Biogeosciences, 7, 3668684 2010 A ]
www.biogeosciences.net/7/3669/2010/ ‘GG’ Biogeosciences
doi:10.5194/bg-7-3669-2010 -
© Author(s) 2010. CC Attribution 3.0 License.

Temperature response functions introduce high uncertainty in
modelled carbon stocks in cold temperature regimes

H. Portner, H. Bugmann, and A. Wolf

Forest Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Sciencesiiidh] @092 4irich,
Switzerland

Received: 8 July 2009 — Published in Biogeosciences Discuss.: 12 August 2009
Revised: 19 October 2010 — Accepted: 28 October 2010 — Published: 15 November 2010

Abstract. Models of carbon cycling in terrestrial ecosys- more uncertain for higher elevations and hence also higher
tems contain formulations for the dependence of respiratioratitudes, which are of key importance for the global terres-
on temperature, but the sensitivity of predicted carbon pooldrial carbon budget.
and fluxes to these formulations and their parameterization
is not well understood. Thus, we performed an uncertainty
analysis of soil organic matter decomposition with respectto]  |ntroduction
its temperature dependency using the ecosystem model LPJ-
GUESS. Anthropogenic C@emissions from fossil fuel consump-
We used five temperature response functions (Exponentiation, cement-manufacturing and deforestation are leading
Arrhenius, Lloyd-Taylor, Gaussian, Van't Hoff). We deter- to an increase in atmospheric €&ncentrations, thus in-
mined the parameter confidence ranges of the formulationslucing considerable changes of the climate at global, re-
by nonlinear regression analysis based on eight experimentglional and local scalessplomon et al.2007). Atmospheric
datasets from Northern Hemisphere ecosystems. We san€O, concentrations are also strongly affected by changes
pled over the confidence ranges of the parameters and ran the major global natural carbon reservoirs. For exam-
simulations for each pair of temperature response functiorple, at present significantly more carbon is stored in the
and calibration site. We analyzed both the long-term and thavorld’s soils than in the atmospher&dhlesinger 1997).
short-term heterotrophic soil carbon dynamics over a virtualClimatic changes have a direct impact on global soil car-
elevation gradient in southern Switzerland. bon stocks, but their quantification is subject to consider-
The temperature relationship of Lloyd-Taylor fitted the able debate and disagreemebayidson and Jansser2)06
overall data set best as the other functions either resultedirschbaum 2006 Hakkenberg et al2008. If significant
in poor fits (Exponential, Arrhenius) or were not applica- amounts of carbon currently stored as organic matter be-
ble for all datasets (Gaussian, Van't Hoff). There were two lowground are transferred to the atmosphere by a warming-
main sources of uncertainty for model simulations: (1) theinduced acceleration of decomposition, a positive feedback
lack of confidence in the parameter estimates of the temio climate change may occuKifschbaum 2000. Con-
perature response, which increased with increasing tempenersely, if increases of plant-derived carbon inputs to soils
ature, and (2) the size of the simulated soil carbon poolsgxceed increases in decomposition, the feedback would be
which increased with elevation, as slower turn-over timesnegative. The estimate of long-term soil carbon stocks, and
lead to higher carbon stocks and higher associated uncertaiibeir changes in time, therefore is a major source of uncer-
ties. Our results therefore indicate that such projections aréainty in the projections of soil carbon dynamiddepman
et al, 2007). Despite much research, a consensus has not yet
emerged on the climate sensitivity of soil carbon decomposi-
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Soil respiration is commonly divided into two compo- 3. How does this translate into uncertainties in simulated
nents: root respiration with associated mycorrhizal respira- long-term carbon storage, compared to the short-term
tion and soil organic matter (SOM) decomposition. We focus fluxes?
on SOM decomposition here, for which the alternative terms
of heterotrophic or microbial soil respiration are often used.

SOM has turnover times ranging from years to decades an@ Methods

even centuries. It is often conceptualised as several distinct

pools with increasing residence timaénprr et al, 2005  We chose a comprehensive approach by considering not only
Kirschbaum 2004 Eliasson et a).2005 or as a continu-  the raw fits of candidate functions to calibration datasets, but
ous entity with gradually changing decay ratdgien and  also the number of parameters, the confidence ranges of pa-
Bosatta 1987 Bosatta and&gren, 1999. Decomposition rameter estimates and the sensitivity of model output vari-
of SOM is highly complex, as it is driven by a combina- ables. We placed a special focus on the identification of a
tion of factors such as temperatuBetg and Laskowski  suitable model formulation that fitted well to experimental
20053, moisture conditionsGisneros-Dozal et gl.2006 data and also led to acceptable uncertainty in the output vari-
and its chemical qualityRerg and Laskowski2005h Wee-  ables when employed in LPJ-GUESS.

don et al, 2009 Cornwell et al, 2008. Many biogeochemi- We built upon the well-established LPJ-GUESS model
cal models have been developed and applied to study the réSmith et al, 2001 and chamber measurements of soil res-
sponse of the carbon cycle to past, current and future changgdiration from a range of Ameriflux and CarboEuropelP sites
in climate. While the process of carbon uptake (photosynthe{Hibbard et al. 2005 2006. Instead of performing a com-
sis) is represented in a fairly detailed manner in these modplete model-intercomparison of the soil carbon dynamics in
els (e.g. BiomeBGCThornton et al.2002), IBIS (Kucharik different vegetation models, we used only one ecosystem
et al, 2000, LPJ-DGVM (Sitch et al, 2003, LPJ-GUESS model, LPJ-GUESS. This avoids further uncertainties that
(Smith et al, 2001), CLM (Oleson et al.2004 or Triffid would be unavoidable due to the different representations
(Cox et al, 2000), the equally important process of car- of other processes in different ecosystem models, such as
bon release by soil respiration is represented in a comparvegetation carbon uptake, plant respiration and transpiration.
atively simple mannerGramer et al.2001; Friedlingstein ~ These differences in model structure are a well-known factor
et al, 200§. Some models have been specifically devel-thatcomplicate the interpretation of model inter-comparisons
oped to study soil carbon dynamics, but their representatioffCramer et a.2001, Morales et al.2005.

of aboveground productivity and hence litter input is usually  In biogeochemical models, the relationship between SOM
highly simplified Parton et al.1987 Jenkinson1990. In- decomposition and soil temperature is often described by one
terestingly, there is no agreement on the choice of the fornput of a set of related functions. We tested five candidate
of the response function that is used to describe the sensitiformulations: a simple Exponential function with a constant
ity of soil carbon decomposition to temperature, although theQ10, the Arrhenius, the Gaussian, the Van't Hoff and the
temperature relationship &foyd and Taylon(1994 and Q19 Lloyd-Taylor function. The Exponential and Arrhenius func-
are often used. tions are simplifications of the one proposed\an't Hoff

In this study, we focus on the sensitivity of LPJ-GUESS (190]). Lloyd and Taylor(1994 proposed a modified Arrhe-
(Smith et al, 200]) to a range of possible formulations for nius function andruomi et al.(2008 andO’Connell (1990
the temperature dependency of soil organic matter decomposuggested a Gaussian formulation. The details of the five
sition in order to evaluate their assets and drawbacks. Earlievariants are described in Se2t1.2
studies have addressed parameter uncertainties of LPJ with To evaluate the uncertainty in the soil carbon related vari-
respect to net primary productivity and net ecosystem ex-ables simulated by LPJ-GUESS, we preferred to use a virtual
change Zaehle et al.2009 and of LPJ-GUESS with respect climatic gradient (arranged along elevation a.s.l.) rather than
to vegetation dynamicaNramneby et a.2008. We com-  the Ameriflux and CarboEuropelP sites, which represent just
plement these studies by focusing on soil respiration, and wecattered points in climate space. Therefore we based our
expand them by considering the relative importance of modektudy on the Ticino catchment in southern Switzerland. We
formulation vs. parameter uncertainty. Specifically, we ad-evaluated the sensitivity of the model to the uncertainty in
dress the following questions: model parameters with respect to different process formula-
1. Is it possible to identify one temperature response func_tions and cqlibration datasets along the_climz_ite gradient. We

tion which can be recommended across different Site%compa.red S|mulated ecosystem properties W't.h observed data

as measured by its match with observations and low un rom sites with comparable .cI|mate to gstabh_s h the overall

certainties in its parameterization? conS|stency_ of r_’nodel be_haV|or, but this is not intended to be

a model validation. Particularly, there are no observed data

2. How does the choice and parameterization of temperaof soil carbon dynamics for the catchment our elevation gra-

ture response functions affect uncertainty of carbon fluxdient is based on, but this is not a problem for the purpose of
estimates? this study.
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2.1 The LPJ-GUESS model Throughout the paper, we refer to heterotrophic soil res-
piration when talking about soil carbon dynamics and soll

We used the dynamic ecosystem model LPJ-GUESSIth  carbon fluxes.

et al, 200% Sitch et al, 2003. The model framework in- . ) )
corporates process-based representations of plant physiok-1-2 Temperature response functions implemented in
ogy, establishment, competition, mortality and ecosystem LPJ-GUESS

biogeochemistry. LPJ-GUESS has been successful in pre- . . . ) .
dicting vegetation distribution, net primary production and F1ve potential response functions were implemented in the
net ecosystem exchange in many different ecosystemiti model (Tablel). The Exponential response (E) features a

et al, 2001 Morales et al.2007. constani o value. Itis motivated by Van't Hoff's rule, stat-
’ ing that the rate of a reaction increases two- to threefold for
2.1.1 LPJ-GUESS soil module an increase in temperature byl (Van't Hoff, 1901). The

Arrhenius function (A) is based on the concept of the acti-
Soil carbon in LPJ-GUESS is divided into three distinct Vation energy for chemical and biological reactions. How-
pools: litter, fast SOM and slow SOM. The temporal dynam- €Ver: realizing that the change of the rate of reaction is not
ics of the carbon stock®) of each individual pooli) are constant across temperatures, Van't Hoff sugggsted a more
modeled on a daily basis and follow first-order kinetics with complex formula (V). Importantly, the Exponential and Ar-
a decay raté; (Eq.1). The decay rate itself depends on soil rhenius formulations are direct derivatives of the Van't Hoff
temperature and soil moisture, expressed as the product prmulation, obtained by setting the parametérs- B =0

the decay raté; ., at a given reference temperatdfigy, the ~ and € = B =0 (Table 1), respectively. The temperature
temperature response functi& and the moisture response "€SPONse in the standard implementation of LPJ-GUESS is

function Ry, (Eq.2). The decay raté; ., is the reciprocal based orlLloyd and Taylor(1994 (L). It is a variant of the
of turnover timer; 7.,,. e Arrhenius formulation suggested bioyd and Taylor(1994)

because it often leads to better fits to empirical data by al-

AG =—k; x C; 1) lowing for a decrease in activation energy with increasing
At temperature. It must meet the conditién>- Tp. The Gaus-
ki = ki Tt X RT X Ry (2)  sian function (G) in turn is based on Lloyd-Taylor by tak-

Litter from leaves, roots and tree stems is added to the liting into account the first three terms of the Taylor series ex-
ter pool at the end of each simulation year. As the model doe®ansion of the exponent of the expression by Lloyd-Taylor
not discriminate between different litter qualities, the simu- (Tuomi et al, 2008. Note that the Exponential, Arrhenius
lated tree species composition plays a minor role, as vegetaand Lloyd-Taylor response curves are monotonically rising
tion influences the soil carbon pools through the amount ofwith temperature, whereas the Gaussian and the Van't Hoff
litter input only. Additionally, we ensured that litter input is Curves have a maximum.
identical for all simulations on the same elevation level. Each As the decay constant 7, is valid only at the reference
of the three soil carbon pools, i.e. litter, fast and slow SOM, temperaturee, the response equations were expressed rel-
has its own specific turnover time; (;.;) at the reference ative to this temperature (Tablg. We thus reparameterized
temperatureles =10 °C and ample soil moisture: 2.85y, the functions by combining Eq8—4, leading to the general
33y and 1000y for the litter, fast SOM and slow SOM pools, scheme of Eq5, where faps frel and Rz, refer to the ab-
respectively leentemeyer1978 Foley, 19953. The min-  solute and the relative temperature response and to the ref-
eralized litter is divided into three parts: 70% are respired,erence respiration at a given reference temperafigere-
whereas 0.45% are transferred to the slow and 29.55% to thepectively.
fast SOM pool Foley, 19953. This fractionation is given by

the two parameterg_,, = 0.7 (fraction of mineralized litter Rr = fapdT) x Const ®)
entering atmosphere) anfl, ; = 0.985 (fraction of remain-  Rr,,; = fabs(Tref) x Const 4)
ing mineralized litter entering the fast pool). All soil carbon g, — Ry x fiel(T, Trer) (5)

pools then undergo decomposition independently, i.e. with-

out feedbacks to the other pools. As there are no longdn the default version of LPJ-GUESS, autotrophic (root and
term experiments of soil carbon dynamics (decades to cenmycorrhiza) and heterotrophic soil respiration (SOM decom-
turies), the soil dynamics are implemented in a simple wayposition) are modelled using identical temperature responses.
and mainly based on findings from short-term experiments As we focused on SOM decomposition here, only the het-
Nevertheless, process based models such as LPJ-GUESS tlabtrophic soil respiration was varied using the five alter-
are specifically built to make long-term projections based onnative formulations introduced above. The autotrophic res-
processes taking place on shorter time scales have been sygiration influences net primary production and hence plant
cessfully used at a number of different sit&mith et al, growth and litter production. To not confound our results by
2001, Morales et al.2007%, Hickler et al, 2004). using different litter inputs, we did not vary the temperature
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Table 1. Temperature response functions

Id  Differential equation  Absolute function Relative functfon
E° dl%eT =C R = € *T x Const Ry = Rry X eCX(T—Ther)

A ‘”;ZﬁT =% Ry —=e~T x Const RT=RTrefxeAX(ﬁ_%)

G dlg;eT =a+2bT Ry = eaT+bT2 % Const Ry =Ry % eax(T—Tref)+bX(727T%f)

v %:%JF%JFC Ry =e~ 1 x TP x CxT x Const RT:RTref><eAX(ﬁ—%>+Bxl0g(ﬁ)+6x(T—Tref)
L %=ﬁ RTzeiT%TO x Const RT:RTreerAX(WETO*T%TO)

@ Functions expressed relative to reference temperdtgye- 10°C with reference respiratioRTref normalized to 1 at mean reference respirammef.
b The candiate formulations are: Exponential (E), Arrhenius (A), Gaussian (G), Van't Hoff (V) and Lloyd-Taylor (L).

Table 2. Site characteristics

Site Description Location Elevation (m) MAT NP Forest vegetation type

BEP Belgium de Inslag Pine 513N 43TE 16 10 41 Evergreen-needleleaf

DUK  Duke FACE 35.9YN 79.1°W 120-163 15.5 a7 Evergreen-needleleaf

HAR  Harvard 425N 72.17PW 180-490 7.85 197 Mixed Deciduous-evergreen
HES Hesse 48.6M 7.08E 300 9.7 39 Deciduous-broadleaf

HOW  Howland 452N 68.7 W 60 5.69 164 Evergreen-neddleleaf

MEO  Metolius old site 44 5N 121.62W 915-1141 8.5 316 Evergreen-needleleaf

THA  Tharandt 50.96N 13.7% E 380 7.6 279 Evergreen-needleleaf

UMB  Univ. of Michigan Biological Station 45.56N 84.7PW 234 6.2 78  Mixed Deciduous-evergreen

Characteristics of the sites providing the soil respiration data. AdaptedHibbard et al(20086.
& MAT: Mean annual temperature ftC.
b N: Number of data points.

response of the autotrophic respiration between the different In nonlinear regression, the usual parameter confidence in-

simulations. tervals cannot be used for sensitivity studies because the pa-
rameters show non-linear behavior. Therefore, we first lin-
2.2 Fitting of the temperature response functions earized all five standardized equations using the method of
i i expected-value parameteRRatkowsky 1990. Models in
We used the database compiled iipbard et al.(2008,  gypected-value parameterization are close to linear models

which contains datasets of soil respiration from a range ofiy terms of the statistical properties of their parameter es-
experimental sites in Europe and North America. We usedimates, j.e. the confidence intervals of the parameters are
total soil respiration data to estimate the overall temperatur%omparabm, and thus a follow-up uncertainty analysis will
response of soil respiration, as more data sets were availab@ve unbiased results.
for total soil respiration. Heterotrophic and autotrophic soil © the functions were linearized by replacing the initial
respirat_ion hqve _been shown to have a similar contribution toparameters by parameters reflecting the expected-value of
tota! soil rgsplratlonliﬁond-Lamberty 'et a,I.2004). the function output at a given position of the curve (Ap-
Eight sites were selected for calibration (TaBleto re-  nengix TableA1). We linearized for all parameters ba;,.
flect forest vegetation types that span a broad environmentato confidence intervals are provided in the Appendix (Ta-
gra(_jient (evergreen-needleleaf, mixed deciduous-evergr_eerilﬂe A3). In order to make the temperature response formu-
deciduous-broadleaf); we only used datasets that provideghiiong comparable across the different sites, they were nor-
more than 30 measurements of temperature and soil respirgs 4jized ®r..,,) such that the reference respiratiat,, at

tion. Measurements were made on a daily basis, distributeqlatarence temperatuf@es =10°C is equal to 1 for each site
over the whole year for time periods ranging from 1995 to ;4 equation (Ecp).
2002, depending on the site.

Ry = (R1,5) "2 X Ry (6)

Biogeosciences, 7, 3663684 2010 www.biogeosciences.net/7/3669/2010/
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For the sensitivity study, we used all five response formu-report the estimates from. Annual mean temperatures var-
lations at all eight sites and performed nonlinear fits for eachied widely, ranging from 11.5 te-1.0°C along this virtual
dataset-function pair using nonlinear least-squares estimatesevation gradient.
in the statistics software package R Development Core Climate data for the period of 1901-2006 were compiled
Team 2008. from different sources. Daily mean temperatures and daily

To fit the Van't Hoff relationship, we had to intro- precipitation sums for the period of 1960-2006 were ob-
duce an additional data point in each data set-a0CC, tained from a spatially explicit climate data set of Switzer-
0umol C nT2s~1) to find a solution of this equation that has land with a spatial resolution of 1 ha. The data were derived
no respiration at low temperature: —40°C). We deter- using the DAYMET model Thornton et al. 1997, which
mined the 99% confidence intervals for each parameter ofvas developed specifically for complex terrain such as moun-
each function and the correlation matrix of the parameterdain ranges (data source: Land Use Dynamics, Swiss Federal
for each individual fit. The goodness of each fit was quanti-Institute for Forest, Snow and Landscape Research, Switzer-
fied by the Bayesian information criterion (BIC) introduced land). For each elevation level we calculated the mean daily
by Schwarz(1978. temperature and precipitation of 100 adjacent grid points (us-

We used the SIMLAB software from the European Joint ing a 10< 10 grid) at a south-facing slope.

Research CenteSéltelli et al, 2004 to generate the param- Temperature and precipitation data for the period of 1935—
eter sample sets. For each fit, we generated a latin hypercul#959 were based on the nearest automated meteorological
sample (Vv =20). We sampled uniformly over the confidence station Locarno-Monti (distance 24 km), which served as a
intervals of the parameters and included the parameter deeference to derive the daily anomalies relative to the long-
pendencies through the correlation matrix obtained in the fitterm climatology of this station. The daily anomalies of the
ting procedure based on the methodlmian and Conover Locarno-Monti station for the years 19351959 were applied
(1982. We used the 99% confidence intervals of the param-o the climatology of the years 1960-1970 for each eleva-
eters, and created a sample of parameter sets over their caien. This prolonged the climate input for each elevation
responding confidence range for each response function-sitevel back to the year 1935. Lastly, the climate for the period
pair. 1901-1934 was based on monthly data from the Climate Re-

We analyzed the variations when (1) only uncertainty in search Unit (CRU TS 1.2Mitchell et al. (2003). For this
the temperature respons®;(), was included (2) variable period, the daily climate anomalies were taken from 35 ran-
turnover times Ry + 1) for the litter, fast and slow soil domly chosen years out of the Locarno-Monti dataset. The
carbon poolsr, 77, 7, were incorporated, and (3) variable CRU dataset was sampled along the virtual elevation gradi-
turnover times and fractionatioR{ + = + F) of the miner-  ent and the daily anomalies were applied to these samples.
alized litter were included. The dataset for percentage sunshine was based on the refer-

As the confidence interval of the turnover times could notence station Locarno-Monti (1960-2006) and the CRU TS
be estimated with the given experimental datasets, we fol-l.2 dataset for the period of 1901-1959. The same dataset
lowedParton et al(1987 and set the range of turnover times was used for all elevation levels, assuming that mean daily
for the three carbon pools to 1-5y for the litter pool, 20-40y cloud cover did not differ within the valley.
for the fast SOM and 2001500y for the slow SOM. The cor-
responding confidence intervals for the two fractionation pa-2.3.2  Simulation experiments
rameters were set to 0.633-0.767 for, and 0.980-0.989
for f_ ; (Foley, 19958. We thus assumed implicitly that Simulations were run for all sites along the virtual elevation
the turnover times and the litter fractionation parameters dedradient for a total of 1106 years. In LPJ-GUESS, each mod-
pended neither on each other nor on the other parameters &fled stand is represented by independent replicate patches

the temperature response. (N =30). Itis assumed that the patches experience the same
climate and have the same soil type. Stochastic processes

2.3  Simulations with LPJ-GUESS in the vegetation dynamics, like establishment and mortal-
ity may result in different dynamics in different patches, the

2.3.1 |Interpolation of climate data mean over the patches however approaches an average value.

The first 1000 years were used for a model spin-up, whereas
LPJ-GUESS is driven by daily weather input, including meanthe subsequent 106 years corresponded to the calendar years
temperature, precipitation sum, percentage sunshine and at901-2006. The spin-up period was based on a constant
mospheric CQconcentration. The climate data were basedlong-term climate, but considered interannual variations to
on interpolated weather data of a large elevation transect irestimate the equilibria for both soil carbon pools and vege-
the Ticino catchment in the Southern Swiss Alps rangingtation composition $itch et al, 2003. During the spin-up
from 300 to 2300m a.s.l.,, sampled at 200 m intervals, re-period, the long-term equilibria of the litter, fast and slow
sulting in a total of 11 individual sites from which we choose SOM pools were estimated by solving the differential flux
three representative sites (at 300 m, 1300 m and 2300 m) tequations analytically assuming that the annual litter inputs
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from the years 700 to 900 represent steady state litter inputs,
which is legitimate as vegetation composition and produc-
tivity reached their equilibrium before simulation year 700
(results not shown). Therefore, in our simulations the length
of the model spin-up period has no influence on the steady-
state soil carbon stock or its associated variability.

An uncertainty analysis was performed for each pair of re-
sponse formulations and sites separately. We analysed the
model output of the year 2006. As the key variable to assess
uncertainty, we chose the sum of the three carbon pool sizes (a) BEP (b) DUK
at the beginning of August as a proxy for mean annual pool
size. The summed soil carbon pool fluxes were also evalu- 5 =]
ated as monthly sums. We used the month of August becausem‘; o
soil respiration was generally highest at that time within the
year.
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3.1 Fit of the functions (© HAR () HES

»

We divided the response functions into three groups shar-
ing similar characteristics: (1) Exponential and Arrhenius,
(2) Gaussian and Van't Hoff and (3) Lloyd-Taylor.

The Exponential and Arrhenius equations overestimated
soil respiration at temperatures below°@in all datasets

ration (umol C m
2 3 4 5 6
L
iration (umol C m2s™")

Soil resp

(Fig. 1). Lloyd-Taylor generally performed better not show- e Q, v 2w ) m o 1 o w
ing an overestimation at lower temperatures. At five sites Soltemperature (+C) Solltemperaure (°C)
(Figs.l_a—le),_ the Gaussian and Van't Hoff equations yielded (e) HOW (f) MEO

a maximum in the temperature range of 1525 but they

provided the best estimates below°TD Because the maxi- 7 ]

mum was located at rather low temperatures, they tended to< = -
underestimate respiration at high temperatures, where only & - -
few measurements were available.

Most parameters were significant when predicting the soil
respiration from temperature, with the exception of the first = . |=

parameter of the Van't Hoff equation (Appendix TaBig). oo 0w oo 0w

< 4

o o

Soil respiration (umol C m2s™")

Soil respiration (y

The only parameter estimate directly comparable between Sotpere (9 Sotpere (9
the different temperature responses was the reference respira- () UMB (h) THA

tion, which ranged from 1.06—1.15 umolC#As lat the site
BEP to 3.49-3.63 umolCﬁ?s‘lat the site THA, respec- Fig. 1. Best non-Iinegr fit for the soil respiration asgfunction of s_oil
tively (cf. Appendix TableA3; site acronyms are provided temperatqre for all s’ltes are shown (E: Exponential, A: .Ar.rhenlus,
in Table2). G: Ggussnan, V: Va}n t H_off, L: Lloyd-Taylor). The abbreviations of
) the sites are explained in Tal#te

The ranking of the performance of the temperature re-
sponse functions depended on the criterion used: When the
sum of squared residuals was used (Tad)leVan't Hoff
performed best (7/8), Gaussian dominated the second rank Based on the Bayesian information criterion, i.e. when
(5/8) and Lloyd-Taylor dominated the third rank (5/8), but also considering the number of parameters employed in a
it showed the best fit at the site MEO. When the data forgiven formulation, the performance of the Van't Hoff equa-
all sites were combined, thus comprising a larger variabil-tion was lower because it features the largest number of pa-
ity of environmental conditions than any site-specific datasetrameters (Tabld). It was ranked the second best model at
Lloyd-Taylor showed the best overall fit. The Exponential four sites. The Gaussian model was best at five sites, the
and Arrhenius formulations generally showed an inferior fit Lloyd-Taylor model at two sites and the Arrhenius model at
compared to any of the other three equations. one site. When assessed using the sum of squared residuals,
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Table 3. Summed squared residuals of nonlinear model fits _ _
Site SSR
E A G v L B N
BEP 26 25 172 169 2.1 £ £
DUK 811 797 722 718 737 o WS oWt
HAR  249.7 246.4 216.9 2153 229.3 5 0 5 10 15 2 2 5 0 5 10 15 2 2
HES 23.3 23.0 19.22 19.17 21.1 Soil temperature (°C) Soil temperature (°C)
HOW 88.4 84.9 53.9 534 65.6 (a) Exponential (b) Arrhenius
MEO 1109 110.2 108.4 108.4108.3
THA  248.9 247.7 243.4 240.8 2425 o] ©
UMB 533 525 515 499 512 v |
All 184.4 182.0 2129 2184 176.0 §

respiration

@ SSR: Summed Squared Residuals. Best (lowest) values for each
site shown in bold numbers. Allis the compound dataset consisting z
of all eight individual datasets. o | =edBT0

Soil respiration (umol C m2s™")

Soi

Soil temperature (°C) Soil temperature (°C)

Table 4. Ranking of nonlinear model fits

(c) Gaussian (d) Van’t Hoff
Site BIC? -
E A G v L
BEP 5.0 3.9 —-9.4 —-8.9 —-1.2 i

DUK 161.1 160.3 157.9 162.5 158.9
HAR 576.2 573.7 552.8 556.0 562.9
HES 92.7 92.2 875 91.0 911

Soil respirati

-5 0 5 10 15 20 25

HOW 3471 3411 2758 2776 304.9 .
MEO 556.6 554.6 5519 5552 551.8
THA 7603 7589 7563 757.6 755.3
UMB  193.7 192.6 1934 1948  192.9
Al 1159.6 11454 1322.6 1353.71110.0

(e) Lloyd-Taylor

Fig. 2. Uncertainty bound for each candidate temperature response
function spanned out by the sampled function parameter range sets

o ) o for the site HOW. The abbreviation of the site is explained in Ta-
@ BIC: Bayesian information criteriorSchwarz 1978. Best (low- ble 2.

est) values for each site shown in bold numbers. All is the com-
pound dataset consisting of all eight individual datasets.

Switzerland (12-17 kgCn?, Swiss national forest inven-
tory, Speich et al. 2010 and Northern ltaly (4.2-15.9

Lloyd-Taylor showed the best performance when all the dat&k9C M “above groundRodeghiero and Cescat®009. The
were analyzed together. It was best at two sites, second bebfgher estimates of the model, however, can partly be ex-
at another two sites and third best at the remaining four site®!@ined by the intensive land use in this region in the past
(Table4). (Tinn_er et al, 1998, as many forests are young and still re-

The uncertainty of the response function increased with in-9r0Wing after abandonment of pastures and orchads
creasing temperature for all sites (FRjresults only shown ~dock et al, 1999. This is not reflected in the model LPJ-
for site HOW). As expected, uncertainties increased with theUESS, which simulates potential natural vegetattsmith

number of parameters used: the Exponential and Arrhenju§t @l- 2009 and does therefore not consider management or
formulations had the lowest ranges of variability (Figa- land use history. The shifts from deciduous trees to needle
2h), Gaussian and Van't Hoff the highest (Figs-2d), and leaved trees that is simulated to occur at around 1100-1300m

Lloyd-Taylor was characterized by intermediate uncertainty /it With expectations of natural vegetation in Eurofgi¢n-
ranges (Fig2e). berg et al.2009.
The simulated leaf area indices of about 4-5 (results not
3.2 General model behavior along the elevation transect  shown) were in the range expected for deciduous{5L16;
SD) and needle leaved forests (5:8.4 (SD),Asner et al,
Vegetation: The model somewhat overestimated biomass2003. The yearly total litter input (leaves/needles, roots and
along the elevation gradient (13-39 kgCty results not  woody material) estimated by the model varied little over
shown) compared to measurements of forests in southerthe elevation gradient (0.650.02 kgCnT2y—1: SE), and
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Fig. 3. Uncertainty in short-term soil carbon flux with climate of August 2006 as an example output for the case with only varying temperature
response functionsRg) on (a) 300m, (b) 1300 m and (c) 2300 m of elevation. Pairs of response functions and sites have been grouped
according to the response formulation used. The box plots show the median, the lower and upper quartiles and span over the 95% confidenc
interval. Models are separated by the dashed lines into groups with similar means and uncertainty ranges. Abbrevations.as in Fig.

was comparable with measurements of above ground leaf lit- Elevation 300 m:Soil carbon fluxes ranged between 0.06
ter only of 0.12-0.52 kgCmfy—1(Rodeghiero and Cescatti and 0.11 (Fig3a), whereby the range was somewhat smaller
2005. for the E and A functions. The uncertainty ranges of G and

Soil respiration: The simulated yearly sums of total soil V and Lloyd-Taylor were 1.4 and 1.5 times larger relative to
respiration for the years 2000-2006 varied between 0.3 anthe range of E and A.

1.0 kgCn12y~1(results not shown) and are in accordance Elevation 1300 mOn 1300 m elevation the median values
with measurements in a deciduous forest at 800 m in Northwere rather similar ranging from 0.087 to 0.161 (Fa),

ern Switzerland (0.49 kgCnfy~*, Ruehr etal.2010. With  although the range of uncertainty was larger for the Gaussian
an average contribution of heterotrophic to total soil respi-and the Lloyd-Taylor formulations.
ration of 50% H'anson' et gJ.ZOOQ, the sllmula.ted. range Elevation 2300 m:While carbon fluxes increased from
compared well with estimations of total soil respiration made 309 to 1300 m, they decreased again (for E and A) up to
Overa narrower elev?tioiw gradient (220-1740 m) in Northermna300 m, and three distinct subgroups were identified: E and
ltaly (0.5-1.2 kgCm“y"~, Rodeghiero and Cesca009. A with a range of 0.076-0.105, G and V with a range of
Soil carbon:The median soil carbon content estimated by o 0g2-0.159, and Lloyd-Taylor with a range of 0.078-0.145
the model (10-60 kgCn?), fits well with estimations for the (Fig. 3c). This resulted in uncertainty ranges for G and V

Ticino catchment (14.2- 1.9 kgCn#(SE), elevation range  anq Lloyd-Taylor that were 2.7 and 2.3 times the range of
of 327-1820 mPerruchoud et a12000. As expected, they g gnd A.

were somewhat higher than the 2.3-11.5 kg€measured
in the Italian Alps Rodeghiero and Cescati005 as only
the upper 30 cm were considered in their study.

Changes with elevationthe medians of monthly respira-
tion for each individual temperature relation followed a bell-
shaped curve over all 11 simulated sites of the elevation gra-
33 Short-term soil carbon flux dient (results not shown), starting with low values at 300 m

(Fig. 3a), inflecting at around 1300 m (Fi@b) and then de-
Below, the results for the Exponential and Arrhenius re- creasing again up to 2300 m (Fgg). Although the medians
sponse formulations are combined and referred to as E and Always were in the range of 040.02 kgCnrZmonthr,
because of the high degree of similarity in their behavior. Thethe ranges of uncertainty increased steadily with elevation
results for the Lloyd-Taylor formulation are reported sepa- (Fig. 3a-3c), particularly for the temperature responses G
rately (L), but the expressions of Gaussian and Van't Hoffand V and Lloyd-Taylor, leading to ranges at 2300 m that
are combined and referred to as G and V due to their similatvere 1.5 and 1.7 times larger than the range at 300 m.
behavior.

The total soil carbon fluxes to the atmosphere are pre3.4 Long-term soil carbon stock
sented for the case where only the response functions and
their parameters were varied. The differences to the case withooking at the carbon stock estimates of 2006, the response
varying turn-over times and to the case with varying litter functions could be divided into the same groups as found in
fractionation parameters were negligible (results not shown)the regression analysis, both according to their median and
Unless stated otherwise, units of monthly carbon fluxes inthe magnitude of their uncertainty range (Fg-4i). If not
August are given in kgCmmonth 1. stated otherwise, the units of carbon pools are kg€m
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Fig. 4. Uncertainty in long-term soil carbon stocks with climate of August 2006 as an example output for the cases with (a—c) only varying
temperature response functiorgy(), (d—f) additionally varying turnover timeR¢ + t) and (g—i) litter fractionationgr + = + F). Pairs of

response formulations and sites have been grouped according to the temperature response used. The box plots show the median, the low
and upper quartiles and span over the 95% confidence interval. Models are separated by the dashed lines into three distinct groups witt

similar means and uncertainty ranges. Abbrevations as inlFigt 300 m and 1300m (a, b, d, e, g, h) the same ordinate scale is used,
whereas at 2300 m (c, f, i) a different scale is used.

Elevation 300 m: If only the temperature response and less between the groups G and V vs. Lloyd-Taylor, amount-
their parameters were varied, soil carbon stock estimates foing to 1.4 and 1.2 times the uncertainty range of the E and
E and A ranged from 9.2-13, for Gaussian and Vant't Hoff A formulations, respectively (Figld). The group E and A
from 6-15.7 and for Lloyd-Taylor from 8-14.1. The ranges showed a strong increase in the spread of soil carbon stock,
of uncertainty of G and V and Lloyd-Taylor were a factor when aslo the uncertainty in the turnover times of the carbon
2.5 and 1.6 higher than those of the E and A formulationspools was considered. When turnover times and litter frac-
(Fig. 4a). When turnover times were varied as well (Fid), tionation parameters were varied, the variation compared to
uncertainty ranges generally increased. The differences bethe E and A formulations did increase slightly to 1.9 times
tween the groups decreased, however, as the medians wefer G and V and to 1.4 times for Lloyd-Taylor (Fidg).
more similar. In addition, the range of uncertainty differed

www.biogeosciences.net/7/3669/2010/ Biogeosciences, 7, 36832010
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Elevation 1300 mWhen the response functions and their rhenius responses led to an overestimation of respiration at
parameters were varied, the E and A resulted in soil carbortiow (<10°C) temperatures, which resulted in an insufficient
stocks in the range of 14.8-20.2, whereas G and V as welfit overall, thus corroborating the results of earlier research
as Lloyd-Taylor showed a larger range of carbon stock esti{Lloyd and Tayloyr 1994). The Exponential response, which
mates: 14.1-23.7 and 15-21.5, respectively (B. The is based on a constaf®1p value is not adequate as the
uncertainty ranges of G and V and Lloyd-Taylor amounted Q1¢ value has been shown to decrease with increasing tem-
to 1.8 and 1.2 times the range of E and A (Hb). When  perature Kirschbaum 1995. This has been confirmed by
the variability in turnover times was additionally considered, Schindlbacher et a(2010, who measured respiration in in-
the uncertainty ranges were much larger (2.0, 1.4 and 2.@ubated soil samples and showed that the Lloyd-Taylor and
times) for E and A, Gaussian and Van't Hoff and Lloyd- Gaussian formulations had an increasing temperature sensi-
Taylor, respectively (Figde). If the litter fractionation pa- tivity along elevation gradients in Spain and Austria. Nev-
rameters were also varied, the uncertainty was 2.0, 1.4 andrtheless, in our study the Exponential formulation was in-
2.0 times higher for E and A, Gaussian and Vant't Hoff and cluded in the analysis because the usag®gf values is
Lloyd-Taylor compared to the case with only varying temper- common Qi et al, 2002.
ature responses, which means that it increased only slightly For the other three response functions, the rankings dif-
compared to the former case (Fit). fered depending on the criterion employed. As expected,

Elevation 2300 mWhen only varying the temperature re- the Van't Hoff equation ranked best when considering the
sponse formulations and their parameters, soil carbon stocksummed square residuals, as it has the largest number of pa-
were generally largest at the highest elevation and showed sameters. However, when we used the Bayesian information
much larger range compared to lower elevation sites. Projeceriterion, which evaluates the model fit relative to the num-
tions ranged from 17.7-38, from 21.4-80.4 and from 18.5-ber of parameters, the Gaussian and Lloyd-Taylor formula-
64.6 for E and A, G and V and Lloyd-Taylor, respectively tions performed better. The good performance of the Gaus-
(Fig. 4c). For the case with varying turnover times we found sian function is in line with results from agricultural and for-
ranges of 13.6-37.7, 15.8-75.8 and 15.1-59.7, respectivelgst soils in Finland and Sitka spruce plantations in Scotland
(Fig. 4f). (Tuomi et al, 2008. The Lloyd-Taylor formulation has been

For the case with varying litter fractionation the ranges reported to give good results for a variety of soil typelsyd
amounted to 16.7-37.7, 22.2-74.8 and 18.2-68.5 @jg. and Taylor 1994 and it is widely used in soil and ecosystem
In contrast to the other two elevations, the range of carbormodels Adair et al, 2008 Kucharik et al, 200Q Thornton
stock predictions was only slightly affected by the variation et al, 2002.
in turnover times and litter fractionation parameters. Although the Gaussian and Lloyd-Taylor equations fea-

Changes with elevation:The range of uncertainty in- ture the same number of parameters, the Gaussian formu-
creased with increasing elevation for all three subgroupdation outperformed the Lloyd-Taylor function in this study,
(Fig. 4), whereby the largest uncertainties were found at thewhich is in line with findings byruomi et al.(2008. How-

2300 m elevation site for all model formulations (Figs, f, ~ €ver, when all individual sites were combined, Lloyd-Taylor
and i). outperformed both Gaussian and Van't Hoff with respect to

a ranking based on both the summed-squared-residuals and

the Bayesian information criterion. This is in agreement with
4 Discussion Fang and Moncrief{2001), who found Arrhenius, Lloyd-

Taylor and Gaussian function all perform well on data of in-
The reliability of model outputs heavily depends on the un-cubation measurements, whereby the Lloyd-Taylor formula-
certainty associated with the choice of functional dependention performed slightly better than the Arrhenius function.
cies in the model and the data sets used to derive parame- The decrease of respiration rates at high temperatures,
ter values. Often, regression analysis is employed based ofpund for the Gaussian and Van't Hoff formulations was
experimental data. The uncertainty inherent in the paramemainly an artifact of model parameterisation. Although,
ter estimates will propagate through the model and lead t@ decline in respiration rates would be expected at higher
a corresponding variation in model output. This has beerfemperatures due to microbial protein denaturation, the de-
shown byJones et al(2003 who analyzed the temperature clines found in our datasets started at too low temperatures
sensitivity (Q10) of soil respiration in a fully coupled global (Larcher 2001). Especially at the sites in the colder temper-

circulation model. ature regime (BEP, HAR, HES, HOW), Gaussian and Van't
Hoff inflected below 20C and their parameterization should
4.1 Fit of the functions therefore not be used if the temperature regime frequently in-

cludes temperatures higher than the inflection point tempera-
The temperature response functions could be assigned intiure Friedlingstein et a) 2006. For temperatures above 35—
three groups: Exponential and Arrhenius, Gaussian and0°C, the decrease in respiration rates at higher temperatures
Van't Hoff and Lloyd-Taylor. Using Exponential or Ar- is not an artifact, but a process that needs to be considered.
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In such a case the Exponential, Arrhenius or Lloyd-Taylor proposed relationship of Lloyd-Taylor performed best with

functions would have to be complemented by an additionala three-pool model on the Long-term Intersite Decomposi-

curve and parameters describing this decline in respiratiorion Experiment Team (LIDET) data set. The good perfor-

rates. The data sets used here, however, do not have enoughance of Lloyd-Taylor, when short-term carbon fluxes are

measurements at higher temperatures to provide reliable estconsidered, was also shown for range land sibed (5rosso

mates of the inflection point of the Van't Hoff and the Gaus- et al, 2005 and at different flux tower sitesR{chardson

sian curves or for an additional declining curve for the Expo-et al, 2006. Our findings, however, are in contrast to those

nential, Arrhenius or Lloyd-Taylor formulations. by Tuomi et al.(2008, who found the Gaussian formula to
The larger the number of parameters in a given expressiorfjt best incubation measurements from different sources. A

the larger the variability of the overall parameter space. Al-Gaussian relationship may be generally preferable, but re-

though each additional parameter improved the curve fit sigquires reliable calibration across a broad range of tempera-

nificantly, it also contributed to the total uncertainty inherent tures as previously stated Bauer et al(2008. This can

in a given response function. be illustrated by looking at the variability of the flexing point
Due to the heteroscedasticity in the data set, the ordinanat higher temperatures that determines the uncertainty of the

least square regression we used can cause the uncertainty lohg-term results.

the function parameters to be underestimated, but the esti-

mations are neither biased nor inconsistédtegne 2009. 4.2 Short-term soil carbon flux

Due to the risk of the underestimation of the uncertainty, our ) )

analysis should be seen as a conservative estimate of the at€ short-term soil carbon fluxes in the month of August

tual spread of the simulation results. The uncertainties 02006 as an example output showed a diverse picture along

the different parameters are directly comparable however, athe virtual elevation gradient for both the response function
we have first linearized the equations prior to the regressiona"d the size of the soil carbon stock. The medians of the pro-

avoiding the bias due to the otherwise non-linear behavior ofeCtions under all temperature relationships showed a bell-
the parameter estimateR4tkowsky 1990). shaped behavior from low to high altitudes, the highest val-
As the Gaussian and Van't Hoff functions showed better €S being found at 1300 m.. iy :
fits at low temperatures one would be tempted to favor them The modelled respiration is positively correlated with ,bOIh
over the other temperature responses. However, as the fung®il carbon pool size and soil temperature. As the soil car-
tions were optimized using a dataset that comprises tempepqn poql size increases with elevation, modelled respiration
ate test sites only, they would need to be verified over a largefnitially increases, too. The temperature however decreases
temperature range first. Hence, when applying these expreé’l”th elevatlon._ Thls counteracts 'ghe increasing trend of .the
sions with the parameters estimated here, in the context 0li:n_odelled respiration due to pool size and finally reverses it at
global vegetation modelling efforts, they are likely to have higher elevations. The soil carbon fluxes therefore changed

an unsatisfactory performance at warmer future conditiond"®m being more limited by the carbon pool size at low el-
and in tropical and subtropical regions. In our test region,evat'ons to being more limited by the rate of decomposition

even the site with the highest annual mean temperature (4f-€: temperature) at high elevations. This is analogous to

300 m on our virtual elevation gradient), soil temperatures of \tkin @nd Tjoelker(2003, who found that the temperature

20°C were exceeded on average on only 10% of the days pegiependence of plant respiration is limited by the turnover rate

year. For sites at higher elevations and hence lower tempef(EN2yme activity) at low temperatures and by substrate avail-
atures, soil temperatures never reached the values where tR@lty (Pool size) at high temperatures. _
response curves had the highest uncertainty. Hence, the high e could show in our study that beside the size of the
degree of uncertainty at higher temperatures has only smaff°!l carbon pool, the choice of a particular soil tempera-
or even negligible consequences for the variation in modefur® function had a significant impact on the estimations of
output in regions where soil temperature normally does nothe short-term soil carbon turnover, whereas uncertainties in
exceed values of 2T, for instance in forests at high eleva- UrMover times and litter fractionation had little direct im-
tions or high Iatitudes’. pact on the short-term carbon flux. This is in accordance
We have to bear in mind, however, that measured data af/Ith Bauer et al(2008, who have applied different temper-
each individual site may be influenced by additional factors2!ure reduction functions to the modified SOILCO2-ROTHC
apart from the temperature response function, such as sofodel and found deviations on the simulated estimates of the

moisture conditionsRodrigo et al, 1997 Cisneros-Dozal ~Ccumulative CQfluxes. AlsoTang and Zhuang2009 ap-

et al, 2008, litter chemistry Berg and Laskowski20058 plied a global sensitivity analysis for the Terrestrial Ecosys-
and soil quality Conant et a].2008. Still, the regression tem Model (TEM) and found the temperature dependency of

analysis based on the compound data set shows that the d&0il respiration to be one of the important key factors for the
fault response equation of Lloyd-Taylor in LPJ-GUESS canuncertainty in estimates of net ecosystem productivity.

still be used for further work. These findings are in agree-

ment with those byAdair et al.(2008, who found that the
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4.3 Long-term soil carbon stock pretation of the results, as the uncertainty in the temperature

response curve was very low for low temperatures.

We found that at low elevations and hence high tempera-
tures, carbon pools turned over relatively quickly and there-5
fore large carbon stocks did not accumulate. Carbon pools at

higher elevations tend to be higher, due to the slower turnovefye have found two main sources of uncertainty for model
rates. These findings are in agreement with experimentasimylations of both short-term and long-term soil carbon dy-
measurements Hodeghiero and Cescatl009; Zinke and  namics. On one hand there is the variation in the parameter
Stangenbergg2000), but not withPerruchoud et a[2000  estimates of the temperature responses and on the other hand

who found little evidence for a significant influence of cli- there is the uncertainty in carbon pools that turn over slowly.
mate on soil carbon stocks in Swiss forests. The answers to our initial questions are:

Summary

The uncertainty bounds of total soil carbon stocks gen-
erally increased with elevation, i.e. they decreased with in-
creasing mean temperature for all response equations and
sites. At first sight, this may appear counter-intuitive as the
uncertainty of the response formulation itself was found to
increase with temperature. This apparent paradox is caused
by the fact that the high spreading of the response function
at high temperatures does not result in a high uncertainty of
long-term carbon stocks because the carbon is readily de-
composed and no large soil carbon pools are formed. It is
important to take into account that the accumulation of uncer-
tainty was larger as the average decomposition rate became
slower. This was illustrated by the result that the influence
of the alterations in turnover times and litter fractionation
parameters diminished with increasing elevation. An addi-
tional change in an already very low decomposition rate did
have only minor effects on the estimations of carbon stor-
age. But the turnover times and litter fractionation may well
play a role when considering global estimates as has been
shown byYurova et al.(2010, who did a limited sensitiv-
ity analysis of the LPJ soil carbon dynamics module coupled
to their climate-C cycle model INMCM (Institute of Numer-
ical Mathematics Climate Model). Of the three parameters
studies (litter pool decomposition rate and fractionation pa-
rameters), the proportion of decomposed litter allocated to
the slow soil carbon pool had the biggest impact on their es-
timates of soil carbon stocks.

At higher temperatures and thus at lower elevations, un-
certainty in long-term soil carbon stocks resulted from the
uncertainties in the temperature response itself. Due to high
turnover rates, only little carbon accumulated and therefore
variation in carbon stock estimations was comparatively low.
This may nevertheless be important when comparing ecosys-
tems within the tropics and subtropics, Hslland et al.
(2000 showed. They have derived lower and upper confi-
dence limits of the exponential temperature response from
measurements and found substantial differences in modelled
carbon fluxes and pools, analogous to our results.

The elevation range used in our simulations resulted in a
temperature range that covers the temperature range of the
calibration data sets, but extents it to lower temperatures
(i.e. higher elevations). However, the extension over the
lower end of temperatures is not problematic for the inter-

Biogeosciences, 7, 3663684 2010

3.

1. The equation of Lloyd-Taylor fitted the compound data
set of observed soil respiration best and did not add dis-
proportionate to the spreading in parameter estimates.
As this equation is already in use in the model LPJ-
GUESS, we can confirm its applicability for the tested
temperature range. The alternative formulations where
not as favorable, because they either resulted in poor
fits (Exponential, Arrhenius) or were not applicable
when extrapolating to temperatures beyond the calibra-
tion datasets (Gaussian, Van't Hoff).

2. The uncertainty of the estimates of the short-term soil
carbon dynamics was mainly due to the variation in the
parameter estimates of the underlying temperature re-
sponse functions. This uncertainty decreased with in-

creasing elevation.

The uncertainty of the simulated estimates of the long-
term soil carbon stocks, however, increased with in-
creasing elevation. The soil carbon at low elevations
was readily degraded due to faster turn-over times,
whereas at higher elevations, the slower turn-over times
lead to higher carbon stocks and as a consequence
higher associated uncertainties. However, changing el-
evation here not only reflects changing of height above
sea level but also incorporates more abstract qualities
such as differing temperature, species distribution, litter
input and soil carbon stock. This increased uncertainty
in the size of carbon pools with slow turn-over rates has
implications for the uncertainty in the projection of the
change of soil carbon stocks driven by climate change.
The increased variation for higher elevations and, when
taken as an analog for the higher latitudes in respect to
low-temperature regimes, contributes to a high uncer-
tainty when estimating the global carbon budget.
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Appendix A

Table Al. Linearized temperature response functions

Id Linearized functioft
b 1 x1-T T—Tref
E Rr= (R X% RTrefﬂ_Tfef x Eq ¥t Tret
Trefx(T—x1) x1x(Tyef—T)
A Ry = (RTref)_l X RT.o; TX(Tef=¥D x Aq T (Tref—*D
(T—x1)(T—x2) _ (T-Tiep(T—x2) (T=Tyep)(T—x1)
G RT (RTref)_l X RTref (Tyef—*D) (Tref—x2) X Gl (Tref—xD(x1-x2) X G2 (Tyef—x2)(x1-x2)
\Y R (RT f)*1 X R, fP01+P02><T’1+P03x T+PoaxIn(T) 4 V1P11+P12>< T4 Piax T+ Piaxin(T)
re re
x V2P21+P22><T’1+P23>< T+PaaxIn(T) y V3P31+P32><T’1+P33>< T+ P3axIn(T)
J— I (Tret—T)(Lp—x1)
L RT = (RTref)_l X RTref X (R L )(LZ*T)(Tref*X].)
Tref

3681

2 Temperature response functions linearized with the method of expected-value paraReteregky 1990. Tr=283.15K, x0=268.15K (for V only), x1=280.15K, x2=292.15K.
b The candiate formulations are: Exponential (E), Arrhenius (A), Gaussian (G), Van't Hoff (V) and Lloyd-Taylor (L).

Table A2. Significance levels

Site
R Tref
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Significance levels are given in P-Values for all the parameters of nonlinear model fits for each pair of temperature response formulation (as given in App&hpianfiable

calibration site.

a Significance codes for P-values: 0 *** 0.001 ** 0.01 * 0.050.17 1. All is the compound dataset consisting of all eight individual datasets.

Table A3. Model parameter ranges

Site ‘

R4
Tret

Eq

‘ R Tref

Al ‘ RTref

G1

G2

BEP
DUK
HAR
HES
HOW
MEO
THA
UMB
All

1.06[0.94:1.18]
2.58[1.94:3.23]
2.15[1.84:2.46]
1.93[1.52:2.34]
2.49[2.30:2.68]
1.57[1.46:1.68]
3.49[3.32:3.67]
3.10[2.77:3.43]
1.00[0.96:1.04]

0.86[0.72:0.99
1.96[1.34:2.57
1.53[1.22:1.84)
1.53[1.06:2.01
1.89[1.68:2.09
1.25[1.13:1.36
2.40[2.23:2.58
2.32[1.98:2.65
0.76[0.73:0.80

1.06[0.94:1.18]
2.56[1.92:3.20]
2.15[1.84:2.46]
1.93[1.52:2.34]
2.50[2.31:2.69]
1.57[1.46:1.68]
3.51[3.33:3.68]
3.10[2.77:3.43]
1.00[0.96:1.04]

0.86[0.72:0.99
1.90[1.29:2.51]
1.50[1.19:1.82
1.52[1.04:1.99
1.88[1.68:2.09
1.24[1.12:1.35
2.42[2.24:2.59
2.29[1.96:2.63
0.76[0.72:0.80

1.15[1.03:1.28]
2.25[1.50:3.00]
1.92[1.54:2.31]
1.92[1.49:2.36]
2.75[2.56:2.94]
1.59[1.47:1.70]
3.63[3.40:3.86]
3.12[2.78:3.45]
1.02[0.97:1.06]

0.81[0.68:0.93]
1.36[0.56:2.16]
0.96[0.56:1.36]
1.19[0.62:1.76]
1.74[1.53:1.94]
1.18[1.05:1.32]
2.52[2.31:2.73]
2.21[1.82:2.61]
0.68[0.64:0.73]

1.66[1.39:1.94]
6.46[5.67:7.26]
5.38[4.75:6.01]
3.30[2.41:4.20]
4.68[4.22:5.14]
3.16[3.01:3.30]
7.16[3.92:10.39]
7.35[6.93:7.77]
2.30[2.23:2.37]

Site |

R Tret

Vi

V2

V3 ‘ R Tref

Ly

Ly

BEP
DUK
HAR
HES
HOW
MEO
THA
UMB
All

1.14[1.02:1.26]
2.23[1.49:2.98]
1.90[1.53:2.28]
1.96[1.43:2.50]
2.71[2.52:2.90]
1.50[1.44:1.74]
3.57[3.32:3.81]
3.29[2.85:3.73]
1.04[0.98:1.09]

0.10[0.01:0.20]
0.17}0.18:0.52]
0.03£0.03:0.09]
0.01£0.08:0.10]

0.13[0.04:0.22]
0.22£0.30:0.74]
0.07£0.10:0.24]
0.07£0.16:0.31]

0.05[0.0:0.10]

0.80[0.68:0.92]
1.39[0.61:2.16]
0.98[0.59:1.36]
1.16[0.55:1.78]

1.71[1.51:1.91]
1.18[1.05:1.32]
2.61[2.35: 2.88]
2.28[1.84:2.72]

0.69[0.64:0.75]

1.65[1.37:1.931..10[0.96:1.24]
6.50[5.69:7.31] 2.39[1.69:3.10]
5.37[4.73:6.00] 2.12[1.79:2.45]
3.32[2.43:4.21] 1.93[1.50:2.36]
4.62[4.15:5.090.64[2.43:2.86]
3.15[2.98:3.31] 1.60[1.48:1.72]
14.8p.7:32.4] | 3.63[3.43:3.84]
7.30[6.88:7.71] 3.14[2.79:3.48]
2.28[2.20:2.361.02[0.97:1.06]

0.84[0.71: 0.97]
1.51[0.55: 2.46]
1.30[0.92: 1.69]
1.41[0.87: 1.96]
1.88[1.67: 2.08]
1.19[1.05: 1.32]
2.55[2.32 :2.78]
2.21[1.83: 2.59]
0.70[0.66:0.74]

253.15[202.12:304.18]
253.15[194.46:311.84]
253.15[217.07:289.23]
253.15[162.56:343.74]
253.15[234.22:272.08]
243.07[201.39:284.74]
252.26[226.98:277.53]
230.29[153.06:307.52]
253.15[243.80:262.50]

Model parameter estimates for nonlinear fits of each pair of temperature relationship (as given in Appendhd Yahkk calibration site with their corresponding 99% confidence
interval in square brackets.
a Ry, Reference respiration at reference temperafie= 28315k . All is the compound dataset consisting of all eight individual datasets.
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