1.
These larger excursions can usually be related to periods of
increased river discharge. Ammonium was typically at lev-
els between 50 and 150 µg N l−1 with some concentrations
exceeding 200 µg N l−1 in the summer of 1996, while PO3−

4
primarily was at 40 to 80 µg P l−1 with some higher levels
also during the summer months. Results from the mid-1990’s
indicated that total nitrogen and PO3−

4 median summer con-
centrations were>100 µg l−1 (Luettich et al., 2000). A com-
parison of our results to these findings shows NH+

4 and PO3−

4
at much higher levels, up to three times previous results, and
lower NO−

3 . However, several reasons for these variations
are possible. Some of these studies primarily sampled from
surface waters while our results also include bottom water
sampling where sediment porewater fluxes of dissolved nu-
trients, especially NH+4 and PO3−

4 , to overlying waters are
less diluted. This could account for our higher concentrations
of these constituents. The lower nitrate levels could possibly
result from prolonged periods of decreased discharge during
the year, NO−3 uptake, and/or the effect of ongoing nutrient
management practices. However, when comparing total ni-
trogen (TN) values across these studies there has been little
change. Differences in NO−3 versus NH+4 between sampling
events may just be a function of interannual variability due
to differences in physical conditions such as DO availabil-
ity and stratification. These nutrient concentrations are still
at levels that can degrade water quality. Eutrophication can
be sustained by nutrient recycling from sediments even after
external nutrient reductions have occurred (Rizzo and Chris-
tian, 1996).

6.2 Porewater gradients and flux

Several mechanisms, such as temperature and/or salin-
ity changes, bioirrigation, physical advective flushing
(e.g. Huettel et al., 1998), and sediment resuspension, can
alter porewater concentrations, and thus create non-steady

state conditions. Porewater chemical reactions can be indi-
cated by changes in the concentration gradient of a respec-
tive constituent. Near surface porewater nutrient profiles in-
dicated an upward diffusion to the overlying water column.
Strong temporal variation, as displayed during late summer,
can indicate shifts in remineralization of organics and ex-
change of nutrients with the overlying water column (Hop-
kinson et al., 1999). Rapid shifts of this nature can cause im-
portant changes to equilibrium conditions. Due to the anaer-
obic nature of these sediments there are much greater NH+

4
concentrations than would be present under aerobic condi-
tions. Therefore these changes to non-steady state could be
significant.

Increased flux of nutrients from sediments can also occur
through bioturbation (Tuominen et al., 1999), and during re-
suspension episodes,. However, no evidence of macroben-
thic bioturbation was observed during this or previous stud-
ies (Matson et al., 1983; Cooper, 1998; Giffin and Corbett,
2003). Therefore, increased periods of flux are thought to be
primarily the result of sediment remobilization. Generally,
the occasional excursions of the diffusive porewater gradient
conditions indicated bottom water uptake and corresponded
to areas and timeframes of increased resuspension activity.
The NH+

4 and PO3−

4 profiles for NR-4 and NR-6 during Au-
gust, when the largest removal occurred, are indicative of
this, as shown by their decreased gradients in the uppermost
sediments (Figs. 5 and 6). Porewater NH+

4 and PO3−

4 levels
were also generally higher at all other times and locations of
increased sediment removal (Figs. 5 and 6). Porewater NO−

3
increased an order of magnitude in August at all stations,
indicating increased nitrification, but then declined back to
low levels by fall. It should be noted that this occurred dur-
ing a period when the lowest DO concentrations were ob-
served. This increase in NO−3 was also coincident to the
largest resuspension event, which could have increased verti-
cal mixing (Kemp et al., 1990). Therefore, frequent sediment
remobilization during this timeframe could have produced
non-steady state conditions thereby enhancing nitrification-
denitrification in the surface sediments and bottom waters as
is known to occur in other systems (Aller, 1998).

Many studies have shown a disagreement between mea-
sured and calculated flux using Fick’s first law. In general,
laboratory results have indicated lower calculated fluxes than
in situ findings (Knox et al., 1993). While molecular dif-
fusion flux calculations may be appropriate during quiescent
periods, non-Fickian processes (e.g. advective transort via re-
suspension) could be considered more valid during times of
greater mixing. During these more active sedimentary pro-
cesses, gradient changes in the upper portions of the sed-
iments indicate larger fluxes than can be justified using a
diffusive approach. Advective flow is usually the result of
a disturbance such as sediment resuspension, current/wave-
induced porewater irrigation, bioturbation, or gas ebullition
(Klump and Martens, 1981; Precht and Huettel, 2003) and
is usually several orders of magnitude greater than diffusive
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Table 2. A comparison of the average diffusive and advective fluxes (mg N or P m−2d−1) from this and previous studies.

Study Reference PO3−

4 flux NH+

4 flux Method and Flow Assumption

This study 125 147 Porewater gradient, advective
3 13 Mean of porewater gradients, diffusion

Luettich et al, 2000 – 38 Laboratory chamber, diffusion
Rizzo and Christian, 1996 – 34 Unstirred cores, diffusion
Matson et al, 1983 8 25 Porewater gradient, diffusion
Fisher et al, 1982 – 76 In situ chamber, diffusion

flow. Therefore, a more realistic approach to determining ac-
tual fluxes of nutrients to the overlying water column during
disturbance events would be the use of in situ concentration
comparisons. By comparing nutrient inventories in bottom
water and porewater before and after resuspension events
and assuming little or no uptake, a determination of the ef-
fectiveness of advective release of nutrients can be made.
NRE porewater NH+4 concentrations (15.7 mg N l−1) were
∼40 times that of the bottom water (0.42 mg N l−1). Porewa-
ter PO3−

4 (13.1 mg P l−1) was 21 times bottom water PO3−

4
(0.62 mg P l−1). This indicates the role that porewaters could
play in supplying nutrients to the overlying water column,
especially when sediments and porewaters are advected in
removal episodes. It should be noted that resuspension is
not the only process that could advect porewater nutrients
into the overlying water column. As current velocities in
bottom waters increase, small changes in topography may
be sufficient to alter pressure gradients above the sediments
and entrain and flush the porewaters. The ultimate result is
the same, increased bottom water concentrations due to pore-
water advection, but the actual process varies. This type of
physical advective flushing has been conducted in sandy sed-
iments with ripples along the seabed (Huettel et al., 1998).
Although the process cannot be ruled out in the NRE, sedi-
ments at sampling sites in this study consists almost entirely
of muds (<63 um) with little macro-topography. As such,
we compare the possible source of nutrients associated with
observed resuspension events and acknowledge the potential
for additional sources of porewater nutrients through other
biological and physical processes. Seasonal comparisons
have shown that the largest porewater and bottom water nu-
trient concentrations correspond to each other (August 2001)
and are the same locations as the maximum removals through
resuspension during this study. This illustrates the possi-
ble effectiveness of resuspension in releasing diagenetic end-
products from bottom sediments. This is also important be-
cause of the shift it will cause in increased denitrification and
the eventual availability of nutrients for primary productivity.

For camparative purposes, an advective flux of nutrients
can be estimated if a timeframe for a resuspension event is
assumed. Using the porewater concentration for the upper-
most sediments (0–2 cm; Figs. 5 and 6) for the resuspen-

sion event that occurred at NR-6 in August (2.2 cm removed;
Giffin and Corbett, 2004) and assuming this removal event
occured over approximately a 24 h timeframe, conservative
NH+

4 and PO3−

4 advective fluxes of 147 mg N m−2 d−1 and
125 mg P m−2 d−1, respectively, were estimated (note that a
shorter period of time only increases the calculated porewa-
ter flux). Table 2 presents a comparison of the diffusive and
advective flux calculations from this study to that found in
several previous studies. NH+

4 flux is typically 2 to 6 times
greater using the advection approach than those with dif-
fusion. Phosphate fluxes were determined to be 15 times
greater than the benthic diffusive flux obtained in a prior
study (Matson et al., 1983). It should be noted that NH+

4
diffusive flux during this study was at least half that deter-
mined in prior studies. This may be a result of averaging in
fluxes from less dynamic periods of the study year. Calcula-
tions of flux at individual sites (Table 1) during the summer
months and during periods of resuspension show values more
representative of prior results.

6.3 Management implications

In 1998, North Carolina passed legislation calling for a 30%
reduction inN loading to the NRE. However, this study has
shown that totalN in the estuary remains at the same lev-
els as were found prior to enactment of these nutrient re-
duction strategies. Several recent unpublished studies have
indicated that riverineN loading has decreased by at least
30% (Paerl, 2003). Meanwhile, non-pointN loading to the
basin is rapidly increasing due to intensified animal produc-
tion (Stow et al., 2001). The riverine loading decrease may
be attributable to several natural factors outside of the ef-
fects of nutrient management legislation, including increased
overland flow during 1999 (effects of Huricanes Dennis and
Floyd) followed by several years of lower runoff and riverine
discharge. Consequently, non-point nutrient loading to the
river would also be diminished by this hydrological change.

The fact that totalN within the estuary remains the same
during these low flow years combined with greater concen-
trations of NH+

4 and PO3−

4 in bottom waters suggests the
importance of accounting for internal loading sources such
as groundwater infiltration and sediment disturbance. It has
been estimated that the top 2 cm of sediments in the NRE
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contain 7800 tons of nitrogen (Luettich et al., 2000), while
the water column has less than 800 tons (Christian et al.,
1991). Furthermore, sediment storage and nutrient release
is significant when typical riverine loading is compared to a
resuspension event. RiverineN loading to the estuary has
been estimated to be about 13 tons daily (NCDENR 2001).
A resuspension event of∼2 cm, assuming it occurs over only
25% of the estuary, can release as much as 17 tons ofN . This
is a conservative release based on calculations of an actual
event in the lower estuary. The release would be higher if
this event had occurred in the upper estuary whereN storage
in the surficial sediments is greater or if it was to occur over a
larger area. From an annual perspective, these resuspension
events likely occur more than 50 times throughout the estu-
ary (Dillard, 2008) and are caused by frequent wind events
and the large fetch.

The greater concentration of NH+

4 in bottom waters than
shown in previous studies also indicates that denitrification
may be decoupled from nitrification. It is generally thought
that coupled nitrification-denitrification can removeN from
estuarine systems and may help to lessen the degree of eu-
trophication (Seitzinger, 1988). However, in some organic
rich eutrophic estuaries, such as the Chesapeake, NH+

4 is
recycled directly back to the water column from the sedi-
ments without the occurrence of denitrification (Kemp et al.,
1990). This increase in NH+4 recycling can be a consequence
of greater mineralization of organic matter (Tuominen et al.,
1999). It is also believed that anoxia in these estuaries may
also reduce the effectiveness of denitrification (Nixon et al.,
1996). The NRE portrays many of the same characteristics
of Chesapeake Bay (i.e., organic-rich, eutrophic, episodes of
anoxia), therefore similar changes in biogeochemical cycling
of nitrogen could explain the lack of a decrease in total N
within the estuary. Since internal loading can be as substan-
tial as external riverine sources, these internal sources need
to be considered in nutrient policy formulation.

7 Summary

Concentrations of porewater and bottom water nutrients in-
creased to higher levels during resuspension events indicat-
ing increased denitrification and release of NH+

4 and PO3−

4
to overlying waters. Bottom water conditions with elevated
NH+

4 and PO3−

4 indicate that nutrients stored in the sediments
continue to play an important role in overall water quality
in the estuary. Thus, evaluating the effect of advective flux
from porewaters associated with resuspension events is im-
portant. The advective flux of NH+4 and PO3−

4 from porewa-
ters were found to be at least 2 to 15 times those reported in
previous studies of benthic diffusive flux. It should be noted
that these results were obtained during a year of monitoring
where there was only minor storm activity and low river dis-
charge. The high concentrations of porewater nutrients and

frequent resuspension events demonstrate the importance of
an advective flux of nutrients in estuarine nutrient cycling.
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