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Abstract. The solid-pore distribution pattern plays animpor- 1 Introduction

tant role in soil functioning being related with the main phys-

ical, chemical and biological multiscale and multitemporal “If you cannot measure it you cannot manage {Cox,
processes of this complex system. In the present research, w02). If you cannot measure something with known ex-
studied the aggregation process as self-organizing and opesctness and precision you cannot make unbiased decisions.
ating near a critical point. The structural pattern is extractedThe science of measurements is caNégtrologyand it deals
from the digital images of three soil€iernozem, Solonetz with the theoretical and practical aspects of measurements
and“Chocolate” Clay) and compared in terms of roughness (1ISO, 2004; JCGM, 2008). The main goal for Metrology
of the gray-intensity distribution quantified by several mea-is to outline standardized ways in which natural constants
surement techniques. Special attention was paid to the urand variable quantities can be measured to required accu-
certainty of each of them measured in terms of standard deracies (NIST, 2001). To date, some nine well-defined dis-
viation. Some of the applied methods are known as classiciplines have been developed from the original Metrology,
cal in the fractal context (box-counting, rescaling-range andeach one focusing on specific objectives (Fig. 1), with several
wavelets analyses, etc.) while the others have been recentlymerging areas in the development phase (sudRcagh-
developed by our Group. The combination of these techmess MetrologyVillarubia, 2005). Uncertainty and bias are
niques, coming from Fractal Geometry, Metrology, Infor- dealt with inStatistical MetrologyWillink, 2005; Cox et al.,
matics, Probability Theory and Statistics is termed in this2008), while the features which affect the reliability of the
paperFractal Metrology (FM). We show the usefulness of measurements of linear and angular quantities in industrial
FM for complex systems analysis through a case study oproduction are analyzed Hyimensional MetrologyCurtis

the soil's physical and chemical degradation applying theand Farago, 2007). The structure of uncertainty is analyzed
selected toolbox to describe and compare the structural atin a reference way by Working Group 1 of the Joint Com-
tributes of three porous media with contrasting structure butmittee for Guides in Metrology (JCGM/WG1). We suggest
similar clay mineralogy dominated by montmorillonites. that the study of complex and deeply interconnedséat
geosystemsvhose behavior is defined by a common princi-
ple of self-organizing criticality (Bed et al., 2008), requires
specialmeasurandgquantities to be measured, 1SO, 2004)
and a corresponding toolbox of reference measurement tech-
nigues to quantify the systems’ scale invariance (Sl), univer-
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METROLOGY

SCIENTIFIC
METROLOGY

INDUSTRIAL
METROLOGY

LEGAL
METROLOGY

DIMENSIONAL

METROLOGY

Concerns with the measurement
of length and its application to
pattern analysis and feature size
control
(Heilmann et al., 2004).

SURFACE
METROLOGY

COMPUTATIONAL
METROLOGY

%

FRACTAL
METROLOGY

The study of surface geometry,
also called surface texture or
surface roughness. Measure and
analyze the surface texture in order

Refers to the study of the effects of
data computational analysis on the
performance of measurement
systems.

The pass from roughness sensation
to quantitative measure, selection
of the corresponding reference
measuring tools and uncertainty

to understand how the texture is (Hopp, 1993). assignment.
influenced by history and behavior
(SML, 2008) .
| ] ] |
CHEMICAL ’_ BIO STATISTICAL H BAYES OPTICAL NANO
METROLOGY METROLOGY METROLOGY METROLOGY METROLOGY METROLOGY
The discipline Concerns with Identify systematic This discipline is The discipline Is the
concerned with biologically based and random sources applied to the concerning to discipline of

studying and providing
the basis for
comparability of
chemical measure-
ments
and their traceability
(Marschal et al.,

measurements and the
development of
relevant standards and
reference materials
(Partis et al., 2002).

of
interconnect structure
variation. Requires a
large number of
measurements
in order to extract the
noise or wrong sources
to reduce errors in

metrological problems
in four specific areas:
traceability,
interlaboratory
comparisons,
calibration, and part

measurement with
light. Such
measurements can
either quantify the
target properties of
light itself (Paschota,
2009).

measurement at the
nanoscale level.
Includes length or size
measurements as well
as measurement of
force, mass, electrical
and other properties

inspection
2002). final results (Eberh[;rdt etal (Lojkowski et al.,
(Chang et al., 1995). 2001) ” 2006).

Fig. 1. Metrology division in sub-disciplines.

The lack of reference techniques, standards and quality coreontrasting structural patterns, but with the same reference-
trol for the measurements of these basic attributes of commineralogy; (iii) to document qualitatively (by visualization)
plex systems, makes difficult any intergroup comparisons ofand quantitatively (in terms of the Hurst exponent) the “sym-
the usually extensive data surveys, resulting in unsustainablenetry breaking” (order/disorder transition) of soil aggregates
decision-making. In this study, we combine some principlesunder a degradation process (sodium salinization).

and techniques dfractal GeometryMetrology, Informatics
Probability Theoryand Statisticsto create a new branch of
Metrology, what we propose to cdiractal Metrology and
introducescale invariant roughnesas the main measurand
of SI, UNI, NL, COM and CR of complex systems (Oleschko

etal., 2008). Under complexity following Christensen and Moloney
The present study has three goals: (i) to propose (and2005), we understand the phenomenon when “the repeated
check on an example) a step-by-step protocol for measurapplication of simple rules in systems with many degrees of
ing the scale invariance of roughness on the structural patfreedom gives rise to emergent behavior not encoded in the
terns of a complex systersdil in our case) during the phase rules themselves”. A well-known example for such repetitive
transition, paying special attention to the uncertainty of eactrules is the random succession of faulting, uplift, subsidence
used measurement technique; (ii) to compare statisticallyand erosion leading to the wonderful variety of natural land-
some new (designed by our group), as well as some comscapes including those “that never were” (being the results
mon roughness measurement techniques on three soils withf computer simulation, Mandelbrot, 1982; Korvin, 1992).

2 Conceptual backgrounds

2.1 Complexity, criticality and roughness
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The soil's aggregation is another example of this complexitycident. First by Mandelbrot et al. (1984), and then by nu-
when the combination of simple and known physical, chem-merous follow-up studies, it has been shown that the fractal
ical and biological rules, acting under different external anddimensionD (the main distinctive attribute of a fractal) is
internal conditions, results in a diversity of pore/solid struc- an invariant measure of the roughness of fractures in met-
tural patterns whose geometry and topology are not derivablals and rocks (Mandelbrot, 2002). Mandelbrot proposed to
from these rules. view Fractal Geometryas a scientific approach to describe

The termcriticality refers to the behavior of the system at the sensation of rough versus smooth, as a “study of scale
the point of phase transition, where no characteristic scalénvariant roughness”. Fractal Metrology has the same goal
exists (and therefore there is pure scale invariance, Chrisand measurand but it focuses on the selection and calibration
tensen and Moloney, 2005). In the case of soil, the aggreof reference measurement techniques and their comparison
gate’s degradation occurs at a critical point and results in thén terms of uncertainty, as well as looking for the best-fitting
solid/pore patterns’ spatial re-arrangement. measurement model.

Roughnesss a basic common feature of all kinds of ei-  Spatio-temporal invariance which is a main feature of nat-
ther real-world systems (natural, social, economical or tech-ural nets and the basic concept of Physics is especially suit-
nological) or mathematical objects. In the real-world, rough- able to describe the structural patterns of complex systems.
ness characterization is mostly limited to visual judgment.Recently,scale invarianceas well has been found useful in
The surface roughness appears as a set of apparently raapplied sciences and for theoretical purposes.
dom peaks and valleys, resulting in the fine-texture irregu- We propose the scale invariant roughness as the main mea-
larities due to the interaction of internal and external pro-surand of Fractal Metrology. Mandelbrot (2002, p. 5-6) ar-
cesses (El-Sonbaty et al., 2008). Smooth surfaces are ragued thatmuch in nature is ruled by what used to be called
in Nature (Majumdar and Bhushan, 1991), while rough onespathology” but, fortunately, the lattefis not unmanage-
have many useful propertiedqugh skin is good”for sup-  able”. He continued:“This is so because it obeys a form
pressing air turbulence, see Monroe, 2006; Fransson et alof invariance or symmetry that overlaps Nature and Mathe-
2006). Roughness has a considerable effect on the contaatatics, and is called scale invariance or scaling that is cen-
of surfaces (Borri-Brunetto et al., 1999); it can influelack tral to my life work... The challenge is to explain why so
hesion(Wang et al., 2008)friction (Kim et al., 2006) wear many rough facets of Nature are scale-invariantAt this
(Bigerelle et al., 2007), an@flection(Verhoest et al., 2008).  step, we define the main goal of Fractal Metrology as the pass
While surface roughness has a positive effect in increasingrom roughness sensatido quantitative measurén agree-
adhesion it is considered as an undesirable imperfection frooment with Mandelbrot, 2002) by introducing the metrolog-
the point of view of friction (Chandrasekaran and Sundarara-cal fractal measurands, selection of the corresponding ref-
jan, 2004; Jensen, 2006). In each of these examples a smakence measuring tools and assignment of a realistic uncer-
change in the distribution of heights, widths, or curvatures oftainty to the measurements (compared by Student-t and Pear-
the peaks has an important effect on the rough surface’s beson’s r correlation analyses). This way, we shall accomplish
havior (Kim et al., 2006). Light scattering from optical coat- the three main tasks of Metrology (NIST, 2001).
ings is the best example for how strongly processes could
be affected by the roughness of interfaces (Germer, 2000).

However, in spite of the great influence of surface roughnes8 Metrology

on system behavior its measurement is still a notable prob-

lem of Metrology (Villarubia, 2005; Van Gorp et al., 2007). Metrology is the science looking for the specific theoretical
Therefore, a quantitative measurement of surface roughnesand practical aspects of the measurement and traceability,
is essential for several applied and theoretical fields (Diehluncertainty and calibration carried out in the numerous ap-
and Holm, 2006), and would be especially useful in Biogeo-plied and theoretical fields (JCGM, 2008). It was born to
sciences. The question is: how to measure roughness in refnake comparisons based on quantitative measurements and
erence mode? We propose to extract the roughness from 2-Birected to understand, interpret and make correct decisions
digital images, time series and signals by methods suitabl@bout the system of interest. The selection of measurand is

for self-similarity and self-affinity analyses. the first step in each measuring process. When this selection
is made keeping in mind the strict standards of Metrology,
2.2 Fractals and scale invariance the objects or system measurements become statistically pre-

cise and close to the true values of parameters.
No formal definition of fractals exists. Informally, Mandel-
brot (2002) defines the fractals as irregular shapes, in eitheB.1 Fractal Metrology
mathematics or the real world, with the property that each
small part of them is a reduced-size copy of the whole. Man-We designedrractal Metrologyto measure the degree of
delbrot emphasizes that the use of woldeture andfrac- complexity and criticality of complex biogeosystems in
tal derived from the same roofréctug is not a mere ac- terms of theroughnesgmain measurand) of their structural
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Fig. 2. Hierarchically organized Fractal Metrology construction.

patterns. Complex systems exhibit scaling properties whichsions and corresponding Hurst exponents). These measur-
obey power laws (Katz, 2006; Plowman et al., 2007). Inands can be extracted from the time series (measure space) or
spite of the above-mentioned diversity of the branches offrom the intensity’s frequencies (probability space). The un-
Metrology (Fig. 1), two main features of complex systems —certainty is taken as the main indicator of efficiency of each
scale invariance and spontaneous symmetry breaking (Brinkcompared technique to quantify the measurand with known
2008) — are still not measurable by standardized quantitieprecision. This way of analysis ensures optimal interaction
(measurands) and reference measurement techniques. among all elements of the net.

The metrological description of each phenomena of inter-
est comprises certain clearly defined steps (JCGM, 2008)3.1.1 Hurst exponent as the measurand of Fractal
The present research focuses on three of them: (1) the se- Metrology
lection of the main measurand; (2) the comparison in terms
of uncertainty between the known techniques for measur\We selected the Hurst exponent as the main measurand of
and quantification; (3) the selection of measurement modetoughness and therefore of Fractal Metrology, because of its
for measurements representation. These steps are visualizedbility to express the asymptotic statistical properties of a
in Fig. 2. The image of a treeMezquitefrom Queretaro  random process(¢) (Denisov, 1998), and because it merges
State, Mexico) was used to represent the branching structurlecal and global features of space/time anisotropy inside the
(Dodds, 2010) of the information required by Fractal Metrol- unique variable calledoughness Proposed by the hydrol-
ogy. This graph is suitable to design the step-by-step proceegist Harold Edwin Hurst (1951), the classical rescaled ad-
dure for measurement of scale invariant roughness of multijusted rangeR/S-statistics has become a popular and robust
scale and multitemporal images, time series or signals (inputechnique for local and global dependence analysis (Mandel-
data). The distinctive feature of this information organization brot, 2002). In time-series the Hurst exponent measures the
and management is a clear hierarchical and logical charactegrowth of the standardized range of the partial sum of devi-
of the system functioning. Three main roots are constitutedations of a data set from its mean (Ellis, 2007). Mandelbrot
by data banks which alimented the highly ramified tree con-and Wallis (1968) have incorporated in the Hurst methodol-
stituted by known and new measurement techniques. All in-ogy ordinary least squares (OLS) regression techniques, and
formation is integrated by the unique trunk corresponding toproposed to estimate the statistic over several subseries (win-
the dimensionless measurands of roughness (fractal dimerdows) dividing the whole series length (Ellis, 2007). The
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Hurst exponent K) is related to the fractal dimensio} functions depending on a random parametewherer usu-
by a simple (conjectured) rule that first time appeared inally plays the role of time. In the case of image-analysis
Hardy’s (1916) work: represents the pixel position (in casefiofhagramanalysis)

or the intensity value (in case pfif analysis). The graphi-
D=2-4, cal representation of this column is the above-mentioned fir-

where 2 is the Euclidean dimension of the space where théhagram (Oleschko et al., 2004). The whole distribution of

fractal is embedded. The Hurst exponent is especially suitdray-tones (from 0- black, to 255- white) inside an image
able to characterizstochastic processe@landelbrot and ~ FePresents its global roughness (Fig. 4Ab, BDb, Cb), while a
van Ness, 1968) from the point of view of scale invariance baseline of each selected area refers to the local roughness.

(Bassler et al., 2006). There are basic differences betweehiS dual representation visualizes how the image rough-

persisten(H > 0.5) andantipersisten(H < 0.5) processes, N€SS is changing with scale, with an accuracy of one pixel.
while the white noise is characterized By=0.5. Note that | € HistGenalgorithm (Parrot, unpublished, 2003) scans

the H values tend to 0 when the roughness is growing. the image from the fir.st.pixel on the top Iing untillthe final
one on the bottom, building a column of the intensity values.

3.1.2 *“Toolbox” of Fractal Metrology The output files are itime serieq.ts) format therefore the
measurement of their roughness becomes a routine task (see

The soil roughness was extracted from digital images andSect. 4).

measured on firmagram and probability density distributions

by selected measurement techniques useful for self-affine set

analyses. Histogram roughness

The second way to extract the measurand for our research
is using the histogram of gray scale values. The histogram

Image digitization refers to the transformation of an appar-:cS confldered a 'pt[ec&lse.t\r/]vay o sulmmarlfe theSts tatlstlc;l(l)(l)r;—.
ently continuous image into discrete intensity values dis- ormation associated with a complex system (Strauss, ’

; - - t al., 2009). In the present work we used the algo-
tributed at equally spaced locations across an xy-grid, caIIe(Iancrez eta . .
a raster (Pawley, 2006). The procedure results in an arrayrlthm Freg_Hist, written by Parrot (unpublished, 2003). The

of rows and columns which we (Oleschko et al., 2004) prc)_FreorHlst output file consists of the frequencies of occur-

posed to analyze as a one-dimensional array of data gatH—ence §) of each gray-intensity valua], forming a time se-

ered inside the same column. Surface reflectance prope(-ies whose roughness can be measured by selected reference
ties are among the most important attributes of matter. Astechmques. Th_e resu_lts of tHNa_sLGenare transferred to a
a rough surface and its image have the same fractal di!:recerISt (:xls) file Wh'qh cgntams the vaIue; of gray tgnes

mension, the roughness can be statistically extracted fron?XtraCted from the original image, arranged in decreasing or-
the imag,es (Pentland, 1984; Gomez et al., 1998; Flem-der and the respective probabilities to find a given gray value

ing et al., 2003; Puente, 2004; Korvin, 2005). We de- inside the image, constituting thedfective probability den-

; s ity function(PDFgs) of the analyzed image (Fig. 4Ad, Bd,
signed two methods to extract the digital image roughnessSI ! . .
by converting the original image consisting §f x N¢ pix- Cd). The roughness of both PDFs is quantified as described

els to a time series. Everv pixel has a arav v be- in the Section on Mea_tsurement Techniques (_see S_ecF. 4): The
tween 0 and 255 Herie:i/ P N, is the ?oviinzigfj _ PDFt is compared with the modeled theoretical distribution
1.....N. is the column inde>’<”\./\’/herafr and N, depen,d on by means of the @RISK (Palisade Corporation, 2005) soft-

the image size (mean image size in the present research wd@re (Fig. 4Ae, Be, Ce).
1000x 874). One way to convert an image to a time series is

to rearrange all pixels row-wise into a 1-dimensional (1-D)

arrayF = {p11, p12,.--» PIN» P21, ---P2N -+ PN1,--- PNN} Of
length 1000x 874, what we calffirmagram (Oleschko et
al., 2004) and whose roughness can be measured by
gorithms available for the analysis of self-affine sets. An
other possibility is to consider thempirical histogram
ng = {#(pij=k|k=0,1,...,255)}, or its normalized ver-

Optics of fractal objects: firmagram roughness

The roughness of the probability density function

al.he Histogram is one of the most useful forms of summa-
rizing random data for visual and statistical analysis (Lu and
Guan, 2009). It graphically represents data variability which
is described in quantitative terms by thmbability density

) o e function(Strauss, 2009). For a continuous function, the PDF
sion, theempirical pdf p = { W‘k =01, "'255}- The se- expresses the probability that the variable of inteesies
ries pa, pa. ..., pzss, extracted from each digital image of in- in an interval & b), (see, e.g. NIST/SEMANTECH, 2006):
terest constitutes the time series for further fractal analysis.
Note that, by definition, atochastic procesgor “random b
function”) {x (1)}, is a family of real- (or complex-) valued /a f(x)dx=Prla < X <b].

www.biogeosciences.net/7/3799/2010/ Biogeosciences, 7, 38382010
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For a discrete Q|str|but|on, the PDF represents the probabil+,pic 1. Mean Hurst exponentsH), fractal dimensionsip) and
ity that the Va”able?( takes the valuer. Note, that when  giandard deviationssj measured by box counting method for sev-
displayed, the PDF’s graph has the same appearance as tBfteen analyzed images of three compared soils and their respective

histogram (Fig. 4Ad, Bd, Cd, 4Ae, Be, Ce). firmagrams.

In our research to quantify the fractal behavior of PDF, in
addition to the PDF estimation by meansFéq Hist, the Image Dpox (Mean values) Dy firmagram (mean values)
statistical analysis of the gray-tone distribution across each H b S H b S

analyzed image has also been accomplished by the commer-Chernozem 0.083  1.917  0.0165 0.1525 1.8475 0.0015
cial software @RISK 4.5 add-in for Microsoft Excel (Pal- gg‘y’”etz (?-1029535 11:7%65 00631645 ooitég 11é89793§ 006%021
isade Corporation, 2005). The tools Rfsk Analysishave i i i i i i
been used since long for the analysis of financial data, but

rarely applied in Natural Sciences. We have found @RISK
a user-friendly software (except its rather high price!) suit-

able for Biogeoscience studies because of its precision an eated in Klinkenberg (1994) and Gallant et al. (19%4)f-

relative simplicity. ) . . )
i affine time series analysia Malamud and Turcotte (1999
The @RISK 4.5 package selects the best fit to the ex- ne " ! ys! ! " ( )

. tal data function f 37 diff t th ¢ and Pelletier and Turcotte (1999), while tberrelation di-
penmental data function from among imerent theorell- e nsionwvas the subject of Kogan’s (2007) detailed study. A
cal probability distributions (Normal, Lognormal, Logistic,

. ) comparison of computer-simulated examples was given b
Beta, Gamma, Pareto, etc.). The algorithm is based on P P P 9 y

Behery (2006). Th ilation of Sun et al. (2006, Ta-
Monte-Carlo simulation technique which replaces the uncer- ehery ( ) e compilation of Sun et al. ( - 1a

tain or unknown val f an experimental dataset by a ran ble 1), focusing on the techniques used for the fractal di-
ain orunkno alues otan experimental dataset by a rang@, o o analyses of the surface features extracted by remote
of more probable values. The list of five selected, best fit-

. . : . ) ing, i iall ful f izi i
ting functions are displayed automatically, the first one be-tsﬁgzlirf]fg’r;tetsepcehcr:?qgelfe ul for summarizing and comparing
ing the most probable-for the studigd data. To qeate a his- Mandelbrot (2002) p.roposed to put the most important
togram, the software flnds the maximum and minimum Val'fr ctal analysis techniques intd'®olbox” , just as the tools
ues of a data range, divides the range into classes whose Iev8 the electricians and plumbers. Theower-law” figuring
of importan_ce depends on the probability of occurrence ofin the probability distribution R/ > 1} ~ u—* describing
values, defined afp} = {p1. p2..... pa} = data rank armay. o qictinution of a system’s attributes having a size u
In @.RISK 4'5 (Rahsade Corporation, 2005) the propab!l|ty can be used ifrractal Metrologyas a superior tool for frac-
density function is used to construct the frequency d|str|bu—tal modeling. Levitz (2007) used the notitivasic toolbox”

yon from an |'nf|.n|Fer.Iarge set of values \{vhere t.he. clgss 1280 capture forms and patterns, while we applied the term
is becoming infinitesimally small. The visual similarity be-

. “toolkit” as more proper for applied sciences (in Oleschko
tween PDFs constructed byreq Hist and @RISK can be
observed in Figs. 4Ad, Bd, Cd and 4Ae, Be, Ce, except theet al., 2010). For Fractal Metrology we propose to use the

h hich is al higher in the f original term “toolbox” (or dfective toolbo¥ to honor the
roughness which is always higher in the former case. pioneering works of Mandelbrot (2002). We shall put inside

this box some tools designed by us in addition to the common
fractal techniques of one of the available commercial soft-
ware —Benoit (1.3)(Trusoft, 1999, one of its early versions

There is a legion of fractal descriptors suitable to quamify;V:sse:je\gﬁviic:nzys?:e}féﬁir::s’rellgtgigr)w.sP:Eisc(r;uiin;g\'/\tzﬂg\lfgue IS

the specific attributes of complex systems (Oleschko et al., . ) g .
2004). For instance, the fractal dimensioR)(measures established theoretically, empirically, or by computational

the set's space-filling ability (Mandelbrot, 1982); the degreee)t()pe:'th(?nrt1 b_(?thv:aein a Sr?/t?r:enl]) attrlbutr(?n?ntd rthf scglle of its
of its translation invarianceis quantified bylacunarity A observation. ox-counting Dhox), perimeter-areg Dp),

(Pendleton et al., 2005; Feagin, 2003; Feagin et al., 2007)i_qformation(Di), mass fractaKDm), andruler (D,).dimen-
the continuity and tortuosity of the pore and solid networks Sions (and correspondirigurst exponenisare designed for

are measured byandom-walk fractal dimension@orvin, self-similar sets or curves, while threscaled range_(DRs),
1992; Rodriguez-Iturbe and Rinaldo, 1997),spectral di- ~ POWe' spectrun(Dps), roughness/lengti{Dy), variogram
mensionor fracton (Orbach, 1986). The main advantages (Dy), andv_vavelet(_DW) dimensions are used for ;elf-qfﬂne
and problems of fractal descriptor measurements have beeﬁr.aces.or. time series (Trusoft, 1999)2 The foIIowmg discus-
described in details in some by now standard (Korvin, 1992;SIOI’I will involve only four of the mentioned techniques.
Barton and La Pointe, 1995; Falconer, 1997; Turcotte, 1997,
etc.) as well as recent €T and Gruiz, 2006) books. There
are several useful reviews comparing the algorithmic aspects

of these measurements and the performance of each fractal

aimension: for instance, theoundary fractal dimensiois
!

4 Measurement techniques of Fractal Metrology

Biogeosciences, 7, 3799815 2010 www.biogeosciences.net/7/3799/2010/
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Fig. 3. Benoit’ (Version 1.3) outputs of the compared methoRl&S analysis(b), waveletgd) and box countingf) applied to images of the
Chernozen{a), Solonetzc) and Clay(e) visualizing the details of each procedure.

4.1 Box dimension Ppox) counting of boxes containing pixels of the object is accom-
plished, considering the box as occupied if at least one ana-

he si f f-similar T | displ | lyzed intensity value belongs to the box. The following equa-
The size of a self-similar fractal set displays a power-law - is basic forDyoy calculation:

relationship with the measurement scale where the frac-
tal dimension is the exponent of the power-law (Tang andN(d) ~
Marangoni, 2006). ThBox Dimensiortechnique is the clas- dPoox’

sical way to prove the fractal behavior of the studied mathe-, horen (counted for a set of box sizes with different orien-

matical, computer-simulated or real physical set and is use‘?ation) is the number of those boxes of linear sizahich

in this work to measure the roughness from the space-filling.ntain at least one point of the structure (Fig. 3f).
ability of solid and pore networks. In this technique, the
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4.2 Rescaled range analysidig/s) the conventional Fourier transform (Weisstein, 2010). The

wavelet transform of a self-affine trace is also self-affine
The R/S analysis is one way to characterize the self- (Rehman and Siddigi, 2009). The characteristic measure of
similarity properties of time series through the Hurst waveletvariance analysis is the wavelet exponBgt(Mala-
exponent (SCIpIOﬂI etal., 2008) This traditional method caNmud and Turcotte, 1999) Wavelets are imp|emented using
be described in terms of the range of partial sums of deviatrigonometric functions that are oscillating around zero in
tions of values from the mean of a time series, normalizeda non-smooth sweep, and |0ca|izing them in the frequency
by its standard deviation (Alvarez-Ramirez et al., 2008). Thespace (Jones and Jelinek, 2001). Considervelet trans-

Rescaled-Rang®/S(w) is defined as (TruSoft, 1999): forms all of them with a different scaling coefficient,
R(w) let S1,52,...5, be their standard deviations from zero. De-
R/S(w)= <Tw)> fine the ratiosG1, G, ..., G,,_1 of the standard deviations as

G1=2S1/82,G2=S2/83,...,Gn—1 = S,—1/S,, and compute
wherew is the window length;R(w) is the range of val- the average value @; as (TruSoft, 1999):

ues inside the sampled intervakw) is the average standard

deviation, angular brackets denote expected values. The fol- n—1

lowing equation shows the power-law relation which can be ,_1Gi

established between thR'S ratio and window length viathe Gavg= — 1

Hurst exponenH: e

The Hurst exponentH) is H = f(Gavg), Where f is a
heuristic function which describe8 by Gayg for stochas-
The linearity of the double logarithmic plot @&/S(w) as a tic self-affine traces (TruSoft, 1999). The mother wavelet in
function of w reveals a scaling law, wher® is the Hurst  Benoit 1.3 is a step function. Malamud and Turcotte (1999)
exponent which is obtained from the slope of the straightunderlined that wavelet analysis does not share the inherent
line. The relationship between fractal dimension and Hurstproblems of power spectrum analysis, such as windowing,
exponent is given by Hardy’s (1916) conjecture mentioned indetrending etc.

Sect. 3.1.1.

R/S(w)oxwh.

4.3 Power spectrum Dps) 5 Measurement uncertainty

A powerful method to extract hidden structural information Wi L fth dard
(such as: periodicities and persistence) from a fluctuating © propose to measure uncertainty in terms of the standar

time-series is to calculate its power spectrum (Su and Wudewa_tlon 6)'_ The H and? va!ugs ex?rallcteq by sele_c ted
Benoit techniques from the original digital images, firma-

2007). The power spectrum method gives a scale invari- 4 PDE bi dtoP ) 4 Student
ant measure of fractal dimension since the log-log slope oframsan were subjected to Pearson's rand Students-t

the high-frequency range of the power spectrum is invariantStatiStical anal_yses in order to estimate the statistical signifi-
to arbitrary rescaling of the input (Wilson, 1997). Usually, c@nce of the differences between them.

the Fast Fourier Transform (FFT) is applied to estimate the Comparative analysis of the four selected reference mea-
power spectrum (Dimri and Prakash, 2001). To obtain anSUrement tools is reallzeq in the present re;earch following
estimate of the fractal dimension, the power spectif) the Guide to Fhe Expression qf Uncertainty in Measurement
(where k = 2r/4 is the wavenumber, and is the wave- (GUM), published by the Joint Committee for Guides in
length) is first calculated and plotted on a double logarith-Metrology (JCGM, 2008). The terffmeasurement uncer-
mic plot asP (k) versusk. If the time-series is self-affine, t@inty” is used in its broadest sense asoabtdefining it as
this plot should follow a straight line for large wavenumbers, & parameter, associated with the result of a measurement,
with a negative slope-b which is estimated by regression. that characterizes the dispersion of the values that could
The exponent-b is related to the fractal dimensiabpsas ~ P€ reasonably attributed to the measura@CGM, 2008,

(TruSoft, 1999): p. 2). The_GUM recognizes two types of measurement errors
(systematic and random) putting them on a probabilistic ba-
Dps = 5_b_ sis through the concept afeasurement uncertainJCGM,
2 2009). The latter is described e measure of how well one
4.4 Wavelets Dw) believes one knows the measurand vgleGM, 2009, p. 3).

We propose to measure the uncertainty of fractal analyses
Wavelets are localized functions of mean zero, constructedn terms of the standard deviatio) (©f the Benoit resullts.
by the linear combination of scaling functions (Bakucz and The statistical significance of the differences in uncertain-
Kriiger-Sehm, 2009). They are especially useful for com-ties of the Benoit's data was quantified by Student-t and
pressing images where they are in some ways superior t®earson’s r correlation analyses. The Pearson’s r correlation
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matrix (computed by the MINITAB Software, 1998) was 6.1 Experimental setup

constructed as:
S (X — R (Y — 7 Sevente_en micromorphological image_s of three soils with
=137 ! , contrasting structural patterns but similar clay content and
(n—1)Sx Sy mineralogy (Oleschko, 1981) were used for the statisti-

whereX, Y are all possible pairs of the compared variables,ca| comparison of the measurement techniques selected for
see Tables 3, 6, 7. Her&, andY are mean valuessy and inclusion in Fractal Metrology. The Chernozem-Solonetz
Sy are standard deviations. Student's-t-test was carried oupedological complex was sampled in the same agricultural
for paired variables in the SPSS Inc. (2004) environment.  field (Tambov State, Russia). The undisturbed samples
For the @RISK results we carried out the statistical com-(8 ¢m> 4 cm) were collected with specially designed sam-
parison of the significance of the obtained differences in aP!€rs from the arable horizon of each studied soil. All sam-
few statistics built from the first four moments: mean, vari- Ples were taken at field moisture in order to conserve the
ance, kurtosis and skewness. soil's structure. In the laboratory, samples were dried by the
The standard deviations of all used techniques (except th@cetone replacement method. Thin sections (Xehtm)
wavelets) were analyzed by the same statistical tests but indéith 30 um thickness, were prepared by the (then standard
pendently offf. Additionally, the Pearson’s r and Student's- in the Soviet Union) petrographic procedure (Parfenova and
t-tests were applied to the three compared soils of contrastin%amova’ 1977; Brewer, 1964) from the samples sectioned
genesis, looking for a correlation between the roughness o .orlzor)tally maklng sure that the' natural so!ld-pqre distribu-
their images. Finally, the same two statistical tests were apnon anisotropy derived from the tillage practices is preserved

plied to the four statistics yielded by @Risk PDF analysis. (Fig- 38, ¢, &). The thin sections were analyzed under pet-
rographic (Carl Zeiss) microscope, taken all digital images

under magnification 19 (Oleschko, 1981).
6 Results and discussion The Chernozem and Solonetz are located inside the

patches of a typical mosaic of a man-indudgad Lands
In the present research the collapse of the solid/pore StrlUQandscape. However, thehernozenis the black soil with
tural pattern ofChernozemwas studied under a common iphe highest known level of sponge-type structure develop-
agricultural degradat.ion process, salinization, leading t0 anyent (Phase 1), while thBolonetzs a saline-sodium soil
emergent new unfertile soil, nameBplonetz The structural ity typical massive pattern and ephemeral fractures derived
patterns of both soils are compared with the pure “Choco-rom the alternating wetting (expansion) and drying (contrac-
late” Clay (a kind of clayey deposit in Russia with chocolate tjon) processes (Phase 2). Solonetz had originated from the
color) composed by minerals of the montmorillonite group. chernozem as a result of chemical degradation due to un-
The main difference between these three soils is the origirgstainable irrigation with saline water. Therefore, the ex-
of the dominating cation inside the CEC (Cation Exchangeperimental setup was focused to capture the critical behavior
Complex): calcium in the Calcic Chernozem, and sodium inapng phase transition of the soil's structural pattern during this
Solonetz and Chocolate Clay. The Solonetz was formed frO”Hegradation, applying the above-described Fractal Metrology

the Chernozem inside the same Chernozem-Solonetz pedgachniques and preserving the original, representative struc-
logical complex (Oleschko, 1981), while the Chocolate Clay {;ra| patterns’ anisotropy.

was taken as the example of a reference-matrix which has Figures 3a, c and 4Aa, Ba show the representative exam-

never been involved in the aggregation process but has thﬁles of micromorphological images of Chernozem (Figs. 3a
similar texture and clay mineralogical composition (Vadyun- 504 4aa) and Solonetz (Figs. 3c and 4Ba), visualizing their
ina et al., 1980). We are looking for critical behavior in the ¢,nirasting structural patterns that have resulted in statis-
Chernozem-Solonetz complex, comparing the soll structura[ica”y different physical properties (Table 2) and soil be-
patterns before and after the transition from the totally ag-navior. The loss of the original quality is related to the

gregated (State |, Chernozem) to massive (State Il, Solonetzcqyre’s collapse in response to the drastic changes which
structure (Oleschko, 1981). During this transition, the struc-4..,rred inside the Cation Exchange Complex where the

tural pattern of Chernozem, a highl_y fertile soil with per- calcium, dominating in Chernozem, had been replaced by
fectly permeable sponge structure (Fig. 3a), gets transformed,qiym, resulting in Solonetz formation. The phase tran-
into the massive structure (Fig. 3c) of the unfertile bad landgjtion from the highly connected to massive pattern with

(Solonetz) with similar to Chocolate Clay appearance. Weyater-unstable structure and ephemeral fractures has oc-
focused our attention on those structural attributes of Cher'curred when the sodium concentration exceeded the permis-

nozem which have remained unchanged during the transitiogj e (critical) level resulting in the catastrophic decrease of

to Solonetz, and tested the ability of Fractal Metrology t0 the macro- and microaggregates’ stability. Because of the

meazure_lthe differences and similarities between the COMgniversality of phase transitions (Stanley, 1971), we expected
pared soils.

similar Hurst exponents in case of both soils regardless of
some local details. In our case the divergences of the order

rxy =
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Fig. 4. FirmagramgAb, Bb, Cb) extracted from the micromorphological images of three studied soils: Chern@zmSolonetz(Ba)

and Clay(Ca), with contrasting structural patterns. The roughness values expressed in terms offHuwsponeniAc, Bc, Cc)and their
standard deviatiofAg, Bg, Cg) for the compared techniques. The distributions of gray intengifids Bd, Cd) are identified as visual
singularities of the image: PD{Ad, Bd, Cd). These differences are detectable by eye when the graphs of data are fitted to the most probable
theoretical distribution by software @Rigke, Be, Ce) and with the central moments calculated by the same softi#dr&f, Cf).
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Table 2. The microaggrgate composition of the Chernozem and Solonetz soils at different depths.

Microaggregate fraction (%)

Soil Depth (cm) 1-0.25 0.05-0.01 0.01-0.005 0.005-0.0040.001 <0.01 =>0.01
Chernozem (0-20) 0.0 46.9 17.8 8.2 2.5 285 71.5
(40-50) 0.2 44.8 15.8 17.7 2.7 36.2 63.8
Solonetz (0-20) 0.0 46.5 215 135 9.9 449 55.1
(40-50) 0.0 211 17.6 12.3 45 74.9 251

parameters at the critical Na contéfiia cric Scalenear the Table 3. Pearson-r correlation matrix for the Hurst exponent of
critical point as~ |Cnacrit—Cna| . We tried to capture three studied soils.

and visualize this trend for the compared soils, measuring it

by selected techniques from the Fractal Metrology toolbox.

The final comparison was carried out between the structural Clay Solonetz Chernozem

patterns of both soils and the Chocolate Clay whose mas- Clay 1 0.872 0.909

sive microstructure had never passed through an aggregation 0.001 0

process and whose mineralogy is similar to the studied soils ggjonetz 1 0.870

parent materials (Figs. 3e and 4Ca). 0.001
Chernozem 1

6.2 Structural patterns comparison by fractal

measurands * Correlation is significant at the 0.01 level (2-tailed).

The mean values of the box fractal dimensions for the

compgreq soils, extracteq from the origingl images and.the The observed data variation is low, with highest mean stan-
negative images of the firmagram (Benoit's box counting yarq geviation of 0.0165 obtained fdpox of Chernozem

algorithm is working only on the white part of an image, (qriginal image) and the minimal (0.0015) for the negative
Fig. 3f) were statistically similar and close to the value of ¢ 1o firmagram. The discussed roughness differences be-

1.89, the fractal dimension of the Sierpinski carpet (KO- een compared soils were not significant statistically (Ta-
rvin, 1992). Dpox varies between 1.8475 (Chernozem's fir- poq 3 ang 4). We concluded that from the statistical point

magram) and 1.917 (digital image of Chernozem, Table 1).u¢ e\ all compared porous materials should be defined as

The former value is the lowest and the latter is the highesjnijar in the space filling ability of their solid and pore pat-
among the compared soil samples. These trends coinCidg, g and in their roughness calculated by the reference box
with what we intuitively predicted: the more aggregated soil 5 (5| dimension. Note that the box counting analysis of the

has the highest roughness on macro scale (level of Strucwr"ﬂrmagram extracts more precise information about the ma-

fractals) but lowest density of solids on micro scale (level yj, gensity (mutual distribution of solids and pores) inside
of textural fractals, where the Chocolate Clay has the most;,, original images.

denfgly distributed rrJ]attde_rr_l of SO}['? part||cl_es possible '? thg The apparent independence of the box counting dimension
Euclidean space). The division of fractals into structural and,, 54| genesis for the studied pedological complex com-

text_ural was accom.pli§hed by Avnir a”‘?' Far,in (19,84)’ using pared with Chocolate Clay (a porous material, strictly speak-
their roughness as indicator for the particles’ spatial arrangejnq not 4 soil) can be interpreted as empirical evidence for

ment. The surface of the fine particles has the same smooths—ome generic features (universality?) of the roughness of

ness/m Ia(ljl compalr(ed SO'IE Wh'CrI' build the observed Complmihese materials with similar clay mineralogy (micro-scale)
poris%! hnetw(;)_;rs (Dathe (z)ta.f, 2001|)d' _ 4 oo DL contrasting appearance of soil structural patterns and
The highest difference in box fractal dimensions and Cor- 4 qticaly different physical behavior on macro-scale. In this

responding Hurst exponent (and therefore in roughness) wag,qe it is possible to speak about the universal critical expo-

documented for Chernozem and Chocolate Clay where theSﬁents of soil aggregation process which stay constant during

fr_actal measurands, extracted from the digit_al images_, ha_‘v?ne phase transition from the aggregated (Chernozem) to the
differences of 0.042. Note that this small difference in di- dispersed (Solonetz) state

mension can be translated into a significant porosity change. Therefore, neither the box fractal dimension nor its stan-

dard deviation was able to detect any statistically signif-
icant differences in the roughness of digital images and
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Table 4. Student-t-test for the Hurst exponents of three compared soils.

Paired Differences

Mean S SEM 95% Confidence Interval t Df Sig. (2-tailed)
of the Difference
Lower Upper
Clay-Solonetz 0.025 0.101 0.032-0.047 0.097 0.786 9 0.452
Clay-Chernozem 0.021 0.086 0.027-0.041 0.083 0771 9 0.461
Solonetz-Chernozem —0.004 0.087 0.028 —0.066 0.058 —-0.146 9 0.887

firmagram of the compared soils. We speculate that thesélifferences inH, independently of the applied measurement
results indicate the need to include further fractal measurtechniques (Tables 3 and 4).

ands (most importantly: some agreed-upon standard measure

of lacunarity) into our proposed toolbox. 6.3 Uncertainty of fractal measurement techniques

The third technique used in the present study, namely
the PDF roughness measurement, was not statistically serﬁ
sitive to soil structural dynamics. In spite of the clear visual
differences detectable on the PDF morphology of the thre
compared soils, the statistics derived from their four centra
moments (mean, standard deviation, skewness and kurtosi&
were not statistically different. It should be mentioned that
PDF is invariant to the interchange of any two pixels inside

the image. Note that thBrmagramand thepower spec-
Imag 9 oW P The mean standard deviation is also higher for Hyg of

trum are also more sensitive to local short-wavelength prop
erties than to the larger structural features. Therefore, WeChernozem (0.742) than for Solonetz (0.362) and Chocolate

concluded that the macropores (with a diametertfmm) Clay (Of??)' YVe dnotg(jthgt tthe Hurst expdork;erg of thle é?lger—
are not displayed in statistically representative way in a sin-192€Mm has a standard deviation measured by Rescaled Range

gle digital image. Dathe et al. (2001) came to the Similartechnique (0.742) which is much larger than for box counting

) . . . 0.017).
conclusion. Our previous physical experiments, and corre—( . .
sponding computer simulations, have shown similar trends As in the case of box counting (Table 5), the standard de-

for soils of different genesis (Oleschko et al., 2000), result—v'at'on was smaller fofrs extracted from the firmagrams,

ing in similar values of the corresponding fractal parametersbelng equal to 0.193 for Chernozem and minimal for Clay

(Oleschko et al., 2002, 2003) (0.104). The mean value diirs measured for the firma-

In Table 2 the microaggregate compositions of the Cher.9rams in three soils_ was Q.229, and therefore the correspond-
nozem and Solonetz estimated by the reference pipett('ang mean fractal dimension wars=1.771. The values
method are compared for two genetic horizons. The highof_r(_)ugr_mess measu.red by power spectrum methqd on the
content of physical clay (the physically active fraction of par- original images and firmagrams were comparable with those

. o ) . obtained by theR/S technique (except the “Clay” samples
ticles with size<0.01 mm, considered as most important for . : L

: . : : : o where the fractal dimension has reached the topological limit
microaggregation) in both soils ensures their suitability to

form clusters of fine particles (microaggregates). Notwith- of 2): the mean value offps is equal to 0.208 for images.
X . parti ggreg . . For all techniques the roughness information extracted from
standing, the differences in the nature of the dominant cauoqhe PDF was noisier than in case of original digital images

in CEC are responsible for the contrasting physical and ' . .
. ) and firmagrams extracted from these. In spite of the listed
chemical properties of Chernozem and Solonetz. We specus. .
e ; differences between the differently measured Hurst expo-
late that the similarity in roughness between these soils mea-

sured by box-counting technique is due to their hiah ph S_nents, these were not statistically significant only for two
. y g te d S 'gh phy compared standard deviation pairs (Tables 5, 6). Hhel-
ical clay content, which increased significantly with depth

(Oleshko et al., 1980), while the effect of pore macrofeatures, > measured by Wavelets technique fluctuated around 0.5

: : the Hurst exponent value of white noise) similarly to the
on the roughness measured pixel by pixel, and therefore o :
; . ) . above-discussed PDF case. We concluded that the Wavelets
Hurst exponent, is masked by the high microporosity.

. technique was not sufficiently precise for the roughness mea-
The Pearson’s r analysis as well as the Student-t-te d yP g

. I . Séurement of the digital images.
confirmed the strongly significant correlations between the

roughness of all compared soils and therefore non-significant

s the second step of metrology measurement protocol, the
urst exponent values, extracted from the images, firma-
grams and PDFs by Box Counting, Rescaled-Range, Power
ISpectrum and Wavelets techniques were compared as regards
the mean value of the Hurst exponent and its standard devi-
tion (Table 5). Thedrs extracted from the original images
transformed into time series has higher mean value in Cher-

nozem (0.064) than in Solonetz (0.039) and Clay (0.031).
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Table 5. Hurst exponent) and standard deviatior$’) for each soil type and measurement technique used.

Total mean Chernozem Solonetz Clay
Hpox(image/Shox(image 0.100/0.014 0.083/0.017 0.101/0.014 0.117/0.013
Hpox(firmagram/Shox(firmagram ~ 0.125/0.004 0.153/0.002 0.119/0.006 0.106/0.004
HRs(image/SRS(image 0.044/0.493 0.064/0.742 0.039/0.362 0.031/0.377
HrsPDR/SRS(PDR 0.444/0.007 0.424/0.006 0.505/0.010 0.404/0.006
HRs(firmagram/SRs(firmagram ~ 0.229/0.141 0.270/0.193 0.201/0.127 0.217/0.104
Hpgimage/SPSimage 0.208/144302.145 0.151/133766.650 0.233/146878.879 0.241/152260.906
HpgppR/SPsPDR 0.417/11.244 0.454/10.960 0.435/14.941 0.366/7.831
Hpg(firmagram/SPSfirmagram 0.048/40068.195  0.121/48708.625  0.024/38070717 0.000/33425.244
Hw(image 0.400 0.413 0.360 0.428
Hy(PDR 0.560 0.565 0.426 0.689
Hw firmagram 0.427 0.319 0.466 0.497

Table 6. Pearson-r correlation matrix for the standard deviatid)f three applied techniques: Box dimensi@iS analysis and Power

spectrum.
Sbox(image Sbox(firmagran) SRS(image SRS(PDF) SPS(image SPS(PDF)
Sbox(image 1 —0.528 0.059 —0.013 —0.207 0.179
0.029 0.821 0.960 0.426 0.492
Sbox(firmagram 1 —0.249 0.286 —0.128 0.126
0.336 0.266 0.625 0.629
SRS(image 1 0.014 —0.715* -0.321
0.959 0.001 0.210
SRS(PDP 1 —0.012 0.475
0.965 0.054
Spsimage 1 0.331
0.194
SPSPDR 1

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).

The meanHRgs value measured on the firmagram was plied fractal techniques measured in terms of standard de-
equal to 0.229 (with standard deviation 0.141) showing thatviation was significantly different, except for the following
the Hgs extracted from the original image has higher rough- pairs which show significant correlatiorSpoximage Versus
ness (meanHrs= 0.044) and higher uncertaintySgs = Shox(firmagram; aNdSrsimage VersusSpsimage (Table 6).

0.493). The power spectrum technique gave the similar mean The outlier (high) standard deviation values of the spec-
Hps value of 0.208 for the original images of the compared tral dimension might be due to the special construction of
soils, showing higher roughness for the firmagrafipd= the time series extracted from the digital images and firma-
0.048). The values oHy measured by Wavelets method grams. In the image one should expect a spatial correlation
fluctuated around 0.5 for images, firmagrams and PDF, thever a distance of a few pixel-sizes between the neighboring
meanHyy value was equal to 0.4 for the original images (Ta- valuesp; ;; pi+1,j; pi+2,j;.... Because of this, some artifi-
ble 5). cial periodicity in the firmagram of periog& N could have

This conclusion is confirmed by Pearson’s r analysis whereappeared, so that the lags, window-length, etc. used to esti-
36 different pairs ofH were compared (Table 7), showing mateH or D from the images and firmagrams must be kept
statistically significant correlation at the 0.01 level betweenmuch less than image si2éin order to avoid this artifact.

5 of them, at the level 0.05 between three pairs, and lack of Statistical comparison was also accomplished among
correlation between the remaining 28 pairs. the central moments (mean, variance, kurtosis, skewness)
In spite of the statistical similarity between the com- of the empirical and theoretical PDFs extracted by the

pared soils’ roughness (Table 4), thescisionof the ap-  @Risk software, confirming the similarity of the gray-level
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Table 7. Pearson-r correlation matrix for the Hurst exponents of four techniques applied: Box dimetiSi@malysis, Power spectrum and

Wavelets.
Hbox(image Hbox(firmagran) HRS(image) HRS(PDF) HPS(image HPS(PDF) HW(image) HW(PDF) HW(firmagran)
Hbox(image 1 —-0.341 —0.405 —0.436 0.446 —-0.414 0.213 -0.114 0.094
0.181 0.107 0.081 0.073 0.099 0.412 0.664 0.719
Hbox(ﬁrmagram 1 0.748* 0.718* —0.869* 0.457 —-0.01 —-0.175 0.328
0.001 0.001 0.000 0.065 0.969 0.501 0.199
HRS(image 1 0.583 —0.674* 0.608 —0.149 —0.007 0.004
0.014 0.003 0.010 0.569 0.979 0.987
HrsipDP 1 —0.582 0.644* —-0.132 0.022 0.463
0.014 0.005 0.614 0.934 0.061
Hpgimage 1 —-0.412 0.190 0.022 —0.246
0.100 0.466 0.932 0.340
Hpgpbpp 1 —0.391 0.130 —0.128
0.121 0.620 0.624
fimegs © o ose 0610
rhieon ' 028
Hyy(firmagram 1

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).

distribution across the Chernozem-Solonetz pedologicalfr Conclusions
complex images and the Chocolate Clay. We speculate that

the influence of microstructure and soil mineralogy on im- _ _
age roughness is more important than that of all other atWWe propose théractal Metrologyin order to describe the

tributes characteristic for the macrofeatures of the compare®hase transition in a complex system and documented the
structural patterns. The detailed architecture of SolonetAbility of its toolboxto extract the qualitative and quantitative

on the microscale preserved the original Chernozem feainformation about the spontaneous emergence of the mas-
tures, conserving the self-organizing capacity of the fineSive structural pattern of Solonetz from the perfect spongy
matrix near the transition point when sodium content over-structure of Chernozem, as the sodium concentration inside
passes the critical value. This catastrophic event, knowrthe Cation Exchange Complex (CEC) exceeds a certain crit-

as soil chemical degradatiqninvowes astructural phase ical value. The multiscale information was extracted from
transition detectable by visual comparison of microscopic the micromorphological digital images of these soils with
images through the pore pattern’s changes but not measugontrasting structural patterns but similar mineralogy (Cher-
able in terms of the Hurst exponent. The Chernozem aghozem, Solonetz and Chocolate Clay). Two of them be-
gregates collapsed at all hierarchical levels, resulting in thdong to the same pedological complex affected by a chem-
massive pattern of Solonetz, where the major attraction beical degradation (salinization) accompanying by the destruc-
tween the solid particles (with high content of montmoril- tion of soil aggregates. In spite of drastic visual changes in
|0nites) is responsib|e for the low inter-aggregate porositythe structural features of Solid/pore patterns, the roughness
and high fracture density. This re-arrangement of structuraPf the soil’s digital images, measured in terms of Hurst ex-
patterns does not cause statistically significant changes in theonent by selected fractal techniques, were statistically simi-
scale-invariance of the microstructure. However, in spite offar. Notwithstanding, the three main Fractal Metrology tech-
the statistically insignificant differences of the Hurst expo- Niques, proposed by us, were able to extract the multiscale
nent values, the H values of Solonetz and Chocolate Clayendencies in the soil's structural dynamics on global (rough-
for some techniques tend to be smaller, indicating the tenness of the probability density function of gray intensities)
dency to higher roughness in comparison with Chernozenfnd local scales (firmagrams and digitalimages). Chernozem
(Table 5). These changes can be interpreted as indications #@s the highest roughness on the scale of macroaggregates
the breakdown of the Chernozem’s interconnected porositystructural fractal) and the lowest on the pixel scale (textural
in Solonetz, due to the soil's chemical degradation. In mostfractal) related with the higher porosity and lower density of

of the analyzed cases the roughness of the micromorphologhis perfectly aggregated soil. These results provide the suit-
ical images has antipersistent character. ablllty of the proposed Step-by-step metrologlcal procedure
to describe qualitatively (visually and in terms of tendencies
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