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Abstract. Clouds can significantly affect carbon exchange
process between forest ecosystems and the atmosphere by
influencing the quantity and quality of solar radiation re-
ceived by ecosystem’s surface and other environmental fac-
tors. In this study, we analyzed the effects of cloudiness on
net ecosystem exchange of carbon dioxide (NEE) in a tem-
perate broad-leaved Korean pine mixed forest at Changbais-
han (CBS) and a subtropical evergreen broad-leaved forest at
Dinghushan (DHS), based on the flux data obtained during
June–August from 2003 to 2006. The results showed that
the response of NEE of forest ecosystems to photosynthet-
ically active radiation (PAR) differed under clear skies and
cloudy skies. Compared with clear skies, the light-saturated
maximum photosynthetic rate (Pec,max) at CBS under cloudy
skies during mid-growing season (from June to August) in-
creased by 34%, 25%, 4% and 11% in 2003, 2004, 2005
and 2006, respectively. In contrast,Pec,max of the forest
ecosystem at DHS was higher under clear skies than under
cloudy skies from 2004 to 2006. When the clearness index
(kt ) ranged between 0.4 and 0.6, the NEE reached its max-
imum at both CBS and DHS. However, the NEE decreased
more dramatically at CBS than at DHS whenkt exceeded
0.6. The results indicate that cloudy sky conditions are ben-
eficial to net carbon uptake in the temperate forest ecosys-
tem and the subtropical forest ecosystem. Under clear skies,
vapor pressure deficit (VPD) and air temperature increased
due to strong light. These environmental conditions led to
greater decrease in gross ecosystem photosynthesis (GEP)
and greater increase in ecosystem respiration (Re) at CBS
than at DHS. As a result, clear sky conditions caused more
reduction of NEE in the temperate forest ecosystem than in
the subtropical forest ecosystem. The response of NEE of
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different forest ecosystems to the changes in cloudiness is
an important factor that should be included in evaluating re-
gional carbon budgets under climate change conditions.

1 Introduction

Solar radiation, temperature and moisture are the main envi-
ronmental factors that control carbon dioxide exchange be-
tween terrestrial ecosystems and the atmosphere (Law et al.,
2002; Baldocchi, 2008). Changes in cloudiness and atmo-
spheric aerosols content can directly influence solar radia-
tion and direct and diffuse radiation received on the ground
(Gu et al., 2003; Niyogi et al., 2004; Min, 2005). Corre-
spondingly, other environmental variables (temperature, va-
por pressure deficit (VPD), etc.) can also change (Gu et al.,
1999; Urban et al, 2007). Changes in these environmental
variables can strongly affect carbon exchange between ter-
restrial ecosystems and the atmosphere (Letts et al., 2005;
Urban et al., 2007). Many studies have shown that increase
in diffuse radiation received by ecosystem’s surface can sig-
nificantly enhance net ecosystem exchange of carbon dioxide
(NEE) (Goulden et al., 1997; Gu et al., 1999, 2003; Law et
al., 2002) and light use efficiency (LUE) of forest ecosys-
tems (Gu et al., 2002; Alton et al., 2007; Farquhar and Rod-
erick, 2008). Global warming has altered spatial patterns of
precipitation and cloudiness on a global scale (Rind et al.,
1990; Kirschbaum and Fischlin, 1995). Meanwhile, volcanic
eruptions and air pollution have changed atmospheric aerosol
content (Niyogi et al., 2007; Farquhar and Roderick, 2008).
These changes in cloudiness and atmospheric aerosol con-
tent will likely affect the carbon sink function of terrestrial
ecosystems in the future.
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Annual precipitation has decreased in North and North-
east China and increased in the mid and lower Yangtze River
basin since the 1990’s (Wang et al., 2004; Ding et al., 2006)
as a result of global climate change. The changes in precip-
itation patterns decrease cloudiness in North and Northeast
China but increase cloudiness in the southern Yangtze River
region. These Changes can influence many environmen-
tal factors, including solar radiation received on the ground,
temperature, and moisture. How these changes affect the car-
bon uptake of forest ecosystems in different regions of China
warrants in-depth study (Yu et al., 2003, 2008).

Ranging from cold temperate zone to subtropical zone, the
North-South Transect of Eastern China (NSTEC) embraces
a vegetation sequence, starting with cold temperate conifer-
ous forests and extending through temperate mixed forests,
warm temperate deciduous broadleaf forests, subtropical ev-
ergreen coniferous forests, evergreen broadleaf forests, and
tropical rainforests (Yu et al., 2006, 2008). Carbon storage
by these forest ecosystems plays an important role in regional
and global carbon cycles (Fang et al., 2001; Yu et al., 2008).
The temperate broad-leaved Korean pine forest at Chang-
baishan (CBS) and the subtropical evergreen broad-leaved
forest at Dinghushan (DHS) are located within the NSTEC
and are parts of ChinaFLUX. These two forest types rep-
resent China’s north temperate natural forest ecosystem and
south subtropical natural forest ecosystem, respectively. The
two forests at CBS and DHS are old-growth forests, but they
are still acting as strong carbon sink. The annual average val-
ues of net ecosystem productivity (NEP) (from 2003 to 2005)
at CBS and at DHS were 259±19 and 434±66 g C m−2 yr−1,
respectively (Yu et al., 2008).

Previous studies have shown that environmental factors
controlling carbon exchange were different at CBS and at
DHS (Guan et al., 2006; Wang, et al., 2006; Zhang et al.,
2006; Yu et al., 2008). Solar radiation received by ecosys-
tem and temperature are the main factors influencing the car-
bon budget of the temperate forest ecosystem at CBS (Zhang
et al., 2006; Yu et al., 2008). Solar radiation received by
ecosystem represents the primary factor influencing daytime
CO2 flux at CBS during the growing season (Guan et al.,
2006). However, solar radiation received by ecosystem was
insufficient at DHS due to heavy precipitation in rainy season
(summer). As a result, net carbon uptake of this subtropical
forest ecosystem reached its highest value at the beginning
of dry season (autumn) (Zhang et al., 2006; Yu et al., 2008;
Wang et al., 2006).

Not only climate characteristics but also environmental
factors controlling carbon exchange were different between
the forest ecosystems at CBS and at DHS. Thus, changes
in NEE with cloudiness may be different in the two for-
est ecosystems. During summer, solar radiation received by
ecosystem was strong, and temperature reached maximum
in the temperate forest ecosystem. Under clear skies, strong
solar radiation received by ecosystem and high temperature
caused photosynthesis to reach its saturation or even decrease

in the temperate forest ecosystem (Guan et al., 2006; Zhang
2006). Meanwhile, these conditions increase ecosystem res-
piration. Therefore, net carbon uptake of the temperate for-
est decreased. According to these results, we assume that
cloudy skies might benefit the net carbon uptake of the tem-
perate forest ecosystems in summer, as both solar radiation
received by ecosystem and temperature relatively decreased.
In contrast, temperature and moisture of the subtropical for-
est ecosystem reached their maximum in summer, but solar
radiation received by ecosystem was insufficient because of
heavy precipitation and increased cloudiness. Thus, we as-
sume that the high temperature and moisture could increase
ecosystem respiration under cloudy sky conditions, but insuf-
ficient solar radiation received by ecosystem could restrain
photosynthesis. Therefore, net carbon uptake of the subtrop-
ical forest would decrease. However, clear skies might bene-
fit to net carbon uptake of the subtropical forest ecosystem in
summer, because solar radiation received by ecosystem in-
creased under clear sky conditions. Based on these assump-
tions, when the environmental factors changed with the pat-
tern of precipitation and cloudiness in China, changes in net
carbon uptake of the two forest ecosystems would be differ-
ent.

In this study, our main objective was to reveal the effects of
changes in cloudiness on net carbon uptake of the temperate
forest ecosystem at CBS and the subtropical forest ecosystem
at DHS in East China. We hypothesized that cloudy skies are
more beneficial to increase net carbon uptake in the temper-
ate forest ecosystem at CBS than in the subtropical forest
ecosystem at DHS. Our findings can improve the evaluation
on the net carbon uptake of different forest ecosystem in the
Asia monsoon region under climate change conditions.

2 Methods

2.1 Site description and measurements

The temperate broad-leaved Korean pine forest at Chang-
baishan (CBS) is located in China’s Jinlin Province
(41◦41′49′′–42◦25′18′′ N, 12◦42′55′′–128◦16′48′′ E). CBS
belongs to the monsoon-influenced, temperate continen-
tal climate, and its growing season extends from May to
September. The subtropical evergreen broad-leaved for-
est at Dinghushan (DHS) is located in China’s Guangdong
Province (23◦09′–23◦11′ N, 112◦30′–112◦33′ E). DHS be-
longs to the subtropical monsoon humid climate. Rainfall
in DHS reflects a distinct pattern of wet season (from April
to September) and dry season (from October to March). Ta-
ble 1 provides extensive descriptions of the two sites (Guan
et al., 2006; Zhang et al., 2006; Yu et al., 2008).

CO2 flux over the two forest ecosystems has been mea-
sured with eddy covariance (EC) systems since 2002. The
EC system consists of an open-path infrared gas analyzer
(Model LI-7500, LICOR Inc., Lincoln, NE, USA) and a 3-D
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Table 1. Site information.

Sites CBS DHS

Location 42◦24′ N, 128◦05′ E 23◦10′ N, 112◦34′ E
Elevation (m) 738 300
Topography Flat Hilly
Mean annual temperature (◦C) 3.6 20.9
Annual precipitation (mm) 695 1956
Soil type Montane dark brown forest Lateritic red soil, yellow

soil soil
Canopy height (m) 26 17
Predominant species Pinus koriaensis, Tilia Castanopis chinensis,

amurensis, Quercus Schim asuperba, Pinus
mongolica, Fraxinus massonian
mandshurica, Acer mino

Leaf area index (LAI) 6.1 (the maximum in the 4.0 (average)
growing season)

Biomass (kg m−2) 36.23 14.14
Soil organic matter 87.5 37.7
(g kg−1)b

Stand age (year) 200 100
Height of Tower (m) 61.8 36
Height of eddy covariance 41.5 27
system (m)a

Height of radiometer (m)a 32 36
Height of rain gauge (m)a 61.8 36
Profiles of air temperature 2.5, 8, 22, 26, 32, 50, 60 4, 9, 15, 21, 27, 31, 36
and humidity (m)a

Depth of Soil temperature 5, 10, 20, 50, 100 5, 10, 20, 50, 100
(cm)a

Depth of Soil moisture 5, 20, 50 5, 20, 40
(cm)a

aHeight and depth indicate the location of the sensors mounted.
bData source: database of Chinese Ecosystem Research Network (CERN)

sonic anemometer (Model CSAT3, Campbell Scientific Inc.,
Logan, UT, USA). The instrument signals were recorded
at 10 Hz by a CR5000 datalogger (Model CR5000, Camp-
bell Scientific Inc.) and then block-averaged over 30-min
intervals for analysis and archiving. Routine meteorologi-
cal variables were measured simultaneously with the eddy
fluxes. Air humidity and air temperature profiles were mea-
sured with shielded and aspirated probes (HMP45C, Vaisala,
Helsinki, Finland) at different heights above and within the
canopy. Global radiation and net radiation above the canopy
were measured with radiometers (CM11 and CNR-1, Kipp
and Zonen, Delft, The Netherlands). Photosynthetically ac-
tive radiation (PAR) above the canopy was measured with
a quantum sensor (LI-190Sb, LiCor Inc., USA). To ensure
the accuracy of the radiation measurement, CM11 and LI-
190Sb were calibrated and compared with other CM11 and
LI-190Sb sensors that were installed at an automatic meteo-
rological observation station of the research station. Precip-
itation was recorded with a rain gauge (RainGauge 52203,

Young, Traverse City, MI, USA) above the canopy. Soil
temperature and soil moisture were measured using thermo-
couple probes (105T, Campbell, USA, CS616L, Compbell,
USA) and water content reflectometers (CS616, Campbell
Scientific Inc), respectively. All meteorological measure-
ments were recorded at 30-min intervals with dataloggers
(Model CR10X&CR23X, Campbell Scientific Inc.) (Guan
et al., 2006; Zhang et al., 2006; Yu et al., 2008). Detailed
information on the routine meteorological variables is sum-
marized in Table 1.

2.2 Data processing

We analyzed the effects of changes in cloudiness on NEE at
CBS and at DHS, based on 30-min CO2 flux data and rou-
tine meteorological data collected during the growing sea-
son (June–August) from 2003 to 2006. Cloudiness is used in
a very general sense referring to the presence, quality, and
quantity of clouds in the sky in this study. Because of a
lack of continuous measurements of cloudiness at the two
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sites, we used a clearness index (kt ) (Gu et al., 1999) to de-
scribe the continuous changes in cloudiness. We analyzed the
responses of NEE to PAR under clear and cloudy skies, and
examined the relationship betweenkt and NEE. These meth-
ods were simple and direct for evaluating whether changes in
cloudiness could affect the NEE of forest ecosystems. These
methods have been used in many related studies (Gu et al.,
1999, 2002; Law et al, 2002; Alton et al., 2007).

2.2.1 Flux data processing

We used a program to process raw 30-min flux data as de-
scribed in the following (1) 3-D coordinate rotation was ap-
plied to force the average vertical wind speed to zero and to
align the horizontal wind to mean wind direction (Baldocchi
et al., 2000; Wilczak et al., 2001), (2) flux data were cor-
rected for the variation of air density caused by transfer of
heat and water vapor (Webb et al., 1980), (3) the storage be-
low EC height was calculated by using the temporal change
in CO2 concentration above the canopy measured with LI-
7500 (Carrara et al., 2003), (4) the abnormal data were fil-
tered, and data gaps were filled by using the look-up table
method (Falge et al., 2001; Guan et al., 2006; Zhang et al.,
2006).

In this study, we only used the data measured during the
mid growing season (June–August) from 2003 to 2006 to
eliminate the effect of changing leaf area index (LAI). The
LAI of CBS was about 5.3±0.1 m2 m−2 from June to August
over the four years. The broad-leaved forest at DHS is ever-
green without significant variation of LAI over and within
season. The LAI of DHS was about 4.6±0.2 m2 m−2 from
June to August over the four years.

2.2.2 Defining clearness index

The clearness indexkt is defined as the ratio of global so-
lar radiation (S, W m−2) received at the Earth’s surface to
the extraterrestrial irradiance at a plane parallel to the Earth’s
surface (Se, W m−2) (Gu et al., 1999):

kt =
S

Se
, (1)

Se= Ssc[1+0.033cos(360td/365)]sinβ, (2)

sinβ = sinϕ ·sinδ+cosϕ ·cosδ ·cosω (3)

whereSsc is the solar constant (1370 W m−2), td is the day of
year,β is the solar elevation angle,φ is degree of latitude,δ is
declination of the sun andω is time angle.kt reflects not only
sky conditions but also the degree of influence of cloudiness
on the solar radiation received at the Earth’s surface. For a
given solar elevation angle, smallerkt indicates increasing in
cloud thickness, and largerkt indicates a clearer sky (Gu et
al., 1999).

2.2.3 Defining clear skies

The rainy season in CBS and DHS extends from June to Au-
gust, thus days with no clouds through the entire day were
rare during this period. We identified the clear mornings and
afternoons based on a half-day basis (Gu et al., 1999; Law et
al., 2002). Two criteria were established for identifying clear
mornings and afternoons. First,kt must increase smoothly
with sin β. Second, the curve of the relation between the
clear-skykt and sinβ must form an envelope in the lumped
scatter plot ofkt against sinβ. The following steps were
used: (1) clear morning or afternoons were selected if the
values ofkt changed with time smoothly, (2) values ofkt

of the selected morning or afternoons were plotted against
sin β, the mornings or afternoons were excluded if the rela-
tion betweenkt and sinβ on those days fell away from the
dominant pattern, (3) finally, the clearness index was plotted
against sinβ for all mornings and afternoons in the growing
season to make sure the identified relationship between the
clear sky clearness index and sinβ formed the envelope for
the scatter points on the plots (Gu et al., 1999; Law et al.,
2002). Figure 1 shows the relationship betweenkt and sinβ
under clear skies, which can be fitted by cubic polynomial
(Eq. 4) (Gu et al., 1999). Asymmetry existed between the
clear mornings and the clear afternoons (Fig. 1).

kt0 = asin3β +bsin2β +csinβ +d (4)

wherekt0 is the clear sky clearness index, anda, b, c, andd

are regression coefficients.

2.2.4 Defining diffuse PAR

For a given solar elevation angle, the diffuse components of
the solar radiation received by ecosystem could change with
cloudiness (Gu et al., 2002; Urban et al., 2007). However, the
diffuse PAR was not measured at the two sites. Therefore, we
usedkt andβ to calculate diffuse PAR. The corresponding
equations are as follows (Reindl et al., 1990; Gu et al., 1999).

PARdif = PAR·
[1+0.3(1−q2)]q

1+(1−q2)cos2(90◦ −β)cos3β
(5)

q = (Sf
/
Se)/kt (6)

Interval: 0≤ kt ≤0.3; Constraint:Sf /Se≤ kt

Sf
/
Se= kt [1.020−0.254kt +0.0123sinβ] (7)

Interval: 0.3< kt <0.78; Constraint: 0.1kt ≤ Sf /Se≤0.97kt

Sf
/
Se= kt [1.400−1.749kt +0.177sinβ] (8)

Interval: 0.78≤ kt ; Constraint: 0.1kt ≤ Sf /Se

Sf
/
Se= kt [0.486kt −0.182sinβ] (9)

where PARdif is the diffuse PAR (µmol quantum m−2 s−1),
andSf denotes the total diffuse radiation received by a hori-
zontal plane on the Earth’s surface (W m−2).
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Fig. 1. The relationship between clear sky clearness index (kt ) and
sine of solar elevation angles for the CBS site from June to August
in 2003.

2.2.5 The response of NEE to PAR

The response of NEE to PAR can be described by Michaelis-
Menten equation (Goulden et al., 1997; Aubinet et al., 2001;
Wu et al., 2006; Zhang, 2006):

NEE=
α ·PAR·Pec,max

α ·PAR+Pec,max
+Re, (10)

where α is the ecosystem apparent quantum yield
(mg CO2µmol−1 quantum), Pec,max is the light-saturated
maximum photosynthetic rate (mg CO2 m−2 s−1),
and Re is the average daytime ecosystem respiration
(mg CO2 m−2 s−1).

2.2.6 Flux partitioning

Gross ecosystem photosynthesis (GEP) was calculated using
the following equation:

GEP= Re−NEE. (11)

NEE was obtained directly from the EC measurement.
Ecosystem respiration (Re) was estimated using the Lloyd-
Taylor equation (Eq. 12) (1994). The nighttime NEE
data under turbulent conditions were used to establishRe-
temperature response relationship:

Re= Rrefe
E0(1/(Tref−T0)−1/(T −T0)) (12)

whereT is air temperature or soil temperature (◦C). For CBS,
soil temperature at 5 cm was used, while air temperature at
4 m above ground was used for DHS (Yu et al., 2005), for
better regressions (i.e. higherR2 value) relative to the use
of soil temperature (Yu et al., 2005, 2008). In the equation,
Rref represents the ecosystem respiration rate at a reference

temperature (Tref, 10◦C),E0 is the parameter that essentially
determines the temperature sensitivity of ecosystem respira-
tion andT0 is a constant, set at−46.02◦C. Equation (12) was
also used to estimate daytimeRe.

In the study, the sign of NEE is negative when CO2 is
transported from the atmosphere down to ecosystem and pos-
itive for the opposite case.Re is positive when carbon is
released by ecosystem. GEP is positive when carbon is ab-
sorbed by ecosystem.

2.3 Statistic analysis

The relationship between NEE, GEP,Re and environmental
factors were fitted with linear, and non-linear equations. We
conducted all analysis using the Origin package. Statistically
significant differences were set withP<0.05 (α=0.05) unless
otherwise stated.

3 Results

3.1 Seasonal variation of environmental variables

Figure 2 shows the seasonal variations of the monthly cumu-
lative global solar radiation received by ecosystem (S), mean
monthly air temperature (Ta, near the height of EC system
at the two site, 32 m at CBS, 27 m at DHS, see Table 1) and
monthly cumulative precipitation (P ) at CBS and DHS. The
seasonal variations of environmental factors in the two forest
ecosystems were not exactly the same. The seasonal pat-
tern of Ta was in good agreement withP at CBS (Fig. 2b
and c). MaximumP andTa occurred at the same time.Ta
andP at CBS reached their highest value in July.Ta andP

were higher at DHS from June to August. However, whenTa

reached the maximum in July,P was relatively lower (Fig. 2e
and f). The values ofS from June to August were smaller
than that in May at CBS due to the effect of precipitation
(Fig. 2a).S reached its maximum in July at DHS (Fig. 2d).

Although precipitation was abundant at both ecosystems
from June to August, the frequency ofkt value fell between
0 and 0.4 was greater at DHS than at CBS (Fig. 3). Fur-
thermore, the total precipitation from June to August was
436.6 mm at CBS and 768.6 mm at DHS. These facts indi-
cated that there were more rainy days and fewer clear days
at DHS than at CBS during this period. As a result,S was
lower at DHS than at CBS from June to August (Fig. 2a and
d). The totalS was 1610.1 MJ m−2 at CBS and 1356 MJ m−2

at DHS for this period.

3.2 Responses of NEE to PAR under clear and
cloudy skies

The response of NEE to PAR differed under clear and cloudy
skies in the two forest ecosystems (Fig. 4). NEE was
more negative under cloudy skies than under clear skies at
CBS during the mid growing season (from June to August)
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Fig. 2. The seasonal variations of global solar radiation (S), air
temperature (Ta) and precipitation (P ) at CBS and DHS.

(Fig. 4a to d). This indicates that the net carbon uptake at
CBS increased under cloudy sky conditions. Compared with
clear skies,Pec,max under cloudy skies at CBS during mid
growing season (from June to August) increased by 34%,
25%, 4% and 11% in 2003, 2004, 2005 and 2006, respec-
tively (Table 2). In contrast, NEE was not more negative
under cloudy skies than under clear skies at DHS (Fig. 4e to
h). Except for 2003,Pec,max at DHS was higher under clear
skies than under cloudy skies in the other three years (Ta-
ble 2). The results indicate that the differences in response of
NEE to PAR under cloudy skies and under clear skies were
not exactly the same in the two forest ecosystems. Cloudy
sky conditions were more beneficial to relieving light satura-
tion and enhancingPec,max in the temperate forest ecosystem
at CBS relative to the subtropical forest ecosystem at DHS.

3.3 Changes in NEE with clearness index

To further explore the effect of changes in cloudiness on
NEE, we analyzed the response of NEE to changes in the
clearness index at CBS and at DHS. We grouped the data
into 5◦ intervals of solar elevation angles to eliminate the
effect of solar elevation angle on the responses of NEE to
kt . We found similar results for the four study years in the
two ecosystems. In this paper, we only present the results in
2005.

Fig. 3. Histograms of the frequency distribution of the variation of
the clearness index (kt ) for solar elevation anglesβ>20◦ at CBS
and DHS from June to August in the years from 2003 to 2006.

For different intervals of the solar elevation angle, the
changes in NEE with clearness index were conic (the re-
gressional coefficients of this conic equation are shown in
Table 3) at both CBS and DHS in the mid growing season
(Fig. 5). The NEE reached its maximum whenkt fell be-
tween 0.4 and 0.6 (Fig. 5) at CBS and at DHS. This result in-
dicates that net carbon uptake of the two forests at CBS and
DHS was highest under cloudy skies. The NEE decreased
when the value ofkt exceeded 0.6 at both CBS and DHS
(Fig. 5). However, decrease in NEE was less at DHS than at
CBS (Fig. 5). This finding indicates that clear sky conditions
restrain net carbon uptake more at CBS than at DHS.

4 Discussion

4.1 Differences in the responses of NEE to cloudiness in
different types of forest ecosystems

The NEE of the forest ecosystems at CBS and at DHS
reached its maximum under cloudy skies when the value of
kt was between 0.4 and 0.6. This finding is consistent with
those of previous studies. These studies show that NEE of
forest ecosystems reached its maximum values under cloudy
skies when the value ofkt is between 0.4–0.7 (Gu et al.,
1999; Letts et al., 2005; Urban et al., 2007). However, when
the value ofkt exceeded 0.6, NEE of the temperate forest at
CBS reduced more with increasingkt than that at DHS. This
suggests that NEE of the temperate forest at CBS was more
sensitive to strong solar radiation under clear sky conditions,
compared to the subtropical forest at DHS. Similarly, Alton
et al. (2007) found that NEE of boreal forest had the greatest
sensitivity to changes in shortwave radiation among a sparse,
boreal needle-leaf ecosystem, a temperate broadleaf ecosys-
tem and a dense tropical, broadleaf forest ecosystem. Under
cloudy skies, the NEE increased more than 30% in temperate
forest ecosystems (Gu et al., 1999). But, the NEE increased
less than 25% under cloudy skies in the forest ecosystems
in Amazonia (Oliveira et al., 2007). These findings suggest
that the net carbon uptake increases more in temperate forests
than in subtropical forests under cloudy sky conditions.

Biogeosciences, 7, 711–722, 2010 www.biogeosciences.net/7/711/2010/
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Table 2. Parameter values of light response curve of CBS and DHS on clear skies and cloudy skies from June to August in the years from
2003 to 2006.

Site Parameter values 2003 2004 2005 2006

Cloudy Clear Cloudy Clear Cloudy Clear Cloudy Clear
skies skies skies skies skies skies skies skies

α

(mg CO2µmol−1 quantum) −0.0036 −0.0027 −0.0037 −0.0041 −0.0039 −0.0032 −0.0039 −0.0044
Pec,max

CBS (mg CO2 m−2 s−1) −1.309 −0.864 −1.210 −0.902 −1.307 −1.253 −1.213 −1.079
Re

(mg CO2 m−2 s−1) 0.281 0.217 0.278 0.257 0.244 0.369 0.244 0.337
R2 0.67 0.50 0.55 0.50 0.60 0.66 0.62 0.56

α

(mg CO2µmol−1 quantum) −0.0012 −0.0019 −0.0011 −0.0009 −0.0012 −0.0007 −0.0012 −0.0008
Pec,max

DHS (mg CO2 m−2 s−1) −0.682 −0.647 −0.839 −1.208 −0.81 −0.946 −0.9362 −1.155
Re

(mg CO2 m−2 s−1) 0.116 0.129 0.106 0.095 0.051 0.084 0.081 0.08
R2 0.50 0.39 0.44 0.59 0.45 0.54 0.52 0.50

4.2 The effects of changes in cloudiness on
environmental factors in the two types
of forest ecosystems

Environmental conditions influence the carbon exchanged
process between forest ecosystems and the atmosphere. For
a given solar elevation angle interval, when the sky condi-
tions changed from clear to cloudy, total solar radiation re-
ceived by ecosystem decreased, and balance of diffuse and
direct components of solar radiation received by ecosystem
changed as well. Correspondingly, other environmental fac-
tors (Ta, VPD, etc.) also changed. Finally, these changes can
influence carbon exchange process between forest ecosystem
and the atmosphere.

During cloudy days, the increase in diffuse radiation re-
ceived by ecosystem was more easily absorbed by shaded
leaves for photosynthesis in forest canopy with higher leaf
area index (LAI) (Gu et al., 2002; Alton et al., 2007; Far-
quhar and Roderick, 2008). Therefore, increased diffuse ra-
diation received by ecosystem is used more efficiently for
canopy photosynthesis under cloudy skies. Whenkt was
between 0.4 and 0.6, diffuse PAR received by ecosystem
reached its maximum at CBS and DHS (Fig. 6a and b). This
range ofkt was the same as the range ofkt that caused NEE
to reach its peak. This indicates that photosynthesis of the
two forest ecosystems at CBS and at DHS can increase with
increasing diffuse PAR received by ecosystem under cloudy
skies.

VPD is an important factor affecting stomatal conduc-
tance. A decrease in VPD induces stomatal openness and
thus enhances leaf photosynthesis (Collatz et al., 1998).

Table 3. Regressional Coefficients of the conic equation NEE =a

k2
t + b kt + c for CBS and DHS in 2005.

β a b c R2

CBS 35–40◦ 3.68 −3.71 0.22 0.45
45–50◦ 3.59 −3.63 0.14 0.46
55–60◦ 3.61 −3.65 0.08 0.42
65–70◦ 3.64 −3.81 0.09 0.40

DHS 55–60◦ 2.05 −2.08 0.09 0.50
65–70◦ 1.45 −1.71 1.45 0.44
75–80◦ 1.32 −1.48 −0.04 0.28
85–90◦ 1.98 −2.02 0.05 0.51

Therefore, the decrease in VPD associated with cloudy con-
ditions can enhance canopy photosynthesis (Freeman et al.,
1998). CBS and DHS are located at different latitude, thus
the interval of change in solar elevation angles differs at the
two sites. Furthermore, the similar results were found in
different intervals of solar elevation angles. Thus, we only
present the results of higher interval of solar elevation angles
at the two sites (the reason was the same for the following
similar analyses). Figure 6c shows that VPD decreased lin-
early with decreasingkt for selected intervals of solar ele-
vation angles at CBS and DHS. Our results suggest that the
decrease in VPD under cloudy skies can enhance photosyn-
thesis in the two forest ecosystems at CBS and at DHS.

www.biogeosciences.net/7/711/2010/ Biogeosciences, 7, 711–722, 2010



718 M. Zhang et al.: Impact of cloudiness on net ecosystem exchange

Fig. 4. Light response curves of the forests at(a–d) CBS and(e–h)
DHS on clear skies and cloud skies from June to August in the years
from 2003 to 2006.

Temperature is a controlling factor in ecosystem respira-
tion processes.Ta decreased linearly with decreasingkt for
selected intervals of solar elevation angles at DHS and CBS
(Fig. 6d). This indicates that a decrease in air temperature
could cause a decrease in ecosystem respiration at the two
sites.

The increase of diffuse PAR and the decrease of VPD and
Ta under cloudy skies can be beneficial to increase in ecosys-
tem photosynthesis and decrease in ecosystem respiration of
the two forest ecosystems at CBS and at DHS. Thus, cloudy
sky conditions can increase net carbon uptake of the two for-
est ecosystems.

4.3 Environmental control on GEP and Re in the two
types of forest ecosystems

NEE tended to reach its maximum at both CBS and DHS
under cloudy skies, but NEE decreased more dramatically at
CBS than at DHS under clear skies. This phenomenon re-
lates to the different influences of environmental factors on

Fig. 5. Relationship between NEE and the clearness index (kt ) at
CBS and DHS for different intervals of solar elevation angles from
June to August in 2005.

GEP andRe in the two ecosystems. Furthermore, differences
in climate characteristics and differences in composition and
structure of vegetation can cause different influences of en-
vironmental factors on GEP andRe in the two forest ecosys-
tems. Thus, changes in NEE under clear sky conditions will
be different at CBS and at DHS.

Changes in quality and quantity of solar radiation re-
ceived by ecosystem with varying sky conditions can influ-
ence ecosystem photosynthesis. The solar radiation received
by ecosystem was stronger at CBS than at DHS from June to
August (Fig. 2a and d). Therefore, the response of ecosys-
tem photosynthesis to PAR may be different at CBS and at
DHS, especially under stronger PAR conditions. For a given
solar elevation angle interval, the highest PAR exceeded
1500 µmol quantum m−2 s−1 at CBS, but the highest PAR
at DHS was about 1500 µmol quantum m−2 s−1 (Fig. 7a).
The stronger PAR condition more easily caused light satura-
tion to limit ecosystem photosynthesis at CBS than at DHS.
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Fig. 6. Changes of diffuse PAR (PARdif ) at (a) CBS, (b) DHS, (c) air temperature (Ta) and (d) vapor pressure deficit (VPD) with the
clearness index (kt ) for selected intervals of solar elevation angles from June to August in 2005.

Fig. 7. Changes of GEP with(a) PAR, (b) diffuse PAR (PARdif ) and (c) vapor pressure deficit (VPD) and Changes of(d) Re with air
temperate (Ta) for selected intervals of solar elevation angles at CBS and DHS from June to August in 2005.
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When PAR exceeded 1500 µmol quantum m−2 s−1, the GEP
decreased more at CBS than at DHS. Changes in incoming
diffuse radiation with changes in cloudiness are one of im-
portant factors that influence forest ecosystem photosynthe-
sis (Gu et al., 2002; Urban et al., 2007). For a given solar
elevation angle interval, the GEP increased linearly with the
diffuse PAR received by the ecosystems at CBS and at DHS
from June to August (Fig. 7b). But the GEP increased more
at CBS than at DHS (Fig. 7b). This result might be due to the
effect of different LAI and canopy structure on the photosyn-
thesis in the two ecosystems. LAI and biomass was greater at
CBS than at DHS from June to August (Table 1) resulted in
greater canopy density at CBS. Therefore, increased diffuse
PAR was more beneficial to GEP at CBS than at DHS.

Changes in VPD under different sky conditions can affect
GEP of forest ecosystems. For a given solar elevation angle
interval, the changes in GEP with VPD were conic at CBS
and DHS from June to August (Fig. 7c). When VPD ex-
ceeded 1.5 kpa, GEP reduced with increasing VPD at CBS
(Fig. 7c). However, GEP reduced with increasing VPD at
DHS only when VPD exceeded 2.0 kpa. Overall, the reduc-
tion was less at DHS than at CBS (Fig. 7c). Therefore, in-
crease in VPD under clear skies decreased GEP more at CBS
than at DHS.

Changes in temperature can influence forest ecosystem
respiration. For a given solar elevation angle interval, the
Re at CBS and at DHS varied exponentially with tempera-
ture (Fig. 7d). The increased rate ofRe with temperature was
larger at CBS than at DHS (Fig. 7d), because theRe of the
temperate forest at CBS exhibited higher temperature sensi-
tivity than that at DHS (Yu et al., 2008). Furthermore, tem-
perature sensitivity (i.e.,Q10) of soil respiration was higher
at CBS than at DHS (Zheng et al., 2009), because soil or-
ganic matter content is greater at CBS than at DHS (Table 1).
Higher content of soil organic matter and higherQ10 leads
to greater potential for soil CO2 efflux (Knorr et al., 2005;
Zheng et al., 2009). Furthermore, soil respiration is major
component ofRe. Therefore, as temperature increased,Re
increased more at CBS than at DHS.

In generally, increase in total PAR, decrease in diffuse
PAR received by ecosystem, and higher VPD under clear
skies led to greater decrease in GEP at CBS than at DHS.
Higher temperature under clear skies caused greater increase
in Re at CBS than at DHS. As a result, the NEE decreased
more at CBS than at DHS under clear skies. This suggests
that clear sky conditions are more detrimental to net carbon
uptake in the temperate forest than in the subtropical forest.

5 Conclusions

Similar to most forest ecosystems in the Northern Hemi-
sphere, forest ecosystems in East China has more net car-
bon uptake under cloudy sky conditions. When the clearness
index was between 0.4–0.6, the environmental factors were

optimal to make NEE reach its highest level in the temperate
as well as subtropical forests. However, stronger solar radi-
ation and higher VPD and air temperature under clear skies
cause a greater decrease in GEP and a greater increase inRe
in the temperate forest than in the subtropical forest. There-
fore, under clear skies, the NEE decrease more dramatically
in the temperate forest than in the subtropical forest. Clear
sky conditions restrain net carbon uptake more in the tem-
perate forest than in the subtropical forest. Our results imply
that, as a consequence of global climate change, the decrease
in cloudiness over Northeast China would have a significant
impact on net carbon uptake of temperate forest ecosystems.
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