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Abstract. Temperature change is acknowledged to have a
significant effect on soil biological processes and the corre-
sponding sequestration of carbon and cycling of nutrients.
Soils at high latitudes are likely to be particularly impacted
by increases in temperature. Icelandic soils experience un-
usually frequent freeze and thaw cycles compare to other
Arctic regions, which are increasing due to a warming cli-
mate. As a consequence these soils are frequently affected
by short term temperature fluctuations.

In this study, the short term response of a range of soil
microbial parameters (respiration, nutrient availability, mi-
crobial biomass carbon, arylphosphatase and dehydrogenase
activity) to temperature changes was measured in sub-arctic
soils collected from across Iceland. Sample sites reflected
two soil temperature regimes (cryic and frigid) and two land
uses (pasture and arable). The soils were sampled from the
field frozen, equilibrated at−20◦C and then incubated for
two weeks at−10◦C, −2◦C, +2◦C and +10◦. Respiration
and enzymatic activity were temperature dependent. The soil
temperature regime affected the soil microbial biomass car-
bon sensitivity to temperatures. When soils where sampled
from the cryic temperature regime a decreasing soil micro-
bial biomass was detected when temperatures rose above the
freezing point. Frigid soils, sampled from milder climatic
conditions, where unaffected by difference in temperatures.
Nitrogen mineralisation did not change with temperature. At
−10◦C, dissolved organic carbon accounted for 88% of the
fraction of labile carbon which was significantly greater than
that recorded at +10◦C when dissolved organic carbon ac-
counted for as low as 42% of the labile carbon fraction.

Correspondence to:R. Guicharnaud
(rannveig@lbhi.is)

1 Introduction

The Arctic contains about 11% of global soil organic mat-
ter (SOM) (Schimel and Mikan, 2005) while those areas re-
ferred to as “high-latitude ecosystems” may contain as much
as 60% of global SOM (Hobbie et al., 2000). High lati-
tude regions are experiencing the most significant impacts
of climate changes (Serreze et al., 2000; Schimel and Mikan,
2005) and this could result in the release of SOM in the fu-
ture. It is acknowledged that the soil microbial biomass is
active during sub-zero temperatures in winter months (e.g.,
Clein and Schimel, 1995; Mikan et al., 2002; Schimel and
Mikan, 2005) because soil particles maintain liquid water
films at temperatures down to−10◦C (Price and Sowers,
2004). Until now, most research has focussed on the high
arctic environments (e.g., Mikan et al., 2002; Schimel and
Mikan, 2005; Edwards et al., 2006) and the taiga (e.g.,
Schimel and Clein, 1996; Rodionow et al., 2006) where soils,
impacted by permafrost, have limited pedological develop-
ment. There has been little consideration of more mature
soils or those at the margins of agricultural latitudes.

Controlled laboratory studies have frequently been used
for studying the effect of temperature on soil biological pa-
rameters (e.g., Clein and Schimel, 1995; Schimel and Mikan,
2005; Panikov et al., 2006) as they enable experimental con-
trol with homogenised samples, thus removing some of the
uncertainty associated with field conditions. Moreover, field
measurements may not reflect the actual dependence of mi-
crobial respiration, as in the field, soil respiration is the prod-
uct of both root and microbial respiration, which in turn
have different temperature responses (Boone et al., 1998).
Long-term incubation experiments have been criticized as
they may not reflect the actual temperature dependence of
microbial respiration and may underestimate the temperature

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


672 R. Guicharnaud et al.: Short term temperature changes of microbial processes in Icelandic soils

sensitivity of rapidly depleted labile substrate pools (Boone
et al., 1998; Reichstein et al., 2000). Furthermore mineral
transformations in long term experiments may exaggerate
measured microbial responses and experimental sensitivity
may be compromised (Mikan et al., 2002). Short term in-
cubations have been recommended for overcoming such ef-
fects (Boone et al., 1998; Reichstein et al., 2000; Mikan et
al., 2002). Studying short term temperature changes are like-
wise believed to be worthy of consideration as they can give
early indication of the impact of climate change on soil C
dynamics (Boddy et al., 2008; Belay-Tedla et al., 2009).

Iceland lies between 63 and 67◦ N and has a landmass
of 103 000 km2. The climate is sub-arctic in the lowlands
but arctic at higher elevations and the resultant soils are de-
scribed as forming in cryic and frigid zones (Arnalds and
Kimble, 2001). In Iceland, permafrost, is not wide spread,
being found in isolated areas in the interior (Thorhallsdot-
tir, 1997). All soils, however, are exposed to annual freezing
cycles between November and May. Iceland has the most ex-
tensive area of Andosols (volcanic soils) in Europe (Arnalds,
2004) and these soils have a propensity for high organic
carbon and nitrogen sequestration (Palmason et al., 1996;
Gudmundsson et al., 2004). Icelandic soils are estimated to
store up to 2.1×109t of soil organic carbon (Oskarsson et al.,
2004). Despite the relative harshness of the Icelandic cli-
mate, these soils are highly fertile although the need for land
drainage makes effective soil management a considerable un-
dertaking. The soils of Iceland experience unusually frequent
freeze and thaw cycles, more than any other sub-arctic region
(Orradottir 2002; Orradottir et al., 2008). Freeze and thaw
cycles make decomposition processes in cold regions com-
plex due to persistent microbial activity at low temperatures,
interaction of the quality and supply of substrates as well
as microclimate limitation to soil respiration (Barret et al.,
2006). Temperature changes in the short term during freeze
and thaw periods are likely to affect the cycling of carbon by
microorganisms in Icelandic soils.

While there is a broad understanding of the physical and
chemical attributes of Icelandic soils (Arnalds, 2004), there
have been few biological investigations. Most soil studies
have focussed on agronomical aspects and Gudmundsson et
al. (2004) highlighted the inherent N limitation in these soils.
Gudmundsson et al. (2004) and Ritter (2007) have postulated
that these soils are associated with very significant N immo-
bilization, but these observations have not been accompanied
with empirical biological evidence.

Many techniques are available to study microbial com-
munity, size, activity and function in soils. In the case of
this study a brief justification of selected methods can be
made. The soil microbial biomass utilises the labile fraction
of soil organic matter, transforming and cycling organic mat-
ter within the soil. Enzyme activities reflect the metabolic
activity of key soil processes thus reflecting the responsive-
ness of the soil microbial biomass (micc) (Gianfreda et al.,
2005). Soil respiration (Cmin) is a measure of heterotrophic

activity of the microbial biomass (Dawson et al., 2007). KCl
extractable NH+4 and NO−

3 has been interpreted as a measure
of soil exchangeable N (Bremner, 1965) and has frequently
been used for estimating the net N mineralization, nitrifica-
tion and ammonifications rates (Raison et al., 1987). While
various assays have been developed for the measurement of
net Nmin (Curtin and McCallum, 2004), workers have consid-
ered that the difference in initial versus final concentration of
mineral N (NO−

3 and NH+

4 ) can offer an adequate estimation
of total Nmin (Raison et al., 1987; Miller et al., 2007).

Such diverse measurements of soil microbial parameters
require a degree of integration to place the measured values
in a context. The widely adoptedQ10 value is the factor
by which a 10◦C increase in temperature will increase the
measured physiological response. The respiration coefficient
Q10 is commonly used as an index of temperature depen-
dence (Mikan et al., 2002). The metabolic quotient (qCO2)

of the soil micro-flora (Odum, 1969) describes the ratio of
respired C to assimilated biomass C and provides a compar-
ative evaluation of the physiological condition of the soil mi-
crobial community. The soilqCO2 has been used as an in-
dicator of stress as soil microorganisms divert more energy
from growth into maintenance as stress increases (Killham,
1985). Anderson and Domsch (1993) used theqCO2 while
making an assessment of the effect of temperature on soil.

The primary aim of this study was to assess the short term
response of soil microbial processes and nutrients dynamics
in Icelandic soils to changes in temperatures. The effect of
different land use and soil temperature regimes was further-
more studied by sampling soils from three treatment plots,
grass, barley and controls located in both cryic and frigid soil
temperature regimes. Soil microbial processes where stud-
ied by subjecting soils to temperatures both below and above
the freezing point and measuring the total microbial biomass
carbon, dissolved organic carbon, respiration, enzymatic ac-
tivity and N mineralisation.

2 Methods

2.1 Sample preparation and selected soil measurements

Sample sites were selected to cover two soil temperature
regimes and to include both grass (G) and barley (B) cul-
tivation. Barley fields had been ploughed annually, while
grass fields were ploughed at five year intervals and reseeded
with suitable sward. Sample locations were: Möðruvellir
(Möcryic) and Glaumbær (Glcryic ) in the North with a cryic
soil temperature regime and Hvanneyri (Hvfrigid) and Ko-
rpa (Korfrigid) in the West (Fig. 1) both from a frigid tem-
perature regime. Sampling took place at the end of April
while the soils were still frozen. From each site eight repli-
cate 8 cm diameter stainless steel cores samplers were in-
serted into the frozen soil (through the turf) from 0–15 cm
depth and the samples were maintained frozen during their
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Fig. 1. A simplified soil map of Iceland with sampling locations (Modified from Arnalds and Gretarsson, 2001).

transport to Aberdeen, Scotland, where all preparatory work
was conducted in a cooled laboratory. Field capacity was
determined on thawed sub-samples as described by Kassel
and Nielsen (1986). The eight replicate cores were hand
mixed and bulked and sieved through a 3.75 mm sieve (dis-
carding vegetative materials). All sample preparation was
conducted in a cool room at +5◦C to minimise biological ac-
tivity. Before all replicate subsamples were placed in incuba-
tors, soils where weighted for each measurement to be con-
ducted in individual containers making them ready for ex-
tractions and analyses as soon as incubations ended. This al-
lowed minimum disruption of soil microstructures after tem-
perature treatments. Thereafter soils were frozen at−20◦C
(Schimel and Mikan 2005, Clein and Schimel, 1995) for two
weeks (Mikan et al., 2002). After this two week period, the
soils were transferred to the four separate incubators for 2
weeks at−10◦C, −2◦C, +2◦C or +10◦C. The soils were
maintained at ambient moisture content (Schimel and Mikan,
2005) which ranged from 38–59% of field capacity. These
values have been reported to be optimal for soils with Andic
properties (Dahlgren et al., 2004). Subsamples were taken
for routine analysis (bulk density (BD), organic C, N and pH
(Blakemore et al., 1987).

2.2 Microbial biomass C (micc)

Soil microbial biomass carbon (micc) was determined by
chloroform fumigation (Vance et al., 1987) on all soils and

treatment temperatures after the 2 week incubation. Before
incubations soils where weighted into 50 ml centrifuge bot-
tles making them ready for extraction as soon as incubations
ended. Soils were placed frozen in desiccators and were al-
lowed to thaw during the 24 h chloroform fumigation. Non-
fumigated samples were extracted immediately with 25 ml
0.5 M K2SO4. Dissolved organic carbon (DOC) was anal-
ysed by an aqueous carbon analyser (LABTOC Pollution and
Process Monitoring) with UV digestion and infra-red detec-
tor. The KEC factor used was 0.45 (Vance et al., 1987). The
0.5 M K2SO4 extractable DOC from un-fumigated soils sam-
ples was used to characterize the labile carbon pool of these
soils.

2.3 Soil respiration (Cmin)

Soil respiration was conducted as described by Dawson et
al. (2007) by accurately weighing 1 g of field moist soil into 9
ml vacuettes before incubations. Triplicate destructive sam-
ples were maintained at−20◦C for two weeks. Thereafter
samples were removed from−20◦C to 4 different incuba-
tors set at temperatures−10,−2, +2 and +10◦C. During the
2 week experiment, soil respiration was measured after 4, 8
and 14 days. Twenty four hours prior to sampling, vials were
sealed and sampled using a 250 µl syringe. The CO2 was
measured using a gas chromatograph (Chrompack CP 9001)
with a 2.0 m×1/8′′

×2.0 mm column (Porapak QS) and N2
carrier gas (20 ml min−1).
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TheQ10 value was calculated as a respiration coefficient
based on cumulative CO2 release over two weeks with a stan-
dard exponential rate equation over the defined temperature
interval (van’t Hoff, 1898):

Q10 = e(10·(ln(R2/R1)/(T2−T1))) (1)

whereR1 andR2 are respiration rates at temperaturesT1 and
T2 respectively. TheqCO2 value was calculated by dividing
the cumulative CO2 respired (µg CO2-C g−1

OC) by the micro-
bial biomass C (expressed as µg-C g−1

OC; Odum, 1969).

2.4 Enzymatic activity measurements

Dehydrogenase activity was measured according to a modi-
fied method by Trevors (1984) at all temperatures except at
−10◦C (reagents remained frozen). Prior to incubations, 1 g
of field moist soil was placed into sterile darkened Universal
bottles. Universal bottles with soil were placed in incuba-
tor at −20◦C for two weeks. After the two week incuba-
tion at −20◦C Universial bottles were placed in 4 incuba-
tors at the four experimental temperatures (−10◦C, −2◦C,
+2◦C and +10◦C) for two weeks. After the 2 week incuba-
tion , 10 ml 0.1 M iodonitetrazolium chloride (with 0.5 M N-
tris (hydroxymethyl) methyl 1–2 aminoethane-sulfonic acid
(TES), adjusted to pH 7.8 with 5 M NaOH) and placed on an
end-over shaker for 18 h in incubators at,−10◦C, −2◦C,
+2◦C and +10◦C. At −10◦C however, the added 10 ml of
0.1 M iodonitetrazolium chloride solution froze so dehydro-
genase activity was not measured at that particular tempera-
ture. Thereafter 10 ml of ethanol were added and the solution
centrifuged at 2750G for 20 min. Samples were analyzed
at 490 nm on a spectrometer (Cecil Instruments CE373) and
quantified against a linear calibration for iodonitetrazolium
formazan (INTF).

Arylphosphatase activity was measured according to
Tabatabai and Bremner (1969) at all incubation tempera-
tures except−10◦C. Prior to incubations, 1 g of soil was
placed in Universal bottles and incubated at−20◦C for
two weeks. Thereafter bottles were placed in three incu-
bators at−2◦C, +2◦C, and +10◦C for another two weeks.
After the two week incubation at−2◦C, +2◦C, +10◦C,
4 ml de-ionized water, 0.25 ml toluene and 1 ml 0.015 Mp-
nitrophenyl phosphate (substrate) was added to each bottle.
Thereafter bottles were sealed with glass marbles and incu-
bated at 37◦C for 1 h, after which 1 ml 0.5 M CaCl2 and 4 ml
0.5 M NaOH was added, samples were sealed with rubber
bungs and then shaken for 30 s prior to filtration (Whatman
No 1). Absorbance was measured at 400 nm (Cecil Instru-
ments CE373) and concentrations were determined against a
linear calibration usingp-nitrophenol.

TheQ10 coefficient was calculated as activity coefficient
for dehydrogenase and arylphosphatase activities for assess-
ing both enzymes temperature dependence. Calculations
Q10 coefficients were based on van’t Hoff (1898) wereR1

andR2 corresponded to enzyme activities at temperaturesT1
andT2 respectively (Q10= e(10×(ln(R2/R1)/(T2−T1)))).

2.5 Extractable mineral N as an estimation of N
mineralization (Nmin)

Measurement of the extractable NH+

4 -N and NO−

3 -N were
made on soils before undergoing treatments and after the
two week incubation. For soils undergoing temperature
treatments 5 g of field moist samples were placed in 50 ml
centrifuge bottles prior to incubations at−20◦C, −10◦C,
−2◦C, +2◦C and +10◦C . After the 2 weeks incubations
soil samples where shaken in an over and under shaker for
2 h with 25 ml 2 M KCl solution, and then filtered through
Whatman No 42 filter paper before quantification on a flow
injection analyzer (FIAstar 5010 analyzer). All soils were
extracted immediately after removal from incubators.

2.6 Data analysis

Statistical analyses were conducted using SAS 9.1 for Win-
dows 2002–2003. After normality testing, One Way ANOVA
was performed to test for significant differences between
measured soil parameters, landuse systems and tempera-
ture treatments. All levels of significance are expressed as
p≤0.05.

3 Results

3.1 Selected soil measurements

Soil temperature regimes and properties are summarised in
Table 1. The pH values of all soils ranged from 4.3 to 6.8. BD
ranged from 0.2 to 0.5 g/cm3, soil total C from 5.1 to 25%,
soil total N from 0.5 to 1.3% and soil C:N ratio from 10.2 to
14.4. There was no general relationship between measured
soil properties and soil temperature regimes (Table 1).

3.2 Microbial Biomass C (micc)

For individual soils, there was no significant difference be-
tween micc at each treatment temperature for soils sampled
from the frigid temperature regime (Hv and Kor). Soils sam-
pled from the cryic temperature regime (Gl and Mo) had a
significantly higher micc at sub-zero temperatures with an
abrupt decrease as temperature rose. Generally micc values
did not differ significantly between treatment plots indepen-
dent of soil temperature regime (Fig. 2).

3.3 Respiration (Cmin) and DOC

Cmin (cumulative CO2 release) increased with temperatures.
The highest value was at +10◦C for all soils with the excep-
tion of Korfrigid , (barley and grass) with rates higher at +2◦C
and−2◦C respectively (Fig. 3). In contrast to Cmin, DOC
concentrations were generally highest at−10◦C and lowest
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Table 1. Selected soil properties and temperature regimes for all soils, land use and temperature regime. Ctot denotes soil total organic
carbon, Ntot denotes soil total organic nitrogen and BD denotes soil bulk density.

Soil temperature Land use pH Ctotal Ntotal C:N BD Moisture
regime H2O % % g cm−3 %

GLcryic Barley 6.6 9.15 0.77 10.2 0.50 48.6
GLcryic Grass 6.4 9.03 0.90 11.5 0.50 50.3
Hvfrigid Barley 4.5 20.0 1.30 14.4 0.30 63.0
Hvfrigid Grass 4.3 25.0 1.06 13.7 0.20 60.1
Korfrigid Barley 5.4 8.65 0.77 11.2 0.50 53.5
Korfrigid Grass 5.9 9.90 0.90 11.0 0.50 53.7
Möcryic Barley 6.4 5.95 0.44 11.8 0.50 53.6
Möcryic Grass 7.0 5.14 0.51 11.6 0.40 65.2

Fig. 2. Microbial biomass for all soils, land use systems and
soil temperature regime after 2 weeks incubations at−10◦C,
−2◦C, +2◦C and +10◦C. Columns represent mean± 1 SE (n = 3).
Gl=Glaumbær, Hv=Hvanneyri, Kor=Korpa, Mo=Möðruvellir.

at +10◦C (Fig. 3). Moreover, DOC accounted for 88–96% of
total C release (respiration + DOC) for both land uses (bar-
ley and grass) and temperature regimes (Fig. 3) at−10◦C
and 42–74% of total C release at +10◦C.

Metabolic quotients (qCO2 values) for all soils (barley and
grass) at all temperature treatments are shown in Fig. 4. Gen-
erally temperature did not affect theqCO2 values with no
significant differences being detected between temperature
andqCO2 values.

Fig. 3. Cumulative CO2 release and DOC (from un-fumigated soil
samples) after 2 weeks of incubation at−10◦C, −2◦C, +2◦C and
+10◦C. Columns represent mean± 1 SE (n = 3) cumulative release
of CO2 and DOC of all soils, land use and soil temperature regime.
The scattered symbols represent DOC percentage of total carbon
released. Note the difference in scale between mineralized CO2
and extractable DOC. Gl=Glaumbær, Hv=Hvanneyri, Kor=Korpa,
Mo=Möðruvellir.
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Overall, respirationQ10 values differed significantly be-
tween temperature intervals. There was no trend between
highest and lowestQ10 values for temperature treatments.
On most occasions the highest or lowestQ10 values for each
soil were detected at the temperature range between−2 to
+2◦C (Table 2). There was not a significant difference be-
tweenQ10 values and soil temperature regime or land use
(grass and barley). CalculatedQ10 values for Cmin revealed
that soils had lowest temperature dependencies at the cold-
est temperatures (−10 to −2◦C) with meanQ10 values of
1.14. Q10 values between−2 to +2◦C had a mean value of
4, although meanQ10 values were calculated to be between
1 and 2 with the exception of Hvfrigid barley with a value of
17.5 (Table 2). Temperature dependencies in the range of +2
to +10◦C were not significant with a meanQ10 values being
on average 2.16.

3.4 Enzymatic measurements

For dehydrogenase activity, highest values were measured at
+10◦C in all soils (Figs. 5 and 6). In general, the lowest
activity was measured at the lowest temperature, although in
four soils (Glcryic barley, Hvfrigid grass Korfrigid barley and
Mocryic grass) activity was significantly higher at−2◦C than
at +2◦C (Fig. 5).

Q10 values differed significantly between temperature in-
tervals and were generally highest at +2 to +10◦C (Table 2).
There was no trend betweenQ10 values and soil temperature
regime or land use (Table 2).

Arylphosphatase activity was generally highest at +10◦C
and lowest at−2◦C (Fig. 6). There was a significant differ-
ence in arylphosphatase activity at−2◦C compared to +2◦C
but not in the range of +2◦C to +10◦C (Table 2). Arylphos-
phatase activity did not differ significantly between land use.

The arylphosphatase activity quotientQ10 differed signif-
icantly between temperature ranges (−2 to +2◦C and +2 to
10◦C). TheQ10 was higher in the−2◦C to +2◦C range (ex-
cept for Glcryic barley and Mocryic barley) compared toQ10
values in the +2◦C to +10◦C range (Table 2). This is con-
trary to Q10 values for dehydrogenase activity, which were
generally higher at the +2 to +10◦C temperature range.

3.5 Extractable mineral N as an estimation of N
immobilisation, nitrification and mineralization
(Nmin)

For each soil (except for Korfrigid–grass), regardless of land
use or soil temperature regime (cryic and frigid), net NH+

4 -N
immobilisation was the dominant process when temperatures
were above zero (Fig. 7a). Where net ammonification (NH+

4 -
N production) was occurring, this was recorded at sub-zero
temperatures (Fig. 7a). In Glcryic barley and grass soils, net
ammonification occurred at−2 and−10◦C (Glcryic barley)
and−10◦C (Glcryic grass) respectively. In Korfrigid barley

Fig. 4. qCO2 for all soils, land use systems and soil tempera-
ture regime after 2 weeks incubation at−10◦C, −2◦C, +2◦C and
+10◦C. Columns represent mean± 1 SE (n = 3). Gl=Glaumbær,
Hv=Hvanneyri, Kor=Korpa, Mo=Möðruvellir.

and grass soils, net ammonification was occurring at−2◦C
and−10◦C and−2◦C respectively (Fig. 7a).

Net nitrification (NO−

3 -N production) was site specific
and independent of soil temperature regime or land use
(Fig. 7b). For both Glcryic and Korfrigid soil net nitrification
was the dominant process at all temperatures with the excep-
tion of Glcryic grass which had net NO−3 -N immobilisation
at −10◦C and−2◦C. Net NO−

3 -N immobilisation was the
dominant process in Hvfrigid and Mocryic soils. Glcryic bar-
ley and grass had net nitrification at−10◦C and−2◦C and
−10◦C respectively.

Net N-mineralisation (NH+4 -N + NO−

3 -N), was also site
specific (Fig. 7c) with no relationship with soil regime, lan-
duse or incubation temperature. No significant relationships
where detected between site specific characteristics like Ctot,
Ntot, C:N and soil pH.

4 Discussion

The physicochemical properties of the soils were similar
to those that typified Andosols of Iceland (Arnalds, 2004).
Temperature sensitivity of soils differed according to which
temperature regime they where sampled from. Soils sam-
pled from the frigid temperature regime experiencing less cli-
matic extremes, where not sensitive to differences in temper-
atures. Lipson et al. (2000) and Sjursen et al. (2005) reported
that micc may be unaffected by single or multiple freeze –
thaw events, particularly when the events are not extreme
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Table 2. Q10 values for cumulative Cmin for the temperature ranges of−10◦C to −2◦C, −2◦C to +2◦C and +2◦C to +10◦C and
dehydrogenase and arylphosphatase activity two weeks of incubation at the temperature ranges of−2◦C to +2◦C and +2◦C to +10◦C.Q10
values are means of 3 replicates (n = 3).

Soil location Comulative CO2 Dehydrogenase Phosphatase
and treatment −10 to−2◦C −2 to +2◦C +2 to +10◦C −2 to +2◦C +2 to +10◦C −2 to +2◦C +2 to +10◦C

Gl-barley,cryic 2.8 1.3 3.5 0.2 2.0 0.3 2.0
Gl-grass,cryic 1.9 1.5 2.7 3.4 1.5 1.6 1.1
Hv-barley,frigid 0.3 17.5 2.5 1.9 1.2 219 0.4
Hv-grass,frigid 1.3 4.6 1.9 0.7 1.8 11.9 0.6
Kor-barley,frigid 1.1 1.6 0.9 0.4 1.6 46.3 1.2
Kor-grass,frigid 1.7 0.6 0.8 3.4 1.1 647 1.2
Mo-barley,cryic 1.4 0.6 3.5 1.1 1.7 0.1 1.3
Mo-grass,cryic 0.8 4.3 1.5 0.3 1.8 12.1 1.3

Fig. 5. Dehydrogenase activity for all soils, land use sys-
tems and soil temperature regime after 2 weeks incubation at
−2◦C, +2◦C and +10◦C. Columns represent mean± 1 SE (n = 3).
Gl=Glaumbær, Hv=Hvanneyri, Kor=Korpa, Mo=Möðruvellir.

but frequent. This is likely to be the case in Iceland where
temperatures within cultivated soils rarely drop below−5◦C
in lowland agricultural soils (The Icelandic Meteorological
Office, unpublished observations). During such tempera-
ture fluctuations, microorganisms associated with the micc
could readily assimilate substrates in the soil which would
in turn enhance activity (Schimel and Clein, 1996; Lipson
et al., 2000). Soils sampled from the cryic temperature
regime showed on the other hand a different behaviour with
an abrupt decline in micc at above zero (+2◦C and +10◦C)
(Fig. 2). Such results have been reported in the literature.

Fig. 6. Arylphosphatase activity for all soils, land use sys-
tems and soil temperature regime after 2 weeks incubation at
−2◦C, +2◦C and +10◦C. Columns represent mean± 1 SE (n = 3).
Gl=Glaumbær, Hv=Hvanneyri, Kor=Korpa, Mo=Möðruvellir.

Lipson et al. (2000), Joergensen and Raubuch (2003) and
Schimel and Mikan (2005) reported a decline in micc with
increasing soil temperatures in arctic soils during laboratory
incubations. Schimel and Mikan (2005) explained this de-
cline to be the consequence of a substrate shift when tem-
perature rise above 0◦C as arctic soil spend a long time at
or just below 0◦C as they are freezing. The shift has been
linked to depletion of available soil N due to soil warming
(Edwards et al., 2006; Schimel and Mikan 2005). This was
however not the case in this study as available NH+

4 and NO−

3
was not sensitive to temperatures (Fig. 7a and b) nor was
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Fig. 7. Net Ammonification, nitrification and Nmin for all soils,
land use systems and soil temperature regime after 2 weeks incu-
bation at−10◦C, −2◦C, +2◦C and +10◦C. Columns represent
mean± 1 SE (n = 3). Gl=Glaumbær, Hv=Hvanneyri, Kor=Korpa,
Mo=Möðruvellir.

there a correlation with micc. Edwards et al. (2006) simi-
larly reported a decreasing micc with rising temperatures dur-
ing field measurements. Edwards et al. (2006) argued that
a higher micc during colder temperatures was the result of
lower microbial activity slowing down turnover rates. In this
study lowest Cmin rates and enzymatic activity was measured
at−10◦C and highest at +10◦C (Fig. 3 and Fig. 8). Another
theory was presented by Lipson et al. (2000), which stated
that although higher latitudes soil micc was resistant to fluc-

tuations around 0◦C the winter microbial community was
sensitive to soil temperatures that remained above the freez-
ing point. This is likely to have been the case with cryic soils
from this study.

Measurements of Cmin (cumulative CO2 over 2 weeks at
−10◦C, −2◦C, +2◦C and +10◦C) increased with warming
reflecting temperature dependent soil heterotrophic activity
(Fig. 3). Measurable Cmin at sub-zero temperatures has been
widely reported in high arctic, arctic and sub-arctic soils and
has mostly been attributed to unfrozen water films around
soil particle. These are sufficient to maintain microbial ac-
tivities even at low temperatures (e.g. Coxon and Parkinson
1987; Clein and Schimel 1995; Brooks et al., 1997; Mikan et
al., 2002; Miller et al., 2007).Q10 values from soil tempera-
ture regimes of this study were comparable withQ10 values
from sub-alpine organic soils (Q10, 2.5) (Reichstein et al.,
2000), alpine soils (Q10, 2.5 to 3.8) (Fierer et al., 2006) and
sub-Antartic soils (Q10, 1.8 to 2.5) (Smith, 2003), but gener-
ally lower than Arctic tundra soils (Q10, 4.6 to 9.4) (Mikan
et al., 2002). Although calculatedQ10 values were highest in
the range of−2◦C to +2◦C, Q10 values in this study could
not be related specifically to temperature treatment, soil tem-
perature regime or landuse. Leifeld and Fuhrer (2005) found
a negative relationship betweenQ10 values and CO2 pro-
duction when studying the temperature response of differ-
ent soil fractions during a long term incubation experiment
(707 days) and suggested that such a relationship was due
to higher temperature sensitivity of lower SOM quality. No
such relationship was found in this current study likely due
to the fact that this was a short term experiment only measur-
ing the labile fraction of the soil C as less than 1% of SOM
was respired during the two week experiment. Connent et al.,
(2008) investigated the relationship between organic matter
lability and temperature sensitivity and assumed that when
9–10% of the initial C had respired this was representative of
the recalcitrant organic matter pool. This confirms the com-
plexity of the soil environment when trying to draw conclu-
sions from single measurements but it also highlights that
nutrient cycling is maintained in cold environments (Koch et
al., 2007). This is further confirmed when theqCO2 values
are considered as this could suggest that the microbial stress
in relation to growth and maintenance was independent of
the treatments (Killham, 1985).

Dehydrogenase and arylphosphatase activity were mea-
sured at sub-zero temperatures and this observation is in
agreement with previous workers (Bremner and Zantua,
1975). The existence of unfrozen water films at sub-zero
temperatures in Icelandic soils is likely due to the high rel-
ative water holding capacity and low bulk density associ-
ated with volcanic soils (Arnalds, 2004). Dehydrogenase
activity correlated with the measured Cmin (r = 0.86, P <

0.05). Highest dehydrogenase enzyme activity was mea-
sured at the highest temperatures. TheQ10 values were
greater in the range of +2◦C to +10◦C compared to−2◦C
to +2◦C and were generally below 2 (Table 2), indicating
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Fig. 8. Fractions of labile carbon for all soils, land use systems and
soil temperature regime after 2 weeks incubation at−10◦C,−2◦C,
+2◦C and +10◦C. Columns represent mean± 1 SE (n = 3).

that dehydrogenase activity was less temperature depen-
dent within that range as previously reported (Browman and
Tabatabai, 1978; Tabatabai, 1982).

Arylphosphatase activity has also been measured at sub-
zero temperatures (Bremner and Zantua, 1975). The great-
est arylphosphatase increase was observed between−2◦C to
+2◦C rather than from +2◦C to +10◦C, which had been the
case for dehydrogenase activity. As a consequence, arylphos-
phatase activity coefficients (Q10) were higher in the range
−2◦C–+2◦C compared to +2–+10◦C (Table 2). Arylphos-
phatase activity was more sensitive to temperature around the
freezing point than dehydrogenase activity (Browman and
Tabatabai 1978).

When all carbon pools, micc, DOC and Cmin have been
combined (Fig. 8), a pattern is revealed. The biomass pool
remains constant throughout all temperature treatments, but
as temperature rises there is a commensurate rise in respira-
tion because the DOC pool is being metabolised. This re-
sults in lower DOC concentrations when soil respiration is
highest and corresponding highest measured DOC concen-
trations when respiration is lowest (Fig. 8). No difference
was observed in all three carbon pools at temperatures in the
range−2◦C and +2◦C (Fig. 8), hence the soils have been
conditioned to perform around these temperatures. The soils
of Iceland experience unusually frequent freeze and thaw cy-
cles, indeed more than any other sub-arctic region (Orradot-
tir 2002). Hence it would be expected that the soils would be
adapted to such critical temperatures.

At −10◦C, DOC accounted for 88% of the total measured
C released (respiration + DOC), but at +10◦C this was only
65%. This response is similar to the temperature dependent
observations of Miller et al. (2007) in sub-arctic soils. Hob-

bie et al. (2000) stated that cold season respiration may be
mediated by DOC and that this in turn would regulate mi-
crobial biomass size and activity. It has been reported that
during the cold season, microbial biomass switches from
processing plant detritus and SOM to relying more heavily
on recycled microbial biomass and dissolved organic matter
(DOM) in unfrozen water films (Schimel and Mikan, 2005;
Sharma et al., 2006). These results confirm the conserva-
tive microbial dynamics of such soils and highlight that DOC
is a major component of C released in the coldest tempera-
ture treatment (−10◦C) while CO2 is the major component
of C release at the highest temperature. This highlights the
strong temperature dependency of DOC and the close link
between soil DOC and soil microbial activity in Icelandic
soils. It should though be noted that the DOC pool contains
a complex mix of C compounds with some being a complex
of C compounds, some of which are more labile and will
cycle fast while other might be more recalcitrant (Schimel
and Mikan, 2005; Boddy et al., 2008). It has also been dis-
cussed that the more resistant fraction of DOC might have
different temperature dependencies than the more labile frac-
tion (Knorr et al., 2005; Bauer et al., 2008). Soil warming
experiments have demonstrated that increased carbon efflux
rates by increasing temperatures returns eventually to sim-
ilar rates as before the temperature increase. This was be-
lieved to demonstrate that the response pattern was not due to
acclimation response of soil microorganisms but due to de-
pletion of readily decomposable substrate (Davidson et al.,
2000; Ågren and Bosatta, 2002; Kirschbaum, 2004; Bauer et
al., 2008). This study was conducted on a short time scale
(2 weeks) and measured the initial breakdown of the labile
fraction of DOC and it can not be excluded that if the ex-
periment would have been conducted on a larger time scale
that the response pattern would have yielded different carbon
efflux rates. It is however believed that availability of labile
C compounds may be a major component in controlling soil
respiration of high latitude systems (Boddy et al., 2008) and
studying the short term response of the more labile fraction
of DOC merits investigation.

In terms of the nitrogen dynamics, the system behaves in a
more complex way than authors have reported for soils of the
high Arctic (Schimel and Clein, 1996; Schimel and Mikan,
2005) and sub-arctic (Miller et al., 2007). This is not sur-
prising as despite Iceland’s high latitude, these soils are pro-
ductively cultivated. The soils are more mature than soils in
the high arctic with a significantly larger microbial biomass,
greater concentration of labile carbon and considerably more
Cmin. In each of the soils studied there was evidence of con-
siderable ammonification as temperatures rose from−10◦C.
Nmin occurred in certain soils simultaneously both above and
below the freezing point which is consistent with previous
studies in the arctic and sub-arctic (e.g., Schimel and Clein,
1996; Schimel and Mikan, 2005; Oquist et al., 2004; Miller
et al., 2007). There is little doubt that ammonification is more
active as the temperature rises but so is the immobilisation of
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resultant NH+4 as activity per unit of microbial biomass in-
creases. The resultant NH+

4 –N in the soils is being utilised
by the microbial biomass, and this can be seen by the close
correlation between Cmin (cumulative CO2) and soil NH+

4 -
N concentration (Fig. 9). At the highest NH+

4 -N concentra-
tions, there is the lowest cumulative respiration (Cmin) while
those soils with highest microbial activity have negligible
NH+

4 -N, suggesting the N limitation of these soils. These
results are in agreement with other studies of sub-arctic soils
that acknowledge that NH+4 -N production is temperature de-
pendent and enhanced during thawed conditions (Muller et
al., 2002; Miller et al., 2007). Hobbie and Chapin (1996)
suggested that N limitation in arctic soils was due to decom-
posing litter during the cold season, while Weintraub and
Schimel (2003) and Schimel et al. (2004) stated that these
ecosystems were fundamentally N limited. These results
support the findings of Palmasson et al. (1996) and Gud-
mundsson et al. (2004) that N is the constraining factor in
Icelandic soils. Nitrogen limitation in these soils has been at-
tributed to three main factors (Ritter, 2007): Andic soil prop-
erties which slow down organic N turnover, low N mineral-
isation rates (Palmason et al., 1996) and low atmospheric N
deposition (Ritter, 2007). Overall Nmin was not temperature
dependant nor was there an association with soil tempera-
ture regimes or landuse suggesting that cryic and frigid soils
was likely determined by site specific aspects such as micro-
bial biomass composition rather than temperature. Koch et
al. (2007) and Wallenstein et al. (2008) reported that N de-
grading enzymes tend to be less sensitive temperatures than
C degrading enzymes displaying generally lowerQ10 values.
It may be further considered that Nmin in Icelandic soils will
be little affected with increasing temperatures in the Arctic
but rather controlled by soil microbial activity and composi-
tion as well as substrate form and availability (Koch et al.,
2007).

The soils for this study were selected to reflect managed
Icelandic land uses in different temperature regimes. It is ac-
knowledged that they have a considerable carbon binding ca-
pacity and the release of carbon from these environments as a
consequence of climate change could have significant global
impacts. While these soils may have evolved to become con-
ditioned to continual freeze-thaw episodes elevated temper-
atures could alter the labile C pool in the short term. Soil
climatic conditions seam to have an impact on Icelandic soil
micc with soils sampled from the cryic temperature display-
ing more sensitivity to increasing temperatures than soils ex-
periencing a less harsh climate (frigid temperature regime).

5 Conclusions

Microbial biomass size from frigid temperature regimes was
not affected by temperature above and below the freezing
point in the short term, but the resultant activity was. By
selecting a range of activity measurements a better under-

Fig. 9. Cmin (cumulative CO2 release) versus ammonium for all
soils, land use systems and soil temperature regime after 2 weeks
incubation−10◦C, −2◦C, +2◦C and +10◦C. Columns represent
mean± 1 SE (n = 3). Gl=Glaumbær, Hv=Hvanneyri, Kor=Korpa,
Mo=Möðruvellir.

standing of the dynamics can be developed. In this study, ni-
trogen dynamics seemed to reflect site specific criteria rather
than temperature treatments. The response of labile carbon
in these soils was governed by temperature and there is a
careful balance between DOC and carbon mineralisation.
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