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Abstract. Changes in carbon density (i.e., carbon stock perl Introduction
unit area) and land cover greatly affect carbon sequestration.

Previous studies have shqwn that land cover chan_ge detectiofrious approaches have been proposed to study the role
strongly depends on spatial scale. However, the influence oft ihe terrestrial biosphere on regulating £&ncentration

the spatial resolution of land cover change information on the, ihe atmosphere, ranging from measuring forest biomass
estimated terrestrial carbon sequestration is not known. Her‘%hange using national monitoring networks (Fang et al.,
we quantified and evaluated the impact of land cover Changgo()l; Goodale et al., 2002; Smith et al., 2004, 2006; Kauppi
databases at various spatial resolutions (250 m, 500 m, 1 kmy¢ al., 2006) to remote sensing and biogeochemical model-
2km, and 4 km) on the magnitude and spatial patterns of '€ing (McGuire et al., 2001; Myneni et al., 2001; Sitch et al.,
gional carbqn sequestration in four countieS in Geqrgia andzoos; Quaife et al., 2008). Measurements from the field have
Alabama using the General Ensemble biogeochemical Modyg pe the ultimate reference for these approaches. However,
eling System (GEMS). Results indicated a threshold of 1 kmggtaplishing and maintaining ground-based monitoring net-
in the land cover change databases and in the estimated rg;o ks is expensive and usually can only cover a fraction of
gional terrestrial carbon sequestration. Beyond this threshgo landscape (i.e., sampling plots). Biogeochemical model-
old, significant biases occurred in the estimation of terrestrialing with input from remote sensing (e.g., land cover change)
carbon sequestration, its interannual variability, and spatiahng constrained by field measurements is an effective alter-
patterns. In addition, the overriding impact of interannual patjve approach in estimating regional carbon sequestration.

climate variability on the temporal change of regional carbon . .
y b g 9 Land use and land cover change is one of the key driv-

sequestration was unrealistically overshadowed by the imin forces for biogeochemical modeling and sometimes an
pact of land cover change beyond the threshold. The implica- 9 9 9

. . ' . essential component for scaling up plot measurements to re-
tions of these findings directly challenge current continental- :onal and national scales. Land use and land cover change
to global-scale carbon modeling efforts relying on informa- 9 : 9

. X : : . ... directly affect the biogeochemical interactions between the
tion at coarse spatial resolution without incorporating fine- : ) :
scale land cover dynamics. terrestrial biosphere and the atmosphere (Schimel et _aI.,
2001; Houghton and Goodale, 2004) and are responsible
for large carbon fluxes in and out of the terrestrial ecosys-
tems (Fang et al., 2001; Canadell, 2002; Houghton, 2003;
Kauppi et al., 2006). However, it has been a primary chal-
lenge to quantify the carbon exchange between the terrestrial
biosphere and the atmosphere induced by land cover change,
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assimilating land cover change information into simulations

over large areas (Houghton et al., 1999; Prentice et al., 2001
Achard et al., 2004; Ramankutty et al., 2007). In a previous
study (Zhao et al., 2009), we investigated the possible biases
in quantifying carbon exchange between the land and atmo-
sphere caused by ignoring detailed fast-changing dynamics
of land cover, using the General Ensemble biogeochemical
Modeling System (GEMS). GEMS can dynamically assim-

ilate land cover change information into the simulation pro-

cess over large areas. We found that ignoring the detailed
fast-changing dynamics of land cover can lead to a significant
overestimation of carbon uptake by the terrestrial ecosystem
(Zhao et al., 2009). Given the inherent heterogeneity of land-
scapes at various spatial scales, modeled carbon exchang
between the land and atmosphere may vary with the spatial

resolution or grain size of land cover information. There- [ Open Water I Evergreen Forest

fore, the present study was conducted to examine the possi e i i i Wi — i g

ble influence of spatial resolution of land cover change in- I Developed, Medium Intensity ] Grassland/Herbaceous
. . . . I Developed, High-Intensity [ Pasture/Hay

formation on the estimation of terrestrial carbon sequestra- =1 Barren Land (Rock, Sand, Clay) [ Culivated Crops

tion in four counties in Georgia and Alabama, USA over P FieERos R Weter

the period 1992—-2007, using the GEMS model, coupled with
land cover information at spatial resolutions of 250 m, 500 m,
1km, 2km, and 4 km.

Fig. 1. The study area in Georgia and Alabama. Nearly 75% of the
study area is forested, with cropland, wetland, and developed land
covering most of the rest of the region.

2 Methods

of various site scale models such as CENTURY (Parton et
al., 1987; Reiners et al., 2002) and the Erosion-Deposition-
Carbon Model (EDCM) (Liu et al., 2003, 2004a; Zhao et

the border of Georgia and Alabama, United States, consisting!" 2009). In this study, we use EDCM as the underlying
of Chattahoochee, Marion, and Muscogee Counties in GeorPicgeochemical model within GEMS to simulate carbon dy-
namics at the site scale. The spatial deployment of the site-
subtropical with an annual mean precipitation of 1245 mmSc@lé model in GEMS s based on the unique spatial and

and annual mean air temperature of 1°C8between 1972 temporal cpmbingtions (i.e., joint frequency distribution or
and 2007. Forest is the dominant land cover in the region? D) Of major driving variables (e.g., land cover and land use

(~75%). Most of the forests are intensively managed forchange, climate, soils, disturbances, and management). The

timber production, resulting in rapid turnover between clear-9" D Was generated by overlaying these geospatial data layers

cutting and regenerating forest. The city of Columbus, Geor-With @ common grid size of 250-m by 250-m spatial resolu-

gia, and the Fort Benning military complexes account for tion. Model simulation units were the unique combinations
mu,ch of the developed land, and agricultural land and wet.Of these data layers with the finest simulation unit being one

land accounted for much of the rest. Because of the hetergd"id cell (i.e., 250-m by 250-m). The uncertainties of data

geneity of land cover and short rotational forestry, this area id2Y€rs at coarser resolutions were incorporated into GEMS
ideal for investigating how the spatial grain size of land cover Simulations via a probability-based Monte Carlo approach to

change maps affects carbon dynamics at the regional scale 9enerate parameter values from probability density functions
of properties, including initial forest age and biomass, crop

2.2 Model description composition and rotation, soil texture (i.e., fractions of sand,
silt, and clay), and soil organic matter content. The combi-
To simulate the impacts of land use change and spatial resaation of JFD and probability-based model parameterization
olution of land use change maps on regional carbon sourcesnables GEMS to maximally use the finest information con-
and sinks, it is apparent that the underlying model shouldtained in some data layers (land cover change database in
have the capability of simulating carbon dynamics over largethis study, for example), and at the same time other coarser
areas with explicit incorporation of dynamic land use changeresolution data layers are scaled down to the finest resolu-
information. GEMS, developed to upscale carbon stockgion through ensemble probabilistic representations of un-
and fluxes from sites to regions, is one of such models (Liucertainty. Ensemble simulations (size =20), each with in-
et al., 2004a). GEMS has the potential of taking control put values sampled from the value ranges and corresponding

2.1 Study area

The study area, with a total area of 3852%iis located along

gia and Russell County in Alabama (Fig. 1). The climate is
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probability density functions of the biophysical properties, information (Fig. 2). As a result, the land cover data resam-
were performed to transfer input data uncertainty into GEMSpled using the NNS approach was selected as the basis for
output. More detailed descriptions of the model can be foundhis study.
in Liu et al. (20044, b) and Liu (2010).

2.4 Carbon stocks, NPP, and Geospatial Data Layers

2.3 Land cover change database )
Key forest parameters were derived from the Forest Ser-

Consistent, high-quality, and spatially explicit land cover VIC€'S Forest Inventory and Analysis (FIA) databasé:
change databases at 250-m by 250-m resolution were dé[f{a.fs.fed.us/toql_s-data/default.aspThe estimates of net
veloped using the FORE-SCE (FOREcasting SCEnarios oPfimary productivity (NPP) and carbon stock were used for
future land cover) model (Sohl et al., 2007). FORE- modell valldatllon, and forest age distribution, mo.rtall'ty, and
SCE can project future land use changes from spatial an&_electlve cutting were used for model pgrameterlzatlon (see
temporal characteristics of historical land cover changellU €tal., 2004a). The stock and annual increment of above-
and probability-of-occurrence surfaces for each unique langround live biomass carbon density, natural mortality, and se-
cover type. In this study, FORE-SCE relied heavily on the Igcnve and clear.—cut haryestmg were derived from all the FI_A
data generated by the US Geological Survey’s Land Covefield plots of 21 mvemones (spanning from 1970 to 2005) in
Trends project (Loveland et al., 2002) for model parame-the Southeastern United States. _ _
terization. Specifically, FORE-SCE projections were based NPP of any forest inventory plot was estimated using the
on extrapolation of annual “prescriptions” of key land use €ommon assumption that annual root production equals an-
change variables derived from the Land Cover Trends projecf‘ua| fine litterfall (Raich and Nadelhoffer, 1989; Jenkins et
(e.g., the rates of change for individual land cover types, like-al-» 2001):
!ih_ood of specific land cover transitions, qnd bas?c characterNPP’ —2L;+G,
istics of patch size) from the 1992-2000 time period to 2001—
2007. Logistic regression was used to develop probability-whereL; is annual fine litterfall, ands; is the annual incre-
of-occurrence surfaces for each land cover type based on bignent of aboveground woody components, including stems
physical and socioeconomic drivers related to land use typ@nd branches. According to the above equation, the average
at a given location. Individual patches of new land cover NPP of forests at the county level can be estimated by:
were placed on the landscape in an iterative process until th PP— 2L
. o . =2L+G

annual scenario prescriptions had been met. Patch sizes 0
land use change were uniquely assigned by approximatingvhere NPPL, andG are county-wide mean NPPL;, and
the historical distribution of patch sizes for each land coverG;, respectively. The values @f for the counties were esti-
type in the region. The process continues with yearly itera-mated from the FIA database. The average annual fine litter
tions to create a history of variable tracking age classes fokvas estimated to be 2 Mg Chhyr—1 in this region on the
forest and other classes. A more detailed description of théasis of Meldahl et al. (1998) and Jenkins et al. (2001). Be-
model can be found in Sohl and Sayler (2008). lowground biomass C stock in live roots was estimated using

To investigate the potential influence of spatial resolutionthe regression equation for temperate forests (Cairns et al.,
of land use change data on carbon sequestration, we usei®97). Estimated belowground biomass C stock was then
land cover information at five spatial resolutions (250 m, added to the aboveground estimate to produce an estimate of
500m, 1km, 2km, and 4 km). The spatial resolution of the total biomass C stock.
original land cover dataset was 250 m, and the land cover Two inventory datasets were used to characterize forest
maps were resampled to grain sizes of 500 m, 1km, 2 kmstatus and changes at Fort Benning military installation. Cur-
and 4 km. We understood that different sampling approachesent inventory data (including inventories from 2006 to June
may produce different results. However, the difference was2007) contain detailed records of diameter at breast height
not the focus of our study. We were interested in detecting(DBH), height, and total basal area (BA) for each tallied
a threshold, if any, that is a spatial characteristic of the landree within each inventory plot. Historical inventory data
cover change activities in the region and that is independentvere collected from 1981 to 2000 and contained only stand
of sampling approaches. To find the threshold, the samplindasal area with no information on tree DBH and height. To-
approach should be the most effective among all possiblgal aboveground and belowground biomass carbon of each
sampling approaches in retaining finer-scale land cover intallied tree (abgc and bgc, kg Ctré® in the current in-
formation (composition and transitions) as the spatial scalesentory were estimated using the equations from Brown et
becomes coarser. In this study, we used the frequently usedl. (1997) and Cairns et al. (1997). The biomass of midstory
majority sampling (MS) approach and the nearest neighbo(DBH <5 inches) and understory was not estimated. To es-
sampling (NNS) approach to resample the land cover datatimate biomass from stand BA in the historical database, a
Results clearly show the NNS approach was much better tharelationship between stand BA and stand biomass was devel-
the MS approach in retaining finer-scale land cover changeped from the current inventory dataset. Forest change was

www.biogeosciences.net/7/71/2010/ Biogeosciences, BO/2010
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Fig. 2. Temporal changes in area percentage of forest, cropland, urban, and transitional barren from 1992 to 2007 at different spatial

resolutions resampled using the nearest-neighbor and majority resampling approaches.

assessed using forest stands that were inventoried in both the 2004. These spatially explicit potential NPP values, along
current and historical databases. Other data used in this studyith the changes of temperature, soil moisture, and nutri-

are listed in Table 1. ent conditions, were then used to predict monthly NPP dur-
ing the study period (1992-2007). We used 2005 MODIS
2.5 Model simulations NPP for model validation. Model simulations were in good

agreement with MODIS NPP (Fig. 3). In addition, the sim-

Adequately representing the spatial variability of NPP is aulated total SOC in the top 20-cm layer for Fort Benning in
key challenge in simulating the impacts of land use change?000 was 2414 g C i, which compared well with the field

on carbon sequestration from landscape to regional scaleg€asurement of 242490’?!(65‘”3” and Ashwood, 2004).
NPP in EDCM is estimated by multiplying site-specific po- The simulated total fqrest blom_ass_carbon for Russell, Chat-
tential NPP with scalars representing the impacts of environfahoochee, and Marion Counties in 2007 was 5126, 5839,
mental factors such as temperature, moisture, and nutrier@nd 4236 g Cm?, which were in good agreement with the
status. It is impossible to manually parameterize EDCM with forest inventories of 5063, 5479, and 3968 g Cnfexclud-
realistic site-specific potential NPP values over a large arealnd foliage), respectively (USDA Forest Service, 2007 RPA
We developed a data assimilation approach to inversely caldata, available attp://www.fia.fs.fed.us/tools-daja/

culate spatially explicit potential NPP from Moderate Reso-

lution Imaging Spectroradiometer (MODIS) NPP from 2000

Biogeosciences, 7, 786, 2010 www.biogeosciences.net/7/71/2010/
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Table 1. Other geospatial data layers used in this study.

Variables Data source

Climate

monthly minimum temperature, http://www.prism.oregonstate.edu/products/
monthly maximum temperature,

and monthly precipitation

Soll

soil texture, bulk density, organic  http://soils.usda.gov/survey/geography/ssurgo/
matter content, wilting point, and

field capacity

drainage classes http://edna.usgs.gov/Edna/datalayers/cti.asp

Forest
species composition, forest age, andhttp://ffia.fs.fed.us/tools-data/default.asp
biomass distribution data

Cropping practices
shares of various crops and rotatiorhttp://www.nrcs.usda.gov/technical/NRI/
probabilities

Total atmospheric nitrogen http://nadp.sws.uiuc.edu/
deposition
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Fig. 3. Comparison of GEMS simulated’y and MODIS NPP X) in 2005 (¥ =0.99 X, R%2=0.86,n=43 166).
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2.6 Analysis The transitional barren coverage was not significantly af-
fected by the change in spatial resolution from 250 mto 1 km.
Current year carbon sequestration was calculated as th&s the spatial resolution was further coarsened to 2 km and
difference between the current year's and previous year'sj km, the interannual variation in the area percentage of tran-
ecosystem carbon stock (including carbon accumulated isitional barren became pronounced, and even the original
live biomass, forest floor, and soil), which was equal to netpattern was altered when the spatial resolution degraded to
biome productivity (NBP) using the carbon cycle concepts4km (Fig. 2). Although the long-term average percentage
and terminology of Chapin et al. (2006). Positive values rep-of transitional barren did not change significantly, the coef-
resent uptake, and negative values indicate carbon loss froficient of variability (i.e., standard deviation divided by the
the biome. mean) increased from 0.29 to 0.88. Since the transitional
To quantify the impact of spatial resolution of land cover parren was caused primarily by forest harvesting, the inter-
change information on estimating carbon sequestration, weinnual variation in transitional barren corresponded closely
used the carbon sequestration estimates at the finest resoligith the variation in forest. At the resolution of 4 km, tran-
tion (250 m) as the base for comparison. The spatial resolusitional barren coverage was anomalously high in 2004 and
tion at which carbon Sequestration characteristics (e.g., meaanoma|ou5|y low in 2002 and 2003. Correspondingw, forest

and variability measures) demonstrated significant changegas anomalously low in 2004 and anomalously high in 2002
from the base would be considered the critical spatial resoluand 2003 (Fig. 2).
tion. To find the critical resolution, we calculated the abso-

lute relative change of a carbon sequestration mégric 3.2 Influence of spatial resolution on carbon
 Gi—Cosom sequestration
= 20
|C250 As the spatial resolution degraded from 250m to 500 m,

whereC; is the mean, minimum, maximum, or standard de- 1 km, 2km, and 4 km, the estimated mean carbon sequestra-
viation of the annual carbon sequestration rates at spatial region rate during the study period changed from 0.27 to 0.26,
olutioni (i =250m, 500 m, 1km, 2km, and 4 km). To facili- 0.27, 0.18, and 0.40 Mg C hdyr—1, respectively. The car-
tate comparison across different statistics, we normalized bon sequestration rate remained relatively stable (normalized
relative change\ within 10%) when the resolution changed

- di %x100%  from 250m to 1km (Figs. 4 and 5). It changed drastically
max{|8250 ml, 18500 ml, 181 kml, [82 kml, |84 kml} and unpredictably, however, when the resolution was fur-
ther degraded to 4km. The change was a decrease of 33%
3 Results from 1 km to 2 km but an increase of 48% from 1 km to 4 km
(Fig. 4). The results suggest that a critical threshold of spatial
3.1 Influence of spatial resolution on land cover resolution for estimating carbon sequestration in the region

was larger than 1 km but smaller than 2km, corresponding
Forest was the dominant land cover type in the regionyell with the land cover change threshold described above.
(>75%), followed by cropland and urban areas. Combined,Beyond this critical resolution, the estimated regional carbon
they accounted for more than 90% of the study area. Th%equestration rate became unreliable.
transitional barren category, caused primarily by forest har-  The existence of a critical threshold for estimating regional
vesting, was closely associated with the dynamics of forestcarhon dynamics in this region was further corrobated with
We analyzed the detailed area changes of these four langhe change of interannual variability (demonstrated by min-
cover types with the degradation of spatial resolution overimym and maximum values and standard deviations) of car-
the period 1992-2007 (Fig. 2, based on NNS). Overall, thenon sequestration estimated using land cover maps of vari-
area of forestland and cropland decreased while urban aregs resolutions (Figs. 4 and 5). Temporal change of carbon
expanded based on the 250-m resolution data. sequestration was not significantly affected by degradation

The overall temporal pattern of land cover change re-of the spatial resolution from 250m to 500 m (normalized

mained unchanged as the resolution coarsened from 250 fg|ative change within 5%). However, this general pattern
to 1 km. In addition, the magnitudes or compositions of landya5 gradually altered when the spatial resolution was fur-
cover showed little change among these spatial resolutionsner coarsened to 1 kna\(within 30%) and above (alh val-
In contrast, as the resolution coarsened from 1km to 4 kmyes were larger than 70% except that for the maximum car-
these four land cover types demonstrated apparent chang@gn sequestration). For example, the ecosystem was a strong
in magnitude, suggesting changes in land cover composisoyrce in 2004 at 4 km, but it was a strong sink at 2 km and
tion (Fig. 2). For the year 1992, for example, as the resolu-g re|atively small sink at 250 m, 500m, and 1km (Fig. 4).
tion coarsened from 1km to 4 km, urban area increased fromnpterannual variability in forest disturbances caused this re-
5.6% to 6.9%, forest area decreased from 79.1% to 77.2%gt (Fig. 2). The minimum annual carbon sequestration

and cropland increased from 6.7% to 8.5%. was—0.02, 0.03,-0.11,—0.58, and—0.64 Mg C halyr—1
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) . spatial resolution of land cover information changed from 250 m, to
Fig. 4. Temporal changes of carbon sequestration between 199%00m 1km. 2km. and 4 km

and 2007 for five spatial resolutions.

lution was coarsened, many spatial details of carbon seques-
under spatial resolutions of 250 m, 500 m, 1 km, 2km, andtration disappeared (Fig. 6). Averaging across all the years
4 km, respectively. An intermediate change in the minimumfor all pixels, the minimum mean carbon sequestration rate
rate was detected\=15%) from 500m to 1 km, and a dra- at the pixel level in the region was15.9, —14.1, —13.0,
matic change from 1km to 2kmA(>90%). The change —10.9, and—9.0MgChalyr~1 as the resolution changed
of maximum annual carbon sequestration was gradual, butrom 250 m to 4 km, and the maximum changed from 3.8
it increased significantly from 0.44 to 0.47, 0.62, 0.59, andto 3.6, 3.0, 2.7, and 2.3 Mg C hayr—1. This clearly shows
1.07 Mg C halyr~1 as the spatial resolution coarsened. Thethat aggregating land cover information in space diminished
maximum annual carbon sequestration changed dramaticallthe range of spatial variability of simulated carbon sequestra-
(A=29%) from 500m to 1km. That the standard devia- tion on the landscape. Our results highlight the necessity of
tion of annual carbon sequestration changed from 0.12 taharacterizing land cover changes that influence carbon ex-
0.13,0.21,0.39, and 0.43 Mg Chiyr—! also suggested that change between the terrestrial biosphere and the atmosphere
the critical spatial resolution threshold was from 500 m to using spatially explicit information at the scale where land
1km (A=29%). All the evidence from variability metrics cover change activities happen (i.e., at the field scale).
(i.e., minimum, maximum, and standard deviation) clearly
demonstrated significant changesffom 15 to 29%) in the . :
temporal variability of carbon sequestration from 500m to4 Discussion

0/H—! 0, 1
Lkm, and larger changes\f24%-90%) when resolution Model simulations, using remotely sensed observations of

changed from 1 km to 2km. The results indicated that a res; . : .

. ” : land cover and land use change information, are effective
olution between 500 m and 1 km was the critical spatial reso-, o .
lution for adequately characterizing the interannual variabil-for estimating carbpn sequestration over large areas (F‘."‘”g
ity of carbon sequestration at the regional scale. Beyond theet al., 2001; Myneni et al., 2001; Goodale et al., 2002; Smith

threshold, the interannual variability would be exaggerated. et al., 2004, 2006; Sitch et al., 2005; Kauppi et al., 2006;

o . Quaife et al., 2008). Land cover change is just one driver
The critical resolution between 500 m and 1 km for tempo- o¢ carhon sequestration. Another driver, maybe more im-
ral variability was smaller but close to the critical threshold

portant than land cover change in areas where land cover
(larger than 1 km but smaller than 2 km) for mean carbon sé¢pange rates are low (e.g., United States, Japan, and Europe),
questration. For simplicity, we refer to 1 km as the critical

R o ~~“"is the change of biomass stock in forestlands. Model simu-
threshold for estimating carbon sequestration in the region iN,ions must agree well with observations of carbon stocks

the rest of the paper despite the small difference for mean,,q fiyxes. Our model simulations in the region were well

and variability. constrained with field measurements from the FIA (Liu et
The spatial distributions of the average rate of carbon seq|.; 2004a) and remotely sensed NPP (Fig. 3). The carbon
questration between 1992 and 2007 at the five spatial resolusequestration strength during the study period at 250-m res-

tions showed a high degree of spatial heterogeneity (Fig. 6)olution was consistent with other studies (e.g., Myneni et al.,
At 250-m resolution, the carbon sequestration map showe@001; Liu et al., 2004a; Binford et al., 2005).

detailed spatial patterns and variability. As the spatial reso-

www.biogeosciences.net/7/71/2010/ Biogeosciences, B0/ 2010
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ing land use change information into the simulation process
across large spatial extents (Liu et al., 2003, 20044, b; Liu,
2010; Tan et al., 2005, 2006, 2007).

This study showed that the coarsening of spatial resolu-
tion in land cover databases altered land cover patterns and
ignored the spatial details of land cover change, resulting in
significant biases in estimated terrestrial ecosystem carbon
sequestration. Our results also indicated that a resolution
threshold of 1 km existed in the study area, and beyond this
critical threshold not only the magnitude but also the general
patterns of land cover and carbon sequestration would be al-
tered. This finding has important implications for continental
to global carbon studies because most modeling efforts rely
heavily on land cover data at coarse spatial resolution (often
coarser than 05grid cells) (e.g., Schimel et al., 2000; Hurtt

] Greequesiation (Mg Gha" ') et al., 2002; Krinner et al., 2005). Two issues should be ad-
5 ; 0 N dressed properly at the continental and global scales. First, is
R oo A the threshold of 1 km found in this study still valid as we deal
R = with modeling efforts at the continental and global scale?

The critical threshold value of 1 km might be universal be-

cause most of the land disturbances and management activi-
Fig. 6. The distributions of carbon sequestration between 1992 andies occur at or below this spatial scale. However, more stud-
2007 for five spatial resolutions. White represents urban/residentiajes should be performed to confirm or disprove the generality
areas (mainly Columbus in the central north) and the cantonmentgg thjs finding in other areas or other land cover resampling
in the |nst_allat|on (i.e., two big contiguous areas at the central S?”“hpproaches. The issue of spatial resolution is not only related
and the right). These areas were masked because of lack of Npy}, o estimation of carbon sequestration as demonstrated in
data or proper understanding of the underlying processes. .

this study but also relevant to any surveys on forests and land

use activities such as estimating timber reserves, forest area,

or regional biodiversity (Crawley and Harral, 2001; Hame et

Several previous studies have documented the effectal., 2001; Chase and Leibold, 2002).

of spatial resolution on land cover classification/mapping Second, approaches for upscaling carbon dynamics at the
and consequent carbon exchange between the terrestriplot scale to global scale with adequate assimilation of land
biosphere and the atmosphere. For example, Kimball etover change dynamics at the finer spatial resolution have to
al. (1999) found that NPP was strongly sensitive to landbe developed at continental to global scales. Without proper
cover spatial scale due primarily to land cover aggregation efupscaling techniques, significant errors can be introduced to
fects on the representation of deciduous and coniferous lifethe estimated spatial and temporal changes of carbon seques-
forms. Jung et al. (2007), on the other hand, documentedration. Our study showed that beyond the threshold of 1 km,
that the spatial land cover resolution has little effect on mod-the magnitude and the interannual variability of carbon se-
eling gross primary productivity over Europe. However, both questration estimates differed significantly from those within
of these studies used a general ecosystem process modéhe threshold. In addition, the overriding effect of interannual
Biome-BGC, which is incapable of dynamically assimilating climate variability on the temporal change of regional carbon
land cover change information into the simulation processsequestration was unrealistically overshadowed by the im-
across large spatial extents. This represents a limitation irpacts of land cover change once the threshold was crossed.
the ability to use such models to examine the possible im-Nevertheless, there were efforts to bring land cover change
pacts of the spatial resolution of land cover maps over timeinformation into global biogeochemical models using tem-
In addition, Turner et al. (2000) reported detailed effects ofporal fractional changes of land cover within each grid cell
alternative spatial resolution on land cover mapping over aor pixel (Sitch et al., 2003; Zaehle, 2005; Jung et al., 2007;
managed forest landscape in western Oregon and evaluatd&gbndeau et al., 2007; Strassmann et al., 2008). However,
its influences on the estimation of NPP and net ecosystenthese approaches are not sufficient because they only simu-
productivity using a simple bookkeeping approach. Unfor-lated impacts of the net land use changes rather than detailed
tunately, this approach was unable to capture the spatial angross land use transitions at the grid cell level. The conse-
temporal influences of land cover change information on car-quence of this treatment is not known.
bon fluxes. Our study relied on consistent and spatially ex- The threshold of 1-km resolution detected in this study
plicit land cover change databases and a robust biogeochemshould be considered an indicator of the spatial character-
cal modeling system that is capable of dynamically assimilat-istics of land cover change activities in this region rather
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than a property associated with the specific land cover resamzhapin, F. S., Woodwell, G. M., Randerson, J. T., et al.. Reconcil-

pling approach we used. We used the land cover data gener- ing carbon-cycle concepts, terminology, and methods, Ecosys-

ated from using the nearest-neighbor resampling approach tems, 9, 1041-1050, 2006.

because it effectively retained finer-scale land cover changé&hase, J. M. and Leibold, M. A.. Spatial scale dictates the

information as the scale became coarser (Fig. 2), a require- productivity—biodiversity relationship, Nature, 416, 427-430,

ment for detecting the threshold of land cover resolution. The 2002. . . .

. . . Crawley, M. J. and Harral, J. E.: Scale dependence in plant biodi-

frequently used majority sampling approach was not suitable versity, Science, 291, 864868, 2001.

for threshold detect|_on beca_use it could not effectively retaquang, J.Y., Chen, A. P., Peng, C. H., Zhao, S. Q., and Ci, L.

land cover change information across scales. The errors in changes in forest biomass carbon storage in China between 1949

model simulations caused by different resampling schemes, and 1998, Science, 292, 23202322, 2001.

especially the most popular majority resampling approachGarten, C. T. and Ashwood, T. L.. Land Cover Differences in

and remedy measures should be further investigated. Soil Carbon and Nitrogen at Fort Benning, Georgia, ORNL/TM-
Land cover change is critical in determining the distri- 2004/14, Oak Ridge National Laboratory, Oak Ridge, TN 37831,

bution, magnitude, and mechanisms of terrestrial carbon 2004.

sources and sinks at local to global scales (Canadell, 200Z500dale, C. L., Apps, M. J., Birdsey, R. A., et al.: Forest carbon

Houghton, 2003; Kauppi et al., 2006). More importantly, it sinks in the Northern Hemisphere, Ecol. Appl., 12, 891-899,

. s . . 2002.
is critical to examine land cover change and its subsequenﬁémey T., Stenberg, P., Anderson, K., Rauste, Y., Kennedy, P., Folv-

influence on Ca”?o_”_ sequestration at. the.s_ca_le Where lan ing, S., and Sarkeala J.: AVHRR-based forest proportion map of
cover change activities occur. Otherwise, it is impossible to o Pan-European area, Remote Sens. Environ., 77, 76-91, 2001.
accurately quantify biological carbon sequestration potentialjoyghton, R. A., Hackler, J. L., and Lawrence, K. T.: The US car-
and to further formulate strategies to mitigate global climate pon budget: Contributions from land-use change, Science, 285,
change. 574-578, 1999.
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