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Abstract. Two commercial ammonia (NH3) analysers were
customised to allow continuous measurements of vertical
concentration gradients. The gradients were used to derive
ammonia exchange fluxes above a managed grassland site at
Oensingen (Switzerland) by application of the aerodynamic
gradient method. The measurements from July 2006 to
October 2007 covered five complete growth-cut cycles and
included six applications of liquid cattle slurry. The average
accuracy of the flux measurements during unstable and
near-neutral conditions was 20% and the detection limit
was 10 ngNH3m−2s−1. Hence the flux measurements are
considered sufficiently accurate for studying typical NH3
deposition rates over growing vegetation. Quantifying
the overall emissions after slurry applications required the
application of elaborate interpolations because of difficulties
capturing the initial emissions during broadspreading of
liquid manure. The emissions were also calculated with
a mass balance method yielding similar fluxes. NH3 losses
after slurry application expressed as percentage of emitted
nitrogen versus applied total ammoniacal nitrogen (TAN)
varied between 4 and 19%, which is roughly a factor of three
lower than the values for broadspreading of liquid manure
in emission inventories. The comparatively low emission
factors appear to be a consequence of the low dry matter
content of the applied slurry and soil properties favouring
ammonium adsorption.
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1 Introduction

Ammonia (NH3) is the most abundant alkaline substance
in the atmosphere and has been recognised as a key player
in processes leading to formation of particulate matter
(e.g. Hayes et al., 1980; Kulmala et al., 2002; Erisman
and Schaap, 2004; Vayenas et al., 2005; Yu, 2006) and
eutrophication and acidification of ecosystems (Erisman
et al., 2007). Because of these negative environmental
impacts, the United Nations Economic Commission for
Europe has included critical levels and loads for NH3 in
the Convention on Long-Range Transboundary Air Pollution
(UNECE, 1999). Recently it was recommended that these
critical levels be further reduced (Cape et al., 2009) as new
experiments have shown the occurrence of adverse effects on
ecosystems even at concentrations below the current critical
levels.

Agriculture represents the dominant NH3 source at global
and national levels (Reidy et al., 2008; Spranger et al.,
2009), with emissions occurring as part of animal husbandry,
during manure storage and following the land spreading
of organic wastes for fertilisation. Both agricultural and
natural vegetation generally act as sinks for atmospheric
NH3, as it is efficiently deposited on almost any kind
of surface, particularly when they are wet. However,
grasslands and agricultural crops can also be sources of
NH3, e.g. after fertilisation or harvest, depending on
the nitrogen status of vegetation (Sutton et al., 1993b;
Mattsson et al., 2009). Given the prominent role of
agriculture in controlling the atmospheric abundance of NH3,
a better mechanistic understanding of its exchange over
agricultural surfaces is required for accurately describing
source–receptor relationships (Achermann and Bobbink,
2003).
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Ammonia exchange over agricultural fields has been
investigated in numerous studies (Sutton et al., 1993a,
b; Herrmann et al., 2001; Spindler et al., 2001;
Thompson and Meisinger, 2004; Walker et al., 2006) using
micrometeorological techniques especially the aerodynamic
gradient method (AGM) and more recently relaxed eddy
accumulation (Hensen et al., 2009). The majority
of instruments that have been deployed for NH3 flux
measurements so far have used denuders for absorption
of NH3 into acidic solution with subsequent wet chemical
analysis. This concept has the advantage of adequately
separating gas and aerosol phases, which is critical for
precise NH3 measurements at ambient concentrations with
typically similar amounts of aerosol ammonium being
present. On the other hand, this approach strongly limits
the measurement speed and the maintenance of the required
low but precise liquid flows has proven to be labour-intensive
in practice in the field. The challenging nature of flux
measurements with such systems manifested itself in an
extensive intercomparison campaign (Hensen et al., 2009;
Milford et al., 2009), where good agreement between
different instruments was only achieved with intensive
maintenance and frequent calibrations. Although alternative
analysers measuring NH3 directly in the gas phase have
become available, either using mass spectroscopy (Nowak
et al., 2002; Norman et al., 2007) or laser optical absorption
methods (Longley et al., 2005), their applicability for
routine micrometeorological flux measurements remains to
be proven (Whitehead et al., 2008).

Because of these technical challenges it is not too
surprising that only few long-term measurements of NH3
exchange at the ecosystem scale have been reported
(Flechard and Fowler, 1998; Milford et al., 2001; Mosquera
et al., 2001). In this study we report a 1.5-year dataset of
semi-continuous NH3 gradient measurements for deriving
exchange fluxes over grassland. The instrument based on
a commercially available NH3 monitor has been operated
since 2006 on an intensively managed meadow at Oensingen,
Switzerland in the framework of the NitroEurope IP (www.
nitroeurope.eu). A major goal of NitroEurope is the
measurement of all major nitrogen inputs and outputs of
selected ecosystems at the field scale. Ammann et al.
(2009) calculated the nitrogen imports and exports of this
grassland site and demonstrated that ammonia exchange
and especially the emissions after slurry applications are
expected to represent major terms of the nitrogen budget.
Therefore it is important to measure ammonia emissions after
fertilisation. While the AGM has successfully been used
for quantifying NH3 exchange over non-fertilised vegetation,
its use for measuring emissions immediately after slurry
applications is problematic because some of its principal
premises, such as the homogeneity of the surface, are
violated (Ǵenermont et al., 1998). In this paper we explore to
what extent AGM measurements can be used to also quantify
emissions after slurry applications and discuss methodical

aspects of our gradient measurement system. The companion
paper by Flechard et al. (2010) focuses on the annual NH3
budget and compensation point modelling for this site.

2 Materials and methods

2.1 Site description

Ammonia concentration and exchange flux measurements
were made semi-continuously from July 2006 through
October 2007 over managed permanent grassland at the
Oensingen CarboEurope-IP (www.carboeurope.org) and
NitroEurope-IP (www.nitroeurope.eu) experimental site in
central Switzerland (longitude 7◦ 44′ E, latitude 47◦ 17′ N,
elevation 450 ma.s.l.). The climate is temperate continental
with mean annual temperature and rainfall of 9.5◦C and
1200 mm, respectively. The soil is classified as Eutri-Stagnic
Cambisol (FAO, ISRIC and ISSS, 1998) developed on clayey
alluvial deposits. Clay contents between 42% and 44%
induce a total pore volume of 55% and a fine pore volume
of 32% (permanent wilting point) as measured by means of
the soil moisture release curve in the laboratory. The cation
exchange capacity is 21–27 cmol/kg.

The site consists of two adjacent rectangle grass fields of
146 m×52 m each, oriented SW to NE along the prevailing
wind direction, as described in Ammann et al. (2007). The
two fields were subject to contrasting management (intensive
and extensive). The intensively managed grassland field
of relevance for this study was covered by a permanent
grass-clover mixture established in 2001, and was cut on
average 4 times a year. It was fertilised in accordance with
the standard agricultural practise in this part of the Swiss
Plateau, typically twice annually with liquid cattle slurry and
twice with ammonium nitrate pellets, amounting to about
200 kgNha−1yr−1. However, during the time span of the
measurements in 2006–2007, the field received exceptionally
only slurry (3 times a year) and no mineral fertiliser,
amounting to about 150 kgNha−1yr−1. The applied slurry
was a varying mixture of swine and cattle slurry. As the
fraction of swine slurry was always smaller than 20%, it is
referred to as cattle slurry hereafter. Details on the applied
manure for each event are given in Table 1.

2.2 Ammonia concentration measurements

2.2.1 The AiRRmonia monitor

The AiRRmonia NH3 concentration monitor (Mechatronics,
Hoorn, The Netherlands;www.mechatronics.nl) was built
and made commercially available on the back of a series
of experimental instruments developed and tested at the
Netherlands Energy Research Foundation (ECN, Petten, the
Netherlands) over the course of the last 20 years (Erisman
et al., 2001). In a similar way to its predecessors the
AMANDA and AMOR (Wyers et al., 1993), the AiRRmonia
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Table 1. Slurry characteristics and air temperatures of the slurry applications in 2006 and 2007. Slurry analyses were carried out according
to VDLUFA (2000) recommendations, air temperatures are 10 h averages after begin of spreading.

Date Application TAN content pH Dry matter content Air temperature
t/ha g/kg (%) (◦C)

13 Jul 2006 44 1.1 7.5 1.1 25.4
27 Sep 2006 55 0.8 7.9 1.0 16.5
30 Oct 2006 44 1.5 7.3 3.5 12.5
3 Apr 2007 41 1.3 7.6 4.9 12.0
13 Jul 2007 46 1.1 7.1 2.6 22.2
24 Oct 2007 41 1.1 7.9 2.8 4.8

continuously collects NH3 from the air by means of chemical
scrubbing and performs on-line analysis of ammonium
(NH+

4 ) in the liquid phase by means of conductivity
measurements in a detector block (DB).

A fundamental difference of the AiRRmonia relative
to the AMANDA, however, is the absence of a rotating
wet annular denuder for scrubbing, which is replaced in
the AiRRmonia by a stainless steel sampling block (SB)
(8 cm×15 cm×6 cm). This comprises a gas-permeable
teflon (PTFE) membrane, through which NH3 diffuses and
is absorbed into a counter-flowing stream of a slightly
acidic NaHSO4 stripping solution, with a nominal collection
efficiency of 100%. The air is drawn into the SB via a very
short (5-cm) polyethylene inlet tube (1/16′′ i.d.). As in
the AMANDA denuder, the interference by NH+

4 -containing
aerosols is minimal (Otjes and Erisman, 1999). Piston
pumps are used in the AiRRmonia to convey the stripping
solution to the SB and thence to the DB; they are much
less leak- and problem-prone than peristaltic pumps formerly
used in the AMANDA. The AiRRmonia also uses a much
lower sample air flow rate than the AMANDA (1 l min−1

vs. 30 l min−1) as well as a lower stripping solution flow
rate (0.11 ml min−1 vs. 1.3 ml min−1). The AiRRmonia is
thus less power-demanding, more robust, and is suited for
long-term monitoring of atmospheric NH3 (Erisman et al.,
2001) with a maintenance/calibration frequency of typically
1 week−1 to 1 month−1.

The measuring system is calibrated in the aqueous
phase, using liquid standards of 0 (baseline), 50 and
500 µgNH+

4 l−1, which were freshly prepared every 2 months
from a 1000 ppm stock solution (Merck, Darmstadt,
Germany). Assuming an operational air flow rate of
1 l min−1 and a SB scrubbing efficiency of 100%, these
calibration solutions correspond to gas-phase concentrations
of 0, 5.2 and 52 µgNH3m−3, respectively. A one
time calibration with additional solutions of 125 and
5000 µgNH+4 l−1 verified the validity of the three point
calibration curve beyond the range of the routinely applied
concentrations (the signals of both additional concentrations
were within 5% of the three-point curve). The conductivity

cells exhibit an upper detection limit of approximately
7500 µgNH+4 l−1 corresponding to a gas phase concentration
of 750 µgm−3. The calibration procedure only describes the
performance of the conductivity cell in the DB and does not
address the issue of the SB scrubbing efficiency. However,
a recent NH3 concentration intercomparison experiment
(Norman et al., 2009) has shown a good agreement between
the AiRRmonia, a GRAEGOR system (Thomas et al.,
2009) and a PTRMS system (Norman et al., 2007), thus
substantiating indirectly the assumption of stability of the SB
scrubbing efficiency close to 100%.

2.2.2 Ammonia gradient measurements

The AiRRmonia was originally designed for the purpose of
long-term concentration monitoring at one reference height
above ground (Erisman et al., 2001), and not for gradient
(≥2 heights) flux measurements. In order to measure
a 2-point concentration profile above the grass canopy, two
AiRRmonias in a modified configuration were mounted
onto a little wagon on wheels (length=1 m; width=1.5 m;
height=2 m). Both SBs were taken out of their AiRRmonia
aluminium case and affixed to 2 extended horizontal arms at
2 heights, about 1 m away from the wagon, using extended
lengths of PTFE tubing (1/32′′ i.d.) to transfer the stripping
solution to- and from the SB. The two inlets were most of the
time at heights of 0.36 m and 1.24 m above ground, though
occasionally they were raised to heights of up to 0.53 m and
1.45 m above ground, as the grass canopy height increased in
spring and summer. The wagon could be wheeled manually
into and out of the field within 5 min, without interrupting
measurements (see Fig. 1).

Two 3-way PTFE solenoid valves were used to switch
between the two inlet SBs (for sampling ambient air) on one
hand, and the two DBs (for conductivity measurements) on
the other hand. This setup ensured that 1) the concentrations
at the two inlet heights were measured sequentially (15 min
per height, i.e. 30 min for a gradient) by a common detector,
which is essential for resolving the NH3 gradient, and
2) both DBs actually provided independent measurements of
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 Fig. 1. The NH3 gradient measuring system: (A) the whole

system with two inlet sampling blocks and, (B) the two AiRRmonia
monitoring instruments on the analytical platform.

the same concentration difference between the two heights,
albeit with a 15-min time shift. A delay loop with
a specified length was built into the stripping solution transfer
tubing between the second sampling block (SB2) and the
solenoid valve to ensure that, even though the conductivity
measurements for the liquid sample issuing from SB2 were
made 15 min later than for SB1, the NH+

4 concentrations
measured in the stripping solution were representative of
simultaneously scrubbed air parcels.

In addition, liquid flow rates were raised by 33% by
increasing the syringe pump linear speeds from 12 mmmin−1

in the default configuration up to 16 mmmin−1. This allowed
a faster response of the conductivity analyser for the purpose
of gradient measurements. Figure 2 shows the time course
of a 3-point calibration (0, 50 and 500 µgNH+

4 l−1) for both
DBs, followed by two additional liquid standards (5000 then
125 µgNH+

4 l−1), allowing the e-folding response time (τ ) of
the conductivity cell to be calculated from fitted exponential
decay curves for the successive concentration changes. The
mean τ (1/e2) values were 9.7 and 7.2 min for DB1 and
DB2, respectively, withτ ranging from 4.3 to 14.8 min, and
tending to be longer for larger and downward step changes in
concentrations.

During operational gradient monitoring, concentration
differences between the bottom and top SBs were generally
much lower than step changes during calibration, so that
τ (1/e2) could be expected to be lower, of the order of 5 to
7 min. An example time series of continuous conductivity
measurements (Fig. 3) with a 1-min time resolution during
actual gradient measurements shows the 15-min sequences
of alternating bottom (SB1) and top (SB2) sample lines. The
data show that the AiRRmonia in this altered configuration
can detect, and resolve, half-hourly NH3 gradients thanks to
a reduced time response. The 1-min measurements show
short-term, wavelike fluctuations with a period of around
7 min, also visible in the calibration data on Fig. 2, and
corresponding to a full up-and-down cycle of the syringe
pump, possibly due to pressure effects on the detector.

Thus, to obtain representative mean values for each 15-min
interval, the last 7 min were averaged (low-pass filter of
pump-induced wave form) to yield mean liquid phase NH+

4
and gas-phase NH3 concentrations, allowing a stabilisation
time of 8 min before averaging.

An estimate of the concentration detection limit was de-
termined from the time series of the baseline (0 µgNH+

4 l−1)
signal when the air pump was switched off. As NH3
concentrations are calculated routinely in our gradient
configuration as 7-min averages, the detection limit was
likewise computed as twice the standard deviation (2σ )
of the 7-min mean values for the baseline signal. For
the two AiRRmonias and conductivity cells used here,
the detection limits were 0.07 and 0.08 µgNH3m−3, which
is comparable to the 0.1 µgNH3m−3 given in Erisman
et al. (2001). An accuracy of 10% was estimated as
twice the standard deviation of calibration signals across
all calibrations performed during the experiment (Norman
et al., 2009); this is higher, though probably more realistic,
than previously asserted in Erisman et al. (2001). In the
following, we use the term MAGS (Mobile AiRRmonia
Gradient System) for referring to the instrument for ammonia
gradient measurements.

2.2.3 Operation of the gradient system during slurry
applications

The farmer typically spread 3 to 4 tanks on the field, using
a splash plate. The refilling and transport of the liquid
manure trailer from the farm to the field took 15–20 min.
Hence it took between 1 and 1.5 h from the start of slurry
spreading until the field was completely fertilised. The
MAGS was operated just next to the field during manure
spreading and was wheeled onto the field immediately after
the first passage of the slurry tank. Concentrations at
both heights rose instantaneously to several hundreds of
µgNH3m−3, sometimes exceeding the upper detection limit
at the lower sampling height. The exceedance persisted from
1 to 4 h, causing significant data gaps in the record of the
lower height concentrations.

2.3 Micrometeorological flux measurements and
calculations

2.3.1 Aerodynamic gradient method

Ammonia fluxes were measured using the aerodynamic
gradient method (AGM) (Monteith and Unsworth, 1990;
Sutton et al., 1993a), where the vertical turbulent exchange
flux Fχ is proportional to the vertical gradient in
concentration measured above the grass canopy with the
coefficient of turbulent diffusion for NH3 or eddy diffusivity
Kχ , such that by Fick’s law:

Fχ = −Kχ
∂χ

∂z
(1)
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Fig. 2. Time course of liquid phase calibration of the two AiRRmonia conductivity cells. Measurements are 1-min averages. The listed
values of the e-folding response times (τ ) were determined by fitting the equationS(t)= S0+(Sf−S0)(1−e−t/τ ) to the measured signalS,
where the indices “0” and “f” denote the initial and final concentrations, respectively.
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Fig. 3. Continuous conductivity and NH+4 measurements by the AiRRmonia in gradient configuration, providing 30-min mean gradient data
using a common detector. The mean sampling block concentrations (SB1:bottom, and SB2:top) are calculated from the last 7 min of each
15-min interval.

whereχ is NH3 concentration,z is height above ground,
and the minus sign by convention denotes deposition from
the atmosphere. Since bothKχ and the vertical gradient
of χ are variable with height, it is more convenient
(Sutton et al., 1993a; Flechard and Fowler, 1998) to use
an alternative form of Eq. (1) that expresses the flux as
a function of height-independent friction velocityu∗ and the
stability-corrected, log-linear vertical gradient ofχ such that:

Fχ = −u∗χ∗ (2)

with

χ∗ = k
∂χ

∂
(
ln(z−d)−ψH

(
z−d
L

)) (3)

where k is von Karman’s constant (0.41),d is the
displacement height of the canopy,L is the Obukhov length
andψH is the integrated stability function for heat and gases
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(Dyer and Hicks, 1970). The friction velocity and the
Obukhov length in the present case were provided by a sonic
anemometer (model HS, Gill instruments, Lymington, UK),
which was implemented within the framework of concurrent
eddy covariance measurements of CO2 and H2O exchange
(Ammann et al., 2007). Both the sonic anemometer and the
AiRRmonia profile system were located near the centre of
the field for the duration of the experiment, so that fluxes
could be measured for all wind directions, albeit with fetch
values varying between 25 and 80 m. For the dominant
SW wind sector, the fetch was of the order of 70–80 m.
The sonic anemometer was affixed to a mast at a constant
height of 1.2 m above ground, while NH3 concentrations
were monitored at two heights as detailed above, from which
χ∗ was computed as a 2-point linear regression. Fluxes were
calculated half-hourly.

Provided that 1) there is sufficient upwind fetch with
homogeneous horizontal conditions and a fully developed
turbulent layer above the grass surface; 2) there is no
horizontal gradient in concentration (dχ/dx=0); 3) station-
arity is respected (dχ/dt=0); and 4) chemical reactions
involving NH3 do not occur with sufficiently small time
scales compared with the time scale of turbulent transfer;
then there is no vertical flux divergence, which means that the
flux measured at a reference heightabovethe surface actually
equates to the fluxat the surface (Fowler and Duyzer, 1989).

Non-stationarity results in changes in the trace gas storage
in the air column below the measurement point. If by
convention a deposition flux is negative and an emission
flux positive, an increase in air concentration leads to an
underestimation of the true flux, while a decrease in air
concentration results in the flux being overestimated. The
vertical gradient in flux due to storage may be expressed as
(Fowler and Duyzer, 1989):

∂Fχ

∂z
= −

∂χ

∂t
(4)

This storage correction was implemented routinely in the
flux calculations, based on the time series of ambient NH3
concentration.

The Webb, Pearman and Leuning correction (Webb et al.,
1980) was also routinely calculated for the latent heat
component but was found to be mostly negligible, owing
to the very low mixing ratio of NH3 compared with
water vapour. The correction for sensible heat was not
implemented as the air flows into the bottom and top air
inlets of the AiRRmonias were mass-flow controlled, so that
a vertical temperature gradient introduced no error in the
measured NH3 flux.

Fluxes by the AGM method were calculated for times
when both ammonia concentration and wind data were
available and whenever the sonic anemometer measurements
indicated sufficiently defined turbulence. Based on several
years of experience with eddy covariance measurements
at this site (Ammann et al., 2007), the following criteria

for excluding stable and non-stationary conditions were
applied. Data were only used if(z−d)/L<10 and the
integral turbulence parameterσw/u∗ (ratio of S.D. of vertical
wind over friction velocity) evaluated at 3 min sub-intervals
was within 60% of its corresponding half hour value (Foken
and Wichura, 1996; Aubinet et al., 2000). For the period
discussed here, this resulted in a 35% data rejection rate,
mainly sorting out night time data (80% of rejected data).
After this selection, the aforementioned prerequisites for
AGM flux measurements could be assumed to be largely met
for measurements made in conditions of background NH3
exchange.

For cases when turbulence quality criteria were not met
and no valid measurements ofu∗ and sensible heat flux (H )
were available,H was approximated from a multiple linear
regression of the whole dataset of measuredH against net
radiation, wind speed and air temperature.u∗ andL were in
turn calculated iteratively from the stability-corrected, log-
linear wind profile (Monteith and Unsworth, 1990), and by
setting the theoretical height of predicted zero wind speed
(or roughness length)z0 to 1/10 of canopy height:

U(z−d)=
u∗

k

[
ln

(
z−d

z0

)
−ψM

(
z−d

L

)
+ψM

(z0

L

)]
(5)

2.3.2 Footprint considerations and uncertainty
assessment

The application of slurry creates a situation with high
emissions from the field itself, and low or reverse fluxes
beyond. This results in a potentially severe flux divergence
within the measurement footprint. This was addressed with
an analytical footprint model (Kormann and Meixner, 2001),
referred to as KM model hereafter. This model has been
shown to produce plausible footprint estimates for CO2 eddy
covariance measurements at the Oensingen site (Neftel et al.,
2008). As investigated by Horst (1999), the flux footprint
derived from gradient measurements at heightsz1 and z2
corresponds to that of a single height eddy covariance flux
measurement at the arithmetic and geometric mean of these
heights for stable and unstable conditions, respectively. The
fraction (p≤1) of the fertilised field within the footprint of
the gradient measurement was thus calculated by running the
KM model for the respective heights depending on stability,
wind speed and wind direction. For situations of slurry
application, it is reasonable to assume zero NH3 emissions
outside the fertilised field. The measured flux was then
multiplied by p−1 to correct for potential underestimation
due to neighbouring fields within the footprint. During the
spreading of manure (see Sect. 2.2.3), it was assumed that
one third and two thirds of the field were covered with slurry
during the first and the second half hour, respectively.

Following Eqs. (2) and (3), the uncertainty of fluxes (σF )
calculated by the AGM was assessed as

σF =

√
σ 2
u∗

+σ 2
χ +σ 2

9+σ 2
FP, (6)
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where σu∗
, σχ , σ9 , σFP denote the relative uncertainties

of the friction velocity, the concentration difference
measurement, the integral stability function for heat and
scalars, and the footprint correction, respectively. The
relative uncertainty ofu∗ was taken as two standard
deviations of its variability in the corresponding three-minute
subintervals, 15% was used forσχ (standard propagation of
the 10% measurement uncertainty), andσFP was estimated
as 0.3·(1−p), i.e. assuming the footprint model is capable
of quantifying the influence of neighbouring fields with an
accuracy of 30%. AlthoughL and thusψ depend on both
u∗ and heat flux (H ), σ9 was estimated solely taking into
account the error ofH . This simplification is justified by the
form of Eq. (6) implying independence of the error terms
and taking into accountσu∗

separately. The error ofH
was determined in analogy toσu∗

from its variability in the
sub-intervals, and was then propagated intoψ .

2.3.3 Alternative flux calculation for emission peaks

The mass balance method (MBM) (Denmead, 1995;
Génermont et al., 1998), which has in the past been used
extensively to measure NH3 emissions by applied slurry,
was used as an alternative approach to estimate the fluxes
following manure applications. Although the experimental
setup at Oensingen had not been designed with the MBM
in mind, an MBM-like approach was implemented as
a supplement.

The mass balance was calculated as the amount of NH3
crossing a vertical plane up to the height of the internal
boundary layer of the field (zIBL ), given by:

Fχ = 1/X
∫ zIBL

z0

U(z)
[
χ(z)−χbgd(z)

]
∂z (7)

with X denoting the distance along the main wind axis
between the mast and the upwind edge of the field.zIBL
is parameterised as 0.334·z0(X/z0)

0.875 (Itier and Perrier,
1976; Sommer et al., 2003), andχbgd is the background NH3
concentration at the upwind edge of the measurement field.
Since there were no direct measurements ofχbgd, a constant
value was assumed over time and vertically, set equal to
the monthly median concentration measured at this site,
which ranged from 1 to 5 µgNH3m−3. Log-linear profile
shapes were assumed in order to recreate vertical profiles
of wind speedU(z−d) and concentrationχ(z−d) through
the internal boundary layer from the actual (measured)
friction velocity and 2-point NH3 concentration gradient.
The standard stability-corrected, log-linear relationships of
U(z−d) (Eq. 5) andχ(z−d) (Monteith and Unsworth, 1990;
Sutton et al., 1993a) were applied:

χ(z−d)=
χ∗

k

[
ln

(
z−d

zχ

)
−ψH

(
z−d

L

)
+ψH

(zχ
L

)]
(8)

with ψH the integrated stability function for heat flux (Dyer
and Hicks, 1970), andzχ the nominal height aboved of

predicted zero concentration. While the theoretical height
aboved of predicted zero wind speed (z′0) is easily derived
from the knowledge ofu∗ andU measured at sonic height
(Eq. 5), it is less straightforward forzχ , which is not defined
for the emission case when NH3 concentration decreases
with height. An equivalent function is thus used for NH3
instead of Eq. (8), which does not requirezχ explicitly:

χ(z−d)=χ (zint)+
χ∗

k

[
ln(z−d)−ψH

(
z−d

L

)]
(9)

where χ(zint) and χ∗/k are the intercept and slope,
respectively, of the linear regression ofχ vs.
[ln(z−d)−ψH((z−d)/L)].

3 Results

3.1 Performance of the MAGS instrument

The MAGS was operated from early July 2006 through
end of October 2007 during a total of 310 measuring days.
The measurements covered six manure applications and 5
complete growth-cut cycles of the grassland. Operation was
interrupted during winter (mid December 2006 until begin of
March 2007) and for shorter periods in the second half of the
year 2007.

Figure 4 compares concentrations and fluxes determined
from the two detection units for the whole data set. The
two detection units agreed well, considering that this is not
actually a comparison of two measurements of the same
gradients, but of gradients separated by 15 min. Therefore,
the half hourly concentrations and fluxes were calculated
as averages of the two detection units, whenever both
systems were operating, and if only one detection unit was
running, its 15-min value was taken as representative for
the corresponding half hour. The configuration with two
sampling blocks and effluent analysis by a common detector
was essential to achieve a precision sufficient for gradient
measurements, because the two detectors occasionally
exhibited offsets larger than the detection limit. However,
even in these cases the concentration differences between the
two sampling units remained consistent.

In order to verify the equality of the NH3 scrubbing
efficiencies and to identify the appropriate times to service
the sampling units (exchanging Teflon membranes and clean-
ing), the two sampling blocks were periodically operated
next to each other at the same height (“co-sampling”).
The intercomparison of the concentrations during these
side-by-side samplings following the weekly maintenance is
shown in Fig. 5. The slope does not significantly deviate
from one nor is the intercept significantly different from zero,
confirming the equal performance of both absorption units.
Furthermore, these side-by-side tests supported the detection
limit of 0.1 µgm−3 derived from measurements without air
flow.
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Fig. 4. Comparison of NH3 concentrations (left) and fluxes (right) measured by both AiRRmonia detection blocks DB1 and DB2.
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Fig. 5. Comparison of NH3 concentrations from both sampling
blocks during side-by-side sampling.

Figure 6 illustrates the relative contributions of the
different terms to the overall uncertainty of the NH3
flux measurements during and after a slurry application.
Immediately after manure spreading (on 3 April 2007
at 13:00), the uncertainties related to turbulent transfer
dominated, whereas the precision of the concentration
measurement became limiting as concentrations declined
to background levels, in this particular case already on
the following day as a consequence of rain fall. The
footprint correction contributed significantly to the overall
uncertainty if the measurement fetch was insufficient during
certain periods with wind directions perpendicular to the
main field axis. During concentration levels close to
background the median uncertainty of single (30-min) flux
measurements was 30% overall, and 19% for daytime
values only. In these background conditions, the precision
of the flux measurement is dominated by the uncertainty

of the concentration difference. The 2σ -detection limit
of the concentration difference was 0.28 µgm−3, assuming
standard propagation of the above mentioned measurement
precision. The typical daytime transfer velocity (ratio of flux
to concentration difference) varied between 0.015 to 0.03
ms−1. Using the latter value and the 0.28 µgm−3 detection
limit translates into a flux of 8.4 ngNH3m−2s−1 or a flux
detection limit of about 10 ngNH3m−2s−1.

3.2 Concentration and flux measurements after slurry
application

With the first valid gradient measurements after slurry
applications, fluxes of 25 to 70 µgNH3m−2s−1 were
observed. Figure 7 shows a typical time course of ammonia
concentrations and fluxes during the first six days after
manure spreading. After the initial emission burst, the
influence of environmental conditions (rain, wind speed and
irradiation) on the time course of ammonia fluxes can be
seen, with an enhancing effect of higher wind speed and solar
radiation, and attenuation by rain, respectively.

The application of the KM footprint model resulted in
a scaling of individual, uncorrected AGM fluxes by up to
a factor of 1.7 during wind directions perpendicular to the
main field axis. The effect of the footprint adjustment on
the sum of measured fluxes in the 5 days following slurry
application was 34% on average (range of 14 to 59%, see
Table 2).

A comparison of the ammonia fluxes on the days of slurry
application as calculated by AGM and MBM is presented in
Fig. 8. The two approaches agreed better for the first three
cases in 2006 than for the 2007 events. The situations in
July 2007 and April 2007 were characterised by weak winds
of varying and uncertain directions following the application
of slurry. In these two cases, the differences between
both calculation methods were most prominent at low wind
speeds and considerable wind variations. The difference on
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Fig. 6. Top: absolute and relative uncertainty of individual flux measurements (uncertainties clipped to axis maximum), and bottom:
apportionment of the different error components.

Fig. 7. Time series of of global radiation, wind speed, rainfall, ammonia concentrations and footprint-corrected fluxes after slurry application
on 3.4.07. Note the ordinate breaks for visualising the dynamics both on the first and the following days.
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Table 2. Cumulative N losses after slurry applications and footprint
correction for the sum of valid measurements. The ranges of
cumulative losses reflect the influence of lower and upper limit
estimates of initial fluxes (see Sect. 3.3).

Date Cumulative losses Cumulative losses Footprint
kg NH3-N ha−1 as fraction of correction

applied TAN

13 Jul 06 5.5–6.1 11.6–13% 29%
27 Sep 06 1.9–2.3 4.2–5.2% 45%
30 Oct 06 7.6 11.8% 59%
3 Apr 07 4.5–5.7 8.7–11% 38%
13 Jul 07 5–9.1 10.1–18.6% 14%
24 Oct 07 3.3 7.3% 16%

24 October 2007 looked more systematic. AGM and MBM
fluxes followed each other closely during the first 2 h after
slurry application, but while AGM fluxes fell rapidly in the
afternoon, the MBM fluxes decreased only slightly. This day
was characterised by rather strong and steady winds parallel
to the field orientation and thus favourable conditions for
micrometeorological flux measurements. MBM calculations
using different background assumptions for this case showed
that the fluxes were not sensitive to the inflow concentrations
in the first 2.5 h (5 data points in Fig. 8), but were quite
sensitive afterwards, yielding 30% lower fluxes for an
increase of the estimated ammonia inflow concentration from
2 to 6 µgm−3.

3.3 Estimates of initial emission fluxes not captured by
measurements

In four out of six slurry application events (July and
October 2006, April and July 2007), the NH3 concentrations
initially measured at the lower sampling height exceeded
the detection range of the AiRRmonia monitors for 1 to
4 h. Further occasional gaps in concentrations also occurred
through instrumental failure of the MAGS. For these cases,
and in order to produce a complete (or gap-filled) time series
to calculate the cumulative emission, an empirical estimate
of ammonia concentration at the surfaceχ(z′0) needed to be
used as a predictor of the emission strength.

First, from the fluxes measured after the problematic initial
phase and excluding the 1.5 h period of actual spreading
(incomplete field slurry cover), the concentrations at the
surface were derived by downward extrapolation of the
log-linear profile, using the concentrations at the reference
height zref (=1 m above d) and footprint-adjusted fluxes
(Fχ,cor), such that:

χ
{
z′0

}
=χ{zref}+Fχ,cor(Ra{zref}+Rb) (10)

Ra and Rb are the aerodynamic and viscous sublayer
resistances and were calculated as described in Flechard

et al. (2010). Ammonia concentrations at the upper sampling
height were nearly always available and were linearly
interpolated if missing.

The gas phase concentrationχ(z′0) at the surface was then
assumed to be in equilibrium with the emitting liquid surface,
whose emission potential can be characterised by the [NH+

4 ]
to [H+] ratio (0surface) such that, assuming ideal solution
and using Henry’s law and dissociation constants (Bates and
Pinching, 1950; Dasgupta and Dong, 1986):

KH = 56.04×exp

{
4092×

(
1

T
−

1

298.15

)}
(11)

Matm−1,T in K

KH = 5.67×10−9
×exp

{
6286×

(
1

T
−

1

298.15

)}
(12)

M,T inK

0surface=
χ

{
z′0

}
×10−9

104.1218−4507/T {z′0}
(13)

χ(z′0) in ppbandT (z′0) in K

The0surfaceratio thus describes the bulk emission potential
of the canopy/soil/slurry layer system. For all manure
applications in 2006 and 2007, the0surfaceratios during the
first week after slurry spreading could be roughly described
by an exponential decay over time (Flechard et al., 2010).
Given the dominance of the fluxes on the day of manure
application, however, separate log linear regressions were
applied for the first 10 h only (Fig. 9). The gaps in
0surfacebetween valid flux measurements were filled by a log
linear regression of0surfaceversus elapsed time after slurry
application. Figure 9 also includes the corresponding values
of the slurry (0slurry) in each case att = 0, as obtained
from using measured pH and ammonium contents (Table 1)
in Eq. (13). For the slurry events in 6 July, 6 October,
7 April, and 7 July, 0surface was interpolated between
0slurry and the first “measured”0surface (Fig. 9) with both
a lower and upper limit assumption. First the missing values
were log-linearly interpolated (shown as empty symbols in
Fig. 9). This represents a lower limit estimate, because
it implicitly assumes a homogeneously fertilised field (at
time=0), not taking into account the supply of fresh slurry
during the first 1.5 h through the sequential spreading. As
an upper limit estimate, the initial surface concentrations
were calculated by repeating the initial0slurry value until the
first experimentalχ(z′0) was available, i.e. by takingχ(z′0)
over pure slurry and assuming that the slurry layer remains
unadulterated (no evaporation, no percolating through soil)
for the entire gap period.

A rough validity check of these interpolations was
made using the two events (September 2006 and October
2007) which did not suffer from the upper detection limit
exceedance problem. This was done by omitting the
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Fig. 9. Extrapolation of0surfacevalues on the days of slurry application and resulting gap-filled fluxes. Black diamonds denote measured
fluxes and coloured filled symbols are0 ratios as derived from slurry analyses (t = 0) and from flux measurements (t > 0). Empty symbols
are0 values obtained from interpolations, and lines show the gap-filled fluxes, whereas the grey ranges indicate the effects of lower and
upper limit assumptions during the first hours.

first 2 h of measurements and calculating upper and lower
limits using the same procedure. The resulting interpolated
fluxes accumulated to values smaller (15–19%) and larger
(10–54%) than the sum of measured fluxes, when using the
lower and upper limit assumption, respectively.

3.4 Cumulative NH3 losses after slurry applications

Table 2 summarises cumulative NH3 losses for the six slurry
applications during 2006 and 2007. The losses expressed as
percentage of emitted NH3-N vs. applied total ammoniacal
nitrogen (TAN) varied between 4 and 19%. The losses are
expressed either as a single number for the September 2006
and October 2007 events, or as a range for the other four
events when the lack of initial measured fluxes introduced
additional uncertainty in the overall losses. For the purpose
of annual budget calculations (Flechard et al., 2010), the
averages of the upper and lower ranges were used.

The uncertainty resulting from flux measurement errors
was estimated by calculating the cumulative uncertainty
over all valid measurements assuming Gaussian propagation
of individual flux uncertainties (calculated as described in
Sect. 2.3.3). These non-systematic errors accumulated to
10–15% of the overall losses. Comparing them with the
systematic uncertainties indicated by the range between
upper and lower estimates of initial fluxes revealed that
the overall uncertainty is clearly dominated by the problem
of quantifying the fluxes at the very beginning after slurry
spreading.
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Fig. 10. Time course of cumulative ammonia emissions relative to
total losses for six slurry applications.

The time course of the emissions after the slurry
applications is illustrated in Fig. 10. Except for the fertilising
in October 2006, 80% of the total emitted ammonia was
volatilised on the day of application and 90% during the
first two days. The outstanding October 2006 event was
characterised by almost 100% relative humidity during the
first two days and a humidity drop in connection with an
increase in wind speed on the third day, which may explain
the different emission dynamics in comparison to the other
cases.
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4 Discussion

4.1 Methodological aspects

The MAGS proved to be a reliable system for long
term measurements of NH3 exchange over a managed
grassland site and required servicing and calibration at
weekly to bi-weekly intervals. While other instruments for
measurements of ammonia gradients like the AMANDA,
GRAHAM, or GRAEGOR (Wyers et al., 1993; Wichink
Kruit et al., 2007; Thomas et al., 2009) have better accuracy
and detection limits, MAGS is advantageous in terms of long
term deployment.

The mobility of the MAGS was helpful for measuring
NH3 exchange over this field with regular management
activities, as it allowed a quick removal and re-installation
after machines had passed, even without interrupting the
measurements. Although this helped to minimise the idling
of the instrument after slurry applications, measuring the first
few hours after the spreading still proved to be difficult, not
to mention emissions during spreading itself. First there
was the instrument-specific restriction by the upper detection
limit of the conductivity cell. This limitation might be
avoided in future by increasing the ratio of liquid to air flow
during the first few hours after slurry spreading. A second
problem is the changing fetch during the slurry application
due to the time necessary for spreading 3 to 4 tank volumes
on the field (typically 1.5 h). This challenge is common to
any type of vertical flux measurement method, but it may
be partly overcome if instruments capable of quantifying
vertical fluxes on shorter time scales become available.

The general agreement of the footprint-corrected AGM
and the MBM technique for measuring NH3 losses after
slurry spreading confirmed the consistency of the vertical
and horizontal flux calculation concepts. While the MBM
showed similar results most of the time, its application
became problematic in situations with unsteady and low
wind speeds. While a varying wind regime may also
compromise the AGM technique, it is still tolerant as long as
the sampling point is in the middle of the field with similar
fetch lengths around the windrose. MBM, on the other
hand, only considers the upwind distance of the (rectangular)
field, which varies dramatically with even slight wind shifts
if the direction is not parallel to the main field axis. The
field boundary layer height is not well defined under these
circumstances and apparently resulted in an underestimate by
the MBM fluxes. In addition, the MBM requires knowledge
of the background concentration, which can be difficult to
estimate or to measure under certain situations. In the
October 2007 case, the differences between AGM and MGM
started to differ exactly at the time when the MGM results
became sensitive to the assumption of inflow concentrations.
It indicates that the upwind concentration was higher in
this case than the assumed monthly median of 1.5 µgm−3,
and hence caused the MBM approach to overestimate the

fluxes. The missing background measurements prevent
a definitive interpretation, but an upwind concentration of
10 µgm−3 during a few hours is certainly possible in this
area of intensive agriculture. The Oensingen field site is
rather demanding in this respect due to the patchy nature
and the small field sizes of the agricultural landscape, in
combination with often thermally induced winds of unsteady
character. In such a case, MBM flux measurements need
background concentrations to be monitored at least at half
hourly intervals.

4.2 Ammonia losses after slurry application

Despite the uncertainties in the cumulative N losses
determined here, it is clear that they were considerably lower
than expected from typical emission factors currently used
in emission inventories for spreading by splash plate. As
part of the ALFAM (Ammonia Losses from Field-Applied
Manure,www.alfam.dk) project, a comprehensive data base
of emission measurements following manure application
was collected and Søgaard et al. (2002) derived a pa-
rameterisation scheme including slurry and environmental
variables for estimating ammonia emissions. The ALFAM
model predicted losses in the range of 34–49% of applied
ammoniacal nitrogen for the cases described here. Similarly,
by applying a model based on experiments in Switzerland
(Menzi et al., 1998), losses of 23–59% were calculated.
Overall, measured losses (mean of upper and lower limit
estimates) were lower than model estimates by roughly
a factor of three to four.

The limited number of slurry applications at a single
experimental site recorded here precludes a thorough
statistical analysis of the reasons for model-measurement
differences. It is still noteworthy that a good correlation
(r2 of 0.87) was found between measured emissions and
those predicted by the Menzi et al. parameterisation, but
not between measurements and ALFAM results (r2 of 0.30).
The dominating environmental parameter in the Menzi et al.
model is water vapour saturation deficit (WSD), which is not
included in ALFAM, indicating that this variable was also
of relevance for the emissions determined here. The manure
application with the measured loss of only 4% in September
2006 also exhibited the lowest emissions in the Menzi et al.
(22%) and in the ALFAM (34%) model calculations. It
was not only characterised by the lowest WSD, but also
by lowest slurry dry matter and nitrogen content among
all events described here. The rather thin slurry may have
favoured a faster penetration into the soil and therefore
limited evaporation. It has been found by numerous previous
studies that low dry matter content reduces ammonia losses
(e.g. Pain et al., 1989; Vandre et al., 1997; Misselbrook et al.,
2005b), and there are several reports on NH3 losses after
slurry spreading by splash plates with emission factors lower
than 20% (Braschkat et al., 1997; Misselbrook et al., 2005a;
Rochette et al., 2008) or even 10% (Misselbrook et al., 2004)
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of applied TAN. Most of these low emission observations
were associated with spreading of pig slurry (partly diluted)
with low dry matter contents, albeit of similar magnitude as
the manure applied here. The average dry matter content of
the slurries spread in Oensingen was somewhat lower than
that of the data used for creating the ALFAM and the Menzi
et al. model, but this could only explain part of the lower
emissions.

It should also be considered that the field size has an
influence on the magnitude of emissions. As previously
demonstrated (Ǵenermont and Cellier, 1997; Sommer et al.,
2003), emissions from a large field will be much smaller than
from a small plot for otherwise identical conditions, because
volatilisation is driven by the surface-air concentration
difference, which decreases from the upwind edge of
a freshly fertilised field. The experimental database for
the development of emission models mainly consists of
measurements over smaller plots, as records from large
fields are barely available. It can therefore not be excluded
that current emission factors derived from these models
tend to overestimate NH3 volatilisation if applied to typical
agricultural field sizes.

The mentioned empirical emission models do not
include the influence of soil characteristics on ammonia
volatilisation. High porosity and high cation exchange
capacity (CEC) tend to limit NH3 losses after slurry
application due to fast slurry infiltration and adsorption of
ammonium to exchange sites, respectively (Sommer and
Hutchings, 2001; Sommer et al., 2003). The CEC of
more than 20 cmol/kg at this site effects a high capacity
for ammonium adsorption. Ammonium adsortpion to the
cation exchange sites in the topsoil will decrease ammonia
concentrations at the surface and thus reduce ammonia
emissions. The effect decreases with increasing amounts of
TAN applied, as the soil may become saturated (Sommer
et al., 2003). But given the doses applied here (on average
45 kg ha−1) and the high adsorption capacity of the soil, the
fixation capacity was far from being saturated. In summary,
it is plausible that the soil characteristics at the Oensingen
site conduced to low ammonia volatilisation rates, but this
needs to be further investigated by additional measurements
of soil properties before and after future manure applications.

5 Conclusions

The MAGS was suitable for measuring ammonia exchange
fluxes over a managed grassland site at 15–30 min time
resolution during two consecutive years. The setup with two
sampling units connected to a common detector proved to be
critical for achieving a performance sufficient for resolving
concentration gradients not only after slurry applications but
also during background exchange.

Measured ammonia fluxes after 6 cattle slurry spreading
events (using a splash plate) were relatively low and resulted

in total N losses of the order of 4–20% of applied TAN.
The low emissions appear to be a consequence of favourable
properties of both the applied slurry and the soil. Further
measurements including soil analyses immediately after
slurry application are necessary to confirm the influence of
soil properties on the emissions.

Given the problems related to the inhomogeneous and
changing fetch during slurry application, the AGM technique
has limitations for measuring the emissions during manure
spreading. Further development of fast ammonia sensors
may allow flux measurements at shorter time scales
using the eddy covariance technique, but may only partly
overcome these complications inherent in any vertical flux
measurement method. Initial fluxes are accessible to
measurement with mass balance concepts in combination
with remote sensing techniques (Gaertner et al., 2008), but
they still depend on steady wind conditions and knowledge
of the inflow concentrations, which limits their applicability
in certain situations. Ongoing projects at the Oensingen site
aim to intercompare different vertical and horizontal flux
approaches for measuring ammonia emissions after slurry
applications at the field scale.

There are hardly any records available on measurements of
ammonia losses after slurry spreading on whole agricultural
fields, as most studies have looked at emissions from
plots of a few tens of meters and in wind tunnels.
The emissions of current inventories are therefore likely
to reflect this predominance of smaller plot experiments
in the underlying data base. As NH3 emissions from
large fields are smaller than those from small plots under
otherwise identical conditions, emission inventories might
overestimate the slurry spreading emissions. If this is
indeed the case, the strategies for ammonia mitigation merit
reconsideration. Although such a bias in the inventories
would not affect the relative influence of different manure
application techniques or climatic conditions on losses
during fertilisation, the benefit of investments into low
emission spreading techniques would be overestimated in
comparison to measures aiming at reducing emissions of
animal housings or storage facilities. As a consequence,
there is a clear need for more investigations on ammonia
volatilisation after slurry spreading at the field scale to
validate current numbers in emission inventories.
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