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Abstract. The sensitivity and predictive uncertainty of the well reproduced by the ACASA model. In general, uncer-
Advanced Canopy-Atmosphere-Soil Algorithm (ACASA) tainty bounds encompass measured values better when these
was assessed by employing the Generalized Likelihood Unare conditioned on the respective individual flux only and not
certainty Estimation (GLUE) method. ACASA is a stand- on all three fluxes concurrently. Structural weaknesses of the
scale, multi-layer soil-vegetation-atmosphere transfer modeACASA model concerning the soil respiration calculations
that incorporates a third order closure method to simulateand the simulation of the latent heat flux during dry condi-
the turbulent exchange of energy and matter within andtions were detected, with improvements suggested for each.
above the canopy. Fluxes simulated by the model were
compared to sensible and latent heat fluxes as well as the
net ecosystem exchange measured by an eddy-covarian@e |npiroduction
system above the spruce canopy at the FLUXNET-station
Waldstein-Weidenbrunnen in the Fichtelgebirge MountainsThe exchange of energy and matter between the ground and
in Germany. From each of the intensive observation periodshe atmosphere is an important process within an ecosys-
carried out within the EGER project (ExchanGE processesem and influences its meteorological, hydrological and eco-
in mountainous Regions) in autumn 2007 and summer 2008|ogical properties. To model this exchange process and
five days of flux measurements were selected. A large numthe corresponding sensible and latent heat fluxes as well as
ber (20000) of model runs using randomly generated paramthe CQ flux, soil-vegetation-atmosphere transfer (SVAT)
eter sets were performed and goodness of fit measures fanodels have been developed. Due to the large variety of
all fluxes for each of these runs were calculated. The 10%model scopes, SVAT models differ greatly in their complex-
best model runs for each flux were used for further investigaity (Falge et al., 2005). Simpler model representations, so
tion of the sensitivity of the fluxes to parameter values and tocalled “big leaf” models (e.g. Sellers et al., 1996), are applied
calculate uncertainty bounds. when aiming for larger temporal and spatial scales, such as
A strong sensitivity of the individual fluxes to a few pa- in land surface schemes of climate models. Within these
rameters was observed, such as the leaf area index. Hownodels, the vegetation is depicted as one “big leaf” which
ever, the sensitivity analysis also revealed the equifinality ofrepresents the properties of the whole canopy and therefore
many parameters in the ACASA model for the investigatedis described with “effective” or “bulk” parameters. In mul-
periods. The analysis of two time periods, each representtilayer SVAT models (e.g. Wohlfahrt et al., 2001; Baldocchi
ing different meteorological conditions, provided an insight and Meyers, 1998), the emphasis is placed on a more detailed
into the seasonal variation of parameter sensitivity. The caldescription of canopy processes and thus the vegetation is
culated uncertainty bounds demonstrated that all fluxes wergepresented with more than one layer. Such SVAT models
incorporate a large number of process descriptions varying
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SVAT models can also be classified based on their implefrequently applied in hydrological modeling, especially in
mentation of turbulent transfer within and above the canopy.run-off modeling (e.g. Beven and Freer, 2001; Freer et al.,
The most common turbulence closure is the first-order flux-1996; Choi and Beven, 2007), but was also employed in
gradient closure oK -theory. Here, fluxes of a meteorolog- other model applications such as the estimation of critical
ical variable are calculated from the gradients of the mearoads (Zak and Beven, 1999) and the simulation of the ni-
of this variable and an exchange coefficignt This sim-  trogen budget (Schulz et al., 1999), as well as the analy-
ple closure scheme works well in representing the turbulensis of ground heat flux calculation approaches (Liebethal et
exchange above short canopies, but is limited in the correcéal., 2005). The GLUE methodology is also well suited to
reproduction of the turbulence structure inside tall canopieghe analysis of SVAT-models (Franks et al., 1997; Franks et
such as forests (e.g. Shaw, 1977; Denmead and Bradlewgl., 1999; Mitchell et al., 2009; Mo and Beven, 2004; Pri-
1985). Higher-order closure schemes have been developeabdko et al., 2008; Schulz and Beven, 2003; Schulz et al.,
to adequately simulate the turbulent structure and permit th001; Poyatos et al., 2007). In a study comparing uncertainty
simulation of second moments inside tall canopies. Secondanalysis techniques for a hydrological model application, the
order closure was proposed by Wilson and Shaw (1977) an&GLUE methodology achieved prediction uncertainties simi-
Wilson (1988) and a third-order closure was developed bylar to those of other methods (Yang et al., 2008).

Meyers and Paw U (1986), which was successfully cou- Here, the multi-layer terrestrial biosphere-atmosphere
pled to leaf energy balance equations and a radiative trangnodel ACASA (Advanced Canopy-Atmosphere-Soil Algo-
fer model (Meyers and Paw U, 1987). Comparisons of thesaithm, University of California, Davis; Pyles et al., 2000)
closure schemes found a similar performance of second- anthat incorporates a third-order turbulence closure (Meyers
third-order closure for wind speed and scalar concentratiorand Paw U, 1986) is used to model the turbulent fluxes of
profiles as well as fluxes (Katul and Albertson, 1998; Juangheat and water vapor as well as the£Z8change within and

et al., 2008). However, both closure schemes failed in reproabove a tall spruce canopy. A higher order closure model was
ducing the third moments close to the canopy-atmosphere inehosen because of the strong influences of coherent struc-
terface. Furthermore, Pinard and Wilson (2001) showed thatures on the energy exchange (Thomas and Foken, 2007a,b).
a first-order closure model arrived at similar results for the Earlier investigations with a first order non local transilient
fundamental wind properties within a canopy as a secondschema (Berger et al., 2004) have already demonstrated the
order closure model and question the theoretical superioritypenefit of non-local or nork -approaches. The advantage of
of a second-order model due to uncertainties of the drag coa multilayer model like ACASA that includes a higher-order
efficient in model applications. Also, a first-order model that turbulence closure is the detailed simulation of mean quanti-
accounts for non-local transport was developed by Zeng andies, fluxes and higher moments for several layers within the
Takahashi (2000) which proved to be able to predict windcanopy. Here, we focus on the evaluation of the sensitivity of
speed and momentum stress profiles within and above sewthe modeled above-canopy fluxes (which are the aggregation
eral canopies. of the fluxes in within-canopy layers) to the input parame-

All SVAT models, even the ones with less complexity, re- ters and the uncertainty of these fluxes simulated with the
quire a large number of input parameters to be specified byACASA model by employing the GLUE method. In addition
the user, such as morphological and optical properties of théo evaluating model performance for all fluxes combined, of
vegetation or physical properties of the soil. The more pro-special interest is a separate model evaluation for each flux.
cesses that are explicitly described in a SVAT model, theWe preferred the GLUE methodology to parameter optimiza-
more parameters are needed. These parameters are often tion techniques, as we did not intend to achieve optimized
easily determined, as the scale at which they are measurgohrameter values but rather to analyze the structure and be-
in the field varies, such as the leaf scale for photosynthesitavior of the ACASA model. We aim at (1) the identification
parameters and the stand scale for plant morphological paef the most influential model parameters, (2) the evaluation
rameters. of the seasonal variation of parameter sensitivity and (3) the

When calibrating SVAT schemes against (eddy) flux mea-detection of weaknesses in process representations within the
surements at high temporal resolution, the problem of modeACASA model. This evaluation of above-canopy fluxes is in-
equifinality has been reported (Franks et al., 1997; Mo andended as a basis for further studies using the ACASA model
Beven, 2004; Prihodko et al., 2008; Schulz et al., 2001). Inat our site that also analyze mean quantities and fluxes within
all these studies, there was not a single optimum paramethe canopy, for example for a case study of vertical evapo-
ter set but rather many different sets of parameters that gaviganspiration profiles within the canopy (Staudt et al., 2010).
equally good fits to the observed data and were from phys-
ically feasible ranges. The Generalized Likelihood Uncer-
tainty Estimation (GLUE) methodology (Beven and Binley,

1992) addresses the problem of parameter equifinality and
assesses the predictive uncertainty of a model from the runs
that are classified as “behavioral’. This method has been
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2 Material and methods 1.0 1.0
(a) (o) |
2.1 The Waldstein-Weidenbrunnen site
08 0.8
The FLUXNET-station Waldstein-Weidenbrunnen (DE-Bay) - N T ERNEY
is located in North-Eastern Bavaria (88 N, 11°52 E, 2 N 2 —/\—
. . . . . . = L —e—i =
775ma.s.l) in the Fichtelgebirge Mountains, which is a > 06 S 506 A.»T\
low-elevation mountain range typical for Central Germany. = X = Hﬂf/
The spruce foresHicea abieyhas a mean canopy height & + 8 — //"
of 25m. The plant area index (PAI) profile shows that the £ 041 \ £ 04 [
main leaf mass is concentrated within 0.5-@,&nd a sec- 2 %\% 2 %
ond smaller maximum in the PAI profile is at approximately N S— e
. ) A 0.2 1 0.2} 1
0.3h¢ (Fig. 1). From the profile measurements in Fig. 1, the S =
total PAlis 5 nf m—2, whereas a value of 5.64m~2 was de-
rived from PAl measurements at over 500 locationsrandomly gL . . . . 00 L A
Y01 2 3 4 5 6 Y02 02 06 10

distributed at the Waldstein Weidenbrunnen site. The mea- )
sured PAI was converted to leaf area index (LAI) and stem Cumulative PAI (m m) PAI (m? m)

area index (SAIl) using allometric relations from unpublished _. _ i .

forest inventory data gathered during IOP-1 and I0OP-2 and:'g' l Vertical profiles of the cu_mulan_vea) and absolyteeb) plant

the relations between SAI and LAl used in ACASA. with the area index (PAIl) at the Waldstein-Weidenbrunnen site (May 2008).

. . . 22 Profiles are mean values of five measured PAI profiles with the cor-
resulting LAI being approximately 4.8 . The sparse responding standard deviations indicated. The dashed line in (b)

understory vegetation consists of small shrubs and grassegapresents the fitted PAI profile for the ACASA model (weighted
More information about the experiment site can be found insum of two beta distributions fitted to the measured data following
Gerstberger et al. (2004) and Staudt and Foken (2007). Simon et al., 2005, 101 data points).

Within the EGER project (ExchanGE processes in moun-
tainous Regions), aiming at the detailed quantification of rel-
evant processes within the soil-vegetation-atmosphere sysind allowing flux data with a quality flag of 6 and better for
tem by observing diurnal and annual cycles of energy, wa-further analysis. The uncertainties of eddy-covariance mea-
ter and trace gases, two intensive measuring campaigns wegirements are a recent field of research (e.g. Hollinger and
carried out at the Waldstein-Weidenbrunnen site. The firstin-Richardson, 2005; Mauder et al., 2006; Foken, 2008). Fol-
tensive observation period (IOP-1) took place in Septembetowing Mauder et al. (2006), the accuracy of eddy-covariance
and October 2007, and the second (IOP-2) was conducted iflata measured with a type B sonic anemometer — and after

June and July 2008. the application of the quality scheme after Foken et al. (2004)
— depends on the quality class: for quality classes 1-3 the er-
2.2 Experimental setup and data ror is 10% or 20 W m? for the sensible heat flux and 15% or

30 W m 2 for the latent heat flux, for quality classes 4—6 the
During the intensive observation periods, high frequencyerror is 15% or 30 W m? for the sensible heat flux and 20%
turbulence measurements were performed on a 36-m-tallpr 40 W n2 for the latent heat flux. We decided not to close
slim tower (“turbulence tower”) at six heights within and the energy balance in eddy-covariance measurements in this
above the canopy. As this sensitivity study concentratesstudy to avoid adding more uncertainties resulting from not
on the above canopy fluxes, only flux data for the upper-only the closure method but also the soil and storage heat flux
most height of the turbulence tower (36 m) was consideredestimates.
for comparisons of measured and modeled data. This eddy- The ACASA model requires half-hourly meteorological
covariance system consisted of a sonic anemometer (USA-hput values as well as the initial soil profiles (temperature,
Metek GmbH) to detect horizontal and vertical wind compo- moisture), which were provided by the routine measurements
nents as well as the sonic temperature, and a fast-respons¢a second, more massive tower (“main tower”) at an approx-
gas analyzer (LI-7500, LI-COR Biosciences) to measure thémate distance of 60 m, and at a clearing nearby. Meteorolog-
density of carbon dioxide and water vapor (for a more de-ical input parameters for the model and the instrumentation
tailed description of the experimental setup see Serafimoviclior the Waldstein-Weidenbrunnen site are listed in Table 1.
et al., 2008). Raw flux data (20Hz) was processed withOnly small gaps in the data occurred due to power shortages
the TK2 software package, developed at the University ofand were filled with linear interpolation methods.
Bayreuth (Mauder and Foken, 2004), including several cor- Within this sensitivity study, five days from each intensive
rections and quality tests, such as a correction of the high freebservation period (IOP) that were chosen due to the good
quency loss of energy using a method by Moore (1986). Fluxweather conditions and the good performance of the measur-
data were filtered using quality flags after Foken et al. (2004)ing devices were considered (IOP-1: 20-24 September 2007,
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Table 1. Meteorological input parameters of the ACASA model and the corresponding measurements at the Waldstein-Weidenbrunnen site.

Parameter Unit Sampling Instrument, Manufacturer
location heigh{m]
Precipitation rate mm Clearing 1 OMC 212,
Adolf Thies GmbH & Co. KG
Specific humidity gkgl  Main tower 31 Vent. psychrometer (Frankenberger, 1951),
Theodor Friedrichs & Co
Mean wind speed st Main tower 31 Cup anemometer,
Theodor Friedrichs & Co
Downwelling short-wave Wm2  Main tower 30 CM14,
radiation Kipp & Zonen
Downwelling long-wave W m2  Main tower 30 CG2,
radiation Kipp & Zonen
Temperature K Main tower 31 Vent. psychrometer (Frankenberger, 1951),
Theodor Friedrichs & Co
Pressure hPa Clearing 2 Barometric pressure sensor,
Ammonit Gesellschaftifr Messtechnik mbH
CO», concentration ppm Main tower 32 LI-7000,

LI _COR Biosciences GmbH

day of year 263-267; I0P-2: 28 June-2 July 2008, day ofair temperatures. Energy flux estimates consider multiple
year 180-184). I0P-1 was carried out during a relativelyleaf-angle classes and direct as well as diffuse radiation
wet and cool autumn, whereas during IOP-2 hot and dryabsorption, reflection, transmission and emission. Plant
summer weather prevailed, which allows us to investigatephysiological response to micro-environmental conditions
different meteorological periods. The meteorological con-is calculated by a combination of the Ball-Berry stomatal
ditions during the two five-day periods are shown in Fig. 2. conductance (Leuning, 1990; Collatz et al., 1991) and
During IOP-1, global radiation, temperature and vapor presthe Farquhar and von Caemmerer (1982) photosynthesis
sure deficit were lower than during IOP-2. The wind speedequation following Su et al. (1996). The soil module used
reached comparable magnitudes during both IOPs. Soil conto calculate soil surface evaporation, soil moisture, and soil
ditions differed greatly during both I0Ps, with a colder and temperature is adapted from MAPS (Mesoscale Analysis

wetter soil during IOP-1. and Prediction System; Smirnova et al., 1997, 2000).
Additionally, canopy heat storage and canopy interception
2.3 The ACASA model of precipitation are included in ACASA.

The model was adapted from a version from October 2009.
The model source code was modified in two parts. The
first change concerns the soil respiration calculations. A soil
moisture attenuation factor that is meant to reduce micro-
bial soil respiration when soil moisture falls below the wilt-

The Advanced Canopy-Atmosphere-Soil  Algorithm
(ACASA; Pyles, 2000; Pyles et al., 2000), which was
developed at the University of California, Davis, was used
to model the turbulent fluxes of heat, water vapor anc; CO ing point soil moisture was disabled in this study, as it not

within and above the canopy. This multi-layer canopy- only reduced soil microbial respiration during dry periods
surface-layer model incorporates a diabatic, third-order y P g ary p

- but also enhanced respiration rates to unreasonably high val-
closure method to calculate turbulent transfer within and . . - . ; .
. . es during wet periods, a finding that is consistent with Isaac
above the canopy on the theoretical basis of the work o

Meyers and Paw U (1986, 1987). The multi-layer structureet al. (2007). Asiin th_e original ACASA version, re_splratlon
. ) . Rp at temperaturd is calculated with an Arrhenius type

of ACASA is reflected in 20 atmospheric layers evenly . . o

L . © _equation with basal respiration rai® at 0°C and theQ1o
distributed between the canopy and the air above extendm%S input parameters (e.g. Hamilton et al., 2001):
to twice the canopy height, and in 15 soil layers. Leaf, butp 9 " '
stem and soil surface temperatures are calculated using. — g, . exp(0.1- 7s - In (Q10)) 1)
the fourth-order polynomial of Paw U and Gao (1988),
allowing the calculation of temperatures of these compo-Here, R is given in [umolnr2s~1], based on the surface
nents where these may deviate significantly from ambientarea of the roots or microbes. Soil respiration is simulated for

Biogeosciences, 7, 3683705 2010 www.biogeosciences.net/7/3685/2010/



K. Staudt et al.: Sensitivity and predictive uncertainty of the ACASA model at a spruce forest site 3689

~1000 <1000
(@) 30

-
a
=}

o
S
s}

250

)
a
=]

Global radiation w m?
Air temperature (-c)
Global radiation w m?
Air temperature (-c)

25 25
(c) (d)
20 20
£ 15 £ 15
g 10 g 1
> >
5 5
o o b ..
263 264 265 266 267 268 180 181 182 183 184 185

Wind speed (m s™)
(ST R R NI =Y
Wind speed (m s™)
O LA OO

263 264 265 266 267 268 180 181 182 183 184 185
_ 18 _ 18 -
5 5
= 16 @ 35 g = 16 " 35 g
O e o

..................................... @ @

g g g M 30 2
g 12 ~ T T s R » 3
£ £ £ £
g 10 g 10
= 205 = 20 3
5 8 o 5 8 @
»n 5 15 » 5 15

263 264 265 266 267 268 180 181 182 183 184 185

Fig. 2. Meteorological conditions during the two five day periods (left: IOP-1, right: IOR&)and(b): Global radiation (solid line) and
air temperature (dotted line) above the canopy (30 m and 3%1ehand(d): Vapor pressure deficit above the canopy (31 fe).and(f):
Wind speed above the canopy (31 if9) and(h): Soil temperature (solid line) and soil moisture (dotted line) at 10 cm depth.

microbes and roots separately, using Eq. (1), and summed ugate at a reference temperatier of 298.15K,AS is an en-

to form the total soil respiration. Each of the two componentstropy term (655 J moi! K1), andA H, and A Hy are the ac-

is the sum of the respective respiration contributions from thetivation energy and energy of deactivation (both in JMol

15 soil layers, weighted by the root fractions of these layers.A Hy set to 200 000 J mot), respectively.

To obtain the total soil respiration per ground surface area, it The output of the ACASA model comprises profiles of

is assumed that the sum of the total root and microbe surfacghean quantities, flux profiles including the components of

area resemble the leaf area index. the CQ exchange, profiles of the third order moments and
The second change in the source code was made withiprofiles of the soil properties. For the purpose of the sensi-

the plant physiology sub models in the calculation of pho-tivity analysis, only the turbulent and radiative fluxes above

tosynthesis. The temperature dependence of the maximunhe canopy were considered. The performance of other quan-

catalytic activity of Rubisco at saturated ribulose biphos-tities at our site, such as the flux profiles, was assessed in a

phate (RuBP) and saturated &®¢max (LMol ni2s~1) fol- different study (Staudt et al., 2010).

lows a third-order polynomial given by Kirschbaum and Far-

quhar (1984), which was derived from measurements made 4 The GLUE methodology

in a temperature range of 15 to 32. For temperatures be-

low 10°C this third-order polynomial results in an unrealistic T4 evaluate the sensitivity and uncertainty of the ACASA
increase olcmax as was already noticed by Leuning (1997). model, the Generalized Likelihood Uncertainty Estima-
As temperatures of less than %D are very common at our  +ion (GLUE) method, which has been proposed by Beven
site, the third-order polynomial was replaced by the temper-4, Binley (1992) and is described in detail in Beven et
ature dependence dtmaxas used in th€ leaf sub-module 51 (2000), was employed here. The basic idea of the GLUE
PSNG of the model SVAT-CN (Falge et al.,, 1996, 2005):  methodology is the principle of equifinality, which here
means that one does not expect a single optimum parameter
set for a model but rather many sets of parameters that give
equally good model results. In a Monte Carlo simulation
framework, a large number of random sets of parameters are
whereTk is the leaf temperature (in KR is the gas constant derived from uniform distributions across specified parame-
(8.31Imott K1), Vemaxzsis the maximum carboxylation  ter ranges. The model results are then evaluated through the

Vefnax = Vemax2s (2)
exp[A Ha- (Tk — Tref) / (R-Tk - Tren)] - (1 +eXp(AS-Tref — AHg) / (R-Tren)])
1+exp[(AS-Tk —AHg)/(R-Tk)]

www.biogeosciences.net/7/3685/2010/ Biogeosciences, 7, 386852010
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Table 2. List of the external (first 16) and internal (plant physiological, second 8) input parameters to the ACASA model which were studied
in the sensitivity analysis, the range over which each parameter was varied and the reference values for the ACASA as well as the PSN6
model for our site.

Parameter  Definition Min. Max. Ref. References

lai Leaf area index (single-sidefin? m—2] 0.5 9 4.8 Measurements

hc Canopy heighim] 18 28 25 Measurements

ol Leaf basal respiration rate af G [pmol m2s1y* 0.05 1.4 0.15 Acosta et al., 2008; Falge et al., 1996; Hamilton et al., 2001

r0s Stem basal respiration rate &®[pmol m2s1y* 0.05 1.4 0.85 Acosta et al., 2008

ror Root basal respiration rate atG [pumol 2 s’l]* 0.05 1.4 0.94/lai Buchmann, 2000; Matteucci et al., 2000; Subke et al., 2003;
Janssens et al., 2003; Borken et al., 2002

rom Microbe basal resp. rate at G [umol m2gs1y* 0.05 1.4 0.94/lai Buchmann, 2000; Matteucci et al., 2000; Subke et al., 2003;
Janssens et al., 2003; Borken et al., 2002

qlol Q10 for leaveq —] 1.8 3 2.42 Stockfors and Linder, 1998b; Acosta et al., 2008;
Falge et al., 1996; Hamilton et al., 2001

ql0s Q10 for stemg—] 18 3 2.25 Stockfors and Linder, 1998a; Acosta et al., 2008

qlor Q10 for roots[—] 18 3 2.57 Buchmann, 2000; Matteucci et al., 2000; Subke et al., 2003;
Janssens et al., 2003; Borken et al., 2002

g10m Q10 for microbes[—] 1.8 3 2,57 Buchmann, 2000; Matteucci et al., 2000; Subke et al., 2003;
Janssens et al., 2003; Borken et al., 2002

pro Near-IR leaf reflectivitf—] 0.1 0.4 0.28 Huang et al., 2007

tr0 Near-IR leaf transmissivity—] 0.05 0.4 0.11 Huang et al., 2007

pvO Visible leaf reflectivity{—] 0.01 0.4 0.07 Huang et al., 2007

tv0 Visible leaf transmissivity—] 0.01 0.15 0.03 Huang et al., 2007

drx Leaf drag coefficient—] 0.05 0.25 0.15 Meyers and Paw U, 1986; Massman and Weil, 1999

xldiam Mean leaf diametgm] 0.01 0.02 0.015 Measurements

Parameter  Definition Min. Max. ACASA PSN6

vemax25  Maximum rate of carboxylation at 26 [umol m2s~1] 35 105 89 50.6  Kattge and Knorr, 2007 and references therein

eavc Activation energy Ha [J moi}] 40000 80000 40649 75750 Kattge and Knorr, 2007 and references therein

jmax25 Potential rate of electron transport aP2gumolm—2s-1] 80 230 224 152 Kattge and Knorr, 2007 and references therein

ejmax Activation energy\ Ha [J moi4] 30000 80000 38872 47170 Kattge and Knorr, 2007 and references therein

thetaO Curvature factgr-] 0 1 0.5 0.850 Wang etal., 2001

ige Quantum efficiency—] 0.03 0.6 0.405 0.17 Leuning, 1990

cb Intercept of Ball-Berry formulégmol m2s 0 16 0.008 0.001  Leuning, 1990; Lai et al., 2000

cm Slope of Ball-Berry formulg—] 2 19 9.29 9.8 Leuning, 1990; Lai et al., 2000

* per n2 of tissue

calculation of likelihood measures (see Sect. 2.4.2). Basednd physiological parameters (see upper part of Table 2). In
on the values of these likelihood measures and a predefinethis study constant values were used over the whole profile
threshold value to distinguish between acceptable and not ade keep the number of investigated parameters limited. The
ceptable runs, “behavioral’” parameter sets can be identifiedverall number of the external parameters used within this
and “non-behavioral” parameter sets rejected from furtherstudy is 16, and a few external parameters were held con-
analysis. In a next step, uncertainty bounds for each timestant, such as the soil type and the measured normalized LAI
step are deduced from the cumulative distribution of the out-profile (Fig. 1b, fitted following Simon et al., 2005). Even
put variables ranked by the likelihood measure. though the normalized LAI profile was kept the same for all
A number of subjective decisions have to be made withinmodel runs, the absolute LAl value was allowed to vary be-
the GLUE methodology. These are the definition of the pa-tween 0.5 and 9 fim~? (see Table 2).
rameter ranges and the prior parameter distributions as well Additionally, 8 parameters from the photosynthesis and
as the choice of the likelihood measure applied and the corstomatal conductance sub-models were included in this sen-
responding value of the threshold of acceptability. However sitivity analysis (see lower part of Table 2, in the following
these decisions have to be made explicitly and are thereforgalled “internal” parameters). In the original version of the
open to debate. ACASA model, onlyVemaxesand a so-called “water use ef-
The data preparation and the analysis following the GLUE(iciency factor” can be defined by the usefmaxzs is then
methodology was done with the statistical and graphics softdefined as 21-Vemaxzs The “water use efficiency factor”

ware package R (R Development Core Team, 2008). wue alters the leaf stomatal conductance to water vapQr
(Su et al., 1996) calculated with the Ball-Berry formula.

2.4.1 Parameters and parameter ranges An 1
gs,w = <Cm . — rhs + Cb) - — (3)
o . . Cs wue
The original version of the ACASA model requires a hum-

ber of “external”, user defined geographical, morphological

Biogeosciences, 7, 3683705 2010 www.biogeosciences.net/7/3685/2010/
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with A, the net CQ uptake rate at the leaf surfacg, the where O is observed and® model simulated data. The co-
CO, concentrationyg hg the relative humidity at the leaf sur-  efficient of efficiencyE varies from minus infinity to 1, and
face and cb the intercept and cm the slope of the Ball-Berryalues close to 1 indicate a good agreement of modeled and
formula. For the remaining plant physiological parameters,measured data. This goodness of fit measure has the advan-
values from the literature were adapted (Su et al., 1996)tage that the value of zero serves as a convenient reference
However, we chose to independently vary all listed photo-point, indicating that model runs that result in coefficients
synthesis and stomatal conductance parameters in this sengif efficiency of zero are as good as the observed mean and
tivity study, thus wue was set to 1 and the ratioWgfax2s those that correspond to negative values perform worse than
and Jmaxzswas not fixed. the observed mean (Legates and McCabe, 1999). The co-
The parameter ranges for this sensitivity analysis includeefficient of efficiency is a widely used likelihood measure
the original parameter values used in ACASA and PSN6,within GLUE studies (e.g. Freer et al., 1996; Schulz et al.,
which are listed as reference values in Table 2. Furthermore}999, 2001, Liebethal et al., 2005; Franks et al., 1997; Choi
values from the literature for spruce or coniferous forests inand Beven, 2007; Poyatos et al., 2007). However, the use of
general were collected to cover a realistic range of valuesinformal likelihood measures such as the Nash and Sutcliffe
Where possible, parameter ranges were determined from disoefficient of efficiency within the GLUE methodology has
rect measurements. As there was no evidence for other statibeen discussed in a long and intensive debate in recent years.
tical distributions, all parameter ranges were assigned a uniMantovan and Todini (2006) and Mantovan et al. (2007) crit-
form distribution. Random sets of parameters were producedcized that the GLUE methodology using a less formal like-
for a large number of model runs (20 000). Parameters werdihood violates some concepts underlying the statistical in-
independently randomized, with the exception of the paramference process by being inconsistent and incoherent. Beven
eters for microbial and root respiration which were set toet al. (2007, 2008) responded that formal likelihoods which
the same values, meaning that root and microbial respirationclude strong assumptions about the modeling errors can be
each contribute 50% to total soil respiration (mean of val- applied within the GLUE methodology as well, showing the
ues for temperate coniferous forests, as listed in Subke et algoherence of the GLUE methodology for this case. But they
2006). Even though RuBP carboxylation and regeneratiorquestioned that the structure of the errors, such as input er-
are linked to each other, the parametéfsxos and Vemaxes  rors and model structural errors, are known in real cases and
were varied independently. The chosen parameter ranges a$howed that misspecification of the structure of these errors
lowed a ratio of/max2sand Vemaxzsbetween 0.8 and 6.5, but  gave well-defined but incorrect results. Even though the ap-
values between one and three as found to be typical by Kattgglication of an informal likelihood leads to flatter parameter
and Knorr (2007) were most frequent. distributions, it does not require the definition of an explicit
The model was run for the two chosen time periods for all statistical error model.
randomly generated parameter sets and the resulting radiative The second subjective element mentioned above is the def-
and turbulent fluxes and the net ecosystem exchange (NEERition of the behavioral threshold. Likelihood measures that

above the canopy stored for further evaluation. are lower than the behavioral threshold are given a value of 0,
which means that these parameter sets are excluded from fur-
2.4.2 Likelihood measures ther analysis. A different approach was followed by Prihodko

et al. (2008) and Lamb et al. (1998) who used the top 10%
The choice of a likelihood measure to evaluate the perfor-runs for further analysis instead of defining a threshold value.
mance of the model runs is crucial to the analysis, but itWe also chose the top 10% runs, which has the advantage that
is also subjective. A wide range of likelihood measures isthe number of behavioral runs for all variables considered is
suitable and has been used in previous studies (Beven et ath)e same, despite considerably deviating ranges of the likeli-
2000). For each of the radiative and turbulent fluxes and théhood measures achieved by the different fluxes.
NEE above the canopy, likelihood measures were calculated To combine two or more likelihood measures, various
for 20 000 runs from the observed and the simulated data: combination equations are possible (Beven and Freer, 2001).

Here, combined likelihoods are achieved by applying Bayes
L (6;Y) = g (4)  equation in the following form:

L1 (6;1Y) - L2 (6i]Y) - L3 (6;]Y

Here, L (6;Y) is the likelihood measure for theth model L (1Y) = e:1r) (C]| ) - Ls (6;17) (6)
run with parameter sét; conditioned on the observatiolis ) ] o
The normalizing constan was set to 1 in our StudyE is which means that the normalized likelihood measurgd.,

the coefficient of efficiency (Nash and Sutcliffe, 1970) and L3 are treated as a priori distributions and are rescaled.
' The normalizing constar@ was again set to 1. We applied
P2 this equation to the best 10% model runs of the sensible and
> (0; — Pj)

E=1- (5) latent heat fluxes and the NEE for the two IOPs separately.

> (0, - 0)°
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While other GLUE studies on SVAT-models (e.g. Pri-
hodko et al., 2008; Mo and Beven, 2004) concentrate on a
combined likelihood measure to achieve the best overall per-
formance for all fluxes which is a precondition for land sur-
face schemes, this study also focuses on the performance c
individual fluxes as we are highly interested in short term
fluctuations of these fluxes.

o
©
=

o
©
©

Coeff. of Efficiency (H)
o
©
o

2.4.3 Parameter sensitivity

The GLUE methodology focuses on the model response to
parameter sets rather than to single parameter values. Nevel
theless, the sensitivity of single parameters can be evaluate« g
with the help of sensitivity graphs, which are scatter plots of &
likelihood measures versus parameter values for the behav: .
joral parameter sets. Thus, the multidimensional parameter g
response surface is projected onto a single parameter axis -
Fig. 3a to f for the sensible heat flux (H), the latent heat flux _ _
(LE) and the NEE against leaf area index, lai, during IOP-1 lai lai
and IOP-2.

In a next step, cumulative frequencies of the parameters
for the final behavioral model runs were compared to the
original uniform distribution (Franks et al., 1999; Schulz et
al., 1999; Fig. 3g and h for leaf area index lai during IOP-1
and IOP-2). Here, the three single-objective as well as the
combined likelihood measures were analyzed. The original
uniform distribution forms a diagonal line from the left-low
corner to right-up corner of the cumulative distribution plots.
If there is no difference in the original distribution and the 0o Py
distribution of the behavioral simulations, the parameter is g 08
considered as insensitive, whereas a deviation from the di-
agonal line indicates parameter sensitivity. The shape of the
cumulative frequency curves gives an idea of optimal param- g7
eter values, as the area of steepest slope points out where tr E 02 /! NEE
majority parameter values are found (Prihodko et al., 2008). =~ 00 = —— %% -
With a Kolmogorov-Smirnov (K-S) test, the equality of the
cumulative frequency of the behavioral model runs and the lai lai
original uniform distributions can be tested and the signif- Fig. 3. Sensitivit hs showing th f the sinale-obiecti
icance of any differences determined. The parameters tq 19 5. SENSIVIL grapns SNOWINgG in€ range of the single-objective

. . L . e coefficients of efficiency for the best 10% parameter sets (left:
which the model is sensitive were identified if the K-S test IOP-1, right: 10P-2) for the sensible heat flux, &) and (b), the

statistic was significant at the=0.01 level. The K-S value  |5ent heat flux, LE(c) and(d), and the NEE(e) and(f), across the

was used to rank the parameters according to their signifirange of the leaf area index, lai fm=2]. The vertical dashed line
cance, with higher K-S values indicating a higher sensitivity. denotes the reference parameter value. Cumulative frequencies are
This approach was followed by Prihodko et al. (2008) in an-plotted in(g) and(h) for the three fluxes as well as for the combined
alyzing a SVAT-model and was also successfully used in predikelihood measure with the diagonal solid line showing a uniform
vious sensitivity tests for other model classes (e.g. Meixnearameter distribution for comparison.

et al., 1999; Spear and Hornberger, 1980).

Coeff. of Efficiency (NEE)

Coeff. of Efficiency (NEE)
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2.4.4  Uncertainty estimation where Z, ; is the value of variableZ at time simulated

by model M (6;) with parameter sef;. Output variables

Uncertainty bounds were calculated for each flux at eachy o, the hehavioral runs for each time step were ranked and

time stepr for the single-objective and the combined mea- i jikelihood measures, scaled to a sum of unity (Eqgs. 4
sures with (Beven and Freer, 2001): and 6), maintained. From these likelihood weighted cumu-
B . . . .. . ~
N N lative distributions, the prediction quantilés( Z; < z) can
P(Z <z2) =)L [M©)NZi <] (7) o precie on duan® (2 <)
i=1 be selected. The 5% and 95% quantiles were chosen to
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Table 3. Maximum and minimum values of the coefficient of efficien€yfor sensible heat flux (H), latent heat flux (LE), ground heat
flux (G), net ecosystem exchange (NEE), short-wave radiation budget (Rn(sw)), long-wave radiation budget (Rn(lw)) and for net radia-
tion (Rn) for IOP-1 and IOP-2 (20 000 runs each).

H LE G NEE Rn(sw) Rn(w) Rn

IOP-1 Maximumg 0.92 0.87 0.34 0.84 1.00 0.98 1.00
Minimum £ —-2.49 -1391 -0.01 -233.32 0.89 0.23 0.88

IOP-2  Maximumg 0.93 0.80 -0.24 0.86 1.00 0.99 1.00

Minimum E  —9.85 -103.30 -1.02 —626.82 0.86 0.63 0.86

represent the model uncertainty. For a more detailed descrip- For all tested runs, the modeled radiative flux budgets,
tion of the computation of uncertainty bounds see Prihodkowith exception of the long wave radiation budget during
et al. (2008). Beven and Freer (2001) note that these quanfOP-1, were in very good agreement with the measured val-
tiles are conditional on the model input data, the parameteues. Therefore, the effort to better parameterize the model
sets, the observations and the choice of likelihood measure.will be directed to the sensible and latent heat fluxes and
the NEE. The ground heat flux proved to achieve only small
likelihood measure values, especially during IOP-2. This is
mainly attributable to the ground heat flux measurements,
which are single-point measurements and were, in our case,
influenced by sunspots in the late afternoon resulting in very
high ground heat fluxes lasting for only a short period. As the

cient of efficiencyE (Table 3) were very different for the m0(_jel represents an area rather than a point, any dirgct com-
seven fluxes considered here. Only for net radiation (RmjParison of these data has to be done carefully. A different
and the short-wave radiation budget (Rn(sw)) were valueEXperimental setup with a high resolution of radiation mea-
of 1 reached for both IOPs. which shows. in combination SUrements in the trunk space and soil measurements would
with a small variability of the likelihood measures, a very be needed in the investigated forest. Furthermore, the ground

good agreement of observed and modeled data. The maxfeat flux is only about 5% of net radiation and much smaller

mum values for the sensible heat flux (H) were close to thethan all other turbulent fluxes. Thus, the ground heat flux was

values for net radiation, whereas the range was larger. FofXxcluded from further analysis. For sensible and latent heat
the latent heat flux (LE) and NEE, the variability was much fluxes as well as the NEE, the footprint of the measurements

wider. The ranges of the coefficient of efficiency for the sen- (Si€bicke, 2008) is well within the range of the horizontal
sible heat flux, the latent heat flux and the NEE were con-SPatial scale of the ACASA model, which represents a flux

: 2
siderably larger for IOP-2 than for IOP-1. Maximum val- foOtPrint of about 1010 1P m?.
ues for the sensible heat flux and the NEE were similar for 1he performance of the parameter sets for the three fluxes

both IOPs, whereas there were differences between the I0P&€ compared in Fig. 4 (Fig. 4a to c for IOP-1, Fig. 4d to f
for the latent heat flux with larger values during IOP-1. For for IOP-2). There was a correlation of the coefficients of effi-

the radiation budgets, only the long-wave radiation budgetCie”Cy for the sensible and the latent heat flux with a similar
had a larger range and a slightly lower maximum value dur-relative model performance for all parameter sets, which is
ing IOP-1 than during IOP-2. Maximum coefficients of ef- not surprising due to the coupling of the sensible and latent
ficiency for the ground heat flux (G) reached only very low heat'flux by the energy balance closure. But thgre iS no cor-
values. relation for the sensible and latent heat fluxes with the NEE.
For further analysis, we retained the top 10% runs and con- '€ number of parameter sets that are within the 10% best
centrated on the sensible and latent heat fluxes and the NE@Parameter sets for all three fluxes is very much reduced from
For all fluxes except the NEE during IOP-2, the coefficients the 2000 (1901 for NEE in IOP-2) parameter sets to 94 for
of efficiency of the best 10% runs were positive (Fig. 3). [OP-1and 87 for IOP-2. The last three panels of Fig. 4 com-
Negative coefficients of efficiency indicate that the simula- Pa"€ each of the coefficients of efficiency for the three fluxes

tion is worse than the observed mean, thus such model run©" |OP-1 with those for IOP-2. For the NEE, there is a good

are unwanted. These model runs were also excluded frongorrelation between the two IOPs, whereas for the other two
further analysis, resulting in only 1901 model runs (9.5%) fuxes the scatter plots are somewhat bow-shaped. Combin-
for the NEE during IOP-2. ing the coefficients of efficiency for all three fluxes for the

two IOPs yielded only 7 behavioral parameter sets.

3 Results
3.1 Ranges of likelihood measure

The maximum values as well as the ranges of the coeffi
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Fig. 4. Scatter plots of the coefficients of efficiency for the three fluxes. Each dot represents one parame@r-6et. Individual
coefficients of efficiency for IOP-1 compared to each otlidj—(f): Same as (a)—(c) but for IOP-2g)—(i): For each flux, coefficients of
efficiency compared for the two IOPs. Note the differences in the axis ranges.

3.2 Sensitivity graphs indicate parameter sensitivity and more or less frequent pa-
rameter ranges for larger or smaller slopes, respectively. For

The sensitivity graphs for the 10% best model runs for IOP-1all fluxes the steepest slopes in the curves (i.e. the largest
and IOP-2 for the leaf area index, lai, (Fig. 3a to f) again re-derivative) and therefore the optimal parameter values for lai
flect the differences in the ranges of the likelihood measuresre in a range of 0.5 to 55m—2, which is mostly lower than
for the different fluxes as well as for the same fluxes for thethe reference value for the Waldstein-Weidenbrunnen site of
two I0OPs. Especially for the latent heat flux, there was a4.8n#m~2. For the sensible and latent heat fluxes, lai val-
large difference of ranges of coefficients of efficiency for the ues are confined to a smaller range than the original parame-
10% best model runs for the two 10Ps with values for IOP-1ter range, with no values that are lower/higher than a certain
that were all larger than the maximum values for IOP-2. All threshold value appearing in the behavioural parameter sets.
fluxes show a high degree of sensitivity to the lai for both The cumulative frequency curves for the combined coeffi-
IOPs, with a higher frequency of lai values within the lower cients of efficiency for both IOPs have a more pronounced
half of the lai range for all fluxes but the latent heat flux for shape and a narrower range than the other curves, indicat-
IOP-1. ing optimal lai values of approximately 22m~2. Figures 5

To directly compare the sensitivity of the parameters forand 6 display the sensitivity of the model to an additional set
the different fluxes, the cumulative frequency of each of theof six parameters. Th@1o for stem respiration, q10s, is one
parameters for the 10% best runs were plotted and comef the parameters the model is not sensitive to for all fluxes
pared to a uniform parameter distribution, indicated by thefor both IOPs, as none of the cumulative frequency curves in
diagonal line (Fig. 3g and h). Slopes of the cumulative fre- Fig. 5a and b deviates much from the diagonal line represent-
quency curves that deviate from the slope of the diagonal lineng the uniform distribution. As stem respiration contributes
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Fig. 6. Cumulative likelihood distributions for the model param-
eters pr0, near-IR leaf reflectivity-]], (a) and (b), cb, intercept

tum efficiency [-], (c) and(d), and rOm, microbe basal resp. rate Of Ball-Berry formula [molnT2s71], (c) and(d), and cm, slope

at 0°C [umoln2s~1], (e) and (f), for the 10% best parameter ©Of Ball-Berry formula [-], (e) and(f), for the 10% best param-
sets for the single-objective and combined coefficients of efficiencyeter sets for the single-objective and combined coefficients of ef-
(left column: IOP-1, right column: I0P-2). The thin black diago- ficiency (left column: 10P-1, right column: 10P-2). The thin
nal represents a uniform parameter distribution. In (a), (b), (e) andolack diagonal represents a uniform parameter distribution. In (a)
(f) the dashed vertical line depicts the reference parameter for th@nd (b) the dashed vertical line depicts the reference parameter for
Waldstein-Weidenbrunnen site. In (c) and (d) the dashed verticathe Waldstein-Weidenbrunnen site. In (c) to (f) the dashed verti-
line shows the original ACASA parameter whereas the dotted verti-cal line shows the original ACASA parameter whereas the dotted

cal line depicts the reference value of the PSN6 model for our Sitelvertical line depiCtS the reference value of the PSN6 model for our
site.

Fig. 5. Cumulative likelihood distributions for the model param-
eters q10s0Q19 for stem respiration-{], (a) and(b), ige, quan-

little to total respiration, it is not surprising that parameters
for stem respiration are not among the_ |_nfluen_t|a| model pa- Whereas all parameters in Fig. 5 showed a similar behav-
rameters. In contrast, the quantum efficiency, ige, a parame-

- . ! ior in both 10Ps, the three parameters displayed in Fig. 6
ter utilized in the plant physiclogy sub-modules, appears a%xperience a different response for the two IOPs. Only the

an mfluentlal_parameter for all three fluxes (Fig. 5¢ gnd d)'sensible heat flux for IOP-1, but not for IOP-2, is sensitive
For the sensible and latent heat fluxes, the cumulative fre;

- : to the near-IR leaf reflectivity prO, with the curve indicat-
quency curve has a similar shape with a larger slope for Iowegng a higher frequency of higher pr0 values (Fig. 6a and b).

Bower values of the intercept of the Ball-Berry formula, cb,
“are more frequent within behavioral parameter sets for the
sensible and latent heat fluxes for IOP-2 (Fig. 6¢ and d). For
all other fluxes, the curves for cb follow the diagonal line
very closely. The curves of the cumulative frequency for the
'slope of the Ball-Berry formula, cm, (Fig. 6e and f) indicate

shape for the NEE curve is the opposite, with smaller gra
dients for low ige values. The NEE is strongly sensitive to
the value of the basal respiration rate for soil microbes, rOm
with optimal parameter values within the lower third of the
parameter range (Fig. 5e and f). For rOm and ige for IOP-1
the curve for the combined likelihood measure follows thea strong sensitivity of all fluxes, especially for the sensible

NEE curve closely, whereas the combined likelihood mea-, | 4ent heat fluxes. For the NEE for both IOPs the be-

f‘utrﬁ IS not s€ nsitive tlo tl_qe ;or IOP-2, which '? p:ﬁbell\lbllzyEdue (J;avioral parameter sets contain more values from the upper
0 the opposing cumulative frequency curves for the anthalf of the parameter range. In contrast, the cumulative fre-

the other two fluxes. quency curves for the other two fluxes suggest optimal pa-
rameter values from the lower half of the parameter ranges,
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with a much stronger response for IOP-2, where values arg,p . 4. sensitive parameters for the sensible (H) and latent heat
completely confined to the lower half of the parameter range 4, (LE) and the net ecosystem exchange (NEE), ranked by the

To quantify whether the distribution of parameter values kolmogorov-Smirnov coefficient, for the single-objective and com-
for the 10% best model runs follows the uniform distribution bined coefficient of efficiency for the 10% best runs. “Internal” pa-

or not, and thus to identify which parameters the modeledrameters for the plant physiological subroutine are printed in bold.
fluxes are sensitive to and to list these parameters in ordeffor the meanings of parameter abbreviations see Table 2.
of importance, the Kolmogorov-Smirnov test was performed

(Table 4). IOP-1 IoP-2
There was a difference in the number of sensitive parame- H  LE NEE Comb. H LE NEE  Comb.
ters between the two IOPs with a larger number of sensitive ai  cm rol rol cm cm  r0l rol
parameters for NEE for IOP-1 than for IOP-2 and a larger ¢m lai lai lai i lailai cm
b f iti t for th bined fl f rol - rOl ror cm 1ol rol ror lai
number of sensitive parameters for the combined fluxes for ., s om or 10l q10l rom o
I0OP-2 than for IOP-1. ige g1ol ige rom cb cb cm rom
As the lai appears as the first or one of the first parame- P'% imax25 CT0| drx e qig' qigf
. . . pvi q ige q10r ql0m
ters in the parameter rankings for aII_ quxes,_ the importance jmax25 qlom  q1ol
of this parameter as one of the most influential parameters is qlor ige
illustrated once more. The other two plant morphological pa- gjln?;*; Jmax25
rameters, the canopy height, hc, and the mean leaf diameter, vemax25

xldiam, are not listed among the influential parameters. The
leaf drag coefficient, drx, used in the third order closure tur-
bulence subroutines only appears in the parameter rankings

for the sensible heat flux. appears for all fluxes and the combined fluxes as the first or

Also among the most influential parameters for all fluxes gne of the first parameters, thus as one of the most influential
are the parameters determining leaf respiration, with the |eabarameters. In contrast, the second parameter in the Ball-
basal respiration rate, r0l, and thiio of leaf respiration,  Berry formula, its intercept cb, only appears for the sensible

q10l. The parameters for stem respiration (r0s, q10s) do nojnd latent heat fluxes in IOP-2 in combination with cm.
appear in the parameter rankings, whereas the parameters

for root and microbial respiration (rOr, q10r, rOm, q10m) are 3.3 Model uncertainty
listed amongst the most influential parameters for the NEE
and also appear for the combined fluxes. Radiation paramePredictive uncertainty bounds were calculated for each flux
ters (pr0, pvO, tr0, tv0) only appear for IOP-1, with the sen- for the individual best 10% model runs and the model runs
sible heat flux being sensitive to prO and pvoO. resulting from the combination of all three likelihood mea-
The parameters of the photosynthesis and stomatal corsures for both IOPs (Figs. 7 and 8). These figures also show
ductance subroutines contribute to the ranked parameters ia 10% to 15% error for the sensible heat flux measurements
roughly the same proportion as they do to the overall numberand a 15% to 20% error for the latent heat flux and NEE
of investigated parameters for the sensible heat flux and theneasurements depending on the quality flag (after Mauder
NEE, but in a larger proportion for the latent heat flux and in et al., 2006, see Sect. 2.2). Table 5 lists the percentage of
a smaller proportion for the combined fluxes. Of the parame-observations that are enclosed by the uncertainty bounds and
ters that determine the temperature dependence of the maxihose that lie without. In general, the calculated uncertainty
mum catalytic activity of Rubisc®cmax Only the maximum  bounds capture the measured values for all three fluxes most
rate of carboxylation, vcmax25, appears to be influential forof the time. The narrowest uncertainty bounds were observed
the NEE for IOP-1. The corresponding activation energy,for the sensible heat flux. Maximum daytime values as well
eavc, does not appear in the parameter rankings. The pi@s night-time values were simulated by the model quite well.
ture for the maximum rate of whole-chain electron transportBut the model seems to respond to environmental conditions
at saturated lightmax is different, with the potential rate of faster than the observations, with an earlier onset of growing
electron transport at Z%2, jmax25, appearing as an influen- sensible heat fluxes in the morning and of decreasing fluxes
tial parameter for the NEE for both IOPs and the latent heatin the afternoon, resulting in a slight time shift. Therefore,
flux for IOP-1, and the activation energy, ejmax, appearingthe percentage of observations within the uncertainty bounds
also for NEE for IOP-1. for the sensible heat flux is below 50% (Table 5). The model
The radiation dependence of the potential rate of whole-was not able to capture maximum daytime latent heat flux
chain electron transport is affected by the curvature factoryalues for some days during both IOPs. During night time,
theta0, and the quantum efficiency, iqe, with the latter beinglatent heat fluxes for IOP-1 were also frequently underesti-
influential for all fluxes except the combined fluxes, and themated by the model. For latent heat fluxes the percentage
former not being influential for any flux. The slope of the of observations within the uncertainty bounds is larger for
Ball-Berry formula, cm, to calculate stomatal conductancelOP-2 than for IOP-1, whereas for the other two fluxes it is
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Fig. 7. Predictive uncertainty bounds (5th and 95th quantile) and observed values (black dots) for the sensible hedgjlukeHatent

heat flux, LE(b), and the net ecosystem exchange, NEE for the coefficient of efficiency (IOP-1, dotted lines: individual best 10%, solid

lines: combined). Vertical lines display the error after Mauder et al. (2006) depending on the quality flag. For sensible heat fluxes, the error
is 10% for quality classes 1-3 and 15% for quality classes 4-6. For latent heat fluxes and the NEE, the error is 15% for quality classes 1-3
and 20% for quality classes 4-6 according to Foken et al. (2004).
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Fig. 8. Predictive uncertainty bounds (5th and 95th quantile) and observed values (black dots) for the sensible hedgajlukeHatent

heat flux, LE(b), and the net ecosystem exchange, NEE for the coefficient of efficiency (IOP-2, dotted lines: individual best 10%, solid

lines: combined). Vertical lines display the error after Mauder et al. (2006) depending on the quality flag. For sensible heat fluxes, the error
is 10% for quality classes 1-3 and 15% for quality classes 4-6. For latent heat fluxes and the NEE, the error is 15% for quality classes 1-3
and 20% for quality classes 4-6 according to Foken et al. (2004).

very similar for both IOPs (Table 5). Uncertainty bounds for for IOP-2, measured uncertainties were within the derived

the NEE are the largest of all fluxes, are also much largemodel uncertainty bounds. However, the width of model un-

than the uncertainties of the NEE measured by the eddyeertainty bounds was considerably larger than the range of
covariance technique, but also enclose the highest percentagmcertainties of the eddy-covariance measurements.

of observations during both IOPs. For the sensible and latent For all fluxes, there was a smaller percentage comprised
heat fluxes during IOP-1, the range of uncertainties of theof uncertainty bounds constrained on all three fluxes than
eddy-covariance measurements are of a similar width as theéhose constrained on individual fluxes. This is especially evi-

uncertainty bounds of the ACASA model. For many times dent for the NEE for IOP-2, where maximum daytime values

of the studied period, the uncertainty bounds of the measureare no longer covered by the combined uncertainty bounds
ments and the models largely overlap. For the latent heat fluxFig. 8).
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Table 5. Percentage of observations above, within and below the 5th and 95th quantile predictive uncertainty bounds for the single-objective
coefficient of efficiency (left) and the combined coefficient of efficiency (right) for the sensible (H) and latent heat flux (LE) and the net
ecosystem exchange (NEE) for IOP-1 and IOP-2.

Coefficient of efficiencyt CombinedE
% Above % Within % Below % Above % Within % Below
IOP-1 H 35 43 22 46 30 24
LE 26 56 17 45 37 18
NEE 2 86 12 3 69 28
IOP-2 H 41 42 17 50 31 19
LE 9 72 19 8 62 30
NEE 0 89 11 3 72 25
4 Discussion 4.1 Parameter sensitivity

First of all, it should be noted that the outcome of this sen-About one third to one half of the input parameters were
sitivity study only applies for the Waldstein-Weidenbrunnen identified as influential parameters, including internal as well
site and furthermore is only valid for these two time periods, as external parameters. However, the so-called problem of
as results of an analysis following the GLUE methodology parameter equifinality was detected in ACASA. For many
are always conditional not only on the parameter sets and thparameters, very good as well as very poor results for the
choice of likelihood measure but also on the model input datasensible and latent heat flux and the NEE were obtained for
and the observations (Beven and Freer, 2001). Additionallyevery parameter value in the examined parameter range. This
it has to be kept in mind that the eddy-covariance measurewas also reported in several studies examining the sensitivity
ments, which served as comparison values to the modeledf parameters in complex process-based models (e.g. Franks
fluxes, might be afflicted with errors. Mitchell et al. (2009) et al., 1997; Schulz et al., 2001; Prihodko et al., 2008). Thus,
considered the uncertainty in annual NEE estimates in thddentification of an optimal parameter value for a single pa-
selection of behavioral parameters in a GLUE study. Hererameter will always depend on the values of all other parame-
measurement uncertainties were not included in our GLUEers (Schulz and Beven, 2003). Furthermore, parameter equi-
analysis, but shown for comparison with the derived uncer-finality could indicate that the model is over-parameterized,
tainty bounds from the model (Figs. 7 and 8). Furthermore,as no robust parameter estimation is possible with the em-
the energy balance closure problem adds non-random urployed data set (Franks et al., 1999). Consequently, one
certainties to the measurements. For our site, the missingeeds to either include longer data sets for calibration that
energy was always found to be about 20% of the availablealso comprise different meteorological conditions or seasons
energy without larger variations over time, e.g. 23% (1997-or fix as many parameters as possible to values determined
1999; Aubinet et al., 2000; Foken, 2008), 19% (IOP-1) andfrom independent measurements (Schulz et al., 2001; Schulz
21% (IOP-2). The problem of the unclosed energy balance iand Beven, 2003). It has been argued by Franks et al. (1999)
still an open question. It is probable, that large-scale pro-that the complexity of SVAT models should be reduced to a
cesses in heterogeneous landscapes and the correspondiegel that copes with the available calibration data and thus
large scale eddies that are missed by the eddy-covarianaeduces the problem of parameter equifinality.

technique cause the residuum (Foken, 2008). One suggested The two periods of different meteorological conditions, a
method to close the energy balance according to the Bowegold and wet autumn in 2007 and a hot and dry summer in
ratio (Twine et al., 2000) is only a first approximation (Fo- 2008, allowed the study of seasonal variations in parameter
ken, 2008), as this method assumes a similar Bowen ratio fosensitivity. The sensitivity of the fluxes to a range of param-
small- and large-scale eddies, which could not be confirmeckters, such as the basal soil respiration rates (see parameters
by measurements (Ruppert et al., 2006). Therefore, we den Fig. 5), was similar for both periods, whereas a few pa-
cided not to close the energy balance in eddy-covarianceameters experienced a different response to the parameter
measurements in this study. By doing so we hope to avoidsalues for the two time periods (e.g. prO Fig. 6). This was
adding more uncertainties to the measured fluxes due nagspecially evident for the slope of the Ball-Berry formula,
only to the selected closure method but also from uncertainem, with a stronger sensitivity of the latent and sensible heat
ties of the soil heat flux measurements and estimates of stofluxes to this parameter for IOP-2 (Fig. 6). For this drier and
age heat fluxes. Additional problems might arise from weak-warmer period, the best model results were achieved with a
nesses of the “Bowen-ratio closure” for negative Bowen ra-lower cm value than for the colder and wetter IOP-1. This
tios. is in line with the suggestions of Tenhunen et al. (1990) and
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Baldocchi (1997) to reduce the slope of the Ball-Berry for- A complex process-based model like ACASA requires a
mula with decreasing water availability for the simulation of large number of input parameters. In this study, 24 pa-
H>0 and CQ exchange of a Mediterranean and a temper-rameters were of interest and concurrently varied to create
ate broad-leaved forest, respectively. However, Reichstein €20 000 random parameter sets, which is very few with regard
al. (2003) found that reducinycmax but keeping the Ball-  to the number of parameters. A much larger number of pa-
Berry slope constant better reproduces NEE and the latentameter sets would be required to sample the whole range of
heat flux from eddy-covariance. The number and rankingvariation in combinations of parameters, which would hardly
of influential parameters (Table 4) consequently varies forbe realizable due to the large computational power required.
the two time periods, indicating the need to seasonally adjusHowever, as with Prihodko et al. (2008), who had an even
several parameter values. But as only two short periods artarger number of parameters, we expect that an important
considered here, such recommendations are of limited jusrange of the parameter space is already covered by 20 000
tifiability. In order to draw general conclusions about the model runs. Furthermore, we performed our analysis with
seasonality of parameters and to cover all relevant processedifferent numbers of parameter sets for IOP-1 (5000, 7500,
it is necessary to include much longer time periods with a10000, 12500, 15000, 17 500) and compared the resulting
larger meteorological variability, as was done by Prihodko etuncertainty bounds and lists of sensitive parameters to the
al. (2008). analysis of 20 000 parameter sets. Again, differences for the
Our findings of parameters that appeared to be influentiathree fluxes were observed. For the sensible heat flux uncer-
in our sensitivity analysis revealed similarities with results tainty bounds were not significantly different from the anal-
from other sensitivity studies or studies that used inversionysis of 20000 parameter sets for all smaller sample sizes,
methods for parameter estimation. Even though other modela/hereas for the latent heat flux and the NEE no difference
— including different process descriptions and thus differentwas found for sample sizes larger than 7500 and 15000,
parameters investigated — were analysed, stomatal parameespectively. Furthermore, the lists of sensitive parameters
ters were also among the most sensitive or best constrainecbmprised the same parameters that appeared in the same
parameters (Mitchell et al., 2009; Prihodko et al., 2008; order for sample sizes of 15000 and larger, with the excep-
Knorr and Kattge, 2005). Wang et al. (2001) included thetion of the last (jmax25) and the last two (ejmax, vcmax25)
slope of the Ball-Berry formula in their parameter estimation, parameters for the latent heat flux and the NEE (Table 4), re-
whereas all fluxes proved to be insensitive to the intercept opectively, which only appeared for some of the smaller sam-
the Ball-Berry formula. Our observations revealed a similarple sizes and the final 20 000 parameter sets. Thus, we feel
result, with the slope of the Ball-Berry formula being among confident that a sample size of 20 000 parameter sets ensures
the most influential parameters and its intercept being lesstable results for all three fluxes.
influential. Furthermore, the parameter inversion performed However, the significance of this study is limited in that
by Knorr and Kattge (2005) found that amongst the photo-it is conditional not only on the meteorological conditions
synthesis parameters most information was gained for quancovered by the input data but also on the sets of parameters.
tum efficiency and maximum carboxylation rate. We found On the one hand we wanted to assess the general ability of
quantum efficiency to be an influential parameter; howeverthe ACASA model to reproduce measured fluxes for our site.
maximum carboxylation rate was less influential. As in our Thereby, indications for weaknesses in the model structure
study, strong sensitivity to the leaf area index was found bywere revealed (see Sect. 4.3). On the other hand, to not only
Mitchell et al. (2009). cover a larger range of variation in combinations of parame-
The sensitivity to parameter values for the three studiedters but also to reduce the problem of parameter equifinality,
fluxes was not the same for all parameters. There was ¢he results of the present GLUE analysis could be used to fix
very similar response for all three fluxes to some parameterselatively insensitive parameter values, to constrain param-
(e.g. lai for IOP-2, Fig. 3), whereas other parameters wereeter ranges and to improve the model structure for a subse-
only influential for one flux (e.g. rOm for the NEE, Fig. 5). quent GLUE analysis (Prihodko et al., 2008). Alternatively,
But the sensitivity of the latent heat flux and the NEE to someSchulz et al. (2001) not only suggest prescribing as many
plant physiology parameters (cm, ige, jmax25) was even opparameter values as possible using measurements to reduce
posite, with cumulative frequency plots indicating optimal the degrees of freedom, but also mention the gap between
parameter values from the lower part of the parameter rangscales of measured parameters and parameters needed to run
for one flux and from the upper part of the parameter rangemodels. For the photosynthesis parameters, this is especially
for the other flux (e.qg. ige in Fig. 5). Thus, difficulties arise evident, where parameters of the gas exchange response of a
when trying to deduce optimal parameter values from the refew sample leaves is used as average leaf parameterization of
sults of this study, and the model user has to decide in favor ofhe entire stand.
either the latent heat flux or the NEE. The sensible heat flux
either showed a response similar to that of the latent heat flux
or was not sensitive to the respective parameter.
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4.2 Predictive uncertainty of the modeled fluxes heat flux as well, as these fluxes would be expected to be
more closely linked to each other due to the coupling of tran-
The ACASA model was capable of reproducing all fluxes spiration and carbon assimilation. However, the same was
most of the time as reflected by the uncertainty bounds inreported for the SiB v2.5 model (Prihodko et al., 2008).
Figs. 7 and 8 and by the comparison to uncertainties of eddy-
covariance measurements. For the latent heat flux, maximuna 3
daily values were not captured by the model for IOP-1. For
the first days, this underestimation can probably be attributed
to evaporation from interception due to a rainy period beforeAs noted before, results of an analysis following the GLUE
day 263, which was not included in the simulation period methodology are always conditional on the model input data,
and therefore cannot be adequate|y represented by the modél]'l_e parameter sets, the observations and the choice of likeli-
The comparison of uncertainty bounds of the model to un-hood measure (Beven and Freer, 2001). Therefore, it is dif-
certainties of the measured latent heat flux revealed similaficult to determine whether the observed errors are the result
widths for IOP-1, but larger model uncertainties than mea-Of structural weaknesses of the model or errors in the input
surement uncertainties for IOP-2. These large uncertaintflata or the observations. Nevertheless, Mitchell et al. (2009)
bounds were due to the lower coefficients of efficiency for demonstrated how to use a GLUE study to detect problems
IOP-2. Even though they enclosed most of the measuremerif model structure. They extended their study based on the
points, they reflect pr0b|ems of the ACASA model in simu- results of the GLUE analysis on annual NEE to further ex-
lating the latent heat flux for the warm and dry summer pe-plore the reasons for model failure, for example by analyzing
riod (see Sect. 4.3 for further discussions). the feedbacks of problems within the simulation of soil hy-
During each of the IOPs there was one night where meafirology and total ecosystem respiration on annual NEE. Our
sured fluxes behaved differently than during all other nightsianalysis also revealed indications of structural weaknesses,
with all fluxes being close to zero (night 265/266 for IOP-1 Such as the difficulties of ACASA in simultaneously repro-
and night 181/182 for IOP-2). This divergent behavior was ducing the NEE and the energy fluxes well as has been dis-
not simulated by ACASA. Instead, the modeled fluxes dur-cussed before. Furthermore, weaknesses in the soil respira-
ing these nights were comparable in magnitude to the fluxedion calculations of the model and in the representation of the
of the other nights. During these two nights measured windlatent heat flux for warm and dry periods were observed.
speeds were much lower (Fig. 2), stabilities higher and fric- For the NEE, the basal respiration rates for the soil and the
tion velocities smaller than during the other nights, indicating leaves as well as the lai are the most influential parameters for
decoupling of the canopy and the air above. Close to the soiboth IOPs. On the one hand, this could suggest respiration as
surface, decoupling was also observed during these period$ie most important process for the €&xchange within the
(Riederer, 2009). Being a model driven by representations 0ACASA model, but on the other hand could also be caused
turbulent processes, the ACASA model is probably not capaby an inappropriate choice of parameter ranges, as the results
ble of representing this non-turbulent process and thereforare conditional on all the subjective choices concerning like-
overestimates the fluxes above the canopy during periods dthood measures, rejection criteria and parameter ranges. The
strong decoupling. equations governing the soil respiration calculations were in-
It is suspected, or at least hoped, that a parameter set thétoduced in Sect. 2.3, with the basal soil respiration rates rOr
achieves good results for one flux would also achieve goodand rOm being defined per root area and per microbial sur-
results for the other fluxes, as the aim of SVAT models isface area, respectively. The sum of the root and microbial
usually to represent all fluxes well. The comparison of thesurface areas are, in turn, assumed to be equal to the lai value.
single-objective and multi-objective quality measures allowsThus, the effective basal respiration rate for the soil strongly
the testing of this hypothesis. For the ACASA model, this depends on the lai, and an interaction of these two param-
holds somewhat true for the sensible and latent heat fluxesters is expected. The scatter plot of the parameters basal
with some correlation of good runs for both fluxes, but lessrespiration rate of the roots, rOr, versus the leaf area index,
so when the NEE is additionally considered (Fig. 4). This lai, for coefficients of efficiency for the NEE larger than 0.6
means that when focusing on individual fluxes only, betterconfirms this assumption (Fig. 9). The effective basal respi-
results would be achieved for the flux of interest than whenration rate for the roots (rGx lai) for most model runs was
aiming at a good representation of all three fluxes concurbetween 0.2 and 2 umolm s, which encompasses values
rently, with this being especially evident for the NEE (Fig. 8). measured for spruce sites (0.65 to 1.16 umofst?, refer-
The uncertainty bounds that were conditioned only on theences see Table 2). Figure 9 also illustrates that the parameter
NEE encompassed most measured values, whereas the uranges as chosen result in a very large possible range for the
certainty bounds that were conditioned on all three fluxeseffective basal respiration rate, which leads to very large and
concurrently were considerably narrower and no longer re-inappropriate root respiration for combinations of large rOr
produced the maximum daytime values. It is a little surpris-and large lai, dominating the NEE and leading to low model
ing that such a strong response was not observed for the lateperformances. This problem was also reflected in the very

Identification of structural weaknesses of the model
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14 parameter sensitivity for the latent heat flux for the two pe-
riods was observed for the slope of the Ball-Berry formula
cm, with a lower value suggested for cm for the warmer and

12 drier period. This indicates the need to reduce stomatal con-
ductance for drier conditions. Thus, a mechanism to handle

10 1 latent heat fluxes during dry and warm conditions is needed,
either by seasonally adjusting cm values with lower values
for dry conditions or by including a feedback mechanism

. 08 in the model that reduces stomatal conductance (or the cm
e value) with decreasing water availability.

0.6 |
5 Conclusions

0.4 ;

The multi-layer SVAT-model ACASA proved to be reason-

02 ably capable of reproducing the sensible heat, latent heat

and CQ fluxes for the Waldstein-Weidenbrunnen site in the
Fichtelgebirge mountains in Germany for two five day peri-
ods from different seasons. The sensitivity analysis follow-
LA ing the GLUE methodology revealed a strong sensitivity to
only a few parameters, such as the leaf area index, the basal
F|g 9. Scatter p|ot of root basal respiration rate &ﬁCD rOr respiration rates and the S|Ope Of the Ball-Bel’ry formula. To
[umolm~2s71], vs. leaf area index, lai [fim~2], for model runs ~ mMany model parameters, the fluxes were not sensitive, indi-
that achieved a coefficient of efficiency of better than 0.6 for the cating the equifinality of these parameters, which is a com-
NEE. Contours indicate the effective root basal respiration rate atnon problem of SVAT-models. The results of this sensitivity
0°C [umol m~2s~] (10r x lai). study can serve as indicators of which parameters need to be
measured or determined most thoroughly in future ACASA
applications. Furthermore, some of the internal photosyn-
large uncertainty bounds of modeled NEE compared to meathesis parameters proved to be influential parameters, which
sured values. suggests the inclusion of these parameters in the list of pa-
Measurements of the ratio of root area to leaf area argameters that are open to the user for a species specific ad-
scarce, and do not necessarily find values close to 0.5. Evejustment. The GLUE analysis for two distinct periods con-
though a value close to unity was found for some sites,firmed the most relevant parameters, but also showed a dif-
such as old-growth beech stands in Germany reported bjerent response of some parameters, suggesting the need to
Leuschner et al. (2004), there were variations of this ratioseasonally adjust parameter values, e.g. for the photosynthe-
observed, for example variations with age for young euca-sis parameters.
lyptus trees (O’Grady et al., 2006) and with elevation within  In general, the calculated uncertainty bounds demon-
a tropical mountain forest in EcuadordBerstein, 2006). We  strated that the model simulations captured the dynamics and
therefore suggest using the basal root respiration rate basatle magnitudes of the fluxes well. It is well known that eddy-
on the soil surface as it is measured at many sites, rather thagovariance measurements are also associated with uncertain-
assuming a root respiration rate based on root surface and ages. We have included these uncertainties in our presentation
suming the root surface as being equal to half of the lai. Suctof model uncertainty bounds to allow a qualitative compari-
a reduction of complexity, even though it only concerns oneson. Better results were achieved for the fluxes when condi-
sub model, could help to reduce the problem of parametetioned only on the respective flux and not on all three fluxes
equifinality, as suggested by Schulz et al. (2001) and Franksoncurrently, especially evident for the NEE. This means that
etal. (1997). better agreement for one of the fluxes will always be achieved
This study revealed that the latent heat flux was better reat the expense of the performance of the other fluxes. Due
produced during the wet and cold fall period than during theto the very different sensitivity of the modeled NEE and the
warm and dry summer period, as shown by generally lowemodeled sensible and latent heat fluxes to some plant physi-
coefficients of efficiency and very large uncertainty boundsological parameters, possible reasons for these difficulties in
for the summer period. This finding was confirmed by a achieving good results for NEE and energy fluxes simulta-
study applying the ACASA model for the full annual cycle neously may be located in the plant physiology sub models.
for the year 2003 by Sélier (2010), who found an overesti- This especially applies to the calculation of stomatal conduc-
mation of the latent heat flux by ACASA for the very warm tance by the Ball-Berry equation, which is the main process
and dry month of August 2003. The largest differences incoupling the exchange of GGand HO. Furthermore, the
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strong but different sensitivity of the modeled fluxes to the Beven, K. J. and Binley, A. M.: The future of distributed models:

leaf area index suggests the need to review leaf area index model calibration and uncertainty prediction, Hydrol. Process.,

approaches within different parts of the model (i.e. radiation 6, 279-298, 1992.

regimes, soil respiration). Beven, K. J. and Freer, J.: Equifinality, data assimilation, and uncer-
Within the GLUE analysis it is difficult to determine tainty estimation in_mechanistic modelling of complex environ-

whether the observed errors are caused by structural errors rlnlenztg' %Ztlems using the GLUE methodology, J. Hydrol., 249,

of the model or errors in the input data or the observations ' '

h I led K in th dBeven, K. J., Freer, J., Hankin, B., and Schulz, K.: The use of gen-
However, the results revealed weaknesses in the process de-gyjiseq likelihood measures for uncertainty estimation in high

scriptions within the soil respiration calculations resulting  ,rder models of environmental systems, in: Non-linear and Non-
in strong parameter interactions of the two most influential  stationary Signal Processing, edited by: Fitzgerald, W. J., Smith,
parameters for the NEE, the leaf area index and the basal R.L., Walden, A. T., and Young, P., Cambridge University Press,
respiration rates. For future ACASA model versions, we Cambridge, 144-183, 2000.

recommend that these results be taken into consideratioBeven, K., Smith, P., and Freer, J.. Comment on “Hydrological
through the reduction of the complexity of the soil respira-  forecasting uncertainty assessment: Incoherence of the GLUE
tion module. Furthermore, for the latent heat flux the model Methodology” by Pietro Mantovan and Ezio Todini, J. Hydrol.,
performed better for the colder and wetter period than the 338, 315-318, 2007. _

warmer and drier period, possibly indicating the need to in-2€veM: K. J., Smith, P. J., and Freer, J. E.. So just why would a

clude a mechanism to sufficiently reduce stomatal conduc- modeller choose to be incoherent?, J. Hydrol., 354, 15-32, 2008,
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tance with decreasing water availability.
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