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Abstract. Recent suggestions to slow down the increase in
atmospheric carbon dioxide have included ocean fertilization
by addition of the micronutrient iron to Southern Ocean sur-
face waters, where a number of natural and artificial iron
fertilization experiments have shown that low ambient iron
concentrations limit phytoplankton growth. Using a coupled
carbon-climate model with the marine biology’s response to
iron addition calibrated against data from natural iron fertil-
ization experiments, we examine biogeochemical side effects
of a hypothetical large-scale Southern Ocean Iron Fertiliza-
tion (OIF) that need to be considered when attempting to ac-
count for possible OIF-induced carbon offsets. In agreement
with earlier studies our model simulates an OIF-induced in-
crease in local air-sea CO2 fluxes by about 73 GtC over a
100-year period, which amounts to about 48% of the OIF-
induced increase in organic carbon export out of the fertil-
ized area. Offsetting CO2 return fluxes outside the region
and after stopping the fertilization at 1, 7, 10, 50, and 100
years are quantified for a typical accounting period of 100
years. For continuous Southern Ocean iron fertilization, the
CO2 return flux outside the fertilized area cancels about 20%
of the fertilization-induced CO2 air-sea flux within the fer-
tilized area on a 100-yr timescale. This “leakage” effect has
a radiative impact more than twice as large as the simulated
enhancement of marine N2O emissions. Other side effects
not yet discussed in terms of accounting schemes include
a decrease in Southern Ocean oxygen levels and a simulta-
neous shrinking of tropical suboxic areas, and accelerated
ocean acidification in the entire water column in the Southern
Ocean at the expense of reduced globally-averaged surface-
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water acidification. A prudent approach to account for the
OIF-induced carbon sequestration would account for global
air-sea CO2 fluxes rather than for local fluxes into the fertil-
ized area only. However, according to our model, this would
underestimate the potential for offsetting CO2 emissions by
about 20% on a 100 year accounting timescale. We suggest
that a fair accounting scheme applicable to both terrestrial
and marine carbon sequestration has to be based on emission
offsets rather than on changes in individual carbon pools.

1 Introduction

While reduction of CO2 emissions must be the ultimate strat-
egy to address the imminent global warming threat, car-
bon sequestration may help to offset emissions prior to so-
ciety implementing the necessary infrastructural changes to
a much lower CO2 emission world. Even for the unlikely
case of drastic emission cuts it is not certain that dangerous
climate change can be avoided. Estimated probability distri-
butions of essential parameters such as the climate sensitivity
to increasing atmospheric CO2 are not yet reliable enough to
exclude scenarios that lie well outside the envelopes of cur-
rently projected climate changes.

Given the large uncertainties in current climate projec-
tions, we cannot rule out situations in which climate engi-
neering may emerge as a last resort for trying to avoid dan-
gerous climate change. Basically, climate engineering can
be classified into solar radiation management and CO2 se-
questration. Solar radiation management can generate fast
climate response (and may thereby seem appealing as emer-
gency procedure), but does not immediately address the
cause of the problem and could potentially allow regional
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regulation of its efficiency. Carbon sequestration, however,
is expected to take longer to have significant climate impacts,
but directly addresses the cause of the problem and, because
of the well-mixed state of the atmospheric CO2 pool, will be
of globally uniform intensity. In the interest of equity and the
common good of a reduction in atmospheric CO2 increase,
one might hence favor carbon sequestration over solar radia-
tion management, provided that such measures can at all be
agreed upon well ahead of events considered as dangerous
climate change. As the atmosphere does not distinguish be-
tween a reduction of CO2 emissions and CO2 sequestration,
it is in our view legitimate if not mandatory to explore the
possible benefits and risks of such options before potential
climate threats are imminent and “slow” climate engineer-
ing options drop out (Güssow et al., 2010). At this stage,
this holds in particular for modeling studies, which do not
pose any immediate risks to the environment, but can pro-
vide valuable insights into possible feedbacks in the Earth
system.

Basically, we can distinguish the terrestrial carbon sink
that may, for example, be enhanced by forestation, and the
oceanic sink that can probably be enhanced by iron fertiliza-
tion. While the terrestrial carbon sink has entered the Ky-
oto Protocol, the oceanic sink has not. Partitioning of car-
bon among the ocean and the atmosphere, with its current
ratio of about 60:1, is controlled by both the temperature-
dependent solubility of CO2 (the solubility pump) and the
photosynthetic conversion of dissolved inorganic carbon into
particulate organic carbon that can sink away from imme-
diate contact with the atmosphere (the biological pump).
Whereas the oceanic uptake of about 40% of the historical
anthropogenic CO2 emissions is thought to have occurred
predominantly via the solubility pump (Sabine et al., 2004),
proposed oceanic carbon-sequestration schemes have con-
centrated mostly on possible enhancements of the biological
pump.

In addition to carbon and light, phytoplankton needs nu-
trients to grow. These include the macronutrients nitrate and
phosphate (for some species also silicate), which are usually
required in micromolar concentrations, and a number of mi-
cronutrients of which much lower concentrations are needed
(nanomolar in the case of iron). Because of the large quan-
tities of fertilizer required (typically, one gram ammonia is
needed to fix five grams of carbon), fertilization by adding
allochthonous macronutrients is not usually considered fea-
sible at large scales.

Fertilization may be more practicable for micronutrients,
which are required in quantities several orders of magnitude
smaller than those of macronutrients. Successful fertilization
with micronutrients, the most prominent one being iron, re-
quires that unused macronutrients are present in the light-lit
surface waters. This is the case in so-called High Nutrient
Low Chlorophyll (HNLC) areas of the ocean (Martin and
Fitzwater, 1988).

A number of in situ iron fertilization experiments have
demonstrated enhanced biological production upon the ad-
dition of iron in all major HNLC areas, i.e., the Southern
Ocean, the equatorial Pacific, and the subpolar North Pacific
(de Baar et al., 2005; Boyd et al., 2007). Despite the ob-
served drawdown of surfacepCO2 upon iron fertilization,
the short (few weeks) duration of these experiments did only
in few cases allow the direct observation of enhanced ex-
port from the surface layer (Bishop et al., 2004; Boyd et al.,
2005). However, continuous natural iron fertilization at the
Kerguelen Plateau and Crozet Islands in the Southern Ocean
show that export fluxes there are two to three times larger
than in the adjacent unfertilized regions (Blain et al., 2007;
Pollard et al., 2009). Modeling studies using ocean-only
models suggest that iron fertilization has a limited impact on
net CO2 air-sea fluxes when applied in the equatorial Pacific
(Sarmiento and Orr, 1991; Gnanadesikan et al., 2003), but
may lead to a drawdown of atmospheric CO2 by some 33 to
75 µatm when carried out at large scale over the Southern
Ocean (Aumont and Bopp, 2006).

We here extend earlier ocean-only model studies to an
Earth System model that contains fully interactive oceanic,
atmospheric, and terrestrial carbon pools as well as oxygen
and nitrous oxide as prognostic variables. The aim of this
study is to assess the quality of biogeochemical side effects
and their relevance for potential future accounting schemes.
These will be needed should iron fertilization ever be deemed
suitable for consideration in a Post-Kyoto climate agreement.
Following the current political decision to restrict any ac-
counting to a 100 year time scale (UNFCCC, 1997), we also
focus on this time scale in this study. We nevertheless find
it mandatory that longer term impacts are investigated and
carefully assessed before starting any large-scale Ocean Iron
Fertilization (OIF).

The paper is organized as follows: After a brief description
of the numerical carbon-climate model and our pragmatic pa-
rameterization of iron fertilization in Sect. 2, we investigate
local and remote biogeochemical impacts of a hypothetical
large-scale Southern-Ocean iron fertilization in Sect. 3. Ac-
counting aspects are discussed in Sect. 4 before the paper
ends with a concluding section. The implications for differ-
ent assignment options for carbon credits are discussed in a
separate study (Rickels et al., 2010).

2 Model experiments

The model used is the University of Victoria (UVic) Earth
System Climate Model (Weaver et al., 2001) in the configura-
tion described bySchmittner et al.(2008). The oceanic com-
ponent is a fully three-dimensional primitive-equation model
with nineteen levels in the vertical ranging from 50 m thick-
ness near the surface to 500 m in the deep ocean. It contains
a simple marine ecosystem model with the two major nu-
trients nitrate and phosphate and two phytoplankton classes,
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nitrogen fixers and other phytoplankton, with the former be-
ing limited only by phosphate. Organic matter is produced,
processed, and remineralized according to a fixed elemen-
tal stoichiometry of C:N:P=112:16:1. Detritus sinks with a
sinking velocity increasing linearly with depth from 7 m/day
at the surface to 40 m/day at 1000 m depth and constant be-
low. The production of calcium carbonate is assumed pro-
portional to the production of nondiazotrophic detritus and
its instantaneous export and dissolution is parameterized by
an e-folding depth of 3500 m. The ocean component is cou-
pled to a single-level energy-moisture balance model of the
atmosphere and a dynamic-thermodynamic sea ice compo-
nent. The terrestrial vegetation and carbon cycle compo-
nent is based on the Hadley Centre’s TRIFFID model (Cox
et al., 2000). All model components use a common hor-
izontal resolution of 1.8◦ latitude×3.6◦ longitude. After a
spin up of more than 10 000 years under pre-industrial at-
mospheric and astronomical boundary conditions, the model
is run under historical conditions from year 1765 to 2000
using fossil-fuel and land-use carbon emissions as well as
solar, volcanic and anthropogenic aerosol forcings. From
year 2000 to 2100, the model is forced by CO2 emissions
following the SRES A2 non-intervention scenario that as-
sumes high population growth and moderate and uneven eco-
nomic growth, leading to an increase from today’s emissions
of about 8 GtC/yr to about 29 GtC/yr in the year 2100. After
2100, annual emissions are assumed to decline by 1.45 GtC
per year and would reach zero at year 2300.

Because of the difficulties inherent in explicitly model-
ing the complex iron chemistry and its interaction with the
marine biology, marine biogeochemical models have to rely
on empirical parameterizations of the relevant iron effects.
In one of the most complex iron models developed so far
(Weber et al., 2007), we had attempted to model the upper
ocean iron cycle at the Bermuda Atlantic Time-series Study
site by resolving several processes such as colloidal aggrega-
tion and scavenging, organic complexation by ligands, and
photochemical reactions. It turned out that such a complex
model could not be constrained well enough to become suffi-
ciently robust for extrapolation to other regions of the ocean.
In our current application of a global model, we therefore re-
sort to a pragmatic modeling approach and include the effect
of iron on phytoplankton growth rates only implicitly. Fo-
cusing on long-term effects of a hypothetical large-scale iron
fertilization scheme, our parameterization of large-scale iron
fertilization was accordingly calibrated against the changes
in export production observed for the persistent natural iron
fertilization at the Kerguelen Plateau and Crozet Islands in
the Southern Ocean (Blain et al., 2007; Pollard et al., 2009).

Although the pragmatic model does not include an explicit
parameterization of the iron cycle, it could nevertheless be
tuned to achieve a reasonable fit to observed biogeochem-
ical tracer distributions, in particular by using a low phyto-
plankton growth rate that allows for the persistence of HNLC
areas (Schmittner et al., 2008; Oschlies et al., 2008). The

Fig. 1. Ratio of the particulate carbon export acrossz=125 m simu-
lated by the fertilization experiment in year 2011 (first year of fer-
tilization) and the control experiment in the same year.

effect of ocean iron fertilization is simulated by doubling
the phytoplankton maximum growth rate from 0.13 day−1

to 0.26 day−1 (at 0◦C) over the fertilized area and during
the fertilization period. Increasing the maximum growth rate
mimics the effect of iron in relaxing light limitation (Sunda
and Huntsman, 1997), and the factor-2 enhancement results
in an increase in simulated carbon export acrossz=125 m by
a factor 2 to 3 with respect to an unfertilized control exper-
iment (Fig. 1). This is in good agreement with the impact
of natural iron fertilization near Kerguelen and Crozet Is-
lands, whereBlain et al.(2007) andPollard et al.(2009) es-
timated particulate carbon export fluxes two to three times
higher than in the adjacent unfertilized regions. Since we
cannot fully rule out that the natural iron fertilization is not
saturating and that artificial fertilization could be engineered
to have an even larger impact, we also performed sensitiv-
ity experiments with maximum phytoplankton growth rates
enhanced by factors of 3 and 5 and, in an attempt to simu-
late an upper bound of possible OIF impacts, to a hypotheti-
cal very high value of 10 day−1. None of these experiments
showed complete depletion of macronutrients in the fertil-
ized area (Appendix, Fig. A1). While the main text of the
paper considers only the conservative factor-2 enhancement
obtained from tuning the model against the natural iron fer-
tilization experiments, the results of the sensitivity studies
are presented briefly in the Appendix as hypothetical upper
limits of iron fertilization impacts.

There are at least two potential caveats of our approach
of increasing the phytoplankton maximum growth rate to
mimic the effects of iron fertilization: First, there may be
relevant physiological responses to iron addition other than
an increase in the maximum growth rate. Second, our ap-
proach does not allow keeping track of the added iron and
implicitly assumes that the added iron is not recycled and
therefore not available for secondary fertilization outside the
fertilized area. To address the first caveat, we note that the
physiological role of iron in the electron transport pathways
involved in photosynthesis suggests that phytoplankton cells
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replete in iron can utilize light more efficiently (Strzepek
and Harrison, 2004). Iron stress has been found to decrease
the chlorophyll-to-carbon ratio, presumably because of the
requirement for iron in chlorophyll synthesis (Sunda and
Huntsman, 1997). Iron seems also required for the reduction
of nitrate to ammonia (Raven, 1990; Sunda and Huntsman,
1997).

Our approach of simulating the effects of iron fertilization
by an increase in the maximum growth rate (i.e., light satu-
rated growth) can be regarded as an attempt to represent both
the need for iron in proteins that mediate photosynthetic elec-
tron transport and thereby determine the maximum yield of
electrons for photosynthesis when light is abundant, and also
the effect of iron on non-photosynthetic processes such as
nitrate reduction (Galbraith et al., 2010). As pointed out by
Galbraith et al.(2010), if applied to iron limitation in general,
our parameterization of iron effects on the maximum growth
rate makes light limitation less likely under severe iron stress.
To counteract this tendency, they suggested to make the ini-
tial slopeα and also the chlorophyll-to-carbon ratio increas-
ing functions with iron. Field data from the Southern Ocean,
however, show little relationship ofα with iron availability,
and iron addition experiments also reveal a dominant impact
on the maximum growth rate with relatively little changes
in α (Hopkinson et al., 2007). Sensitivity experiments we
performed with our model in whichα was varied by up to a
factor of 100 in the fertilized Southern Ocean region showed
very little effect, indicating a – for our model – relatively
abrupt switch from severe light limitation in winter to very
little light limitation in the high-latitude summers.

The second caveat of not keeping track of the added iron
depends on the lifetime of the added iron in bioavailable
form, which is still poorly known and requires further re-
search (Boyd and Ellwood, 2010). Differences between ob-
served iron and macronutrient profiles indicate iron-removal
timescales considerably faster than circulation timescales.
Moreover, hydrographic sections underneath the Saharan
dust plume (Measures et al., 2008) suggest that newly added
iron cannot substantially increase concentrations of dissolved
iron on circulation time scales. The issue of iron retention
timescales has recently been explored bySarmiento et al.
(2010) who performed an “iron added and removed” sim-
ulation and compared it against results of an explicit iron
chemistry model. According to their model, the retention
of iron in the model has very little effect on the fertilization-
induced carbon uptake per fertilization-induced export pro-
duction (although the fertilization-induced export produc-
tion per added iron was up to a factor 20 smaller in the
“iron added and removed” simulation). Having calibrated
our model against observational estimates of fertilization-
induced export production, we are confident that even a cur-
rently available explicit model of iron chemistry would not
significantly change our estimates of fertilization-induced
marine carbon uptake.

Our pragmatic approach of enhancing the maximum phy-
toplankton growth rate is intermediate between earlier stud-
ies that assumed a complete surface macronutrient depletion
(e.g.,Sarmiento and Orr, 1991; Gnanadesikan et al., 2003)
and the increase in growth rates from models with an explicit
representation of iron and a parameterization of its control
on phytoplankton growth (e.g.,Aumont and Bopp, 2006; Jin
et al., 2008). The more explicit parameterisation of (patchy)
iron fertilization in the Southern Ocean used byAumont and
Bopp(2006) revealed a similar increase in (local) export pro-
duction by a factor 2–4 (their Figure 5d). In the different
experiments performed for this study, fertilization is applied
for 1, 7, 10, 50, and 100 consecutive years, respectively. All
experiments start the fertilization in year 2011. For refer-
ence we note that due to a bug in an earlier code version
used for the unfertilized reference simulation in the Biogeo-
sciences Discussion version of this paper, some of the num-
bers in the tables and in the text have changed with respect to
the Discussion paper. This had no significant impact on sim-
ulated nutrient or oxygen fluxes or globally-averaged CO2
fluxes, but it affected the latitudinal partitioning of air-sea
CO2 fluxes. All figures and numbers presented in this paper
were computed with the corrected code version available at
http://climate.uvic.ca/model/2.8/.

3 Impacts

In this section we investigate the impacts of simulated South-
ern Ocean iron fertilization on various biogeochemical vari-
ables and fluxes. With consideration of the subsequent dis-
cussion of accounting aspects, we distinguish between local
effects in the fertilized region and global impacts that include
the remote effects outside the fertilized area.

3.1 Macronutrients

3.1.1 Local impacts

Simulated Southern Ocean surface nitrate concentrations of
the unfertilized control run agree well with observed val-
ues (Fig. 2a), except for the seasonally ice-covered re-
gion south of 65◦ S, where observations are biased towards
lower summer values. In the first fertilization year, simu-
lated surface macronutrients show the largest decrease by
3–4 mmol NO3 m−3 between 42◦ S and 65◦ S, and they de-
cline by another 3–4 mmol NO3 m−3 in subsequent years.
Macronutrient consumption by simulated OIF becomes
smaller as one moves south, where light levels get lower
for a longer time of the year. The maximum fertilization-
induced drawdown of 10 mmol m−3 is reached just north
of 50◦ N in the final year of the 100-year long continuous
fertilization. While simulated OIF enhances phytoplankton
growth predominantly during the summer months, the am-
plitude of the seasonal cycle in surface nitrate concentrations
increases under simulated OIF (Fig. 2b). The amplitude in
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(a)

(b)

Fig. 2. (a)Zonally averaged simulated annual-mean surface nutri-
ents in the control run (solid black) and in the World Ocean Atlas
(Conkright et al., 2002) (dashed black line). Colored lines refer to
model fields after 1 year of OIF (red), 7 years (green), 10 years
(blue), 50 years (cyan), and 100 years (magenta) of continuous OIF
south of 30◦ S. (b) Maximum (dashed) and minimum (solid) zon-
ally averaged nitrate concentrations during the annual cycle in year
2010 of the reference experiment (black) and in the 1st year (red),
10th year (blue), and 50th year (cyan) of the continuous OIF exper-
iment. Respective maximum and minimum values from the World
Ocean Atlas are depicted as downward and upward pointing trian-
gles, respectively. Units are mmol m−3.

the seasonal cycle of surface nitrate concentrations amounts
to about 3 mmol m−3 in the control run and also in the World
Ocean Atlas data between about 35◦S and 70◦S, and it in-
creases to about 7 mmol m−3 in year 10 of the OIF experi-
ment. South of about 45◦S, a substantial stock of unutilized
macronutrients is present all-year round even in the fertiliza-
tion run.

3.1.2 Remote impacts

With more nutrients trapped underneath the fertilized surface
area as a result of export and remineralization (Fig. 3a), less
nutrient are available outside this region. The signal of this
“nutrient robbing” (Royal Society, 2009) is exported out of
the Southern Ocean via the Subpolar Mode Waters (SPMW)
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Fig. 3. Zonally averaged change in(a) simulated annual-mean ni-
trate concentrations,(b) simulated annual-mean dissolved inorganic
carbon concentration, and(c) dissolved oxygen concentrations of
the 100-year OIF run minus control run in year 2110. Units are
mmol m−3. The red lines in(b) and (c) denote the zero nitrate-
change isoline of(a).

and the Antarctic Intermediate Water (AAIW), visible in
Fig. 3a as a tongue of reduced nitrate concentrations moving
north within the top 1200 m. Zonally averaged subsurface ni-
trate concentrations drop by about 0.5 mmol m−3 in the core
of this tongue at the equator by year 2110. This leads to
reduced nitrate supply to the tropical surface waters and re-
duced export production there (see below), eventually reduc-
ing nitrate concentrations at greater depth. Part of the OIF-
induced nitrate deficit even reaches the formation region of
North Atlantic Deep Water north of 60◦ N on the centennial
time scale considered here. A similar fertilization-induced
reduction in downstream nutrients and biological produc-
tion has been reported previously (Sarmiento and Orr, 1991;
Gnanadesikan et al., 2003).
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(a)

(b)

Fig. 4. (a)Simulated oxygen concentrations averaged over the fer-
tilized area (south of 30◦ S – dashed lines – and globally – solid
lines. (b) Simulated global-ocean suboxic volume, defined by oxy-
gen concentrations lower than 5 mmol m−3. Colored lines refer to
model fields after 1 year of OIF (red), 7 years (green), 10 years
(blue), 50 years (cyan), and 100 years (magenta) of continuous OIF
south of 30◦ S.

3.2 Oxygen

3.2.1 Local impacts

OIF-induced changes in simulated oxygen concentrations
closely mirror those of simulated nitrate concentrations
(Fig. 3). In the model, both tracers are related through a
constant molar O2:N ratio of 10.6 in oxic areas and away
from the surface layer where oxygen is exchanged with the
atmosphere (which explains why the zero1O2 isocontour in
Fig. 3c is at shallower depth than the zero1NO3 isocon-
tour in Fig. 3a). Zonally averaged oxygen concentrations
drop by as much as 60 mmol m−3 between about 300 and
500 m depth south of 60◦ S. Background oxygen levels in
these waters are about 300 mmol m−3 so that waters remain
well oxygenated. In the control run, mean oxygen concen-
trations south of 30◦ S drop by about 6% from 2010 to 2110
(black dashed curve in Fig. 4a) due to decreasing solubility
under global warming as well as a slight intensification of
export production in this area (see below). Continuous OIF

leads to another drop by about 9% by the year 2110. Sim-
ulated minimum oxygen concentrations south of 30◦ S de-
crease from 130 mmol m−3 in year 2010 to 119 mmol m−3

and 117 mmol m−3 in year 2110 for the control run and the
continuous OIF run, respectively. On the space scales re-
solved by our model, Southern Ocean waters remain well
oxygenated even under large-scale simulated OIF on centen-
nial time scales.

3.2.2 Remote impacts

Remineralization and associated oxygen consumption are
reduced and oxygen concentrations tend to increase rela-
tive to the control run outside the fertilized area (Fig. 3c).
The decline in globally averaged oxygen concentrations is
therefore smaller than the decline in Southern Ocean oxy-
gen concentrations (Fig. 4a) as already noted bySarmiento
and Orr (1991). OIF-induced increases in dissolved oxy-
gen are largest in the tropical oceans where they exceed
10 mmol m−3 in the zonal average. In consequence, the vol-
ume of suboxic waters (O2<5 mmol m−3), which our model
simulates relatively well (Oschlies et al., 2008), declines by
some 25% in the continuous OIF simulation by the year 2110
(Fig. 4b). Irrespective of the duration of the simulated iron
fertilization, the suboxic volume starts to decrease about
2 decades after the onset of OIF, once the OIF-influenced
mode waters reach the tropical oceans (Fig. 4b). There-
after, the suboxic volume stays lower than that simulated by
the control run for many decades, even when fertilization is
stopped already after one year.

3.3 Export production

3.3.1 Local impacts

The simulated export production, computed as particulate or-
ganic carbon export acrossz=125 m, increases from about
2.8 GtC/yr south of 30◦ S in year 2010 of the control run to
5.4 GtC/yr in the first year of the fertilization (dashed lines in
Fig. 5a). Fertilization-induced export production is largest in
the first year of the fertilization when previously unutilized
macronutrients can suddenly be taken up by the photosyn-
thetically enhanced marine biota. Consumption and subse-
quent export results in a net downward transport of macronu-
trients, reducing the amount of macronutrients available for
the marine biology particularly in the less light-limited north-
ern region of the fertilized area in subsequent years (see
above, Fig. 2). Under continuous OIF, simulated Southern
Ocean export production reaches a relatively stable value
of 4.3 GtC/yr within a few decades. The cumulative OIF-
induced local export production amounts to 154 GtC by the
year 2110 (Fig. 5b).

Simulated local export production falls below levels of the
control simulation in the years following a stop of simulated
iron fertilization. In the model, this abrupt decline is due
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(b)

(a)

Fig. 5. (a) Simulated annual export production acrossz=125 m
south of 30◦ S (dashed lines) and integrated over the global ocean
(solid lines). Units are GtC/yr.(b) Cumulative temporal integral of
the fertilization-induced change in export production south of 30◦ S
(dashed lines) and for the global ocean (solid lines). Units are GtC.
Black line in (a) is the control experiment without iron fertilization.
Note that simulated export production decreases from 6.8 GtC/yr in
2010 to 6.3 GtC/yr in 2100 in response to global warming. Coloured
lines refer to the different fertilization experiments, stopping fertil-
ization after 1 year (red), 7 years (green), 10 years (blue), 50 years
(cyan) and not at all within the first 100 years (magenta).

to the reduced availability of surface nutrients and the sud-
den decrease of maximum growth rates once OIF is stopped.
Within a few years, upwelling increases surface macronu-
trient concentrations well above the half-saturation con-
stant for nutrient uptake (0.7 mmol NO3 m−3), and South-
ern Ocean export production recovers to levels of the control
run (Fig. 5a). Thereafter, Southern Ocean export production
stays at pre-OIF levels even though surface nitrate concentra-
tions do not reach those of the control run until the end of the
100-year simulation period considered here. This difference
in recovery time scales is due to the fact that macronutrients
do not limit export production in the Southern Ocean.

3.3.2 Remote impacts

As a result of the OIF-induced trapping of nutrients below
the fertilized region, less nutrients are available in the rest of
the ocean. Eventually, this leads to reduced biological pro-
duction and organic matter export outside the fertilized area
(Sarmiento and Orr, 1991; Gnanadesikan et al., 2003), which
cancels some of the local increase in export production in the
fertilized area. By year 2110, cumulative global OIF-induced
export production amounts to 139 GtC, i.e. about 10% less
than the 154 GtC of cumulative OIF-induced export produc-
tion simulated in the fertilized region. That is, simulated
Southern Ocean iron fertilization leads to a reduction of ex-
port production outside the fertilized area. Integrated over
the unfertilized area, i.e. north of 30◦ S, export production
simulated for year 2110 is about 9% smaller in the OIF run
(3.1 GtC/yr) than in the unfertilized control run (3.4 GtC/yr).

Once simulated OIF is stopped, export production recov-
ers more slowly outside the fertilization region than inside.
This is related to the longer lasting impact of “nutrient rob-
bing” which is in the pipeline in the form of mode waters
advected north before reaching the surface layer only after
decades to centuries. Global new production and export pro-
duction therefore remain a few percent lower than those of
the control simulation for many decades after OIF has ended
(Fig. 5a).

3.4 Air-sea CO2 flux

3.4.1 Local impacts

The simulated OIF-induced air-sea flux of CO2 into the fer-
tilized area reaches 2 GtC/yr in the first year of fertilization,
then quickly drops off to half of this value in year 10, and
levels off at 0.4 GtC/yr after several decades (Fig. 6a). The
associated cumulative air-sea flux of CO2 into the fertilized
area amounts to 73 GtC (Fig. 6b), i.e., less than half of the
cumulative OIF-induced local export production of 154 GtC
(Fig. 5b). That fertilization-induced air-sea CO2 fluxes are
considerably smaller than the associated export production
has been shown previously (Gnanadesikan et al., 2003; Os-
chlies, 2009; Sarmiento et al., 2010) and can to a large ex-
tent be explained by shallow remineralization, subsequent
upwelling, and entrainment of the respired carbon back into
the surface mixed layer. The ratio of air-sea CO2 flux to ex-
port production has been termed “atmospheric uptake effi-
ciency” (Jin et al., 2008). There is model-based evidence for
higher uptake efficiencies when OIF is performed in surface
mixed layers shallower than the 50 m thickness of the top
box in our current model (Jin et al., 2008; Sarmiento et al.,
2010). It is therefore possible that our model underestimates
the fertilization-induced oceanic CO2 uptake. However, the
magnitude of this bias and its dependence on the way partic-
ulate matter export is described is as yet uncertain and has to
be investigated in the future.
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(a)

(b)

Fig. 6. (a)Simulated fertilization-induced annual air-sea CO2 flux
south of 30◦ S (dashed lines) and integrated over the global ocean
(solid lines). Units are GtC/yr.(b) Cumulative temporal integral
of the fertilization-induced change in air-sea flux of CO2 south of
30◦ S (dashed lines) and for the global ocean (solid lines). Units are
GtC. Coloured lines refer to the different fertilization experiments,
stopping fertilization after 1 year (red), 7 years (green), 10 years
(blue), 50 years (cyan) and not at all within the first 100 years (ma-
genta).

While the cumulative export production declines by only a
few percent after stopping fertilization, cumulative Southern
Ocean air-sea CO2 flux by year 2110 decreases by almost two
thirds (one third) once fertilization is stopped in the 1-, 7- and
10-year (50-year) fertilization experiments (Fig. 6b). Obvi-
ously, much of the CO2 initially sequestered in the Southern
Ocean is fluxed back to the atmosphere once OIF is stopped.
This outgassing from the fertilized area occurs at rates that,
for a brief period, may exceed 1 GtC/yr (Fig. 6a). Once ex-
port production becomes limited by iron again, nutrient lev-
els of the upwelled waters as well as associated concentra-
tions of dissolved inorganic carbon cannot be drawn down
anymore. In consequence, partial pressure of CO2 in the up-
welled surface waters increases and CO2 is fluxed back to
the atmosphere. Thus, only part of the CO2 sequestered by
temporary Southern Ocean OIF is sequestered on a 100-year
time horizon. The return flux of large parts of the initially se-
questered carbon to the atmosphere will have to be accounted
for many decades after the end of iron fertilization efforts.

3.4.2 Remote impacts

The cumulative OIF-induced global air-sea CO2 flux
amounts to 59 GtC by the year 2110 of the continuous OIF
experiment, which is some 19% less than the air-sea CO2 flux
integrated over the fertilized Southern Ocean. The global
OIF-induced oceanic CO2 uptake decreases from 2.1 GtC/yr
in the first fertilization year to 0.9 GtC/yr in year 10 and
0.4 GtC/yr after year 55 of the continuous fertilization ex-
periment. OIF induces a net back flux of CO2 from the
unfertilized ocean regions to the atmosphere, which reaches
maximum values of about 0.16 GtC/yr in year 70 and falls
off to 0.15 GtC/yr in year 100 of the continuous fertilization
run. This back flux is a consequence of the success of the
simulated OIF, i.e., of reduced atmosphericpCO2 which re-
duces the air-seapCO2 pressure gradient everywhere (Os-
chlies, 2009).

3.5 N2O emissions

3.5.1 Local impacts

Among the possible side effects of the intended carbon se-
questration by ocean iron fertilization is the enhanced emis-
sion of the greenhouse gas N2O from the ocean to the atmo-
sphere. Nitrous oxide has a global warming potential about
300 times as large as carbon dioxide (on a per-molecule basis
and for a 100-year time horizon;Ramaswamy et al., 2001)
and has been proposed to offset part of the radiative bene-
fit that may result from OIF-induced CO2 sequestration (Jin
and Gruber, 2003). The gas is produced in the ocean mainly
via two pathways. The first pathway is nitrification, which
describes the oxidation of remineralized ammonium to ni-
trate and where about 1 ammonium molecule in 1000 is es-
timated to be converted to N2O (Cohen and Gordon, 1979).
The second pathway is related to organic matter remineral-
ization at low oxygen concentrations where a combination
of nitrification and denitrification appears to result in N2O
yields more than an order of magnitude higher than for the
aerobic nitrification route. For both pathways, yields gen-
erally increase with decreasing oxygen concentrations, until
N2O is efficiently consumed at oxygen concentrations lower
than a very few µM (Bange et al., 2005).

There are still substantial uncertainties in our understand-
ing of the detailed controls on the N2O yields. Two differ-
ent parameterizations of N2O production as a function of
organic matter remineralization and oxygen concentrations
are employed here: For the parameterization bySunthar-
alingam et al.(2000), our unfertilized control run simulates
oceanic N2O emissions of about 3.5 TgN/yr, and it simulates
4.6 TgN/yr for the parameterization byNevison et al.(2003).
Both estimates are well within the 3.8±2.0 TgN/yr range of
the most recent IPCC report (Denman et al., 2007).

OIF-induced enhancements of carbon export and subse-
quent remineralization lead to enhanced production of N2O
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(a)

(b)

Fig. 7. Cumulative temporal integral of the fertilization-induced
sea-air flux of N2O using the parameterizations of(a) Sunthar-
alingam et al.(2000), and(b) Nevison et al.(2003) for oceanic N2O
production (see text). Dashed lines refer to fertilization-induced
N2O emissions in the fertilization region, solid lines refer to global
fertilization-induced emissions. Units are TgN. Colour code as in
Fig. 4.

and subsequently to enhanced oceanic emissions from the
fertilized area. For theSuntharalingam et al.(2000) param-
eterization, cumulative Southern Ocean OIF-induced N2O
emissions amount to some 26 TgN for 100 years of continu-
ous OIF. For theNevison et al.(2003) parameterization, the
figure is about twice as high and reaches 56 TgN (Fig. 7).
Because Southern Ocean oxygen concentrations remain well
above 100 mmol m−3, the low-oxygen pathway of N2O pro-
duction does not play any significant role in this region. In-
stead, local OIF-induced N2O production is directly linked to
enhanced nitrification and remineralization of exported or-
ganic matter in our model. Southern Ocean OIF-induced
N2O production therefore stops immediately once OIF is
stopped and carbon export and associated remineralization
drop back to the rates of the control run (horizontal dashed
lines in Fig. 7).

3.5.2 Remote impacts

During the first few decades, simulated global OIF-induced
N2O emissions are identical to the regional N2O emissions
from the fertilized area. It is only after a 2 to 3 decades that
global OIF-induced N2O emissions fall below those of the
fertilized region (Fig. 7). This is about the time when the
mode waters formed in the fertilization area reach the trop-
ical oxygen minimum zones and simulated suboxic regions
start to shrink (Fig. 4b). This leads to a reduction in N2O
production via the low-oxygen pathway. By year 2110, the
reduction in tropical N2O production almost cancels the in-
crease in Southern Ocean N2O production, and cumulative
global OIF-induced N2O do not increase further in the con-
tinuous OIF experiment, reaching 20 TgN (38 TgN) for the
Suntharalingam et al.(2000) (Nevison et al., 2003) param-
eterizations, respectively, i.e., 6 TgN (18 TgN) less than the
local emissions from the fertilized region.

Given the global warming potential of about 300 times that
of CO2, OIF-induced N2O emissions of 20 TgN (38 TgN)
would offset about 2.7 GtC (5.0 GtC) of the OIF-induced car-
bon sequestration on a 100-year timescale for theSunthar-
alingam et al.(2000) andNevison et al.(2003) parameteriza-
tions, respectively. This corresponds to an offset of 5% and
9% for the two estimates of global N2O emissions. These es-
timates are very similar to the 6% to 12% range obtained by
Law and Ling(2001) from measurements of elevated pycn-
ocline N2O concentrations during the Southern Ocean Iron
Enrichment Experiment SOIREE). Measurements during
the European Iron Fertilization Experiment (EIFEX), how-
ever, revealed no significant increase in N2O concentrations
in the fertilized water column (Walter et al., 2005).

While simulated OIF-induced Southern Ocean N2O emis-
sions almost instantaneously drop to zero when OIF is
stopped, reduced N2O production via the tropical low-
oxygen pathway continues for many decades. This follows
the decline in suboxic volumes long after OIF is stopped
(Fig. 4b), which in turn is caused by lower nutrient concen-
trations in the “mode water pipeline” downstream of the fer-
tilized area.

3.6 Methane emissions

Methane (CH4) is a greenhouse gas with a radiative forcing
strength and a global warming potential about 20 times that
of CO2 (on a per molecule basis and for a 100-year horizon;
Ramaswamy et al., 2001). Early estimates of oceanic CH4
emissions amounted to 10–20 Tg/yr (Bange et al., 1994).
These were used in the 1990 to 2007 IPCC reports, but have
been revised downward to 0.4± 0.2 Tg/yr (Bates et al., 1996)
and 0.6–1.2 Tg/yr more recently (Rhee et al., 2009).

Methane producing bacteria are thought to require strictly
anoxic conditions which, in the open ocean, only exists
in form of microhabitats associated with particulate or-
ganic material (Karl and Tilbrook, 1994). Recently, aerobic
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Fig. 8. Zonally averaged OIF-induced change in pH in year 2110 of
the continuous fertilization experiment.

degradation of an organic, phosphorus-containing compound
was identified as a significant mechanism for CH4 produc-
tion in phosphate-depleted surface waters (Karl et al., 2008).
As simulated Southern Ocean iron fertilization does not lead
to anoxic conditions or to a large-scale depletion of sur-
face macronutrients (Fig. 2), we assume that OIF-induced
changes in CH4 production are approximately proportional
to the production of organic particles that may host anoxic
microhabitats for the methane producing bacteria. With a
simulated OIF-induced enhancement of global export pro-
duction by some 15–20% (Fig. 5a), we can then estimate
a similar increase in oceanic CH4 emissions, i.e. less than
0.2 Tg/yr. Measurements of dissolved CH4 during the South-
ern Ocean Iron Enrichment Experiment (SOFeX) revealed
an even smaller increase by less than 1% (Wingenter et al.,
2004). With the global warming potential of methane being
about 20 times as high as that of CO2, even a 20% enhance-
ment of CH4 emissions could offset a carbon sequestration
of some 4 TgC/yr, i.e. less than 1% of the OIF-induced car-
bon sequestration simulated by our model. Given this small
estimated impact and the difficulties to parameterize the in-
volved anoxic microhabitats, we do not attempt to simulate a
more detailed picture of OIF-enhanced marine methane pro-
duction and in the following disregard potential OIF-induced
changes in CH4 emissions.

3.7 Ocean acidification

To the extent that OIF sequesters additional CO2 in the
ocean, it will also amplify ocean acidification (Denman,
2008). This is most pronounced in areas where the se-
questered CO2 is stored. In our model, OIF-induced acid-
ification is largest in the upper few hundred meters of the
Southern Ocean, where most of the exported carbon rem-
ineralizes and thereby releases CO2. In this depth range, pH
drops by another 0.15 units compared to the control run in
year 2110 (Fig. 8) and the saturation state for calcium car-
bonate,�CaCO3 drops by up to 0.4 units. The change in pH
generally follows the OIF-induced change in DIC (Fig. 3b),
although changes in nutrient concentrations (and, to a minor

Fig. 9. Simulated evolution of OIF-induced changes in surface pH
(averaged over 0–125 m depth). Dashed lines refer to pH changes
averaged over the fertilized area south of 30◦ S, solid lines refer to
the globally averaged pH changes.

Fig. 10.Temporal evolution of the simulated volume of surface (0–
100 m) waters with arragonate saturation state�Ar>1. The black
line refers to the unfertilized control experiments, the OIF experi-
ments are referred to by the same color code as in Fig. 4.

extent, simulated changes in calcium carbonate production
and dissolution) have some impact on alkalinity and hence
pH. Simulated surface pH decreases in the fertilized region
by 0.006 pH units (Fig. 9), whereas it increases almost ev-
erywhere outside the fertilized area. The OIF-induced glob-
ally averaged increase in surface pH by some 0.007 pH units
slightly counteracts the much larger pH decrease by 0.34 pH
units simulated by the unfertilized control experiment under
the SRES A2 scenario by year 2110.

Acidification induced by Southern Ocean large-scale iron
fertilization is thus expected to be a specific problem in
Southern Ocean near-surface waters, which are projected to
become persistently undersaturated with respect to aragonite
by mid-century already without OIF (Orr et al., 2005). This
development is also simulated by our model, which reveals
that by 2110 about 20% of the ocean volume is undersatu-
rated with respect to aragonite. Simulated Southern Ocean
OIF leads to an acceleration of this process by a few decades
(Fig. 10). However, once the Southern Ocean is undersatu-
rated, the global volume of undersaturated waters increases
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at a slower rate in the continuous OIF experiment that sim-
ulates slightly higher saturation states than the control run
outside the fertilized region.

3.8 Other impacts

As OIF is an intended manipulation of marine ecosystems,
it will impact ecology at least locally. Species composition
is likely to change and may affect the production or con-
sumption of any single biotically processed chemical com-
pound. This includes the possible stimulation of the produc-
tion of dimethylsulfide (DMS), which may reinforce possible
climate-mitigation effects of OIF by generating more cloud
condensation nuclei and eventually increasing the Earth’s
albedo (Law, 2008). Other possible effects are changes in the
occurrence of toxic algal blooms (Trick et al., 2010), which
may also be felt up higher up in the food chain. Ocean acid-
ification may affect the availability of iron to phytoplank-
ton (Shi et al., 2010) and thereby influence the mitigation
potential of iron fertilization. None of these effects is in-
cluded in our model. While the neglect of changes in DMS
production could be considered as conservative accounting
approach, the neglect of ecological consequences might be
more critical. More information about the impact of OIF-
induced ecological changes is needed (Buesseler et al., 2008)
and can possibly be obtained from the ongoing natural iron
fertilization such as associated with the Kerguelen Plateau
and Crozet Islands.

4 Discussion

Given the expected non-local and time-lagged impacts of
simulated Southern Ocean iron fertilization on the air-sea
fluxes of CO2 and other greenhouse gases, verification and
accounting of OIF-induced carbon sequestration would be a
particular challenge (Cullen and Boyd, 2008). Non-local and
time-lagged impacts are also an issue for terrestrial carbon
sequestration, e.g. by forestation, where these difficulties are
generally formulated in terms of leakage and permanence.
The two terms apply to compensation back fluxes of CO2
and other greenhouse gases outside regional and temporal
boundaries of the sequestration project. In the moving ocean,
a separation into spatial and temporal side effects may be less
meaningful as increasing time lags are often associated with
increasing space lags. Still, some separation of OIF side ef-
fects into regional and temporal lags may be illustrative and
will be applied here.

For the large-scale Southern Ocean iron fertilization in-
vestigated here, there is a compensating back flux from the
ocean to the atmosphere outside the fertilization region (Ta-
ble 1). This back flux is caused primarily by the reduction
of the atmospheric CO2, which makes the air-sea gradient of
CO2 partial pressures more negative in the unfertilized areas
and thus favors outgassing of CO2. The more successful OIF

is in sequestering atmospheric CO2, the larger will this effect
be. We note, that such a back flux from the ocean to the at-
mosphere will also occur when CO2 is sequestered on land,
e.g., by forestation.

In the case of our simulation of continuous large-scale
Southern Ocean iron fertilization, this back flux cancels
about 19% of the OIF-induced air-sea CO2 flux in the fer-
tilized region. Because outgassing outside the fertilized area
continues for many decades after the end of simulated OIF
(Fig. 6), this cancelation is higher in the runs with shorter
OIF and reaches 38% in the run where OIF is terminated af-
ter 7 years. Even higher compensatory back fluxes of more
than 40% were found for simulated short-term iron fertiliza-
tion in the tropical Pacific (Gnanadesikan et al., 2003).

Other leakage effects are due to OIF-induced emissions of
greenhouse gases other than CO2. Our model results predict
that OIF-induced enhancement of N2O emissions, which oc-
cur primarily over the fertilized area, will offset between 5%
and 9% of the sequestered CO2. This is in close agreement
with results of the earlier study byJin and Gruber(2003).
Simulated N2O emissions eventually decrease because of the
reduction in tropical oxygen minimum zones resulting, in our
model, from large-scale Southern Ocean iron fertilization.

Recent studies suggest different carbon sequestration effi-
ciencies of surface nutrient utilization to the south and to the
north of the “biogeochemical divide” (Marinov et al., 2006),
approximately marked by the surface density contour ofσ0 =

27.3 and separating regions of Antarctic Bottom Water for-
mation to the south of the divide from regions of Antarctic
Intermediate Water and Subantarctic Mode Water formation
to the north. In order to test for possible different impacts
of OIF performed north and south of the biogeochemical di-
vide, a number of sensitivity experiments were performed
with the area of simulated OIF restricted to Southern Ocean
surface waters denser thanσ0 = 26.4, 26.8, 27.2, and 27.4,
respectively (Table 2). OIF in waters denser thanσ0 = 27.6
was simulated as well, but will not be analyzed further as this
surface density class disappears in the global warming sim-
ulation after year 2060. The model results agree with those
of earlier studies (Sarmiento et al., 2010) in that the ratio of
OIF-induced oceanic CO2 uptake to OIF-induced export pro-
duction increases when more southerly waters are fertilized,
namely from a cumulative atmospheric uptake efficiency of
0.42 for OIF everywhere south of 30◦S to a value of 0.51
for OIF only applied to surface waters denser thanσ0 = 27.4
(Fig. 11). This sequestration efficiency is much higher than
found, for example, in earlier “year-round” nutrient deple-
tion simulations (Sarmiento and Orr, 1991) that generated
high export fluxes even during winter, when instantaneous
upward mixing of exported and respired carbon within the
deep mixed layers did not allow for the development of ap-
preciable vertical gradients in inorganic carbon and nutrient
concentrations.
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Table 1. Model results.

1-yr OIF 7-yr OIF 10-yr OIF 50-yr OIF 100-yr OIF

Cumulative OIF-induced export production, year 2110 (GtC)

fertilized area 2.62 12.6 17.2 76.1 154
outside fertilized area −0.24 −2.4 −3.4 −12.0 −14.6
global 2.37 10.2 13.8 64.2 139

Cumulative OIF-induced air-sea CO2 flux, year 2110 (GtC)

fertilized area 0.83 4.42 6.11 29.4 73.4
outside fertilized area −0.31 −1.70 −2.50 −9.7 −14.8
global 0.53 2.73 3.61 19.7 58.6

Ratio of cumul. OIF-induced air-sea flux to cumul. export production, year 2110

global 0.22 0.27 0.26 0.31 0.42

OIF-induced terrestrial C loss, year 2110 (GtC)

global −0.40 0.28 −0.008 1.9 4.5

OIF-induced atmospheric CO2 decline, year 2110 (GtC)

global 0.93 2.45 3.62 17.9 54.2

Ratio of OIF-induced atmospheric CO2 decline to oceanic CO2 uptake, year 2110

global 1.78 0.90 1.003 0.91 0.92

OIF-induced decline in atm.pCO2 and surface temperature, year 2110

1pCO2 (µatm) −0.43 −1.17 −1.73 −8.56 −25.9
1SAT (◦C) −0.011 −0.0049 −0.013 −0.039 −0.096

All experiments use the SRES A2 emission scenario and start Ocean Iron Fertilization (OIF) everywhere south of 30◦ S in year 2011. Export production is computed as all simulated
organic carbon export acrossz=125 m.

Fig. 11. Ratio of cumulative global OIF-induced air-sea CO2 flux
to cumulative global OIF-induced export production for simulated
continuous OIF applied to surface waters everywhere south of 30◦S
(black), surface waters denser thanσ0 = 26.4 (red), denser than
σ0 = 26.8 (green),σ0 = 27.2 (blue) andσ0 = 27.4 (cyan).

Continuous OIF applied to surface waters denser than
σ0 = 27.4 can, in our simulation, sequester some 12.6 GtC
by the year 2110. Potential side effects such as the off-
set in global warming potential by OIF-related emissions of
N2O are somewhat smaller when only waters south of the
biogeochemical divide are fertilized. For fertilization re-
stricted to the densest waters, N2O emissions simulated by
theNevison et al.(2003) parameterization offset about 3.1%
of the atmospheric CO2 sequestered, whereas 8.7% are off-
set for fertilization everywhere south of 30◦S (Table 2). In-
terestingly, the reduction in the extent of suboxic waters is
almost exactly proportional to the sequestered atmospheric
CO2 with 0.44% reduction in suboxic volume per gigatonne
carbon sequestered by year 2110, no matter whether sim-
ulated OIF is applied north or south of the biogeochemi-
cal divide. Closer inspection reveals that even for fertiliza-
tion restricted to densities larger thanσ0 = 27.4, part of the
fertilized waters move northward within the shallow sum-
mer mixed layers and are transformed into lighter Subantarc-
tic mode waters. Upon subduction they export their OIF-
induced nitrate deficit northward, where reduced new pro-
duction and export production eventually lead to a reduction
in oxygen consumption in the tropical oceans even for OIF
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Table 2. Sensitivity to fertilized surface area.

< 30◦ S σ0 > 26.4 σ0 > 26.8 σ0 > 27.2 σ0 > 27.4

Cumulative OIF-induced export production, year 2110 (GtC)

south of 30◦S 154 129 105 55.6 25.3
north of 30◦S −14.6 −9.3 −6.4 −2.3 −0.75
global 139 120 98.3 53.3 24.6

Cumulative OIF-induced air-sea CO2 flux, year 2110 (GtC)

south of 30◦S 73.4 61.6 52.9 31.0 14.3
north of 30◦S −14.8 −9.4 −7.5 −3.9 −1.7
global 58.6 52.2 45.4 27.1 12.6

Ratio of cumul. OIF-induced air-sea flux to cumul. export production, year 2110

global 0.42 0.44 0.46 0.51 0.51

OIF-induced terrestrial C loss, year 2110 (GtC)

global 4.5 3.9 3.6 2.0 1.1

OIF-induced atmospheric CO2 decline, year 2110 (GtC)

global 54.2 48.3 41.8 25.1 11.5

Ratio of OIF-induced atmosph[2mm]eric CO2 decline to oceanic CO2 uptake, year 2110

global 0.92 0.93 0.92 0.93 0.91

OIF-induced change in suboxic volume, year 2110 (%)

global −25.9 −23.0 −20.0 −12.0 −5.4

Offset by OIF-related N2O emissions (%)

global 8.7 7.1 5.3 3.6 3.1

All experiments use the SRES A2 emission scenario and apply Ocean Iron Fertilization (OIF) for 100 years beginning in year 2011. Export production is computed as all simulated
organic carbon export acrossz=125 m. N2O production is simulated using theNevison et al.(2003) parameterization.

south of the biogeochemical divide. Such a northward export
of a fertilization-induced nutrient deficit was effectively sup-
pressed by restoring surface nutrients to observed concentra-
tions everywhere outside the fertilization area in the model
of Marinov et al.(2006).

An interesting finding of our Earth System model simula-
tions is that even when the back flux of CO2 from the un-
fertilized areas is accounted for, the OIF-induced drawdown
in atmospheric CO2 is, by year 2110, about 8% smaller than
the cumulative global air-sea flux (Fig. 12). The reason for
this discrepancy is the terrestrial carbon pool that responds
to lowered atmospheric CO2 and associated climate change
with respect to the unfertilized control simulation. The vege-
tation model used in the UVic Earth System model has sensi-
tivities to changes in atmospheric CO2 and temperature in the
middle ranges of the Coupled Climate-Carbon Cycle Model
Intercomparison Project (C4MIP) models (Friedlingstein et
al., 2006). In general, elevated atmospheric CO2 tends to
fertilize the terrestrial vegetation, whereas warming leads to
enhanced carbon losses by respiration. For the OIF-induced
changes in atmospheric CO2 and surface air temperature (Ta-

ble 1), the OIF-induced reduction in the CO2 fertilization ef-
fect is about 3 times as large as the reduction in respiratory
carbon losses at lower temperatures. As a result, the terres-
trial carbon stock of the continuous OIF-experiment is about
4.5 GtC smaller than in the unfertilized control experiment
in year 2110 (Table 1). This indicates that of the total car-
bon sequestered in the ocean, more than 90% come from the
atmosphere and less than 10% are derived from the terres-
trial biosphere. Given the large range of climate sensitivities
and CO2 sensitivities of current vegetation models, we esti-
mated the OIF-induced change in terrestrial carbon storage
by assuming linearly independent sensitivities with respect
to the OIF-induced changes in atmospheric temperature and
CO2. For 10 out of the 12 C4MIP model sensitivities given
by Friedlingstein et al.(2006), the estimated OIF-induced
terrestrial carbon loss lies within± 30% of our model re-
sult, whereas the two extreme models predict a 3 times
higher and 15 times lower terrestrial carbon loss compared to
our model in response to Southern Ocean iron fertilization.
Sensitivity experiments started from pre-industrial condi-
tions and neglecting anthropogenic CO2 emissions revealed a
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Fig. 12. Solid lines: Cumulative temporal integral of the
fertilization-induced reduction in atmospheric CO2. Dashed lines:
Cumulative temporal integral of the fertilization-induced change in
global air-sea flux of CO2 (same as solid lines in Fig. 6b). Units are
GtC. Colour code as in Fig. 4.

much smaller (∼factor 2) change in atmosphericpCO2 upon
Southern Ocean OIF. This can be attributed to approximately
equal parts by the change in the carbonate buffering capacity,
which leads to a larger change inpCO2 per DIC drawdown
at higherpCO2, and the higher sensitivity of the modeled
terrestrial carbon pool at pre-industrialpCO2.

The sensitivities of the terrestrial biosphere to OIF-
induced changes in atmospheric CO2 and surface tempera-
ture imply that a small part of the CO2 that enters the ocean
in response to iron fertilization would be sequestered from
the land and not from the atmosphere. In a system of in-
teracting carbon reservoirs this is to be expected. Similarly,
forestation sequesters some carbon that eventually derives
from the ocean rather than from the atmosphere. Along the
same lines, any carbon initially emitted to the atmosphere
by anthropogenic activities is also partitioned among atmo-
sphere, ocean, and land biosphere. Because of the different
sensitivities of the different carbon pools to climate and CO2,
measuring sequestration in individual carbon pools may give
results that are not equivalent to canceled emissions.

To estimate the size of CO2 emissions offset by OIF, we
performed a series of simulations without OIF, but with emis-
sions reduced by an amount proportional to the carbon se-
questered in the above-mentioned OIF experiments. We first
reduced CO2 emissions to the atmosphere in a model run
with no OIF by an amount of 58.6 GtC, i.e. equivalent of the
global OIF-induced air-sea flux of CO2 of the 100-yr contin-
uous fertilization run (Table 1), and distributed in time iden-
tical to the temporal evolution of the air-sea CO2 fluxes of
the fertilization run (Fig. 6a). It turns out that the 58.6 GtC
reduction in atmospheric CO2 emissions yields a reduction
of atmospheric CO2 by 46.2 GtC by year 2110 (dashed black
line in Fig. 13). This is substantially smaller than the at-

Fig. 13. Solid lines: Cumulative temporal integral of the
fertilization-induced reduction in atmospheric CO2 for the different
OIF runs. The dashed black line is for emission reductions 1.0 times
the air-sea CO2 flux of the continuous iron fertilization run. Dashed
colored lines: Cumulative temporal integral of the reduction in at-
mospheric CO2 achieved by emission reduction 1.2 times the global
air-sea CO2 flux of the respective OIF run. Units are GtC. Colour
code as in Fig. 4.

mospheric CO2 reduction of 54.2 GtC simulated by the OIF
run. The reason for this discrepancy is the sea-air CO2 back
flux simulated in response to lowered atmospheric CO2 par-
tial pressure. With simulated emission cuts 20% higher than
the inferred OIF-induced global air-sea fluxes of the respec-
tive OIF runs, atmospheric CO2 concentrations simulated by
the unfertilized emission-cut runs closely agree with those of
the respective OIF experiments (Fig. 13). That is, each ton
carbon sequestered in the ocean is, in our model and on a
100 year timescale, equivalent to an emission cut of about
1.2 tons of carbon.

5 Conclusions

With the exploitation of fossil fuels and associated emission
of CO2 mankind has substantially increased the risk of dan-
gerous climate change. Dealing with this risk in the inter-
est of maximizing a “common good” has to include weigh-
ing the risks of using, or not using, climate engineering op-
tions. Reiterating the results of earlier studies, our model
study indicates that any assessment of the efficacy of OIF
must be global in order to account for the downstream ef-
fects. Here, we have limited our analysis to the 100-year time
scale adopted by the IPCC and the Kyoto Protocol. It is, how-
ever, clear that downstream effects will be felt much longer
and with considerable time delay. Because of the long time
scales of biogeochemical tracer transport from the Southern
Ocean fertilization region to outcrop areas further north, an
often substantial part of these effects is “in the pipeline” at
any time, making the establishment of acceptable accounting

Biogeosciences, 7, 4017–4035, 2010 www.biogeosciences.net/7/4017/2010/



A. Oschlies et al.: OIF side effects and accounting aspects 4031

schemes particularly difficult. If simulated OIF is stopped,
transport of OIF-influenced waters will continue for many
decades, affecting nutrient and oxygen levels and thereby
new production as well as the production of other greenhouse
gases such as N2O. Not all of these side effects need to be
labeled “negative” by common judgment schemes, though.
Our model suggests, for example, that the extent of suboxic
areas and of oceanic N2O emissions may actually decline
during and after Southern Ocean iron fertilization (Figs. 4
and 7).

The joint consideration of oceanic, atmospheric and terres-
trial carbon pools in our carbon-climate model reveals that,
via the atmosphere, OIF will even impact the terrestrial car-
bon pools. For the assumptions used in current vegetation
models (Friedlingstein et al., 2006), lower CO2 concentra-
tions and lower surface temperatures lead to a net loss of
carbon from the terrestrial biosphere to the atmosphere (and
ocean). In the carbon-climate model employed here, about
8% of the carbon sequestered in the ocean by OIF within
100 years is derived from the land.

The size of this effect is, on the 100 yr time scale con-
sidered, similar to the back flux of CO2 from the unfertil-
ized regions to the atmosphere in response to atmospheric
CO2 partial pressures lowered as a result of OIF. While it
seems prudent to include this back flux in any hypotheti-
cal accounting scheme, we note that such a CO2 back flux
from the atmosphere into the ocean also occurs when carbon
is sequestered on land. A fair comparison of terrestrial and
oceanic carbon sequestration options must therefore include
a similar consideration of all carbon exchanged between the
different carbon reservoirs that participate on the agreed time
scale (so far, 100 years). A useful common accounting unit
could be the amount of canceled emissions. For large-scale
Southern Ocean iron fertilization, our model suggests that
every ton carbon sequestered in the ocean compensates for
1.2 tons of carbon emissions to the atmosphere on a 100-year
timescale. For OIF-induced changes in export production
calibrated against natural iron fertilization experiments, sim-
ulated large-scale Southern Ocean iron fertilization induces
an extra export of 139 GtC over 100 years of continuous fer-
tilization. This induces a global air-sea CO2 flux of 59 GtC,
which in our model offsets CO2 emissions of some 70 GtC
over the 100-year period. This result shows that in order to
objectively compare the efficiencies of different sequestra-
tion options, it is not sufficient to account for changes in only
a single carbon pool, but rather to use a common metric like
canceled CO2 emissions or global radiative forcing (Lenton
and Vaugham, 2009).

With no drastic emission cuts on the horizon for the next
few decades to come, decisions about large-scale carbon se-
questration or climate engineering options may well have
to be taken in the foreseeable future. Local and short-term
monitoring schemes are probably unable to detect side ef-
fects such as leakage identified above. Information is needed
on a global scale and for long time scales. Such informa-

tion can in principle be provided by Earth System models
which, however, are far from perfect and therefore introduce
additional uncertainties into the assessment and potential ac-
counting schemes. Uncertainty is not a new quality in our
decision making processes per se, but we have to strive to
reduce uncertainty by future research which, in our view,
should consider carbon sequestration options such as OIF.

Appendix A

Sensitivity to OIF-induced enhancement of
phytoplankton growth rates

The impact of large-scale Southern Ocean iron fertilization
was parameterized via a local enhancement of the phyto-
plankton maximum growth rate. The main text used an
enhancement calibrated such that simulated OIF induced
changes in export production were in rough agreement with
observations obtained at the natural iron fertilization sites at
the Kerguelen Plateau and Crozet Islands (Blain et al., 2007;
Pollard et al., 2009). Because we cannot currently rule out
that further addition of iron to these naturally fertilized areas
would further enhance export production, a number of sensi-
tivity experiments were carried out. While the phytoplankton
maximum growth rate of 0.13 day−1 (at 0◦C) was doubled to
0.26 day−1 in the fertilized areas in the standard fertilization
experiment referred to in the main text, here we show results
for experiments with maximum growth rates increased three-
fold to 0.39 day−1, fivefold to 0.65 day−1 and, in an attempt
to generate depletion of macronutrients, to an artificially high
rate of 10 day−1.

While Southern Ocean surface nitrate concentrations de-
crease with increasing maximum phytoplankton growth rate,
even the very extreme experiment with µmax(OIF)=10 day−1

does not fully deplete surface nitrate (Fig. A1). The
total oceanic uptake of carbon increases from 58.6 GtC
by year 2110 in the standard OIF experiment to
98.8 GtC in the experiment with µmax(OIF)=0.39 day−1,
137 GtC for µmax(OIF)=0.65 day−1, and 169 GtC for
µmax(OIF)=10 day−1 (Fig. A2). The latter value may be
viewed as extreme upper level for the sequestration potential
of Southern Ocean iron fertilization according to our model.

All conclusions obtained in the main text about sequestra-
tion efficiency and the relative contribution of atmospheric
and terrestrial carbon to the OIF-induced oceanic carbon
storage also apply to the sensitivity experiments. We here
show results only for the “upper bound” experiment with
µmax(OIF)=10 day−1 (Table A1, Fig. A3).
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Table A1. Model results for µmax=10 day−1 sensitivity experiment.

1-yr OIF 7-yr OIF 10-yr OIF 50-yr OIF 100-yr OIF

Cumulative OIF-induced export production, year 2110 (GtC)

fertilized area 14.8 53.3 68.7 232 408
outside fertilized area −2.4 −7.8 −9.8 −23.2 −26.4
global 12.4 45.2 58.8 208 382

Cumulative OIF-induced air-sea CO2 flux, year 2110 (GtC)

fertilized area 5.12 19.3 25.4 96.6 201
outside fertilized area −1.79 −5.7 −7.4 −22.0 −31.3
global 3.33 13.6 18.0 74.6 169

Ratio of cumul. OIF-induced air-sea flux to cumul. export production, year 2110

global 0.27 0.30 0.31 0.36 0.44

OIF-induced terrestrial C loss, year 2110 (GtC)

global 0.14 1.7 1.9 7.6 15.1

OIF-induced atmospheric CO2 decline, year 2110 (GtC)

global 3.19 11.9 16.1 67.1 154

ratio of OIF-induced atmospheric CO2 decline to oceanic CO2 uptake, year 2110

global 0.96 0.88 0.90 0.90 0.91

OIF-induced decline in atm.pCO2 and surface temperature, year 2110

1pCO2 (µatm) −1.52 −5.69 −7.70 −32.1 −73.3
1SAT (◦C) −0.0085 −0.023 −0.034 −0.141 −0.273

Results of “upper bound” experiment with very high maximum growth rate (µmax=10 day−1) in iron fertilized area. Experiments use the SRES A2 emission scenario and start
Ocean Iron Fertilization (OIF) everywhere south of 30◦ S in year 2011.

(a)

(b)

(a)

(b)

Fig. A1. (a) Zonally averaged simulated annual-mean surface nitrate concentrations in the control run (black) and in year 2110 of the
standard OIF run of the main text (red) also shown in Fig. 2. Simulated surface nitrate concentrations of the sensitivity experiments are
also shown for year 2110: OIF simulated by enhancing the phytoplankton maximum growth rate from 0.13 day−1 to 0.39 day−1 (green), to
0.65 day−1 (blue) and to the extreme case of 10 day−1 (cyan). The latter experiment was performed in an attempt to simulate macronutrient
depletion as assumed in earlier model studies (e.g.,Sarmiento and Orr, 1991; Gnanadesikan et al., 2003). (b) Maximum (dashed) and
minimum (solid) zonally averaged nitrate concentrations during the annual cycle in year 2010 of the control run (black) and the OIF runs
using the same color code as in panel(a). As the figure reveals, even an extremely high growth rate is not sufficient to fully deplete nutrients
in the seasonally light limited Southern Ocean.
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Fig. A2. Cumulative temporal integral of the net oceanic carbon
uptake in response to simulated iron fertilization south of 30◦ S for
the standard OIF experiment of the main text (red) and for the sensi-
tivity experiments: OIF simulated by enhancing the phytoplankton
maximum growth rate from 0.13 day−1 to 0.39 day−1 (green), to
0.65 day−1 (blue) and to the extreme case of 10 day−1 (cyan).

Fig. A3. As Fig. 11 of main text, but here for “upper bound” sensi-
tivity experiment with µmax=10 day−1 in iron fertilized area. Solid
lines: Cumulative temporal integral of the fertilization-induced re-
duction in atmospheric CO2. Dashed lines: Cumulative temporal
integral of the fertilization-induced change in global air-sea flux of
CO2. Units are GtC.
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