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Abstract. Analysis of 20-year time-series of the vertically
averaged salinity and nutrient data in the Southern Adriatic
shows that the two parameters are subject to strong decadal
variability. In addition, it is documented that nutrient and
salinity variations are out of phase. Nutrients in the Ionian
and in the Adriatic vary in parallel except that generally the
nutrient content in the Adriatic is lower than in the Ionian,
a fact that has been attributed to primary producer consump-
tion following the winter convective mixing. As shown ear-
lier, North Ionian Gyre (NIG) changes its circulation sense
on a decadal scale due to the Bimodal Oscillating System,
i.e. the feedback mechanism between the Adriatic and Io-
nian. Cyclonic circulation causes a downwelling of the ni-
tracline along the borders of the NIG and a decrease in the
nutrient content of the water flowing into the Adriatic across
the Otranto Strait, and vice versa. In addition, the highly
oligotrophic central area of the Ionian shows annual blooms
only during cyclonic NIG circulation. Inversion of the sense
of the NIG results in the advection of Modified Atlantic Wa-
ter or of the Levantine/Eastern Mediterranean waters in the
Adriatic. Here, we show that the presence of allochtonous
organisms from Atlantic/Western Mediterranean and Eastern
Mediterranean/temperate zone in the Adriatic are concurrent
with the anticyclonic and cyclonic circulations of the NIG,
respectively. On the basis of the results presented, a revision
of the theory of Adriatic ingressions formulated in the early
1950s is proposed.
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1 Introduction

The Southern Adriatic (SA) is a circular basin, the deepest
part of the Adriatic Sea (∼1250 m deep) (Fig. 1). Its circu-
lation is characterized by a topographically trapped cyclonic
gyre. In its center, the Adriatic Dense Water (AdDW) forma-
tion takes place via open-ocean winter convection. Salty in-
termediate water from the Ionian Sea (IS) entering in the SA
through the Otranto Strait represents a preconditioning factor
for the AdDW formation process. The AdDW feeds the deep
thermohaline cell of the Eastern Mediterranean (EMed), be-
ing the main component of the Eastern Mediterranean Dense
Water (EMDW).

The dynamics of the Southern Adriatic (SA) and Ionian
Sea (IS) (Fig. 1) are intimately linked by means of the Bi-
modal Oscillating System (BiOS) mechanism that changes
the circulation of the North Ionian Gyre (NIG) from cyclonic
to anticyclonic and viceversa, on decadal time scale (Fig. 5a
and b). To summarize, it has been shown that, at least in
the last 20 years, variability in the upper-layer Ionian circu-
lation has been primarily driven by changes in the thermo-
haline processes associated with modifications in the proper-
ties of Adriatic Dense Water (AdDW) outflowing through the
Strait of Otranto (Gǎcić et al., 2010). When the NIG is anti-
cyclonic, the Modified Atlantic Water (MAW) coming from
the Sicily Channel is in part deviated toward the northern
Ionian and eventually enters the SA, decreasing the salinity
and the density of the AdDW. The change in the properties
of the outflowing AdDW causes a progressive weakening of
the anticyclonic upper-layer circulation in the IS; the circu-
lation finally reverses, modifying the pathways of the water
masses. In fact, the cyclonic NIG suppresses the northern
branch of the MAW flow and favours the rapid advection
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Fig. 1. Study area. Red line and red ellipse indicate the area from which the data used in the averaged time series were collected.

of salty Levantine and/or Cretan Intermediate Water (LIW;
CIW) along the eastern flank of the IS into the SA. This re-
sults in an increase in the salinity (and density) of AdDW out-
flowing into the IS that gradually impairs the cyclonic NIG,
eventually reversing it to an anticyclone.

Here, we will focus our attention on the possible impact
of the BiOS mechanism on the biogeochemistry (Sect. 3) of
the Adriatic-Ionian system, in terms of decadal variability
of the nutrient pool in the SA (Sect. 3.1), and of nutricline
dynamics in the Ionian Sea (Sect. 3.2). In Sect. 3.3 we re-
vised the theory of “Adriatic ingression” formulated for the
first time by Buljan (1953). The impacts of the BiOS mech-
anism on the Adriatic and Ionian ecosystems (Sect. 4) are
illustrated in Sects. 4.1 and 4.2, respectively, with more em-
phasis on the possible impact on the Adriatic biodiversity
(Sect. 4.2.1). The Summary and conclusions (Sect. 5), and
the List of acronyms (Table A1) used in the text conclude the
paper.

2 Materials and methods

Several datasets collected in the period 1987–2008 in the SA
and in the IS, within the framework of national and interna-
tional research projects, were used in this work (Table 1). For
the Ionian, the averaged nitrate time series refers to a number
of stations varying from year to year, located in the northeast-
ern region, as indicated by the red ellipse in Fig. 1. For the
SA, stations deeper than 800 m, located in the central area of
the basin, were selected along the Bari-Dubrovnik transect

(typically five stations per cruise), as indicated by the red line
in Fig. 1. Both in SA and in the IS, the nitrate average was
calculated in the layer 200–800 m, from a number of samples
per station varying from 4 to 10. Salinity data are the same
as used in Gǎcić et al. (2010). Nitracline depth (depth of [ni-
trate]= 3µM) distributions in the IS derived from nitrate data
collected during the oceanographic campaigns (Table 1) are
presented in Fig. 4.

Nitrate concentrations (here considered as the sum of ni-
trate and nitrite concentrations) were determined immedi-
ately after collection on board (when possible) or within
two weeks of storage at−20◦C in an onshore labora-
tory, by means of a hybrid autoanalyzer equipped with
a Chemlab continuous flow colorimeter, according to the
method reported by Grasshoff (1983) with slight modifi-
cations. Repeated comparisons among samples analyzed
on board and on shore never showed appreciable differ-
ences. The short-term precision was usually determined in
five replicates of seawater samples. The coefficient of vari-
ation (Cv(%)= 100× standard deviation/mean) was better
than 2%.

3 The BiOS mechanism and the biogeochemical
dynamics of the Adriatic-Ionian system

During the 1990s, the EMed experienced significant varia-
tions on the basin scale as a response to the change in the
deep thermohaline cell. The area of dense water forma-
tion switched from the SA to the Cretan Sea. This change,
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Table 1. Oceanographic campaigns originating the data used in the present work.

Year Oceanographic Campaign Vessel Area

1985 POEM-01-85 Bannock (I) IS
1986 POEM-03-86 Bannock (I) IS

1987 POEM-AS-87
Meteor (D) AS
Bannock (I), Meteor (D) IS

1990 AM-1 Bannock (I) AS
1991 POEM-BC-O91 Bannock (I), Aegaeo (GR) IS
1992 AM-2 Bannock (I) AS
1992 POEM-BC-A92 A. N. Strakhov (I) AS, IS
1993 AM-3 Urania (I) AS
1995 M31 Meteor (D) IS
1997–1999 MATER-1 – MATER-10 Urania (I) AS, IS (MATER-2)
1999 SINAPSI-3 Urania (I) AS, IS
2002 SINAPSI-4 Urania (I) AS, IS
2005 STRATA-05 Urania (I) AS
2006–2008 VECTOR-AM1 – VECTOR-AM7 Universitatis (I), Dallaporta (I) AS
2008 SESAME-IT1 Urania (I) IS

known as the Eastern Mediterranean Transient (EMT), pro-
duced modifications in water mass characteristics and cir-
culation in the entire EMed (Roether et al., 1996; Klein et
al., 1999). Klein et al. (1999) compared the new transient
state of the EMed with the situation registered in 1987. Con-
sidering the outflow of Cretan Sea Outflow Water (CSOW)
from the Aegean at a rate of 1.0 Sv, major changes occurred
abruptly in the deep layers but other significant modifications
involved almost the entire water column. In particular, Klein
et al. (1999) concluded that the changes in the vertical distri-
bution of water masses, a consequence of the massive CSOW
outflow, were associated with a noticeable upward nutrient
transport due to a rise in the nutricline, more pronounced
(about 150 m) in the eastern IS.

In 1997, the NIG turned from anticyclonic to cyclonic
(Larnicol et al., 2002; Manca et al., 2002). This reversal was
also ascribed by Borzelli et al. (2009) to the massive inflow
of CSOW associated with the EMT. Subsequently, Gačić et
al. (2010) generalized the concept, showing that the NIG in-
versions are due to internal processes caused by the inter-
actions of the Ionian upper-layer circulation and the outflow
of the AdDW. These conclusions were supported by the fact
that decadal variations in the vertically averaged salinity and
density in the SA are coherent with changes in the sea level
height and the surface geostrophic flow in the northern Io-
nian. The BiOS mechanism formulated by the authors im-
plies that the NIG oscillates between the cyclonic and anti-
cyclonic modes on a decadal time scale.

3.1 The decadal variability in the nutrient pools in the
Southern Adriatic

Reversals of the NIG have an important impact on the water
masses that enter the Adriatic via the Otranto Strait. There-
fore, this area of the SA should be an appropriate “sensor”
for studying the effect of advection of different water masses
associated with diverse upper-layer circulation patterns in the
IS (Gǎcić et al., 2010). Together with the thermohaline prop-
erties, as already reported by Gačić et al. (2010), a biogeo-
chemical time-series was collected in the SA from 1987. In
particular, the nitrate + nitrite concentrations averaged in the
layer 200–800 m in the center of the SA (NOSA

3 hereafter)
was chosen as a synthetic “tracer” for the biogeochemical
dynamics in the sub-basin. Here, the winter vertical mix-
ing takes place and thus the averaged biogeochemical prop-
erties represent an integrated response to the advection and
to the biological pump consumption (Civitarese and Gačić,
2001). Figure 2 shows the complete NOSA

3 time-series, to-
gether with a similar time-series for nitrate in the north east-
ern Ionian (NOIS

3 hereafter). The time-series presented here
are a continuation of those already reported in Civitarese and
Gǎcić (2001).

In the period 1988–1998 NOSA
3 almost doubled, passing

from 3.5 to about 6.0 µmoles dm−3 (µM). Then, from 1998
until 2005, nitrate concentration decreased, reaching a mini-
mum value of 2.4 µM. It is interesting to note that most of the
decrease occurred in less than one year, from 1998 to 1999.
From 2005 to 2008, NOSA

3 increased again to about 4.3 µM.

The NOIS
3 (Fig. 2) shows similar variability as NOSA

3 ,
with maximum and minimun occurring in the same periods.
This is expected as the north-eastern Ionian is considered
the source area for the water advected into the SA. During
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Fig. 2. Time series of salinity in the Southern Adriatic and nitrate in the Southern Adriatic and in the northeastern Ionian averaged over the
depth of the 200–800 m layer. For clarity, data are fitted by polynomial curves.

periods of strong winter convection, as before 1988 and after
1998, the relative nutrient impoverishment of the SA in com-
parison with the IS was due to the vertical mixing, which
diluted the nutrients in a larger volume of water including
the upper layer, making them available for consumption by
autotrophic organisms (Civitarese and Gačić, 2001).

The increase in NOSA
3 in Fig. 2 from 1988 to 1998 was

ascribed by Civitarese and Gačić (2001) to the impact of the
EMT on the nitrate pool in the Ionian (NOIS3 ). The CSOW,
intruding into the deepest layer of the Ionian, uplifted the nu-
tricline and the nutrient maximum layer, allowing nutrient-
richer water to be advected over the sill of Otranto Strait
(∼800 m deep) into the SA. However, the authors were not
able to explain why the increase had already started in 1988,
well before the EMT occurrence.

3.2 Nutricline dynamics in the Ionian Sea

In order to understand what really happened in the IS in the
late 1980s and 1990s, which in turn determined what was ob-
served in the SA, we examined the horizontal distributions of
the nitracline depths, defined (as in Klein et al., 1999) as the
depth at which the nitrate concentration is 3 µM, obtained
from four oceanographic campaigns in 1987, 1991, 1995,
and 1999 (Fig. 3a–d). Note that, as nitrate can be consid-
ered representative of the nutrients in general, we will use
the terms nitracline and nutricline as synonyms.

As previously described (Malanotte-Rizzoli et al., 1997,
1999; Klein et al., 1999), in 1991 and in 1995 the Io-
nian basin was characterized by an anticyclonic circulation,
stronger and better organized in 1991 than in 1995. Note
that the coarser resolution in 1995 (Fig. 3c) does not allow a
detailed comparison between the mesoscale structures of the
two years, as for example the Pelops gyre, clearly evident in
1991 (Fig. 3b) in front of the Western Cretan Arc Straits but
absent in 1995, though clearly present in the SLA map (see

Fig. 2c in Gǎcić et al., 2010). The nutricline depths along
the eastern flank of the IS, i.e. along the border of the anticy-
clone, in both years were shallower by about 150 m or more
with respect to what was registered in 1987 (Fig. 3a), without
showing any significant difference between 1991 and 1995.

It should be noted that in 1987 the IS was already charac-
terized by an anticyclonic meander that occupied the western
portion of the Ionian, advecting the MAW into the interior
of the basin (Malanotte-Rizzoli et al., 1997). On the other
hand, the analysis by Marullo et al. (1997) of the winter time
series of sea surface temperature distributions, as quoted by
D’Ortenzio et al. (2003), support the hypothesis of the pres-
ence of a cyclonic circulation in the IS until 1989. This ap-
parent disagreement could derive from the fact that during
the second half of the 1980s the NIG was presumably re-
versing from cyclonic to anticyclonic and thus devoid of any
clear basin-scale circulation pattern, as shown by Gačić et
al. (2010) for the subsequent reversals in 1997 and 2006.

The spatial pattern of the horizontal distribution of the nu-
tricline depth is similar for 1991 and 1995. Klein (1999) in-
voked the impact of the CSOW in uplifting the nutricline in
1995, but this mechanism cannot be responsible for the 1991
distribution since at that time the CSOW was not present in
the area. Rather, the nutricline shoaling could be attributed
to the upwelling taking place along the boundary of the an-
ticyclonic NIG, both in 1991 and in 1995. On the other
hand, the nutricline distribution in 1999 (Fig. 3d) represents
a mirror image of those of 1991 and 1995. A deeper nutri-
cline was observed along the flanks of the IS due to a strong
cyclonic NIG and, consequently, along its perimeter down-
welling took place. At the same time, in the central portion
of the basin a shallower nutricline horizon was evident due to
the upwelling in the center of the cyclonic NIG. These facts
show that, rather than being the effect of the CSOW deep in-
trusion, the vertical distribution of the oceanographic proper-
ties and the displacement of the interfaces (as the nutricline)
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Fig. 3. Nutricline (depth of [nitrate]= 3µM) horizontal distributions in the Ionian Sea in(a) 1987,(b) 1991,(c) 1995 and(d) 1999. Depth in
meters.

are due to the dynamic adjustment related to the particular
circulation regime of the NIG. As shown in Fig. 3, the ver-
tical displacements of the nutricline implies equivalent mo-
tions of a larger portion of the water column, with the con-
sequent variation in the integrated quantity of NOIS

3 , which
results in the behaviour reported in Fig. 2.

3.3 The theory of “Adriatic ingression” needs a revision

In the early 1950s Buljan (1953) showed strong decadal vari-
ability in the salinity of the SA. Buljan called the high-
salinity events “Adriatic ingressions” and explained them in
terms of the intensifications of the EMed water inflow in the
Adriatic. In parallel he concluded, although with few nutrient
data, that these high-salinity events should coincide with the

nutrient enrichment and higher productivity periods. Subse-
quently, a number of papers have tried to document “Adri-
atic ingressions” and connect them with an increase in the
primary production. Although quite long and high quality
time-series of the primary production data exist in some ar-
eas along the eastern coast, we sustain that such a relation-
ship has not been shown clearly. For example, Marasović et
al. (1995), analyzing the 1965–1982 data series of salinity
and primary production at a middle Adriatic open-sea sta-
tion, found a statistically significant correlation coefficient
of 0.38. From a visual examination of Fig. 4 of that paper,
it seems that most of the positive correlation can be ascribed
to the period after 1980, when an increase in salinity was
concomitant with an increase in primary production. The
rest of the time-series does not show any relevant correlation
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Fig. 4. SeaWiFS 8-day average Chlorophyll-a concentration
time series for the area (41.5◦ N–42.0◦ N, 17.5◦ E–18.0◦ E) in the
SA (data produced by NASA athttp://reason.gsfc.nasa.gov/OPS/
Giovanni/ocean.swf8D.2.shtml#description). Red rectangles indi-
cate periods with intense biomass blooms.

whatsoever. In fact, as stated by the authors, the correlation
coefficient between the two parameters jumps to a value of
0.57 when considering only the period after 1975. Although
the authors claimed that the high positive correlation coeffi-
cient was an indication of the relationship between salinity
and primary production, this analysis cannot be considered
sufficiently robust.

In fact, our data from the last 20 years show that the high-
salinity events have been associated with low nitrate concen-
trations and thus any positive correlation between the pri-
mary production and salinity is very unlikely to exist. In
Fig. 2, the time-series of salinity averaged over the 200–
800 m layer in the SA is superimposed on the nitrate plots.
The salinity shows interannual and decadal variability on the
same time scales as nutrients, but the two curves are out of
phase. This can be explained in terms of two distinct as-
pects that are involved in the BiOS mechanism and related to
each other due to dynamics: (i) the vertical displacement of
the interfaces (as shown before), and (ii) the different water
masses advected into the Adriatic as related to the two cir-
culation regimes of the NIG. Concerning the first point, the
circulation regime of the NIG determines upwelling (when
anticyclonic) or downwelling (when cyclonic) of the nutri-
cline and of the nutrient maximum layer along its border. Up-
welling and downwelling determine the nutrient enrichment
and impoverishment, respectively, of the layer 200–800 m af-
fected by the northward advection over the sill of Otranto
into the Adriatic. The second point implies that the fresher
MAW is advected towards the Adriatic by the anticyclonic
NIG, whilst the cyclonic NIG prevents the direct intrusion
of MAW into the northern Ionian, favouring the rapid advec-
tion of saltier waters of Aegean/Levantine origin along the
eastern flank of the IS and over the sill of the Otranto Strait.
The combined effects of the BiOS mechanism are therefore

a concomitant decrease in salinity and increase in nutrients
in the SA with an anticyclonic NIG or vice versa with a cy-
clonic NIG.

One important consequence of the present work is thus a
revision of the theory of “Adriatic ingressions” as defined by
Buljan (1953) and then recalled in a series of papers over the
second half of the last century. As mentioned, decadal oc-
currences of salinity maxima in the Adriatic were explained
in terms of stronger inflow of Levantine waters. That the-
ory also suggests that higher salinity waters are at the same
time richer in nutrients as the EMed should be a source of
nutrients for the Adriatic. Following the BiOS mechanism,
however, as shown from our data, salinity and nutrient con-
tents are out of phase due to the dynamics governing the IS
circulation pattern. Therefore, the salinity variations in the
Adriatic are not primarily due to the variations in the inten-
sity of the inflow of the water through the Strait of Otranto
but they are associated with different water masses entering
the Adriatic. High-salinity events are thus a consequence of
the inflow of salty waters from the EMed brought by the cy-
clonic NIG circulation, and they are at the same time poorer
in nutrients due to the downwelling along the eastern flank
of the Ionian.

4 Impact of the BiOS mechanism on the Adriatic and
Ionian ecosystems

As far as the impact of the BiOS on the ecosystem is con-
cerned, two aspects are worth mentioning: the first is the pos-
sible impact on the autotrophic biomass and on the food web
due to the change in nutrient availability; the second aspect
is the alternate influence of waters of Atlantic or EMed ori-
gin, bringing different types of allochtonous organisms into
the Adriatic and Ionian Seas.

4.1 Impact on the Ionian Sea

In the past, the IS was considered remarkably oligotrophic
(Boldrin et al., 2002). Recently, on the basis of ten
years (1997–2007) of SeaWiFS satellite surface chloro-
phyll concentration observations, D’Ortenzio and Ribera
d’Alcalà (2009) have divided the biogeography of the
Mediterranean Sea into seven classes, assigning the class
“intermittent blooming” to the area of the NIG. We inter-
pret this quite unexpected classification as being due to the
particular period in which the statistical analysis was carried
out, i.e. when the NIG was cyclonic. In fact, phytoplankton
blooms already reported by D’Ortenzio et al. (2003) in 1998,
1999, and 2000 were the consequence of the nutrients up-
welled into the euphotic layer in the center of the cyclonic
NIG (Fig. 3d). Ten years before, when the NIG was anti-
cyclonic, according to the same authors no similar blooms
were observed. The authors reported that the northwestern
Ionian was the only area in the EMed showing a difference in
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Fig. 5. Summary of the main characteristics of the Adriatic-Ionian BiOS and its impact on the area.(a) cyclonic NIG;(b) anticyclonic NIG.
∗ For more detailed explanations, see main text (Sect. 4.2). For acronyms, see main text.

the pre-EMT and post-EMT patterns of biomass distribution.
Although the authors associated this change with the uplift
of the nutricline caused by the EMT, at the same time they
suggested that a series of concurrent factors such as dom-
ing and convection favoured the transport of nutrients to the
photic zone. We are now confident that the reversal of the
NIG from an anticyclone to a cyclone by means of the BiOS
mechanism created the dynamic conditions for an effective
upward transfer of nutrients.

The increased autotrophic biomass following the 1997 re-
versal of the NIG, here attributed to the BiOS mechanism,
also reflected in the abundance and composition of zooplank-
ton communities in the IS in 1999 as described by Mazzocchi
et al. (2003). The authors stressed the spatial differences oc-
curring in the distribution of trophic groups and species in
1999, in comparison with a more homogeneous distribution
observed in spring 1992. The “classic” type of food web
(phytoplankton – copepods – predators) in the northwestern
Ionian, in contrast with the more oligotrophic character of
the eastern Ionian (microbial links), was attributed (at least
in part) by the authors to the cyclonic circulation and the re-
lated upwelling of the nutricline in the northwestern area.

4.2 Impact on the Adriatic Sea

In the SA, the pycnocline and the steep nutricline are typ-
ically located between 50 and 100 m depth (Civitarese and
Gǎcić, 2001). These features are completely disrupted dur-
ing the winter convective mixing, down to variable depths
(down to∼1000 m), which injects nutrients into the euphotic
zone. Due to the steepness of the nutricline, even weak con-
vective mixing events are able to inject significant amounts
of nutrients into the euphotic layer. When the stratification
is re-established, relatively intense blooms occur (Gačić et
al., 2002; Civitarese et al., 2005). After that period, the
permanent stratification of the upper layer results in nutri-
ent depletion and the establishment of stable oligotrophic
conditions. Therefore, the new production of the SA is
limited to winter, and mainly determined by the open-sea
convection. The number of mixing-restratification events in
the period March–April has great importance in determining
the amount of new carbon produced (Civitarese and Gačić,
2001).

www.biogeosciences.net/7/3987/2010/ Biogeosciences, 7, 3987–3997, 2010
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In order to illustrate the role of the winter convective mix-
ing in the biomass development, we report the SeaWiFS 8-
day average Chlorophyll-a concentration time series (Fig. 4)
for the area (41.5◦ N–42.0◦ N, 17.5◦ E–18.0◦ E) in the SA
(data produced by NASA athttp://reason.gsfc.nasa.gov/OPS/
Giovanni/ocean.swf8D.2.shtml#description). The biomass
increase/accumulation in late winter/early spring is particu-
larly evident in years 2005, 2006, and 2007 (indicated with
red rectangles). This feature is typical for the convective
area, being absent, for example, in the Central Adriatic (not
shown), where the winter convection does not occur. Inter-
estingly, 2005, 2006 and 2007 were also the years with max-
imum salinity (and nutrients minimum), as shown in Fig. 2.
Higher salinity of the upper layer results in the lower buoy-
ancy. Therefore, this suggests that the upper layer buoyancy,
driven by the BiOS, is the preconditioning factor for setting
the amount of primary production in the SA by determining
the extent of the winter vertical mixing. The nutrient content
variations, though being very strong play a secondary role.

Additionally, the picture is complicated by the fact that
also the air-sea heat fluxes play an important role in the con-
vection in the SA, as illustrated by Gačić et al. (2002). For
example, the year 1999 is also characterized by a strong late
winter–early spring biomass maximum. It was due to re-
peated intense mixing/restratification events associated with
distinct and significant heat loss episodes at the end of Jan-
uary (Santoleri et al., 2003), although the salinity in the basin
was not particularly high (Fig. 2) and the buoyancy was
rather high.

To conclude, in the SA the spring primary production, be-
ing driven by the convective mixing, seems to be sensitive to
the salinity (i.e. the buoyancy content in the water column),
even though the heat transfer often plays a determinant role.
Thus we cannot categorically state that primary production
“is phased with salinity”, and on the other hand any relation-
ships with the nutrient amount in the basin can be ruled out.
This makes the SA productivity particularly sensitive to the
change of the meteorological and (on a larger time scale) the
climatic conditions in the area on one hand, and on the buoy-
ancy due to advection of different water masses, as dictated
by BiOS on the other.

The winter convection results in a decrease in the nutrient
pool in the SA with respect to the IS. On the other hand,
when the convection is reduced or absent, as in the period
1993–1997, the two nutrient pools tend to be similar (Fig. 2)
as the prevailing signal is advection from the south.

The thermohaline and biogeochemical properties of the
water layer involved in the northward advection over the
Palagruza Sill (170 m), not shown here, follow the same be-
haviour as the 200–800 m layer in the SA (Fig. 2). This
could have some influence on the productivity variations in
the Central Adriatic, even though the SeaWiFS Chlorophyll-
a concentration time series does not show any significant in-
terannual/decadal variability. However, as again our results
show that nutrients and salinity are out of phase for the layer

0–170 m as well, a positive correlation between the salinity
and primary production should be ruled out.

4.2.1 Possible impact of the BiOS mechanism on the
Adriatic biodiversity

A number of historical observations suggest the possible im-
pact of the change in the Ionian circulation on the abundance
and species composition of marine organisms in the eastern
part of the Adriatic Sea, i.e. the area characterized mostly by
the northward flux of water of Ionian origin.

During the period 1961–2005, in several areas of the east-
ern Adriatic, changes in phyto- and zooplankton abundance
and community structure (Batistić et al., 2007; Conversi et
al., 2009; Degobbis et al., 1995; Kamburska and Fonda-
Umani, 2009; Křsinić and Grbec, 2006; Niňcevíc Gladan
et al., 2010), as well as in the quantitative and qualitative
composition of the Adriatic ichthyofauna (Dulčić and Gr-
bec, 2000; Lipej and Dulčić, 2004), have been documented
and ascribed to natural and man-induced processes. Varia-
tions have been observed in biomass (Mozetić et al., 2010;
Kamburska and Fonda Umani, 2009), in primary production
(Grbec et al., 2009), in taxonomic composition (Ninčevíc
Gladan et al., 2010; Conversi et al., 2009), in life cycles
(Kamburska and Fonda Umani, 2009) and in ecosystem
functioning (́Solić et al., 2009). The numbers of thermophilic
species have increased; several species, previously scarce or
rare, have become more abundant, while others have been
reported for the first time. On the other hand, there are also
some examples of the disappearance or increasing scarcity of
some species (Batistić et al., 2007; Conversi et al., 2009).

It is well known that the biodiversity of the Mediterranean
is continuously enriched by species of Indo-Pacific and Red
Sea origin (Lipej et al., 2008). The process, known as
Lessepsian migration, also affects the Adriatic Sea, includ-
ing its northernmost portion.

These observations can be related to oceanographic
changes in the Adriatic Sea (Dulčić and Grbec, 2000), to
meridionalisation, i.e. temperature increase which favours
spreading of species from southern to northern areas (Lipej
and Duľcić, 2004), to bioinvasion due to accidental introduc-
tion of alien species (Lipej et al., 2009) and to circulation
changes (Batistić et al., 2007; Conversi et al., 2009; Grbec et
al., 2009; Křsinić and Grbec, 2006).

Changes in the organism abundance and in the biodiversity
patterns are related to, and could perhaps be partly associated
with, the circulation changes in the EMed during the last 20
years and the modification of the water masses entering the
SA, as reported by Batistić et al. (2007).

More specifically, here we show that, according to their
general distribution, their abundance and to the timing of
their first appearance, some organisms in the Adriatic could
be indicators of the inflow of WMed/Atlantic or EMed
waters. In Table 2, a summary of the most significant records
taken from the literature are reported.
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Table 2. Biological records and changes in NIG circulation.

Date Organism (type) NIG circulation Remarks

1982 Schedophilus
medusophagus (fish)

? Present in the WMed. Reported in the
central Adriatic (Onofri, 1986).

end of 1980’s Copepod community
(mesozooplankton)

reversal from
cyclonic to anticyclonic

Changes of the entire copepod
community in the Gulf of Trieste
(Conversi et al., 2009)

1993 Desmopterus
papilio (gastropode)

anticyclonic Common in the Atlantic and
found in the open South Adriatic,
off Dubrovnik (Batistíc et al., 2004)

1993 Pelagobia longicirrata
(polychete)

anticyclonic Common in the tropical Atlantic and
found in the open South Adriatic
(Batistíc et al., 2004)

1995 Muggiaea atlantica
(hydrozoan)

anticyclonic Typical of the WMed. It was reported
for the first time in 1995 in the coastal
southeastern (Gamulin and Krsinic,
2000), and central Adriatic (Batistić,
2007), then invaded the North Adriatic
(Kršinić and Njire, 2001)

end of 1990’s Total copepod,
in particular
Paracalanus parvus
(mesozooplankton)

reversal from
anticyclonic to cyclonic

Changes in the abundance of some
species (Conversi et al., 2009)

2002 Siganus rivulatus (fish) cyclonic Lessepsian migrator, recorded in the
South Adriatic
(Dulčić and Pallaoro, 2004)

2006 Fistularia
commersonni (fish)

cyclonic Lessepsian migrator, caught off the
coastal waters in South Adriatic
(Dulčić et al., 2007)

2006 Thysanoteuthis rhombus
(cephalopode)

cyclonic Considered a “slow swimmer” (Marčić
et al., 2008), it was introduced in
the North Adriatic probably from the
Levantine basin

2007 Therapon teraps (fish) cyclonic Lessepsian migrator. Captured off
Piran, Slovenia (Lipej et al., 2008)

In general, from the records presented in Table 2, it fol-
lows that the presence of Atlantic and WMed species in the
Adriatic is concomitant with the anticyclonic NIG and thus
with advection of MAW into the Adriatic. On the other hand,
records of Lessepsian organisms originating from tropical
and/or temperate areas coincide with the cyclonic NIG that
advects, as previously shown, EMed waters into the Adriatic,
blocking the MAW intrusion.

Both advection and modification in water properties may
contribute to northward expansion in species distribution.
This could be the case forMuggiaea atlantica, a caly-
cophores (Hydrozoa) recorded for the first time in the SA
in winter 1995 (Gamulin and Kršinić, 2000). In July 1997,
it developed successfully in the Northern Adriatic, attaining

exceptionally high density, and causing a change in the struc-
ture, distribution and density of population of nauplii, cope-
podid stages and adult small copepods (Kršinić and Njire,
2001).

Changes in the entire copepod community that occurred
in the Gulf of Trieste at the end of the 1980s and early
1990s can be associated with the change of NIG circulation
in 1987 (Conversi et al., 2009). The same authors related
other changes in the abundance of some species in the late
1990s to the early 2000s to the reversal of the NIG circula-
tion in 1997.
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Table A1. List of acronyms.

AdDW: Adriatic Dense Water
BiOS: Bimodal Oscillating System
CIW: Cretan Intermediate Water
CSOW: Cretan Sea Outflow Water
EMDW: Eastern Mediterranean Dense Water
EMed: Eastern Mediterranean
EMT: Eastern Mediterranean Transient
IS: Ionian Sea
LIW: Levantine Intermediate Water
MAW: Modified Atlantic Water
NIG: North Ionian Gyre
SA: Southern Adriatic
WMed: Western Mediterranean

The results reported in Table 2 suffer from the uncertain-
ties typical of this kind of observation, and consequently they
have to be taken into consideration with a certain caution.
Nevertheless, they represent a key to the interpretation of the
decadal variability in biodiversity and its effect on the lo-
cal ecosystems reported in the literature during the last three
decades.

5 Summary and conclusions

Here, experimental evidence is presented that the nitrate pool
in the Southern Adriatic varied in the range 2–6 µM on a
decadal scale. This decadal variability is associated, through
the BiOS mechanism, with the NIG circulation and the re-
lated vertical displacement of the nutricline in the Ionian Sea.

Due to the concomitant effects of the reversal of the NIG
circulation and the consequent up- or downwelling at its bor-
ders, the salinity and the nutrient variations are out of phase.
Consequently, a revision of the “Adriatic ingression” theory
is proposed.

The reversal of the NIG in 1997 from anticyclone to cy-
clone, and the related shoaling of the nutricline at the center
of it, driven by the BiOS mechanism, is presumably the main
cause of the biomass increase in the Ionian Sea at the end of
1990s and early 2000s.

The advection of different water masses due to the BiOS
mechanism results in the presence of allochtonous organisms
in the Adriatic of either Atlantic/WMed or Levantine/tropical
origin. The variation in biodiversity can have profound con-
sequences on the functioning of the local ecosystem.

To conclude, we would like to cite a sentence from Bul-
jan in his fundamental paper “Fluctuation of salinity in the
Adriatic” (1953): “If we want to have a thorough knowledge
of the zoogeographic distribution of single organisms in the
Adriatic, or if we want to make a general study of the biol-
ogy of that sea, it will not be out of place to know when, in
which years, were the catches and researches carried out, as
it seems that the ingressions leave a marked impression on
both the quantitative and qualitative composition of popula-

tions”. Although referring to a mechanism here revised, i.e.
the “Adriatic ingression”, Buljan’s words still hold their va-
lidity after more that fifty years, and should be guidelines for
future research.
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J. M., Kluwer Academic Publishers, Dordrecht, Boston, London,
291–306, 2004.
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