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Abstract. The North China Plain is one of the key crop-
producing regions in China. However, water resources in the
area are limited. Accurate modeling of water consumption
and crop production in response to the changing environment
is important. To describe the two-way interactions among
climate, irrigation, and crop growth better, the modified crop
phenology and physiology scheme from the SiBcrop model
was coupled with the second version of the Simple Biosphere
model (SiB2) to simulate crop phenology, crop production,
and evapotranspiration of winter wheat and summer maize,
which are two of the main crops in the region. In the cou-
pled model, the leaf area index (LAI) produced by the crop
phenology and physiology scheme was used in estimating
sub-hourly energy and carbon fluxes. Observations obtained
from two typical eddy covariance sites located in this region
were used to validate the model. The coupled model was able
to accurately simulate carbon and energy fluxes, soil water
content, biomass carbon, and crop yield, especially for latent
heat flux and carbon flux. The LAI was also well simulated
by the model. Therefore, the coupled model is capable of as-
sessing the responses of water resources and crop production
to the changes of future climate and irrigation schedules of
this region.
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1 Introduction

The major crop production area in China is located in the
northern regions, particularly in the Yellow River basin and
the Haihe River basin. Northern China produces 59% of the
national total crop production in 2008 (Ministry of Agricul-
ture of China). Due to the semi-humid or arid climate, this
region has limited water resources that amount to only 17%
of the national total (Ministry of Water Resources of China).
The problem between the large amount of water requirement
for crop production and the limited availability of water re-
sources is still an ongoing issue. In recent years, climate
change (e.g., changes in precipitation, temperature, and CO2
concentration ([CO2])) has drawn much attention on the po-
tential impacts of this unresolved issue on future crop pro-
duction. The effect of climate change and irrigation on crop
production and water consumption is closely related with the
food and water security of the nation. Thus, it is imperative
for policy makers to address this concern.

Processes within the terrestrial ecosystem and atmosphere
are intrinsically coupled. Environmental factors (e.g., water,
temperature, and CO2 concentration) control vegetation dy-
namics. Changes in vegetation, in turn, influence on water,
energy, and carbon fluxes. Interactions and feedback among
climate, vegetation, and water have been significant concerns
in recent years (Moorcroft, 2003; Kumar, 2007). Prescrib-
ing vegetation phenology in terms of known values (e.g., leaf
area index, LAI) is the most common approach used by land
surface models (Pitman, 2003). However, problems may be
encountered if the model is set to make predictions because
it does not describe a two-way feedback mechanism between
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vegetation and the ambient environment. Even though a
model can be used with the prescribed LAI, the LAI derived
from the Normalized Difference Vegetation Index (NDVI)
which is based on remotely sensed information, may not cap-
ture the remarkable dynamics of crops, thus, resulting in un-
satisfactory magnitude and seasonality of carbon fluxes over
croplands (Lokupitiya et al., 2009).

To date, many studies have coupled the vegetation dynam-
ics model (crop growth model for agricultural ecosystem)
with the land surface model for simulating water, energy, and
carbon fluxes without prescribing vegetation phenology. Ex-
isting coupled models used for agricultural ecosystems are
generally classified into three major classes, based on LAI
calculation: (A) LAI calculation is based on carbon alloca-
tion. Net accumulated assimilation calculated by the land
surface model is allocated to different carbon pools. LAI is
then calculated from the accumulated carbon in the leaf car-
bon pool (Boegh et al., 2004; Wang et al., 2007; Ivanov et
al., 2008). (B) LAI is directly calculated from bulk biomass,
which is obtained from net assimilation calculated by the
land surface model (Calvet et al., 1998). (C) LAI is calcu-
lated from observed meteorological variables (e.g., tempera-
ture) and simulated variables (e.g., evapotranspiration (ET),
soil moisture, and soil temperature) from the land surface
model (or the hydrological model) (Pauwels et al., 2007;
Casanova and Judge, 2008; Maruyama and Kuwagata, 2010).
The models in class C do not include carbon processes, lim-
iting their application for changing atmospheric [CO2]. Al-
though the models in class B include carbon simulation, pro-
duction, and other components relevant to crops are not sim-
ulated, limiting their application for crop production studies.
In the models in class A, simulation of crop production, LAI,
water-energy flux, and carbon flux are included, which, in
turn, allows for wide applicability and comprehensive evalu-
ation of the model with observations.

Following the models in class A, the Simple Biosphere
model version 2 (SiB2) (Sellers et al., 1996a, b) was cou-
pled with the phenology and physiology scheme in the
SiBcrop model (Lokupitiya et al., 2009) for simulating land-
atmosphere exchanges relevant to two typical crops (i.e.,
winter wheat and maize) in the North China Plain. Winter
wheat and maize production in this region accounts for 80%
and 83% of the nation’s winter wheat and maize production,
respectively (Ministry of Agriculture of China). The SiBcrop
was developed to improve carbon flux simulation over crop-
lands of soybean, maize, and wheat within the continental
US (Lokupitiya et al., 2009); the behavior of this model re-
mains unknown in other regions. Compared to the SiBcrop
study, this study focuses on enabling the continuous model-
ing of ET and carbon flux in the North China Plain as well as
its predictability in relation to climate change. Two EC sites
with comprehensive observations were selected for evaluat-
ing model performance. Sensitivity analyses were also con-
ducted to test the behavior of the model under different irri-
gation amounts and [CO2].

2 Description of the model

The SiB2 (Sellers et al., 1996a, b) was coupled with the car-
bon allocation-based crop phenology and physiology scheme
of the SiBcrop model (Lokupitiya et al., 2009). The SiBcrop
model has been applied in an annual winter wheat (growing
season: November to June) field and an annual corn (growing
season: May to August) field in the US midwestern region. It
resulted in a substantial improvement of the prediction of car-
bon exchange, compared with the original SiB3 which uses
remotely-sensed NDVI as input (Lokupitiya et al., 2009). In
the coupled model, the SiB2-based daily total photosynthetic
carbon assimilation, daily average soil water content (SWC),
and air temperature are used within the crop phenology and
physiology scheme to calculate the daily LAI which influ-
ences energy, water, and carbon dioxide exchange between
the land surface and the atmosphere. Crop growth was as-
sumed to be unaffected by nutrient availability because suf-
ficient fertilizers were applied by the farmers.

2.1 Simple Biosphere model version 2

The SiB2 is a widely used land surface model for model-
ing energy, water, momentum, and carbon dioxide exchange
between the land surface and the atmosphere. Comprehen-
sive measurements were observed in the evaluation of the
model at a number of sites (e.g., Baker et al., 2003; Gao et
al., 2004; Hanan et al., 2005). The SiB2 simulated leaf car-
bon assimilation with C3 or C4 photosynthetic models (Far-
quhar et al., 1980; Collotz et al., 1991). Transpiration (Tr)
was linked with leaf carbon assimilation by a stomatal con-
ductance model (Ball et al., 1987). Fluxes were simulated
in the electrical analog form expressed by multiplying the
potential difference (i.e., vapor pressure, temperature, and
CO2 partial pressure gradients) with the conductance (i.e.,
aerodynamic, bare soil surface, and stomatal conductances).
Heat transport in the soil was simulated by the force-restore
model, which only simulates ground surface temperature and
deep soil temperature. Further improvements to SiB2 in our
study included the replacement of the soil hydrology model
using the van Genuchten equation (Yang et al., 2000; Wang
et al., 2009), modification of the soil water stress factor on
photosynthesis and stomatal conductance through soil water
availability (Eq. 5) (Colello et al., 1998), introduction of a
soil respiration model (Denning et al., 1996), and modifying
certain parameters to tally with SiBcrop.

The input of the SiB2 consists of basic meteorological el-
ements, such as downward short-wave radiation, downward
long-wave radiation, relative humidity, air temperature, wind
speed, air pressure, ambient [CO2], and precipitation (and
irrigation). In the SiB2, the world’s land cover types were
lumped into nine classes. The invariant properties of each
class were assigned to values based on an extensive survey
of ecological literature. The dynamics of vegetation were
represented by variations in leaf area indexes (including total
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leaf area index (LT) and green leaf area index), which were
all derived from remote-sensing NDVI through the relation-
ship between LAI and the fraction of photosynthetically ac-
tive radiation (PAR) absorbed by the green vegetation canopy
(FPAR) and the simple ratio (SR, SR=(1+NDVI)/(1−NDVI))
(Sellers et al., 1996b). The vegetation cover (fv) is con-
stant for each vegetation biome in the SiB2. To represent the
dynamics of vegetation cover in row crops better, it is sim-
ply estimated from total leaf area index through Beer’s law
(fv = 1−exp(1−kLT), wherek is the extinction coefficient
and is commonly equal to 0.5). The soil physical parameters
were from the measured soil water retention curve.

2.2 Crop phenology and physiology scheme based on
the SiBcrop model

Crop emergence and subsequent growth stages were set
based on the accumulated growing degree days (GDD)
(Lokupitiya et al., 2009). The growth rate during the ini-
tial seedling phase was determined by the amount of carbon
stored in the seeds. Relevant further details could be found
in Lokupitiya et al. (2009).

Because the planting dates were generally fixed, the plant-
ing dates of winter wheat and summer maize were artificially
set as 10 October and 15 June, according to the general crop-
ping system. Harvest dates were determined by the minimum
of total requirement of GDD and the planting dates of the
next crop. The total biomass carbon, which is based on the
daily photosynthetic assimilation calculated by the SiB2, was
allocated to each carbon pool (i.e., roots, leaves, stems, and
products) based on the phenology and physiology scheme.
The carbon allocation pattern of each carbon pool with GDD
is important for biomass simulation. Due to the differences
in climate and cropping patterns between the US midwest-
ern region and the North China Plain, the relationships be-
tween daily carbon allocation fractions and GDD for winter
wheat and summer maize in the SiBcrop were substituted
with the observations under the condition of unlimited soil
water from the North China Plain (Zhang et al., 2002; Qiao
et al., 2002) (Fig. 1). Compared with the original alloca-
tion scheme of maize in the SiBcrop, the proposed scheme
was similar but had a slightly higher allocation fraction of
leaves. Allocation of carbon to vegetation components is
closely tied to light, water, and phenological status. Arora
and Boer (2005) proposed a carbon allocation scheme in re-
sponse to light availability (expressed by LAI) and soil water
availability in the root zone. As the impact of light avail-
ability has been implicitly included in the proposed carbon
allocation pattern with GDD, we only introduced the effect
of soil water availability on carbon allocation from the work
of Arora and Boer (2005). This was based on the premise
that it is advantageous for the plant to allocate carbon to the
roots when soil moisture is limited, which is expressed as
follows:
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Table 6 Results of the sensitivity of the model to irrigation amount in the winter wheat 613 
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Fig. 1. Carbon allocation scheme under unlimited water conditions
for (a) winter wheat and(b) summer maize.
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whereαR, αL , αS, andαP are the revised carbon allocation
fractions for roots, leaves, stems, and products, respectively;
εR, εL , εS, and εP are the carbon allocation fractions un-
der unlimited water conditions for roots, leaves, stems, and
products, respectively;ω is set to be 0.8 for crops (Arora and
Boer, 2005); andW is the water availability in the root zone
measured by:

W = max

[
0,min

(
1,

θ −θr

θ∗ −θr

)]
(5)

where,θ is the volumetric soil water content in the root-zone,
θ∗ andθ r are the threshold of incipient soil water stress and
wilting point (see Table 1), respectively.

At the end of each day, the carbon in each pool was es-
timated by subtracting the growth and maintenance respira-
tion from the daily biomass carbon allocation of each pool.
Cumulative carbon in the leaf pool was then used to calcu-
late the daily LAI, following the details given in Lokupitiya
et al. (2009). Parameters used in the coupled model corre-
sponded to the default values in SiB2 and the SiBcrop mod-
els. Certain parameters were specific to the particular sites
(Table 1).

3 Study area and measurements

The performance of the coupled model was evaluated by
comparing the observations and simulations at two EC flux
tower sites in the North China Plain: the Weishan site and
the Luancheng site. Both sites had irrigated winter wheat and
rain-fed summer maize (irrigated in dry years), which were
cultivated in rotation and typical in this region. The growing
season of winter wheat is usually from October to June (dry
season), and the growing season of summer maize is usually
from June to October (rainy season). Comparing to the study
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Table 1. Site specific parameters used in the coupled model.

Symbol Parameter Value Source

– – Weishan Luancheng –
θ* Threshold of incipient soil 0.22 0.22 Shen et al., 2002

water stress (m3 m−3)

θ r Wilting point (m3 m−3) 0.12 0.13 measured
α van Genuchten parameter (cm−1) 0.00483 0.0098 measured
n van Genuchten parameter 1.99 2.18 measured

of Lokupitiya et al. (2009), the growing season of wheat was
similar while the growing season of maize was postponed for
approximate one month.

The Weishan site (116◦3′ E, 36◦39′ N, 30 m a.s.l.) is lo-
cated in the central North China Plain. The mean annual
precipitation at the site was 553 mm, and mean annual air
temperature was 13.8◦C. Mean annual pan (820 cm) evap-
oration was 1950 mm. The groundwater table level ranged
from 1.0 to 3.5 m within one year. The measurements con-
sisted of meteorological measurements (i.e., precipitation, air
temperature, relative humidity, wind speed, shortwave, long-
wave, and net radiation (Rn)), EC measurements (i.e., la-
tent heat (LE) and sensible heat fluxes (Hs), carbon diox-
ide exchange), underground measurements (i.e., soil heat
flux (G), soil temperature and moisture content profile), and
LAI measurement (Table 2, see Lei and Yang, 2010a for de-
tails). As for the carbon flux, the observed net ecosystem ex-
change (NEE) was separated into the gross primary produc-
tion (GPP) and ecosystem respiration (Lei and Yang, 2010b)
for direct comparison with the simulated GPP. A Large Aper-
ture Scintillometer (LAS) was installed, and the flux tower
is in the middle of its path. A previous study showed that
there was a satisfactory agreement between the sensible heat
fluxes observed by LAS and EC technique at this relatively
homogeneous landscape, indicating the high reliability of the
sensible heat flux measurement (Yang et al., 2010). The ob-
served sensible heat flux by the EC technique will be used
for evaluating the model. The Luancheng site is located
to the northwest of the Weishan site (114◦41′ E, 37◦53′ N,
50 m a.s.l.). Mean annual precipitation was 485 mm, and
mean annual air temperature was 12.8◦C. Mean annual pan
(820 cm) evaporation was 1616 mm. The groundwater ta-
ble level was deeper than 30 m because of large groundwater
withdrawals for irrigation. Measurements and instruments
used were similar to those at the Weishan site. These are
summarized in Table 2. Eddy covariance fluxes were ad-
justed for variations in air density due to the transfer of water
vapor and sensible heat (Webb et al., 1980). Meteorologi-
cal data, including air temperature, relative humidity, wind
speed, and precipitation, were obtained from the national
standard weather station at the site.

At both sites, LAI was estimated by measuring randomly
sampled leaf areas from the field. Each sample included
about ten plants of wheat or three plants of maize. The
leaf area was measured using the area meter. Plant density
was simultaneously recorded. Normally, LAI was measured
biweekly at the Weishan site, and once a week at the Lu-
ancheng site. At the Weishan site, LAI was non-destructively
measured using the LAI-2000 plant canopy analyzer, start-
ing from the maize season in 2008. In addition, dry weights
of leaves, stems, and products (a plant other than root, leaf,
and stem) at the Luancheng site were measured once a week.
Two NDVI datasets, including eight-day/250 m resolutions
and monthly/1km resolution products, were obtained from
the MODIS/Terra and used with algorithms in Sellers et
al. (1996b) for deriving LAI, for comparison against the LAI
produced by the coupled model. A filter was used as the
noise-reduction technique to reduce noise in the NDVI time
series (Velleman, 1980).

4 Model running

Vegetation type 9 (i.e., agriculture or C3 grassland) in the
SiB2 and vegetation type 6 (i.e., C4 groundcover) were cho-
sen to represent wheat and maize, respectively. Due to data
availability, the simulation period at the Luancheng site was
from 1 October 2007 to 30 September 2008. The period in-
cluded one whole winter wheat season and one whole sum-
mer maize season. Hourly observed energy, water, and car-
bon dioxide fluxes, LAI, and dry biomass were compared
with the values predicted by the model. The simulation pe-
riod at the Weishan site was from 1 June 2005 to 8 June
2009. The period included four winter wheat seasons and
four summer maize seasons. Half-hourly observed energy,
water, and carbon dioxide fluxes, and LAI were compared
with values predicted by the model. Surface fluxes and soil
water content were calculated half-hourly (for the Weishan
site) or hourly (for the Luancheng site), and the crop phe-
nology and physiology scheme was calculated once a day.
Two commonly used statistics (i.e., coefficient of determi-
nation (R2) for linear regression and root mean square error
(RMSE)) were used to evaluate the model.

Biogeosciences, 7, 3363–3375, 2010 www.biogeosciences.net/7/3363/2010/



H. Lei et al.: Coupling land surface and crop growth models 3367

Table 2. Summaries of the measurements and instruments.

Site Observation items Instruments Height or depth

Weishan Sensible and latent heat fluxes and
carbon dioxide flux

CSAT3, Campbell Scientific, Inc., Logan,
UT, USA and LI7500, LI-COR, Inc.,
Lincoln, NE, USA

3.7 m

Downward (upward) shortwave
(longwave) radiation

CNR-1, Kipp & Zonen, Delft, The
Netherlands

3.5 m

Soil heat flux HFP01SC, Hukseflux, Delft, The
Netherlands

−0.03 m

Soil water content TRIME-EZ/IT, IMKO, Ettlingen, Germany −0.05, −0.1, −0.2, −0.4,
−0.8, and−1.6 m

Soil temperature Campbell-107, Campbell Scientific Inc.,
Logan, UT, USA

−0.05, −0.1, −0.2, −0.4,
−0.8, and−1.6 m

Air temperature and relative humidity HMP45C, Vaisala Inc., Helsinki, Finland 3.6 m

Wind speed 05103, Young Co., 120 Traverse City, MI,
USA

10.0 m

Precipitation TE525MM, Campbell Scientific Inc., 121
Logan, UT, USA

1.5 m

Luancheng Sensible and latent heat fluxes and
carbon dioxide flux

CSAT3, Campbell Scientific, Inc., Logan,
UT, USA and LI7500, LI-COR, Inc., Lin-
coln, NE, USA

3.3 m

Downward (upward) shortwave
(longwave) radiation

CNR-1, Kipp & Zonen, Delft, The
Netherlands

3.0 m

Soil heat flux HFP01, Hukseflux, Delft, The Netherlands−0.02 m

Soil water content Neutron probe (IH-II, Institute of
Hydrology, Wallingfoad, UK)

−0.1,−0.4,−0.6,
and−1.0 m

Soil temperature 105T, Campbell Scientific Inc., Logan, UT,
USA

−0.02,−0.05,−0.1,−0.2,
and−0.5 m

Air temperature, relative humidity,
wind speed, and precipitation

Chinese Meteorological Administration 1.5 m for air temperature
and 10.0 m for wind speed

Once the coupled model was validated for present condi-
tions, we tested the ability of the model to simulate the crop
yield and ET in different irrigation and [CO2] situations. In
Sect. 5.3, a sensitivity study is presented concerning over the
impact of the irrigation amount, but not of irrigation strate-
gies. We chose the Luancheng site as case study, and the
2007–2008 wheat season was selected because there was no
irrigation in the 2008 maize season. In this season, accu-
mulated precipitation was 197 mm (mean seasonal precipita-
tion was 130 mm) with an exceedance probability of about

11% (Sun et al., 2009), indicating that the season was rela-
tively wet. Therefore, irrigation was implemented once with
122 mm in 4 April 2008, which was in the jointing stage of
wheat. In Sect. 5.4, a sensitivity analysis was made with val-
ues of [CO2] corresponding to 3×381, 2×381, and 381 ppm
(i.e., the current level) at the Luancheng site from October
2007 to September 2008, assuming that other climate forcing
data (e.g., air temperature) were kept as the same as the cur-
rent situation. We wish to point out that our model only con-
sidered the responses of photosynthesis and leaf conductance
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Figure 2 622 Fig. 2. Simulated and observed leaf area index (LAI) at the Weis-
han site. The SiB2-8day was derived from eight-day NDVI, and
SiB2-monthly was derived from monthly NDVI. The hollow circles
denote the observations from leaf area meter, and the solid circles
denote the observations from the LI-2000.
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Fig. 3. Simulated and observed(a) leaf area index (LAI) and(b–
d) biomass carbon of different pools at the Luancheng site.r2 is
square of the Pearson product-moment correlation coefficient. In
(a), the SiB2-8day was derived from eight-day NDVI and SiB2-
monthly was derived from monthly NDVI.

to increased [CO2], but was not able to simulate the response
of carbon allocation to CO2 enrichment because its under-
lying mechanism was not yet fully understood (Monje and
Bugbee, 1998; Niklaus et al., 2001; Suter et al., 2002).

5 Results and discussion

5.1 Validation of the crop growth simulation

For comparison with the observed LAI, eight-day and
monthly satellite-based LAI values were interpolated linearly
to the daily values. The daily simulated and satellite-based
LAI values in the days when measured LAI was available
were selected. The coupled model was able to closely simu-
late LAI and biomass carbon, comparing to the observations
at the two sites. The interannual variation of LAI was well
simulated by the model (Figs. 2 and 3a). In contrast, the
MODIS NDVI-based LAI was unsatifactory in reflecting the
interannual variability of LAI, because it was saturated by its
maximum values in the algorithms. The seasonal variabil-
ity of wheat LAI was well simulated by both the eight-day

Table 3. Results of the comparisons of simulated and observed LAI.
SiB2-8day was derived from eight-day NDVI and the SiB2-monthly
was derived from monthly NDVI.

Site period R2 RMSE

Weishan Wheat season

Coupled model 0.80 0.98
SiB2-8day 0.87 0.83
SiB2-monthly 0.78 1.36

Maize season

Coupled model 0.77 0.97
SiB2-8day 0.63 1.31
SiB2-monthly 0.36 1.59

Luancheng Wheat season

Coupled model 0.75 1.35
SiB2-8day 0.92 1.00
SiB2-monthly 0.87 0.98

Maize season

Coupled model 0.84 0.96
SiB2-8day 0.75 1.21
SiB2-monthly 0.43 1.70

NDVI and the coupled model, which resulted in highR2 and
low RMSE (Table 3). However, the seasonal variability of
maize LAI was unsatisfactorily simulated by NDVI, but was
much better simulated by the coupled model (Table 3). These
were essentially due to the fact that either NDVI or SR is
generally insensitive to LAI when it exceeds a certain value
(Gitelson et al., 2003; Sellers et al., 1996). The 1km/monthly
NDVI-based LAI had much lower peak value and was worse
synchronous with the observed LAI (Fig. 2). This could be
attributed to the interpolation scheme from monthly to daily
values. Note that the predicted LAI by the model was much
higher than the observed LAI in the 2008 maize season and
the 2008–2009 wheat season, which could be attributed to
the under-measurement of LAI by LAI-2000 in row crops
due to sampling (Wilhelm et al., 2000).

By converting the measured dry biomass to biomass car-
bon (by multiplying 0.45 for the product and 0.5 for the stem
and leaf), we compared the simulated and observed carbon
biomass for different pools at the Luancheng site (Fig. 3).
The simulations and measurements agreed quite well over
the entire growing season for both wheat and maize. The
square of the Pearson product-moment correlation coeffi-
cient (r2) ranged from 0.81 to 0.98. The simulated ratio of
root biomass to above-ground biomass was 0.14 and 0.08 for
wheat and maize, respectively. These values were acceptable
compared to the common values (0.15–0.20 for wheat and
0.10–0.15 for maize) in this region (Mo et al., 2005).
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Table 4. Statistics for the comparisons against half-hourly observations at the Weishan site and hourly observations at the Luancheng site.

Variables Site Crop season RMSE R2

Net radiation (W m−2) Weishan Maize 14.5 0.99
Wheat 14.5 1.0

Luancheng Maize 17.4 1.0
Wheat 18.7 1.0

Latent heat flux (W m−2) Weishan Maize 69.90 0.72
Wheat 40.80 0.83

Luancheng Maize 45.50 0.84
Wheat 35.6 0.85

Sensible heat flux (W m−2) Weishan Maize 38.29 0.58
Wheat 39.8 0.63

Luancheng Maize 30.18 0.68
Wheat 32.64 0.57

Net ecosystem exchange Weishan Maize 4.62 0.85
(µmol m−2 s−1) Wheat 4.05 0.79

Luancheng Maize 5.58 0.82
Wheat 4.73 0.78

5.2 Validation of the surface fluxes simulation

The seasonal variations in the simulated and observed values
of energy fluxes (Rn, LE, Hs, andG), NEE, and SWC for the
Weishan and Luancheng sites are shown in Figs. 4 and 5, re-
spectively. Table 4 lists the statistics of the comparisons. For
both sites, the seasonal variation in surface fluxes and SWC
showed good agreement between the simulated and observed
values. TheRn simulation had the highestR2 and lowest
RMSE. Simulated NEE andLE had the second highestR2.
Overall, theR2 of NEE andLE were all greater than 0.7 in
the entire seasons, which indicated that the model could ex-
plain more than 70% of the variability in the observed latent
and carbon dioxide fluxes. The results suggest that the model
is sound in simulating latent heat and carbon fluxes in this
region. The simulation of carbon flux can also be confirmed
by the comparison of the simulated GPP and observation-
derived GPP at the Weishan site (Fig. 6), which excluded the
influence of soil respiration modeling. The simulated latent
heat flux was larger than the observation during the summer
maize seasons at the Weishan site (Fig. 4b). The observed
soil evaporation data revealed that soil evaporation was sig-
nificantly over-predicted (data not shown). Maize has lower
vegetation cover than wheat, and thus the effect of over-
prediction of soil evaporation is more significant in the maize
season than in the wheat season. Another possible reason for
the over-prediction may be the under-measurement of the la-
tent heat flux. The slope of the linear regression between
(Rn −G) and (LE+Hs) was 0.75 and 0.87 for the Weishan
(half-hourly data) and Luancheng (hourly data) sites, respec-

tively. At the Luancheng site, the simulated seasonal soil
evaporation total accounted for 32% of the simulated sea-
sonal ET total in the wheat season, and the ratio of simulated
seasonal total soil evaporation of simulated seasonal total ET
was 35% for the maize season. The ratios were acceptable
but higher, comparing to the observed values of 29.7% for
wheat seasons and 30.3% for maize seasons at the Luancheng
site averaged from 1995 to 2000 (Liu et al., 2002). Rela-
tively high RMSE and lowR2 were found for the sensible
heat flux. The comparison of the simulated ground heat flux
and observed soil heat flux at a certain depth revealed that the
magnitude of soil heat flux was well captured by the model
(Fig. 4d and Fig. 5d). The seasonal variation in simulated
ground heat flux was asynchronous with the observed soil
heat flux, which was due to the mismatch between the simu-
lated ground heat flux and measured soil heat flux at a certain
depth (Shao et al., 2008).

5.3 Comparison with the original SiB2

For comparison, the results for LE and NEE simulated by
the original SiB2 given eight-day and monthly NDVI as in-
put were compared with the results of the coupled model,
respectively. TheR2, RMSE and slope of linear regression
(β) values for the overall comparisons were listed in Table 5.
For NEE, the coupled model is the most accurate, whereas
the SiB2 with a monthly NDVI is the least accurate. This
was similar to the work of Lokupitiya et al. (2009). However,
there were no significant differences among the results for LE
in the overall comparison. Figure 7 shows the daily course
of midday-averaged LE at a selected period. Although the
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Fig. 4. Seasonal variations in observed and simulated monthly-
average values of(a) net radiation,(b) latent heat flux,(c) sensible
heat flux,(d) soil heat flux,(e)net ecosystem exchange (NEE), and
(f) volumetric soil water content (0–80 cm average) at the Weishan
site. Error bars indicate±1 standard deviation from the mean of the
observations.

peak LAI was much under-estimated by the monthly NDVI,
no significant differences were found between LE resulted
from the coupled model and the original SiB2 with a monthly
NDVI. However, the ratio of transpiration to ET decreased
from 51% to 46% when the coupled model was replaced with
the original SiB2, implying that the original SiB2 may over-
predict soil evaporation.
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Fig. 5. Seasonal variations in observed and simulated monthly-
average values of(a) net radiation,(b) latent heat flux,(c) sensible
heat flux,(d) soil heat flux,(e)net ecosystem exchange (NEE), and
(f) daily-average volumetric soil water content (0–100 cm average)
at the Luancheng site. Error bars indicate±1 standard deviation
from the mean of the observations.

Fig. 6. Simulated and observed monthly-average gross primary pro-
duction (GPP) at the Weishan site.

Fig. 7. Midday (10:00–14:00 LT) averaged latent heat flux (LE)
from 15 October 2005 to 15 October 2006 at Weishan site. Vegeta-
tion cover (fv) was also presented.

5.4 Sensitivity to irrigation amount

Figure 8 shows the simulated SWC in the root-zone in differ-
ent irrigation amounts. By converting the biomass carbon in
the products (by multiplying by 2.2) to biomass and consid-
ering a water content of about 14% in the wheat kernel, we
estimated approximately the crop yield which was listed in
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Table 5. Results for the comparisons of the coupled model and the original SiB2 using eight-day NDVI (SiB2-8day) and monthly NDVI
(SiB2-monthly) as input. The wheat season was from 15 October to 14 June, and maize season was from 15 June to 14 October.

Variable Site Period R2 RMSE β∗

Latent heat flux (W m−2) Weishan Wheat season

Coupled model 0.83 40.8 0.89
SiB2-8day 0.84 40.4 0.89
SiB2-monthly 0.85 39.5 0.93

Maize season

Coupled model 0.72 69.9 1.14
SiB2-8day 0.73 61.6 1.08
SiB2-monthly 0.69 69.5 1.10

Luancheng Wheat season

Coupled model 0.85 35.6 0.78
SiB2-8day 0.76 44.9 0.67
SiB2-monthly 0.85 36.0 0.76

Maize season

Coupled model 0.84 45.5 1.01
SiB2-8day 0.84 45.8 1.00
SiB2-monthly 0.81 54.5 1.05

Net ecosystem exchange Weishan Wheat season

(µmol m−2 s−1) Coupled model 0.79 4.1 0.91
SiB2-8day 0.84 3.6 0.90
SiB2-monthly 0.84 3.5 0.80

Maize season

Coupled model 0.85 4.6 0.89
SiB2-8day 0.80 5.5 0.83
SiB2-monthly 0.74 6.3 0.86

Luancheng Wheat season

Coupled model 0.78 4.7 0.88
SiB2-8day 0.76 4.9 0.86
SiB2-monthly 0.69 5.7 0.86

Maize season

Coupled model 0.82 5.6 0.85
SiB2-8day 0.80 6.0 0.84
SiB2-monthly 0.67 8.2 0.85

∗ Slope coefficient of linear regression against the observations.

Table 6. In cases 6–7 and in reality, the wheat growth was not
stressed by soil water because the average SWC was above
0.22 m3 m−3 at any time in the season. Excess irrigation did
not lead to a further increase in ET, Tr, and yield (Table 6),
but it percolated into the deeper soil and/or drained as sur-
face runoff. In cases 3–5, soil water stress occurred in the
milking stage of wheat, leading to a reduction in ET, Tr, and
yield. However, the maximum LAI was slightly reduced be-
cause the canopy had been fully developed before the milk-
ing stage. In cases 1 and 2, wheat was under moderate soil

water stress through jointing stage and flowering stage until
maturity, respectively, which led to a significant decrease in
ET, Tr, yield, and LAI. The simulated water use efficiency
(defined as the ratio of crop yield to total ET) increased with
the increase of the irrigation till irrigation reached 122 mm.
A further increase in irrigation would not increase the wa-
ter use efficiency, indicating a waste of water. The sensitiv-
ity study showed that the feedbacks among crop growth, ET,
yield, and soil water can be reasonably described by the cou-
pled model.
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Table 6. Results of the sensitivity of the model to irrigation amount in the winter wheat season at the Luancheng site (15 October, 2007 to
14 June, 2008). WUE denotes the water use efficiency (Yield/ET).

Case P (mm) I∗∗ (mm) Max. LAI SWC∗ Yield (g m−2) Tr (mm) ET (mm) WUE (kg m−3)

Reality 197 122 6.2 0.26 663 247 365 1.82
1 197 0 5.2 0.18 284 195 311 0.91
2 197 20 6.0 0.19 347 213 327 1.06
3 197 60 6.2 0.22 547 236 349 1.57
4 197 80 6.2 0.24 610 242 356 1.71
5 197 100 6.2 0.25 644 246 361 1.78
6 197 140 6.2 0.27 665 247 365 1.82
7 197 240 6.2 0.28 668 247 366 1.82
8 197 300 6.2 0.28 668 247 366 1.83

∗ Averaged from 4 April to 10 June for the root zone;
∗∗ irrigation was all implemented in 4 April 2008.

Table 7. Simulated impact of increased atmospheric concentration of CO2 at the Luancheng site. Values in the parentheses are relative
changes to the current [CO2] level.

Crop [CO2] Max. Root-zone Total biomass Tr ET
LAI SWC carbon (g m−2) (mm) (mm)

Wheat∗∗ 381 ppm∗ 6.2 0.253 688 247 365
762 (2×381) ppm 8.6 (39%) 0.257 (2%) 980 (42%) 233 (−6%) 346 (−5%)
1143 (3×381) ppm 9.6 (55%) 0.259 (2%) 1093 (59%) 211 (−15%) 327 (−10%)

Maize∗∗∗ 381 ppm∗ 5.4 0.261 682 210 326
762 (2×381) ppm 5.6 (4%) 0.272 (4%) 703 (3%) 186 (−11%) 309 (−5%)
1143 (3×381) ppm 5.7 (6%) 0.280 (7%) 708 (4%) 175 (−17%) 303 (−7%)

∗ [CO2] at the current level.
∗∗ period from October 15, 2007 to June 14, 2008.
∗∗∗ period from June 15, 2008 to October 1, 2008.

5.5 Sensitivity to CO2 concentration

In the absence of soil water stress, the changes of ET and
SWC with an increase in [CO2] result from the trade-off be-
tween increased LAI (which was because of enhanced pho-
tosynthesis) and decreased leaf conductance (Calvet et al.,
1998). Figure 9 presents the root-zone SWC under differ-
ent prescribed values of [CO2] at the Luancheng site. The
corresponding seasonal summaries are listed in Table 7. The
simulated SWC increased slightly in the wheat season, even
though a significant increase in the LAI of wheat was ob-
served because of CO2 fertilization. This is because leaf
stomatal closure limited the transpiration, which offset the
positive feedback of transpiration to increased LAI. Simu-
lated changes of SWC and ET in the maize season were sim-
ilar to the results in the wheat season but corresponded to a
slight increase in the LAI of maize. Simulated total biomass
carbon of C3 wheat increased significantly by 42% under
the doubled [CO2] condition, but the relative change of to-
tal biomass carbon from doubled [CO2] condition to tripled

Fig. 8. Simulated root-zone averaged soil water content in different
cases. Cases reality, 1, 2, 4, and 8 as given in Table 5, were selected
for plotting. The threshold (0.22 m3 m−3) of incipient soil water
stress was also presented.

[CO2] condition was significantly lesser. The simulated re-
sults were consistent with the experiments which showed
that doubling [CO2] from 350 to 700 ppm increased wheat
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Fig. 9. Simulated root-zone soil water content under different CO2
concentration levels at the Luancheng site. The [CO2] denotes
381 ppm, and 0.22 m3 m−3 is the threshold of the incipient water
stress.

yield by about 31%, but the effects of 1100–1250 ppm CO2
on wheat yield were lesser than the effects of 600–700 ppm
CO2 (Amthor, 2001). On the other hand, both the LAI and
the total biomass carbon of maize were unresponsive to the
increased [CO2] because CO2 contributed nothing or little
in the fertilization process of C4 maize, for the reason that
the C4 photosynthesis is usually saturated at the current CO2
concentration level (Leakey et al., 2006). The simulation re-
sults were similar with the modeling work on C3 crops and
C4 maize from Calvet et al. (1998).

6 Conclusions

The crop phenology and physiology scheme in the SiBcrop
model was coupled with the SiB2 model to estimate phe-
nology, latent heat flux (i.e., ET), and carbon exchange in
the winter wheat-summer maize rotation cropping fields in
the North China Plain. Two typical EC flux sites with this
cropping pattern were used to evaluate the performance of
the model. The carbon allocation fractions of product, leaf,
stem, and root with the change of GDD in the SiBcrop were
substituted with the observations under unlimited soil water
condition in this region, and were adjusted to the soil water
stress. The seasonal variations in carbon biomass, LAI, en-
ergy fluxes, carbon flux, and SWC showed good agreement
with the observed values. In particular, simulated latent heat
flux and NEE explained the highest variability in their sea-
sonal processes (R2 for latent heat flux and carbon flux were
greater than 0.7). Compared to the original SiB2 given re-
motely sensed NDVI as input, the coupled model improved
the modeling of crop phenology and carbon flux, especially
for the maize. The differences of seasonality of latent heat
flux between the coupled model and the original SiB2 were
not significant, but the SiB2 underestimated the proportion of
transpiration to the total ET. Sensitivity analysis showed that
the model was sensitive to the irrigation amount and atmo-
spheric [CO2], and gave reasonable results. Therefore, the
coupled model is capable of simulating the response of ET

and crop yield to different irrigation schedules and possible
climate changes in this type of agro-ecosystem.
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