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Abstract. The quantification of the amount of anthropogenic
carbon (Cant) that the ocean has taken up from the atmo-
sphere since pre-industrial times is a challenging task be-
cause of the need to deconvolute this signal from the natu-
ral, unperturbed concentration of dissolved inorganic carbon
(DIC). Nonetheless, a range of techniques have been devised
that perform this separation using the information implicit in
other physical, biogeochemical, and man-made ocean trac-
ers. One such method is the TrOCA approach, which be-
longs to a group of back-calculation techniques, but relative
to other methods employs a simple parameterization for es-
timating the preformed, pre-industrial concentration, the key
quantity needed to determine Cant. Here we examine the the-
oretical foundation of the TrOCA approach and test its accu-
racy by deconvoluting the known distribution of Cant from an
ocean general circulation model (OGCM) simulation of the
industrial period (1864–2004). We reveal that the TrOCA
tracer reflects the air-sea exchange of both natural and an-
thropogenic CO2 as well as that of O2. Consequently, the
determination of the anthropogenic CO2 flux component re-
quires an accurate determination not only of the contribution
of the natural (pre-industrial) CO2 flux component, but also
of the O2 flux component. The TrOCA method attempts to
achieve this by assuming that the concentration changes in-
voked by these two air-sea flux components scale with tem-
perature and alkalinity. While observations support a strong
exponential scaling of the oxygen flux component with tem-
perature, there exists no simple relationship of the natural
CO2 flux component with temperature and/or alkalinity. This
raises doubts whether the sum of these two components can

Correspondence to:A. Yool
(axy@noc.soton.ac.uk)

be adequately parameterized with a single function. The
analyses of the model support this conclusion, even when
Cant is deconvoluted using parameter values that were opti-
mized on the basis of the synthetic dataset from the model.
Application of an optimal, but globally uniform set of pa-
rameters for the estimation of Cant results in a global positive
bias in the inventory of more than a factor of two, suggest-
ing that a “universal” TrOCA parameterisation is not achie-
veable. Even the application of regionally specific sets of
parameters causes, on average, a global positive bias of more
than 50%. This is substantially larger than the potential posi-
tive bias of 7% identified for the1C∗ method using a similar
model-based assessment method.

1 Introduction

Since the beginning of the Industrial Revolution, atmo-
spheric CO2 concentrations have been rising in response to
human activities such as fossil fuel combustion, deforesta-
tion, land-use changes and cement production (IPCC, 2007).
However, the rise in atmospheric CO2 has not paralleled
anthropogenic emissions, since a significant fraction of the
CO2 released to the atmosphere has been removed to reser-
voirs on the land and, particularly, in the ocean (Revelle and
Suess, 1957). Since Cant that is transferred to land or into
the ocean no longer causes global warming (though it does
cause ocean acidification; e.g.Orr et al., 2005) there is con-
tinuing interest in establishing the capacity and uptake rate
of these reservoirs (e.g.Siegenthaler and Sarmiento, 1993;
Sarmiento and Gruber, 2002; IPCC, 2007; Le Qúeŕe et al.,
2009). On time-scales of a thousand years and more, nearly
all of the emitted Cantwill be absorbed by the ocean primarily
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through dissolution, but enhanced by processes including the
shoaling of the calcium carbonate saturation depth and sili-
cate weathering (Archer, 2005). But on shorter time-scales,
only a fraction of this long-term capacity is achieved, mostly
owing to the slow rate with which anthropogenic CO2 is
transported from the surface to depth by ocean circulation
and mixing (Sarmiento et al., 1992). Future climate change
likely will alter this transport, potentially causing substantial
changes in the rate at which the ocean will take up anthro-
pogenic CO2 from the atmosphere. In addition, feedbacks
between a changing climate and the global carbon cycle can
liberate additional CO2 into the atmosphere, leading to fur-
ther warming and changes in ocean circulation and biogeo-
chemistry (e.g.Sarmiento et al., 1998; Joos et al., 1999).
While a consensus is emerging that the feedback between
the ocean carbon cycle and climate is likely positive (IPCC,
2007), there is still considerable uncertainty in how strong
the ocean sink will be in the near future for a given atmo-
spheric burden of anthropogenic CO2, and how positive the
feedback with climate will be (Friedlingstein et al., 2006).

A key aspect of understanding the future behaviour of the
ocean as a sink for CO2 is determining this role in the re-
cent past. Fossil fuel CO2 has been accumulating in the at-
mosphere for more than two hundred years, with the major-
ity of this increase occurring during the twentieth century.
Consequently, the ocean has been absorbing this Cant over
the corresponding period. However, quantifying the ocean’s
role is complicated by the difficulty of separating Cant from
that of the natural carbon cycle (which, given relatively stable
atmosphericpCO2 prior to the Industrial Revolution, is as-
sumed to be in quasi-equilibrium). While there are signals in
the distributions of the carbon isotopes13C (Sonnerup et al.,
2007) and14C (Fallon et al., 2003), most methodologies for
distinguishing Cant utilise physical, biogeochemical and/or
man-made tracers to guide them.

The first methods devised constitute so-called back-
calculation methods (e.g.Brewer, 1978; Chen and Millero,
1979; seeSabine and Tanhua, 2010for nomenclature). These
methods start with measured dissolved inorganic carbon
(DIC) concentration and then use oxygen, nutrient and alka-
linity concentrations, together with a series of biogeochemi-
cal assumptions, to estimate the associated preformed DIC
concentration, i.e. the concentration that this water par-
cel had when it was last in contact with the atmosphere.
The assumptions used relate to biogeochemical processes
including calcium carbonate precipitation and dissolution,
and the production and remineralisation of organic material.
In the second step, Cant is computed by subtracting from
this preformed DIC an estimate of the preformed DIC in
pre-industrial times, i.e. a time when atmospheric CO2 had
been relatively constant for thousands of years (Inderm̈uhle
et al., 1999). These methods, with some varying details,
have been used in a number of studies for different locations,
and for a range of different applications, includingChen and
Pytkowicz (1979), Papaud and Poisson(1986), Goyet and

Brewer (1993), Tsunogai et al.(1993), Perez et al.(2002),
Lo Monaco et al.(2005a) and Lo Monaco et al.(2005b).
Although the biogeochemical back-calculation approach in-
volves a substantial number of assumptions and methodolog-
ical challenges, the most uncertain aspect is associated with
the estimation of the preformed, pre-industrial DIC concen-
tration. In the original work by Brewer (1978) and Chen
and Millero (1979), they used waters from the deep ocean
presumed to be free of anthropogenic CO2 and extrapolated
them to all waters using a simple parameterization. This
assumption, plus several others were heavily criticised (e.g.
Broecker et al., 1985), resulting in these estimates not finding
general acceptance.

This latter aspect of estimating the preformed, pre-
industrial DIC concentration was fundamentally improved
upon by the development of the1C∗ method (Gruber et al.,
1996), which separates this concentration into an equilibrium
part, which can be computed with high accuracy, and a dis-
equilibrium part, which reflects the fact that surface water
CO2 is seldom in equilibrium with the atmosphere at the
point when a water parcel becomes isolated from the air-
sea interface. In the1C∗ method, this disequilibrium term
is estimated separately for each isopycnal slab, using either
deep water values or additional information about the age of
the water parcel. This makes this method time-consuming,
and also usually requires a basin-scale perspective. The1C∗

approach, initially developed using North Atlantic observa-
tions, has been modified for the Indian (Sabine et al., 1999)
and Pacific (Sabine et al., 2002) basins and for the global
ocean (Key et al., 2004). Subsequent work has both intro-
duced improvements to the method (e.g.,Gruber, 1998) and
evaluated uncertainties with1C∗ (Matsumoto and Gruber,
2005). It also formed the basis for the first global estimate of
the oceanic uptake and distribution of anthropogenic CO2 in
the ocean (Sabine et al., 2004), as well as provided data for
an inverse estimate of the uptake flux of anthropogenic CO2
and its subsequent transport in the ocean interior (e.g.Gloor
et al., 2003; Mikaloff-Fletcher et al., 2006).

Recently, an alternative back-calculation method was in-
troduced byTouratier and Goyet(2004b), termed the TrOCA
method, which takes its name from theTr acer combining
Oxygen, inorganicCarbon and totalAlkalinity (TrOCA).
TrOCA was initially developed as a conservative tracer to
aid the distinguishing of watermasses, that was complemen-
tary to other composite tracers such as1C∗ (Touratier and
Goyet, 2004a). The TrOCA method has subsequently been
used to quantify Cant in the Atlantic (Touratier and Goyet,
2004b; Touratier et al., 2005) Indian (Touratier et al., 2007;
Alvarez et al., 2009) and Southern (Lo Monaco et al., 2005a;
Lo Monaco et al., 2005b; Sandrini et al., 2007) oceans, and
to infer regional air-sea fluxes of anthropogenic CO2 (Gerber
et al., 2009). The key difference to the other back-calculation
methods is that TrOCA proposes that the pre-industrial, pre-
formed concentration can be estimated reliably with an em-
pirical function with only four parameters. This results in the
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advantage that once the parameters of this empirical function
are determined, Cant can be determined very quickly for any
water parcel for which the necessary observations have been
taken. However, no global estimate has been published to
date.

Even more recently, an entirely independent method has
been developed on the basis of the consideration that the
uptake and subsequent transport of anthropogenic CO2 by
the ocean is a purely physical process, i.e. it does not in-
volve biology. Thus, the only information necessary to esti-
mate anthropogenic CO2 in the ocean is knowledge about the
time-dependent evolution of anthropogenic CO2 in the sur-
face ocean, and the rate at which this surface boundary con-
dition is transported and mixed into the ocean’s interior. This
is the basis for the Transient-time distribution (TTD) method
developed by Waugh and Hall (e.g.Waugh et al., 2004), and
later improved upon byKhatiwala et al.(2009). The TTD
method and the1C∗ method arrived at rather similar global
(excluding Arctic and marginal seas) estimates of the anthro-
pogenic CO2 inventory (106±21 Pg C vs. 114±22 for 1994;
Sabine et al., 2004; Khatiwala et al., 2009), although with no-
table differences in the actual distribution, particularly with
regard to the depth profiles.

Given the development of a large number of competing
methods to estimate the amount and distribution of Cant in
the ocean, it is highly desirable to know exactly the strengths
and weaknesses of each method, and also have an estimate
of the accuracy of the reconstructed Cant fields. Sabine and
Tanhua(2010) compared the pros and cons of the differ-
ent methods, but did not venture into making a full assess-
ment. Studying CO2 exchange through the Strait of Gibral-
tar, Huertas et al.(2009) compared1C∗ and TrOCA esti-
mates of Cant, and found large differences with TrOCA esti-
mating increases with depth. Reasoning from Mediterranean
circulation patterns and dissolved CFC concentrations, they
concluded that the TrOCA parameter values optimised in
Touratier et al.(2007) should be adapted for this location.
Vázquez-Rodrı́guez et al.(2009) compared the results from
five different methods for a few representative sections. They
came to the conclusion that while most methods appear to
produce similar results for the low- and mid-latitudes, large
differences exist at high latitudes, particularly the Southern
Ocean (see alsoLo Monaco et al., 2005b). Since it is not
possible to directly discern Cant from natural DIC in obser-
vational data, it was not possible to determine which method
is more accurate and why. As a result, these studies had to
remain inconclusive.

An alternative approach to test the reconstruction meth-
ods for anthropogenic CO2 is to use synthetic data from an
ocean carbon cycle model, for which the amount and distri-
bution of Cant is accurately known. Any difference in the
Cant inferred from the synthetic data and the directly simu-
lated results then reflects a bias in the reconstruction method.
A strong advantage of this assessment approach is that even
when the modeled fields providing the synthetic data differ

from the observations, the approach still provides a good es-
timate of the accuracy of the reconstruction method, since
the comparison is done in an internally consistent manner.
So far, this method has only been applied to the1C∗ method
(Matsumoto and Gruber, 2005). These authors showed that
this method tends to overestimate Cant in central thermocline
waters, but tends to underestimate Cant in the deep ocean,
with a likely positive bias of about 7%.

Here, the TrOCA method is examined using synthetic data
generated via this latter mode. But before assessing the ac-
curacy of the TrOCA method, we review the method on a
theoretical basis in order to put it into the context of prior
work and more clearly understand the differences. In partic-
ular, we are interested in pointing out some of the inherent
key assumptions that have been made in the development of
the TrOCA method. Then, using the model, we assess the
method quantitatively, and also investigate the regional and
global applicability of the TrOCA parameterization.

The paper is organised as follows. First, the TrOCA
method is introduced, with a focus on its key parameters and
its calibration from observational data. The TrOCA method
is then analysed from a theoretical standpoint, to illuminate
its relationship with1C∗ and the air-sea fluxes of CO2 and
O2. Next, the OCCAM model used to provide the synthetic
dataset is introduced, including its physical and biogeochem-
ical representation of the ocean, and details of the simula-
tion. The Results and Discussion section describes the ap-
plication of the TrOCA method to the synthetic dataset. In
the first instance, the default parameterisation of TrOCA is
used with OCCAM output and observational data. Next, the
TrOCA method’s parameters are recalibrated using the syn-
thetic data, and several sensitivity analyses assess its perfor-
mance. Finally, the paper concludes with a summary of our
findings and some suggestions for future progress.

2 The TrOCA method

2.1 Overview

This section provides an overview of the TrOCA method, and
discusses the most important assumptions and implied con-
sequences on a theoretical basis. The method described here
is based upon the most recent version of the TrOCA method
(Touratier et al., 2007), but see also the original formulation
(Touratier and Goyet, 2004a) for a more comprehensive de-
scription.

The TrOCA tracer is derived from the Redfield relation-
ships that occur between carbon, oxygen and key nutrients.
Equation (1) shows an example of this stoichiometry for the
processes of organic production (left to right) and remineral-
isation (right to left):

106 CO2+16 NO−

3 +HPO2−

4 +122 H2O+18 H+ 
 (1)

(C106H263O110N16P)+138 O2
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This equation can be rewritten to express the relationships
between its coefficients:

ψCCO2+ψNNO−

3 +ψPHPO2−

4 +ψH2OH2O+ψHH+ 
[
C(ψC)H(ψP+2ψH2O+ψH)O(2ψC+3ψN+4ψP+ψH2O−2ψO2)

N(ψN)P(ψP)

]
+ψO2O2 (2)

At depth, variations in the concentration of DIC are as-
cribed to respiration of organic material (the backward re-
action above) and the dissolution of carbonate biominerals.
Applying Eq. (2), and accounting for this dissolution of cal-
cium carbonate (estimated from changes to alkalinity, AT;
Brewer, 1978), the biotically-driven change in the concen-
tration of DIC at depth,1CT, is approximated as:

1CT =
ψC

ψO2

· 1O2+
1

2
·

(
1AT +

(ψH −ψP)

ψO2

· 1O2

)
(3)

The above relationship between biotically induced
changes in CT, O2 and AT can be used to define an approx-
imately conservative “Tr acer combiningOxygen, inorganic
Carbon and totalAlkalinity” (TrOCA):

TrOCA = O2+a ·

(
CT −

AT

2

)
, (4)

where:

a =
ψO2

ψC+
1
2 · (ψH −ψP)

(5)

In the absence of Cant, the natural (=background) value
of TrOCA, TrOCA0, is defined as a function of the natu-
ral (=background) concentrations of carbon, C0

T, oxygen, O0
2,

and alkalinity, A0
T:

TrOCA0
= O0

2+a ·

(
C0

T −
A0

T

2

)
(6)

Using TrOCA and TrOCA0, and assuming that neither
oxygen nor alkalinity fields are substantially perturbed by an-
thropogenic effects (which is not exactly correct in the case
of oxygen; Manning and Keeling, 2006), Cant can then be
estimated:

CTrOCA
ant =

TrOCA−TrOCA0

a
(7)

In the original definition of the TrOCA method, TrOCA0

was fitted as a function of potential temperature,θ (Touratier
and Goyet, 2004a), but this was extended byTouratier et al.
(2007) to include AT. The fitting procedure requires datasets
in which Cant is known, and this is achieved here utilising
watermass age information present in114C and CFC-11.

Firstly,114C is used to identify watermasses that are un-
ambiguously free of Cant. Waters with a value less than -
175‰ are much older (>1000 years) than the industrial era
('250 years), so should contain no Cant (i.e. it is assumed

that Cant =0). The values of CT, AT and O2 in these water-
masses are used with Eqs. (4) and (5) to calculate TrOCA0.

Next, estimated atmospheric CFC-11 partial pressure
(pptv) is back-calculated from ambient oceanic concentra-
tions of CFC-11 (assuming oceanic saturation;Warner and
Weiss, 1985), and used to identify waters in contact with the
atmosphere at the time of peak atmospheric CFC-11 con-
centration (1992–1995; approximately 263–271 pptv). The
values ofθ , S and AT in these watermasses are then used
to calculate saturation CT concentrations for the correspond-
ing atmosphericpCO2 , Cp357

T (1992–1995; approximately

357 µatm), and for pre-industrial conditions, Cp280
T (approx-

imately 280 µatm). Although CT may not be at saturation
concentration, this calculation instead assumes that local
disequilibrium is the same under pre-industrial and anthro-
pogenic transient conditions. The saturation concentrations
are then used to estimate local Cant for the period 1992–1995:

CTrOCA
ant92/95 = Cp357

T −Cp280
T (8)

TrOCA0 can then be calculated for these watermasses us-
ing TrOCA from Eq. (4). The resulting TrOCA0 dataset is
then fitted as an exponential function ofθ and AT:

TrOCA0
= f · exp

(
b+c · θ+

d

A2
T

)
(9)

The choice of this functional relationship withθ is based
on its strong correlation with the TrOCA tracer, a relation-
ship that was found to be fitted best with an exponential form
(Touratier and Goyet, 2004b). The extension of this form
to include AT was found to further improve it (Touratier et
al., 2007). The equation shown above differs slightly from
that described inTouratier et al.(2007), in that it includes
an additional coefficient,f=1 µmol kg−1, to dimensionalise
TrOCA0. Note that parametersc and d respectively have
units of(◦C)−1 and (µmol kg−1)2.

Combining Eqs. (8) and (9) creates the following expres-
sion:

CTrOCA
ant92/95 =

TrOCA−TrOCA0

a
(10)

=

O2+a ·

(
CT −

AT
2

)
−f · exp

(
b+c · θ+

d

A2
T

)
a

Using appropriate observations sampled from the GLO-
DAP world ocean database,Touratier et al.(2007) optimised
the values of parametersa, b, c andd. Parametera’s value
(nominally 1.205 from Eqs.1 and5) was varied between 1.0
and 1.5, with the others optimised for eacha. The best set of
parameters obtained in this way was:

a = 1.279 mol(mol)−1

b = 7.511

c = −1.087×10−2 (◦C)−1
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d = −7.81 ×105 (µmol kg−1)2

( f = 1.0µmol kg−1 )

Touratier et al.(2007) then used these values to estimate
Cant in the northern Indian Ocean using the following TrOCA
expression:

CTrOCA
ant =

O2+1.279
[
CT −

AT
2

]
1.279

(11)

−

1.0 · exp

(
7.511−(1.087×10−2)θ+

−7.81×105

A2
T

)
1.279

Where concentrations are expressed in µmol kg−1, andθ is
in ◦C.

2.2 TrOCA and 1C∗

Though Touratier and Goyet presented the TrOCA method
as an alternative to other techniques such as1C∗, by rear-
ranging the equations above, it can be shown that the TrOCA
tracer is actually a rescaled version of the tracer C∗ intro-
duced byGruber et al.(1996). Equation (11) of the latter
defines C∗ as follows:

C∗
= CT −rC:O2 · O2−

1

2
·
(
AT +rN:O2 · O2

)
(12)

This expression can be rearranged to group the terms re-
lating to oxygen together:

C∗
= CT −(rC:O2 +

1

2
· rN:O2) · O2−

1

2
· AT (13)

Dividing through by the oxygen factor yields:

C∗

(rC:O2 +
1
2 · rN:O2)

= −O2+
CT −

1
2 · AT

(rC:O2 +
1
2 · rN:O2)

(14)

In the equations above,rC:O2 is defined as negative (i.e.
117:−170) whereasTouratier and Goyet(2004a) define their
corresponding ratio,RC:O2, as being positive (i.e. 123:165).
Thus, RC:O2=−rC:O2 andRN:O2=−rN:O2. Substituting in
these positive stoichiometric ratios yields:

C∗

(RC:O2 +
1
2 ·RN:O2)

= O2+
CT −

1
2 ·AT

(RC:O2 +
1
2 ·RN:O2)

(15)

Comparing this with Eq. (4) above, this shows:

TrOCA =
C∗

(RC:O2 +
1
2 ·RN:O2)

(16)

Then, using theTouratier et al.(2007) definition of param-
etera as:

a =
1

RC:O2 +
1
2 ·RN:O2

(17)

This finally yields:

TrOCA = a ·C∗ (18)

This equivalance of TrOCA and C∗ is further evident when
Eq. (7) calculates Cant:

CTrOCA
ant =

TrOCA−TrOCA0

a
(19)

= C∗
−C∗

pi (20)

Where C∗

pi is C∗ estimated for pre-industrial conditions.
This equation directly corresponds to Eq. (13) inGruber et
al. (1996). This derivation identifies the TrOCA method as
a classical back-calculation approach that corrects observed
CT for the influence of biology and then subtracts the pre-
industrial preformed value.

2.3 TrOCA0 and the air-sea fluxes of CO2 and O2

As with all back-calculation techniques, the biggest chal-
lenge is the estimation of the preformed, pre-industrial value
of the tracer under consideration.Touratier and Goyet
(2004a) essentially followChen and Millero(1979) and
Chen and Pytkowicz(1979) in using observations from
(radiocarbon-estimated) old watermasses as a source of Cant-
free data to which a relatively simple parameterisation is
fitted. This parameterisation takes ana priori form based
primarily on potential temperature (Touratier and Goyet,
2004a), with a limited dependence on alkalinity (Touratier
et al., 2007). The resulting function is then applied to all
observations to separate Cant from CT. However, there are
process-based considerations that suggest that the tracer re-
lationships are not as straightforward as assumed.

In considering the distribution of C∗, it is possible to lin-
early deconvolute this tracer into1Cgasex and O∗

2 compo-
nents (notation as perGruber et al., 2001; andGruber and
Sarmiento, 2002). Variations in1Cgasexprimarily reflect the
air-sea exchange of CO2, while variations in O∗2 primarily
reflect the air-sea exchange of O2. Because of the equiva-
lence of C∗ and TrOCA (as per Eq.18), this means that vari-
ations in TrOCA reflect the combined effects of CO2 and O2
air-sea exchange (see also Appendix C). Fluxes of either gas
into the ocean increase TrOCA, while fluxes out of the ocean
decrease it.

Fitting TrOCA0 to tracer data from two age (i.e. depth)
horizons (defined by14C and CFC-11 criteria), and then ap-
plying this fit across watermasses from cold deep waters to
warm surface waters assumes that the air-sea exchange sig-
nals of CO2 and O2 are the same regardless of temperature
(since alkalinity acts as a small, secondary factor). In the
case of O∗2, its gas exchange signal has a strong relationship
with temperature (Gruber et al., 2001). However, biologi-
cal processes can additionally modify O2 fluxes, and air-sea
exchange of heat is faster than for O2, both of which act to
create additional structure in O∗2. In strong contrast, there
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exists no discernible relationship between temperature and
the natural CO2 air-sea exchange component,1Cgasex, pri-
marily because the effects of biological processes and heat
fluxes tend to act in opposition on the air-sea exchange of
CO2. These differences between O∗

2 and1Cgasexare illus-
trated in Fig.1.

These factors mean that biological processes act to decou-
ple the air-sea exchanges of CO2 and O2 from those associ-
ated with heat fluxes. Further, since biological activity is not
tightly correlated with heat fluxes (for a number of reasons),
this decoupling is different over the range of oceanographic
regions. Thus, as TrOCA0 is parameterised both as a fixed
relationship between gas and heat fluxes, and using a limited
set of observations, it is unlikely to successfully hold across
all regions. We test this in the following sections using re-
sults from an ocean carbon cycle model.

3 Assessing TrOCA with a model

The strategy we employ to assess TrOCA is to undertake
simulations with an ocean carbon cycle model and then use
the results from these runs as synthetic data for applying the
TrOCA method. More specifically, we use results from a
simulation that runs from 1864 to 2004 and that includes
two different DIC tracers. The first one is exposed to the
historically-observed rise in atmospheric CO2, and one for
which the atmospheric boundary conditions remains that of
pre-industrial time. The difference between these two tracers
directly corresponds to Cant. Model fields of various tracers
from the second, historical simulation are then sampled as an
observational program would, and then stored for subsequent
analysis by the TrOCA method. The results from the appli-
cation of the TrOCA method to these synthetic data are then
compared to the “true” field of Cant determined from the dif-
ference of the two DIC tracers. Any difference between these
two Cant fields must then reflect a bias in the TrOCA method.

We next describe first the model and the simulations, and
then present and discuss the results from this model-based
assessment.

3.1 Ocean carbon cycle model

We use OCCAM, a global, medium-resolution, primitive
equation, finite difference ocean general circulation model
to which we have coupled a biogeochemical model that in-
cludes a full description of the ocean carbon cycle.

OCCAM’s vertical resolution is 66 levels (with thickness
ranging from 5 m at the surface to 200 m at the abyssal
seafloor), with a horizontal resolution of typically 1◦ (a high-
resolution version is described inMarsh et al., 2005). A
distinctive feature of OCCAM is its organisation onto two
horizontal grids to avoid grid-spacing difficulties close to the
North Pole singularity. Grid 1 encompasses the Pacific, In-
dian, Southern and South Atlantic oceans, while grid 2 cov-

ers the North Atlantic and Arctic sea. This arrangement
brings the two grids into alignment along the equator in the
Atlantic basin. A simple channel model connects the two
grids at the Bering Straits. The prognostic variables of OC-
CAM’s physical component are potential temperature, salin-
ity, velocity and free-surface height.

OCCAM includes an elastic-viscous-plastic sea-ice
scheme, aK-profile parameterisation (KPP) mixed layer
and Gent-McWilliams eddy parameterisation. Advection is
4th order accurate (a modified split-quick scheme), and the
model employs fractional bottom gridboxes to allow a more
realistic representation of bathymetry. OCCAM is time-
integrated using a forward leapfrog scheme with a timestep
of 1 h. Surface fluxes of heat, freshwater and momentum
are not specified directly, but are calculated using empirical
formulae and NCEP-derived basic atmospheric boundary
layer quantities (Large and Yeager, 2004). Local daylength
is calculated and used in conjunction with daily-averaged
irradiance to reconstruct a realistic diel cycle. To compen-
sate for deficiencies in the freshwater flux balance, surface
salinity is relaxed towards monthly observations.

Biogeochemical cycles of nitrogen, carbon, oxygen and
alkalinity are embedded within OCCAM. These cycles are
driven primarily by a nitrogen-based nutrient-phytoplankton-
zooplankton-detritus (NPZD) model (Oschlies, 2001) that
has been coupled to the other elemental cycles (Sinha and
Yool, 2006; Yool and Sinha, 2006; following Anderson and
Pondaven, 2003). The adaptations necessary for this cou-
pling include: C:N:O2 Redfield relationships for phytoplank-
ton and zooplankton (Anderson, 1995; Palmer and Totterdell,
2001); a separate state variable for detrital carbon (Anderson
and Pondaven, 2003); a simplified scheme for biogenic cal-
cium carbonate production and dissolution (Najjar and Orr,
1999; Najjar et al., 2007); and subroutines to calculate the
air-sea exchange of CO2 and oxygen (Orr et al., 1999b; Na-
jjar and Orr, 1999). The model also incorporates a variable
detrital sinking velocity (Schmittner et al., 2005).

The resulting biogeochemical model component is com-
prised of eight tracer variables that are entirely passive and
distributed throughout the model domain. A unified set of
equations governs the biogeochemical tendencies through-
out the water column, and these are described in Appendix A.
Minor variants of this ecosystem model have previously been
used within the OCCAM GCM in a number of unrelated
studies, includingYool et al. (2007), Glessmer et al.(2008)
andYool et al.(2009).

In addition to the main biogeochemical tracers, OCCAM
includes a series of natural, artificial and idealised tracers,
including the radioisotope14C, haloalkanes and numerical
ventilation tracers.14C is modelled using the protocols de-
fined by the OCMIP-2 project (Orr et al., 1999b), and is
forced by the time-history of atmospheric14C (including
both the Suess Effect and twentieth century nuclear tests).
Modelled haloalkanes include CFC-11, CFC-12, CFC-113
and carbon tetrachloride (CCl4), and these are forced by
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atmospheric time-histories from 1910 (when CCl4 first ap-
pears in the atmosphere;Walker et al., 2000). Air-sea ex-
change of haloalkanes uses the protocols defined by the
OCMIP-2 project (Warner and Weiss, 1985; Zheng et al.,
1998; Orr et al., 1999a). The idealised ventilation tracer
ages one day per day throughout the model domain, but is
destroyed at the ocean’s surface.

3.2 Simulation

The OCCAM configuration described above was initialised
from rest with tracer fields from the World Ocean Atlas 2001
(potential temperature, salinity, nitrate, oxygen;Conkright
et al., 2002) and GLODAP (pre-industrial carbon, alkalin-
ity, 14C; Key et al., 2004) climatologies. Biological tracers
(phytoplankton, zooplankton, detritus) were initialised to ar-
bitrary small values. CFC and ventilation tracer fields were
initialised to zero.

The model was then run forward in time, with surface
boundary conditions from a high resolution spatial and tem-
poral dataset for the period January 1958 to December 2004
inclusive, using the unCorrected Interannual Forcing dataset
(unCIAF; Large and Yeager, 2004). Upon reaching the end
of this period, the model-state was “recycled” to 1958, i.e.
the model’s spin-up cycles made repeated use of this period.
It was assumed that the climatic effects of CO2 on model
forcing fields are relatively small during the period 1958–
2004, so that this high quality forcing data can be used for
periods pre-1958. Although this approach does tend to warm
the ocean, in practice this trend is small (Yool and Sinha,
2006).

After an initial physical spin-up cycle (using surface forc-
ing data from 1958–2004; see above), the simulation un-
derwent three further forcing cycles during which the time-
history of atmospheric CO2 (and114C) from 1864 to 2004
was applied. In the final 5 years of the spin-up cycle, the av-
erage air-to-sea CO2 flux was 0.139 Pg C y−1. As noted ear-
lier, to account for this drift, a parallel “pre-industrial” DIC
tracer was run alongside that exposed to the anthropogenic
CO2 transient, to act as a control and to permit the separation
of natural and anthropogenic carbon. Following a similar ap-
proach to that ofCox et al.(2000), this control experienced a
constant atmosphericpCO2 of 288.4 µatm, that of the atmo-
sphere at 1864. This concentration is higher than the gener-
ally assumed pre-industrial value (278 µatm), but has the ad-
vantage of decreasing simulation duration by 100 years. This
slightly decreases the total amount of anthropogenic CO2 ex-
pected in the ocean relative to a simulation that had extended
over the full anthropogenic transient since the mid-18th cen-
tury (see Appendix B). However, this has no impact for our
evaluation of the TrOCA method, since the model-generated
synthetic data are used to calibrate the method as well as test
it. Atmospheric concentrations of haloalkanes increased ac-
cording to their relevant time-histories from 1910.

Appendix B describes the validation of the OCCAM simu-
lation for properties relevant to biogeochemistry and the car-
bon cycle.

3.3 TrOCA and OCCAM

To examine the skill of the TrOCA method in distinguishing
Cant from background DIC, the method is used in a number
of different ways to estimate Cant from OCCAM’s simulation
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Fig. 2. Comparison of vertically-integrated Cant between observational (GLODAP-estimated; top left) and OCCAM simulated (bottom left)
Cantfields and those estimated by default TrOCA (top/bottom right). The observational field is that estimated by GLODAP (Key et al., 2004),
and the corresponding TrOCA estimate is based on World Ocean Atlas (Conkright et al., 2002) and GLODAP (Key et al., 2004) climatology
fields. Integrals are in mol m−2. Note that negative values of estimated Cant are set to zero before integration.

of the industrial period. Since the simulation includes a pre-
industrial DIC tracer, it is possible to separate natural and
anthropogenic signals in modelled DIC, and to directly as-
sess TrOCA’s skill.

Firstly, reflecting the use of globally-distributed observa-
tions in the optimisation of the TrOCA method described
in Touratier et al.(2007), the default parameterisation of
TrOCA is used together with output from OCCAM and the
World Ocean Atlas and GLODAP climatologies to estimate
Cant at the global scale.

Next, given that the biogeochemical model used here does
not fully represent the complexity of real world biogeochem-
istry, it is likely that the TrOCA parameters derived from field
observations are not optimal for use with our model. To this
end, the TrOCA method itself is re-optimised, using output
from OCCAM as input to the calibration procedure described
in Touratier et al.(2007). This calibration is performed us-
ing both global, basin and regional scale subsets of the model
output in order to estimate the robustness and wider utility of
the optimised variants of the TrOCA method.

The skill of the resulting variants is assessed in the con-
text of assumptions underlying the TrOCA method. This as-
sessment takes the form of a series of further experiments to
examine aspects of TrOCA such as the assumption of con-
stant air-sea disequilibrium of CO2 under pre-industrial and
present day atmospheres, and the use of a heuristic function,
Eq. (9), to approximate TrOCA0.

4 Results and discussion

4.1 Default TrOCA

The initial examination of TrOCA used the default values
of its parameters determined byTouratier et al. (2007;
see Eq.11). These values were obtained by optimising
the TrOCA method with observations from the GLODAP
world ocean database. Here we applied the resulting TrOCA
method to both observational data from global climatology
datasets and to the synthetic data from OCCAM to estimate
Cant taken up by the ocean during the industrial era. Fields
of observational data were taken from the GLODAP (Key
et al., 2004; DIC and alkalinity) and World Ocean Atlas
(Conkright et al., 2002; potential temperature, salinity and
oxygen) global climatology datasets.

Figure 2 shows the global distribution of Cant estimated
for four instances: the GLODAP estimate based on the1C∗

method; the application of default TrOCA to the observa-
tional datasets; that simulated by OCCAM; and the appli-
cation of default TrOCA to OCCAM’s synthetic dataset. In
each case Cant is vertically integrated with only positive con-
centrations considered (negative Cant concentrations occur
with TrOCA and1C∗, but are ignored here).

The global Cant total estimated by1C∗ from the GLO-
DAP dataset is 104.0 Pg C. The Cant inventory is highest in
the North Atlantic Ocean and Southern Ocean where deep
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water is formed and absorbed Cant is transferred to the ocean
interior. The inventory is much lower at equatorial latitudes
and in the North Pacific Ocean, regions where deep water is
not directly ventilated. The corresponding TrOCA estimate
is significantly higher at 155.6 Pg C (+50%), although its dis-
tribution largely follows that of the1C∗ estimate (an excep-
tion being the seasonal sea-ice zone around Antarctica).

In contrast, while OCCAM simulates a distribution and
quantity of Cant very similar to that of the1C∗ estimate
(103.1 Pg C;−1%), the default TrOCA method estimates
238.0 Pg C when supplied fields from the synthetic dataset.
While these totals indicate a large discrepancy between Cant
simulated and that estimated, the default TrOCA method
does, at least on a qualitative basis, correctly identify many
regions of high (e.g. northern Atlantic Ocean; Southern
Ocean) and low (e.g. Indian Ocean; Arctic Sea; equatorial
Atlantic Ocean) Cant accumulation. However, on a quanti-
tative basis, the agreement is poor, with large overestima-
tions in most regions where Cant is identified (typically of or-
der 50 mmol m−3). In the case of Cant in the Pacific Ocean,
TrOCA’s performance is particularly poor, both qualitatively
and quantitatively, with the almost Cant-free equatorial re-
gion instead being evaluated as the most Cant-rich region in
the world.

Figure3 shows the corresponding vertical profiles of Cant.
1C∗ and simulated OCCAM Cant profiles show the best
agreement, especially below 200 m. The default TrOCA es-
timate based on observational fields generally follows these,
although it exhibits an anomalous midwater peak (100 m),
and consistently higher deeper water concentrations (2–
3 mmol m−3). The TrOCA estimate based on OCCAM fields
is the least congruent, with a deep (500 m) peak, and gen-
erally increasing (if still low) Cant concentrations below
2000 m.

The foregoing disagreement between OCCAM simulated
Cant and that estimated by the default TrOCA is unsurpris-
ing. As with all such models, OCCAM’s biogeochemistry
is a truncated and simplified representation of the real ocean
systems that the TrOCA method assumes. For instance, OC-
CAM utilises an extremely simple submodel of calcium car-
bonate production and dissolution that ignores known pro-
cesses including saturation-dependent dissolution (e.g.,Orr
et al., 2005) and ballasted sinking (e.g.,Armstrong et al.,
2002). As a result, OCCAM’s biogeochemical fields are li-
able to systematically differ from those of the real ocean on
which default TrOCA was optimised. For these reasons it
is a much fairer comparison if the TrOCA parameters were
obtained from an optimization using model output.

As a practical sidenote for both observational scientists
and modellers, the TrOCA method is sensitive to particular
changes in the input variables, and when using it care should
be taken to ensure the correct form and units of these vari-
ables are used. For example: replacing potential temperature,
θ , with in situ temperature,T , increases estimated Cant in the
GLODAP data set to 182.1 Pg C (+17%); substituting a con-
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GLODAP (red) and default TrOCA (green) estimates of Cant, to-
gether with OCCAM simulated Cant (blue) and default TrOCA’s
corresponding estimate (magenta). Depth is shown on a logarithmic
scale to more clearly separate Cant concentrations in near-surface
waters. Note that the GLODAP and TrOCA fields of estimated Cant
contain small negative values at depth. These values are uncorrected
for the profiles shown.

stant seawater density (1.026 kg l−1) increases estimated Cant
to 170.5 Pg C (+10%). Introducing±1% offsets to the bio-
geochemical tracers provides an indication of the sensitivity
of the TrOCA method’s Cant estimates to measurement ac-
curacy: DIC, 41.7–483.8 Pg C; alkalinity, 59.7–373.2 Pg C;
oxygen, 140.0–172.2 Pg C.

4.2 Optimising TrOCA0 variants

As described above, physical and biogeochemical aspects
of the OCCAM simulation used here may prevent the suc-
cessful application of the default TrOCA method. In this
section, the optimisation approach used byTouratier et al.
(2007) to tune the TrOCA method using observational data
has been applied to output from the OCCAM simulation to
“custom-tune” TrOCA variants. This approach aims to ex-
amine the role of different domains on the results of the
TrOCA method, and to decrease the importance of particu-
lar details of OCCAM’s simulated hydrography and biogeo-
chemistry.

To examine the importance of domain size on the appli-
cability of optimised instances of the TrOCA method, OC-
CAM output was divided into idealised regions at three dif-
ferent scales: “Global” includes the full OCCAM domain
(1 region); “Basin” divides the World Ocean into Atlantic,
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Fig. 4. Average depth of OCCAM grid cells from which tracer out-
put is pooled for TrOCA optimisation. The upper panel shows the
data pool (ostensibly Cant-free) derived from14C distribution. The
lower panel shows the data pool (ostensibly Cant contaminated) de-
rived from CFC-11 distribution. The weak discontinuity between
the northern and Southern Hemispheres is due to the use of slightly
different CFC-11 criteria in these regions. This is because CFC-11
atmospheric time history is slightly lagged in the southern hemi-
sphere. Depth in m.

Pacific, Indian and Southern oceans (4 regions); “Latitudi-
nal” divides the basins into 30◦ bands, 90◦ S→ 60◦ S, 60◦ S
→ 30◦ S, 30◦ S→ 0◦ N, 0◦ N → 30◦ N, 30◦ N → 60◦ N and
60◦ N → 90◦ N. Optimisations were undertaken for all of the
above, with their performance assessed both within a partic-
ular domain and at the global domain.

For each domain, appropriate OCCAM output (po-
tential temperature, oxygen, alkalinity and DIC) was
pooled from locations that satisfied either the radiocarbon
(114C<−175‰) or CFC-11 (263–271 pptv) criteria. Fig-
ure4 shows the horizontal distribution and average depth of
the resulting114C and CFC-11 layers. The114C criterion
selects very old watermasses, so is confined to deep water in
the Pacific and Indian oceans, and small pockets of very deep
water in the well-ventilated Atlantic and Southern oceans. In
contrast, the CFC-11 criterion instead selects very young wa-
termasses close to the ocean’s surface. For the time period
selected (end of northern summer), these waters are gener-
ally noticeably deeper in the water column in the Northern
Hemisphere than in the south. Regions with strong mixing,
such as the high latitudes and upwelling zones, do not have a
strong CFC-11 signal to identify appropriate watermasses.
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Fig. 5. A comparison of estimated Cant (Cp357
T − Cp288

T ) with
OCCAM actual Cant for the CFC-11 waters identified in Figure4.
Colour denotes the depth from which the sample is drawn. The solid
line indicates the 1:1 relationship. Concentrations in mmol m−3.

Estimated Cant was calculated for the CFC-11 locations
according to Eq. (8) using the same carbonate chemistry
equations as used by OCCAM, and assuming CO2 saturation
under the model’s “pre-industrial” (288.4 µatm) and 1995
(357.4 µatm) atmospheric concentrations. Figure5 shows
the comparison between Cant estimated this way and ac-
tual, OCCAM-simulated Cant. As expected from the rela-
tively slow equilibriation time of CO2 with seawater (e.g.
Matsumoto and Gruber, 2005; see later), estimated Cant
is slightly (RMS error=3.64 mmol m−3) greater than ac-
tual Cant, although the discrepancy generally decreases with
depth (i.e. values at greater depth approach the 1:1 line more
closely). Cant in locations satisfying the radiocarbon criterion
was assumed to be at zero concentration. The resulting fields
were used together with Eq. (10) to optimise the TrOCA
method by minimising RMS error (using thefminsearch
algorithm of MATLAB ; Lagarias et al., 1998).

The exact procedure followed includes a small alteration
from that described byTouratier et al.(2007). Their optimi-
sation procedure involved selecting a value of parametera

within a defined range (1.0<a<1.5), and then optimising the
values of parametersb, c andd at this value. The value ofa
that resulted in the lowest error was then selected (together
with the corresponding values ofb, c andd). In early tests
using OCCAM output, we found that error minima were of-
ten not localised within the range for parametera suggested
(i.e. minimum error was frequently found at the lower limit
of the range sampled). Consequently, rather than optimise
a separately and constrain it, we have included it within the
error optimisation process and have allowed it to adopt any
value.
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Table 1. TrOCA optimisation using estimated Cant at peak CFC-11 locations. Optimised values of TrOCA parametersa, b, c andd are
shown for a range of geographical domains, together with the regional and global Cant inventories that result from their use. The table also
includes the corresponding actual Cant simulated by OCCAM. Cant inventories are in Pg C, with negative values of TrOCA estimates set to
zero.

TrOCA parameters Cant inventory
Domain a b c d Regional Global

×10−2
×105 TrOCA Actual TrOCA

Default TrOCA 1.279 7.511 −1.087 7.810 – – 232.4
World Ocean 0.966 7.042 −1.008 4.494 264.8 103.5 264.8
Atlantic Ocean 1.192 7.480 −1.090 −9.068 41.6 33.9 155.5
Pacific Ocean 0.945 6.967 −1.015 7.652 119.3 48.4 267.4
Indian Ocean 1.208 7.396 −1.113 −4.129 39.1 21.3 229.4
Atlantic (60◦ N → 90◦ N) 0.716 7.112 −1.418 −8.431 1.3 2.7 94.8

(30◦ N → 60◦ N) 1.073 7.375 −1.134 −7.851 11.8 10.5 136.9
(0◦ N → 30◦ N) 0.269 6.438 −1.094 −7.378 9.9 6.7 285.9
(30◦ S→ 0◦ N) 1.001 7.419 −1.047 −14.164 10.1 4.2 220.9
(60◦ S→ 30◦ S) 1.328 7.469 −1.149 −3.144 8.6 8.3 147.1

Pacific (30◦ N → 60◦ N) 1.145 7.228 −1.197 2.970 9.6 5.9 167.6
(0◦ N → 30◦ N) 0.903 6.878 −1.055 10.404 28.7 9.8 322.1
(30◦ S→ 0◦ N) 0.810 6.890 −0.898 3.980 29.5 11.8 463.8
(60◦ S→ 30◦ S) 1.029 7.070 −1.092 6.365 32.2 17.9 189.9

Indian (0◦ N → 30◦ N) 1.098 7.424 −0.993 −11.208 3.1 2.0 432.9
(30◦ S→ 0◦ N) 1.264 7.438 −1.137 −4.178 11.6 8.2 227.0
(60◦ S→ 30◦ S) 1.322 7.294 −1.184 6.336 10.7 10.3 187.3

Southern (90◦ S→ 60◦ S) 1.274 7.384 −1.391 −0.486 4.8 5.2 304.0

Table1 shows the results of this optimisation process for
each of the regions identified above. The values of the
four TrOCA parameters are shown, together with the de-
fault TrOCA parameter values determined byTouratier et al.
(2007). To assess the skill of the optimisations, each vari-
ant is then used to calculate the Cant inventory for the region
used to optimise it, and then the total inventory when applied
to the World Ocean. The actual Cant inventories for each re-
gion are also shown for comparison.

In terms of TrOCA parameter values, parametersa and
d show the largest shifts from those of default TrOCA. In
deriving the TrOCA method,Touratier et al.(2007) suggest
a range fora of 1.0 to 1.5 because of its Redfieldian roots.
Most optimised variants here fall within this range, though
several prefer values slightly below 1.0, and one favoured a
very low value of 0.288, considerably at odds with the bio-
geochemical relationships embodied by the parameter. In the
case of parameterd, as well as ranging widely, optimised
values also switched sign from default TrOCA. Across all
of the optimised parameters, no discernible patterns emerged
between the various regions (e.g. one might naı̈vely expect
within-basin patterns because of biogeochemical gradients).

Turning to the performance of the optimised variants, as
Table1 shows, there are often very large discrepancies be-
tween actual, OCCAM simulated Cant and that estimated by
the variants, both at the regional and global scales. A small
number of variants produce regional estimates close to that
simulated, but these successes typically do not translate to

the global scale. Perhaps unsurprisingly, the variants gener-
ally perform better at the regional scale at which they were
optimised rather than the global scale. Excluding the variant
optimised using global fields, regional estimates average at
1.595 times actual Cant, while at the global scale the average
is 2.290. An exception is the northernmost Atlantic region,
where a significant underestimate at the regional scale trans-
lates to the best estimate at the global scale.

The Cant inventories presented in Table1 are summary
statistics that omit structure and detail from the results. Fig-
ure 6 shows a pair of Taylor diagrams (Taylor, 2001) to il-
lustrate the performance of the TrOCA variants at capturing
OCCAM’s actual Cant distribution. These diagrams present
the standard deviations (radial axis distance) and correlation
coefficients (angle) of the estimated Cant distributions. The
standard deviations are normalised to that of actual, OCCAM
simulated Cant, shown by the reference symbol atσ=1. In
the case of regional fields, a number of TrOCA variants share
similar variability to that of OCCAM (0.9 to 1.2), of which
some southern hemisphere regions also correlate strongly
(>0.9). By these measures, the worst TrOCA variant, op-
timised to the equatorial North Atlantic (0◦ N → 30◦ N), ex-
hibits more than twice the variability of the OCCAM Cant
field, and with a very poor correlation (<0.4). At the global
scale, the TrOCA variants exhibit markedly more variabil-
ity, and none correlate as strongly (all are<0.9). Beyond
the relative success of southern hemisphere regions at the re-
gional scale, there are no obvious patterns or trends in the
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Fig. 6. Taylor diagrams of regional (top) and global (bottom) perfor-
mance of TrOCA variants optimised using estimated Cant. Symbols
refer to variants optimised using regional calibration datasets. Stan-
dard deviations are normalised such that actual, OCCAM simulated
Cant (labelled here as reference) is exactly 1. This reference value is
singular in the case of the global plot (i.e. only one global domain),
but multiple in the case of the regional plot (i.e. one per regional
domain; because of normalisation, these all overlie one another).
Black symbols denote variants with standard deviations outside the
plotted range; the symbols are shown at the limit of this range to
illustrate correlation.

performance of the variants. Table2 includes the values used
in these figures.

Finally, Figs.7 and8 present graphical representations of
variant TrOCA Cant estimates. Figure7 shows global zonal
average Cant for a selection of the TrOCA variants. While the
foregoing description has generally presented single metrics
of variant performance, the subplots indicate how TrOCA
Cant is actually distributed. A consistent feature of variants
that overestimate global Cant inventory is erroneously high
concentrations at higher latitudes (>45◦). This is frequently

accompanied by unrealistic detection of Cant in deep waters.
Another feature poorly resolved by several variants is the rel-
atively shallow penetration depth of Cant at equatorial lati-
tudes. Generally, models which exhibit this latter feature are
separate from those with anomalous high latitude concentra-
tions, suggesting systematic patterns of variant failure.

Figure8 shows the global distributions of simulated Cant
together with estimated Cant for three cases using optimised
variants. The first panel shows estimated Cant using the
TrOCA variant optimised using global model fields with ap-
propriate1C∗ and CFC-11 signatures (total=262.4 Pg C).
The second panel shows the same but the estimates for
each basin are derived using the TrOCA variants optimised
for the same basin (total=204.6 Pg C). The third panel re-
peats this with estimates derived using regional TrOCA vari-
ants (total=170.0 Pg C). Relative to that estimated by default
TrOCA, all three panels show substantial deficiencies in their
Cant distributions, although there are also some small im-
provements. As already noted, all three panels estimate to-
tals considerably in excess of that actually simulated, with
the global panel’s overestimate larger than that of default
TrOCA (238.7 Pg C). One area of improvement in all three
cases is the eastern Pacific basin, where Cant concentrations
now more closely resemble that simulated, although they are
still markedly elevated. Equatorial Atlantic concentrations
of Cant are also improved in the basin and regional pan-
els, particularly the former where North Atlantic Deep Water
(NADW) is correctly estimated as relatively uncontaminated
with Cant.

Nonetheless, despite these limited improvements, it is
clear that none of the optimised TrOCA variants reliably es-
timates OCCAM simulated Cant even at regional scales.

4.3 Sensitivity to TrOCA parameters

To estimate the variance of the optimised TrOCA parameters,
a bootstrapping procedure was used with the global, basin
and regional calibration datasets. Each calibration dataset
was randomly resampled with replacement to produce 1000
alternative calibration datasets that were then used in optimi-
sation.

Table3 lists the resulting means and ranges of TrOCA pa-
rameters from the bootstrap procedure. With a small num-
ber of exceptions, the mean values recovered from the boot-
strap populations are identical (to four significant figures)
to those determined using the full calibration dataset. Also
with a small number of exceptions, parametersa, b and c
show narrow ranges of variability about these mean values.
These variability ranges are considerably smaller than the
range of parameter estimates generated between all of the re-
gional calibration datasets, suggesting that there are robust
biogeochemical differences between the regions. Parame-
ter d, however, is exceptional in that its bootstrap ranges are
much larger relative to bootstrap means (though still narrow
relative to the optimised range of values ofd). This, coupled
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Table 2. Estimated Cant statistics (mean, standard deviation, RMS error and correlation coefficient) for TrOCA variants optimised using
regional calibration datasets (est. columns). The statistics are calculated for the same optimisation regions. Corresponding statistics for
the actual, OCCAM-simulated Cant are also shown (act. columns). Optimisations here make use of estimated Cant at CFC-11 locations.
Negative Cant estimates set to zero prior to statistic calculation.

Mean Cant St. dev. Cant RMS Correl. Calibration data
Domain Est. Act. Est. Act. error coeff. Samples CFC frac.

mmol m−3 mmol m−3 mmol m−3 – # –

World Ocean 16.639 6.504 19.960 11.931 16.925 0.750 394 988 0.164
Atlantic Ocean 9.832 8.008 15.063 11.848 7.113 0.897 19 069 0.852
Pacific Ocean 13.589 5.509 18.993 11.566 15.558 0.723 312 067 0.124
Indian Ocean 13.427 7.318 17.750 12.814 10.308 0.902 63 852 0.153
Atlantic (60◦ N → 90◦ N) 5.575 11.423 12.348 12.902 11.781 0.673 797 1.000

(30◦ N → 60◦ N) 16.759 14.826 18.295 13.179 9.526 0.874 1502 0.978
(0◦ N → 30◦ N) 9.229 6.213 25.755 11.255 24.366 0.354 3393 1.000
(30◦ S→ 0◦ N) 10.558 4.456 10.958 10.324 9.726 0.748 7796 0.939
(60◦ S→ 30◦ S) 8.473 8.191 13.975 11.292 3.759 0.978 5571 0.586

Pacific (30◦ N → 60◦ N) 7.588 4.633 14.733 10.812 10.156 0.752 62 184 0.046
(0◦ N → 30◦ N) 10.431 3.566 14.838 10.023 13.819 0.594 109 912 0.088
(30◦ S→ 0◦ N) 12.919 5.180 16.914 11.744 14.846 0.663 98 293 0.249
(60◦ S→ 30◦ S) 15.907 8.838 21.657 13.290 12.873 0.921 39 676 0.047

Indian (0◦ N → 30◦ N) 7.078 4.489 12.314 10.383 8.318 0.770 15 170 0.119
(30◦ S→ 0◦ N) 9.314 6.595 14.627 13.278 5.672 0.941 39 302 0.182
(60◦ S→ 30◦ S) 9.944 9.632 15.567 13.222 3.692 0.980 9152 0.093

Southern (90◦ S→ 60◦ S) 5.655 6.137 9.220 8.957 4.286 0.891 2240 0.000
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Fig. 7. World Ocean zonally averaged Cant for OCCAM and a selection of TrOCA variant estimates (optimised using estimated Cant).
Actual, OCCAM simulated Cant is shown in the top panel, with subsequent rows of panels showing TrOCA variants. Cant in mmol m−3.
Note that negative Cant concentrations in the TrOCA estimates were set to zero prior to averaging.
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Table 3. The results from bootstrap optimisation of TrOCA using estimated Cant at peak CFC-11 locations. Mean (left columns) and range
(right columns) values of TrOCA parametersa, b, c andd are shown for a range of geographical domains. Range here is the width of the
distribution that encompasses the region 5% to 95% of the optimised parameters.

TrOCA parameters
Domain Mean Range Mean Range Mean Range Mean Range

a b c×10−2 d ×105

World Ocean 0.966 0.005 7.042 0.009−1.008 0.003 4.500 0.399
Atlantic Ocean 1.192 0.010 7.480 0.011−1.090 0.003 −9.071 0.329
Pacific Ocean 0.945 0.005 6.967 0.008−1.015 0.002 7.652 0.255
Indian Ocean 1.208 0.008 7.396 0.011−1.113 0.003 −4.124 0.466
Atlantic (60◦ N → 90◦ N) 0.714 0.200 7.109 0.221 −1.422 0.128 −8.422 1.885

(30◦ N → 60◦ N) 1.071 0.083 7.374 0.078 −1.134 0.019 −7.840 1.185
(0◦ N → 30◦ N) 0.162 0.092 6.194 0.237 −1.198 0.116 −5.060 2.845
(30◦ S→ 0◦ N) 1.001 0.022 7.419 0.020 −1.047 0.005 −14.164 0.237
(60◦ S→ 30◦ S) 1.325 0.100 7.464 0.152 −1.148 0.026 −2.990 4.720

Pacific (30◦ N → 60◦ N) 1.145 0.003 7.228 0.010 −1.197 0.015 2.984 0.596
(0◦ N → 30◦ N) 0.903 0.008 6.878 0.012 −1.055 0.007 10.398 0.501
(30◦ S→ 0◦ N) 0.810 0.007 6.890 0.011 −0.898 0.005 3.985 0.408
(60◦ S→ 30◦ S) 1.030 0.038 7.071 0.071 −1.092 0.014 6.343 2.199

Indian (0◦ N → 30◦ N) 1.099 0.014 7.424 0.011 −0.993 0.007 −11.198 0.367
(30◦ S→ 0◦ N) 1.264 0.003 7.438 0.005 −1.137 0.002 −4.177 0.305
(60◦ S→ 30◦ S) 1.322 0.011 7.294 0.018 −1.184 0.007 6.335 0.627

Southern (90◦ S→ 60◦ S) 1.274 0.002 7.388 0.047 −1.384 0.073 −0.716 2.552
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Fig. 8. As Fig.2 but showing vertically-integrated Cant based on global (top right), basin (bottom left) and regional (bottom right) optimisa-
tions. Actual, OCCAM simulated Cant is shown in the top left panel on the same scale. The basin and regional panels show composite maps
that combine Cant estimates for particular regions based on the optimised TrOCA variants generated for those regions. Cant in mol m−2.
Note that negative values of estimated Cant are set to zero before integration.
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48

Fig. 9. Error in TrOCA0 (estimated – simulated) plotted against
actual DIC (top left), potential temperature (top right) oxygen (bot-
tom left) and alkalinity (bottom right). Estimated TrOCA0 here is
based on the TrOCA variant optimised with the full global calibra-
tion dataset. In each case the colour scale is identical and denotes
the logarithmic density of OCCAM grid cells (cell volume is ig-
nored here). The plots indicate relationships between TrOCA vari-
ant error and the ocean properties used in the TrOCA equation.

to its large range of optimised values, suggests that parame-
terd, the dependence of TrOCA on alkalinity, is only weakly
constrained in TrOCA.

4.4 Errors in TrOCA0

Given Eq. (10) and the relatively good agreement between
estimated and simulated Cant in the calibration dataset shown
in Fig.5, the errors in estimated Cant stem from discrepancies
in the estimates of preformed, pre-industrial DIC. In turn,
pre-industrial DIC is derived from TrOCA0:

C0,TrOCA
T =

1

a

(
TrOCA0

−O2+
AT

2

)
(21)

Equation (6) defines the pre-industrial TrOCA tracer,
TrOCA0, as a function of oxygen, pre-industrial DIC and
alkalinity. Using a calibration dataset of observations iden-
tified by114C and CFC-11 signatures, TrOCA0 is approxi-
mated with an exponential function of potential temperature
and alkalinity (Eq.9). Subtracting this pre-industrial approx-
imation from the field of TrOCA calculated from observed
tracer concentrations forms the basis of the TrOCA method’s
separation of the Cant signal from observed DIC (Eq.7).

Here we evaluate the accuracy of this approximation by
comparing the estimated fields of TrOCA0 (cf. Eq. 9) with

those actually calculated from the simulated tracer fields of
pre-industrial DIC, alkalinity and oxygen (cf. Eq.6). Ta-
ble 4 presents the resulting comparison for each of the op-
timised TrOCA variants. Average TrOCA0 estimates, and
the spatial variability of these estimates, show good agree-
ment with actual TrOCA0, and the correlation between them
is high (with the exception of the equatorial North Atlantic
region). However, as the Cant results already imply, RMS
errors, while small relative to TrOCA0, are significant rela-
tive to the magnitude of Cant. This is not unsurprising, since
the dynamic range of TrOCA0 is large because it has to cap-
ture large changes in the influence of the air-sea exchange
of oxygen (primarily) and natural CO2 (secondary). This dy-
namic range of several hundreds of mmol m−3 is much larger
than the dynamic range of Cant, which is from 0 to about
60 mmol m−3. And as cross-referencing with Table1 shows,
even the lowest errors (e.g. the Southern Ocean) are still as-
sociated with large discrepancies in integrated ocean Cant.

These errors are not distributed randomly within the model
domain or between model variables, and Fig.9 shows corre-
lations between the error in the TrOCA0approximation and
the tracer variables used in calculating TrOCA and approx-
imating TrOCA0 (Fig. A4 shows the corresponding error in
pre-industrial DIC). The panels show how the errors in the
TrOCA0 approximation vary with simulated DIC, potential
temperature, oxygen and alkalinity for the TrOCA variant
optimised with the full global calibration dataset. In each
case, the panels show the (logarithmic) density of OCCAM
grid cells that occur over the ranges of the properties sam-
pled. In the case of DIC and, especially, potential temper-
ature, the errors in approximated TrOCA0 are distributed
fairly evenly over these variables. There are small regions
in which errors are focused, but any relationships are gener-
ally weak. Alkalinity similarly shows no strong relationship
with the error in TrOCA0, although for low alkalinity val-
ues there appears to be a bias to overestimation (though the
total number of grid cells in this relationship is low). How-
ever, oxygen exhibits a more distinct relationship with the
error TrOCA0, which traces out a “N”-shaped pattern in the
plot. Water masses with low oxygen range in TrOCA0 er-
ror from −100 to 50 mmol m−3, while high oxygen water
masses range−50 to 100 mmol m−3, with intermediate wa-
ter masses falling from 50 to−50 mmol m−3 as oxygen con-
centrations rise. This pattern is broadly repeated for other
TrOCA variants as Fig.10 shows (comparable analysis of
the TrOCA0 error and the other TrOCA variables finds that
they also behave similarly across TrOCA variants; results not
shown).

Since the magnitude of estimated Cant is related to the
TrOCA tracer by parametera, these errors in the approxi-
mations of TrOCA0 are broadly comparable in magnitude to
the concentrations of Cant found in present day seawater (cf.
Fig. A4). Since the relatively small signal of Cant is the fo-
cus of the TrOCA method, this interferes with its efficiency
at deconvoluting Cant from background DIC.
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Table 4. Estimated TrOCA0 statistics (mean, standard deviation, RMS error and correlation coefficient) for TrOCA variants optimised using
regional calibration datasets ( est. columns). The statistics are calculated for the same optimisation regions. Corresponding statistics for the
actual, OCCAM-simulated TrOCA0 are also shown (act. columns).

Mean TrOCA0 St. dev. TrOCA0 RMS Correl.
Domain Est. Act. Est. Act. error coeff.

mol m−3 mol m−3 mol m−3 –

World Ocean 1.225 1.231 0.060 0.060 0.032 0.866
Atlantic Ocean 1.475 1.475 0.070 0.071 0.011 0.987
Pacific Ocean 1.203 1.206 0.049 0.054 0.017 0.950
Indian Ocean 1.483 1.489 0.083 0.083 0.013 0.992
Atlantic (60◦ N → 90◦ N) 1.067 1.029 0.028 0.020 0.045 0.473

(30◦ N → 60◦ N) 1.327 1.326 0.068 0.064 0.012 0.986
(0◦ N → 30◦ N) 0.528 0.496 0.029 0.047 0.046 0.703
(30◦ S→ 0◦ N) 1.260 1.264 0.055 0.061 0.012 0.985
(60◦ S→ 30◦ S) 1.651 1.649 0.055 0.053 0.007 0.993

Pacific (30◦ N → 60◦ N) 1.437 1.438 0.051 0.049 0.013 0.967
(0◦ N → 30◦ N) 1.147 1.146 0.051 0.056 0.018 0.949
(30◦ S→ 0◦ N) 1.038 1.039 0.047 0.050 0.016 0.948
(60◦ S→ 30◦ S) 1.309 1.316 0.041 0.039 0.013 0.958

Indian (0◦ N → 30◦ N) 1.330 1.331 0.085 0.085 0.010 0.993
(30◦ S→ 0◦ N) 1.532 1.534 0.098 0.096 0.007 0.998
(60◦ S→ 30◦ S) 1.634 1.633 0.069 0.065 0.006 0.998

Southern (90◦ S→ 60◦ S) 1.629 1.629 0.020 0.017 0.005 0.967
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Fig. 10. As Fig. 9 except focusing solely on error in TrOCA0 (es-
timated – simulated) plotted against oxygen concentration. Each
panel represents the results from the global application of different
TrOCA variants. In each case the colour scale is identical and de-
notes the logarithmic density of OCCAM grid cells (cell volume is
ignored here).

4.5 Impact of changes in surface disequilibrium

One potential source of error in the optimisation process de-
scribed in the preceding section is the use of estimated Cant at
locations identified as possessing a peak CFC-11 signature.
Estimates are based on the difference between saturation DIC
concentrations under “pre-industrial” and 1995 atmospheric
CO2 concentrations. This method assumes that although DIC
concentrations may change in response to the anthropogenic
transient, surface disequilibrium is constant. Essentially, a
given location’s current DIC concentration is out of equilib-
rium with atmosphericpCO2 to the same degree as it was
under pre-industrial conditions.

Figure11shows globally averaged, surface disequilibrium
for the duration of the simulation period (1864–2004). The
control simulation shows the magnitude of interannual vari-
ability in disequilibrium, and the repeating cycles of this
variability as the forcing data (1958–2004) is reused. While
the transient simulation begins with the same disequilibrium
as the control, approximately−11 mmol m−3, this gradu-
ally grows, particularly after 1950, to reach a disequilib-
rium of around−16.5 mmol m−3 by 2004 (an increase of
slightly more than 50%). Consistent with Fig.5, these re-
sults suggest that the TrOCA method’s approach for estimat-
ing the Cant signal in recently ventilated waters (those with
the peak CFC-11 signature) may overlook a change in dise-
quilibrium. The neglect of this increase in disequilibrium by
about 5 mmol m−3 may explain some part of the generally
too high Cant values estimated by the TrOCA method.
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Table 5. As Table1 except TrOCA optimisation using actual Cant at peak CFC-11 locations. Optimised values of TrOCA parametersa,
b, c andd are shown for a range of geographical domains, together with the regional and global Cant inventories that result from their use.
The table also includes the corresponding actual Cant simulated by OCCAM. Cant inventories are in Pg C, with negative values of TrOCA
estimates set to zero.

TrOCA parameters Cant inventory
Domain a b c d Regional Global

×10−2
×105 TrOCA Actual TrOCA

Default TrOCA 1.279 7.511 −1.087 7.810 – – 232.4
World Ocean 0.971 7.059 −0.992 3.771 263.5 103.5 263.5
Atlantic Ocean 1.130 7.417 −1.058 −8.199 44.7 33.9 151.1
Pacific Ocean 0.950 6.987 −0.997 6.776 118.5 48.4 266.2
Indian Ocean 1.212 7.412 −1.093 −4.904 38.7 21.3 229.1
Atlantic (60◦ N → 90◦ N) 0.556 6.926 −1.492 −7.222 1.2 2.7 87.3

(30◦ N → 60◦ N) 1.005 7.326 −1.122 −7.857 10.4 10.5 115.7
(0◦ N → 30◦ N) 0.232 6.328 −1.153 −4.305 6.7 6.7 248.0
(30◦ S→ 0◦ N) 0.867 7.233 −0.976 −10.629 11.3 4.2 231.0
(60◦ S→ 30◦ S) 1.312 7.462 −1.151 −3.330 9.0 8.3 149.1

Pacific (30◦ N → 60◦ N) 1.147 7.238 −1.188 2.548 9.6 5.9 167.0
(0◦ N → 30◦ N) 0.910 6.895 −1.038 9.756 28.0 9.8 316.3
(30◦ S→ 0◦ N) 0.816 6.910 −0.882 3.214 28.8 11.8 459.2
(60◦ S→ 30◦ S) 1.035 7.091 −1.103 5.475 33.3 17.9 197.2

Indian (0◦ N → 30◦ N) 1.109 7.456 −0.965 −12.541 2.8 2.0 434.5
(30◦ S→ 0◦ N) 1.253 7.435 −1.116 −4.532 11.0 8.2 226.4
(60◦ S→ 30◦ S) 1.311 7.256 −1.179 8.061 10.2 10.3 183.9

Southern (90◦ S→ 60◦ S) 1.273 7.384 −1.404 −0.510 4.8 5.2 312.4
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Fig. 11. Globally averaged, surface ocean DIC disequilibrium for
control (288 µatm; red) and historical (blue) atmosphericpCO2
concentrations. Because of the relatively slow equilibriation time
of CO2, the surface ocean is undersaturated in DIC given atmo-
sphericpCO2. This disequilibrium increases as atmosphericpCO2
increases due to anthropogenic emissions. The dotted vertical lines
denote separate forcing cycles (1958–2004).

To examine the importance of errors introduced by the
estimated CTrOCA

ant92/95 of Eq. (8), the TrOCA method was
optimised as before, but with actual, OCCAM simulated
Cant substituted for estimated (or assumed zero) CTrOCA

ant92/95.
The global/basin/region optimisation was otherwise repeated
identically using the same calibration datasets.

Table 5 and Appendix Figs.A5 and A6 repeat earlier
representations of the performance of the TrOCA variants.
While the optimised values of the TrOCA parameters are
not identical to those of the earlier variants, they are typ-
ically very close, and the estimated Cant inventories are
frequently nearly identical. Unsurprisingly, congruence is
greatest where the CFC-11 fraction of the calibration dataset
is at its lowest (i.e. where near-zero Cant values dominate the
calibration dataset). Comparing Figs.6 andA5 finds nearly
indistinguishable performances of the actual and estimated
Cant variants.

4.6 Biogeochemistry and TrOCA parametera

TrOCA’s parametera has a specific meaning, since it is
defined in relation to the basic stoichiometry of primary
production and organic matter remineralisation. Equa-
tion (5) explicitly expresses parametera as a function of
the stoichiometry of carbon, oxygen, hydrogen and phos-
phorus. Since the relationships between these elements is
broadly conservative across the modern ocean (and is wholly
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conservative in the OCCAM ecosystem model), the approach
of allowing TrOCA variants to adopt any value favoured by
optimisation is somewhat counter-intuitive. From the values
given in Eq. (1) parametera should take a value of 1.205.
Differences in the stoichiometry of oxygen in OCCAM’s
ecosystem (151 mol O2 are evolved per 106 mol C instead
of 138 mol O2) mean that a value of 1.319 should apply to
the simulation. As shown in Table1, the TrOCA variants
optimised here actually range from 0.269 to 1.328 in their
values of parametera, with the majority having values less
than that expected.

Here we repeat the optimisation procedure but fix parame-
tera to that shown above, 1.319. The procedure is otherwise
identical, and uses estimated Cant. Table6 shows the opti-
mised parameter values, and the regional and global perfor-
mances of the resulting TrOCA variants.

Of the 17 areas examined, the new variants are superior at
the regional scale in 10 cases, and when extrapolated to the
global scale, this increases to 12 cases. The new best variant
is the most northerly Pacific region (30◦ N → 60◦ N), which
performs well at both regional and global scales, and esti-
mates a global Cant inventory much closer to that simulated
than the best variant of the earlier optimisation (105.8 Pg C
compared to 103.5 Pg C simulated). However, the new worst
variant is also much worse than that optimised previously
(1195.5 Pg C compared to 463.8 Pg C), and in general the
new variants exhibit similar performance issues to the origi-
nal variants. Overall, these results suggest that this decrease
in the degree of freedom available to the TrOCA variants
does not decrease their performance, and may even increase
it while forcing the best-constrained parameter to remain
close to its theoretical value.

4.7 Cant-free calibration dataset

This work makes use of an OCCAM simulation of duration
188 years (=4×47 years). However, gauged from radio-
carbon measurements, the ventilation timescale of the deep
ocean is up to 2000 years (Ostlund and Stuiver, 1980). As a
result, the simulated ocean and carbon cycle are unlikely to
be in equilibrium with one another. In particular, deep water
masses identified as Cant-free using114C are generally older
than the duration of the simulation and the biogeochemical
signals in them are liable to be dominated by initial condi-
tions rather than the activity of OCCAM. As these Cant-free
water masses play an important role in TrOCA calibration,
the preceding optimisations may be compromised by incor-
porating a mixture of initial conditions and simulated bio-
geochemistry.

To examine this potential problem, ostensibly Cant-free
calibration data were selected using the ventilation tracer to
identify water masses that were ventilated last during the
course of the spin-up phase of the simulation (i.e. prior to the
exposure of the ocean to Cant). The specific age range used
selected water masses of between 156 and 173 years in age.

The lower age limit excluded water masses with Cant con-
centrations of more than 2 mmol m−3. The upper age limit
excluded watermasses with ages within 5 years of the simula-
tion initiation (as previously, analysis focused on September
1995 rather than the end point of the simulation). This crite-
rion narrowed the Cant-free calibration dataset from 394 988
grid cells to 220 810 grid cells. The resulting dataset was
then used in conjunction with the CFC-11 calibration dataset
to optimise the TrOCA parameters in the manner already de-
scribed.

Table 7 shows the result of this procedure. As with the
original optimisations, the skill of the resulting TrOCA vari-
ants is still relatively poor and extremely variable. While
the new calibration dataset has generally improved the large-
scale variants (3 out of 4 are better), the regionally-optimised
variants are generally worse (8 out of 13 are worse). Con-
sidering global scale performance, the range of these opti-
mised variants (88.2–1357.8 Pg C) is much broader than than
that of the original optimised variants (93.3–461.4 Pg C), al-
though generally the misfit with simulated Cant is broadly
comparable between the two optimisation efforts. The best
performing variant is the same between both optimisation ef-
forts (60◦ N → 90◦ N Atlantic), and the worse performing
variants are still those in the equatorial Pacific, although in
all of these cases the new optimisations are worse. In terms
of the estimated TrOCA parameters between the two opti-
misation efforts, these show weak correlations with the ex-
ception of parameterd. In the original optimised variants,
this ranged widely between large positive and negative val-
ues, but here only negative values (i.e. opposite in sign from
those found byTouratier et al., 2007) are estimated.

As a further test of the significance of unventilated water
masses for TrOCA-estimated Cant, water masses with an age
greater than 173 years were excluded when Cant was inte-
grated to regional and global scales. Table8 shows resulting
Cant integrals. In general, the differences are slight, indicat-
ing that the TrOCA variants are not estimating large quanti-
ties of Cant in unventilated regions of the model domain. The
exceptions are those variants which already massively over-
estimate Cant (e.g. those derived using equatorial Pacific cal-
ibration data). For these variants, the figures in Table8 differ
significantly from those in Table7, and the variant estimates
significant Cant where near zero occurs.

Overall, the results of this alternative optimisation suggest
that filtering the calibration dataset to exclude unventilated
water masses does not significantly alter the success of the
optimised variants. While the use of “clean” calibration data
is preferable on theoretical grounds, “contamination” of the
model domain by its initial condition does not appear a major
factor in the poor performance of the TrOCA variants.
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Table 6. As Table1 except TrOCA optimisation uses a fixed value of parametera, 1.319. Optimised values of remaining TrOCA parameters
b, c andd are shown for a range of geographical domains, together with the regional and global Cant inventories that result from their use.
The table also includes the corresponding actual Cant simulated by OCCAM. Cant inventories are in Pg C, with negative values of TrOCA
estimates set to zero.

TrOCA parameters Cant inventory
Domain a b c d Regional Global

×10−2
×105 TrOCA Actual TrOCA

Default TrOCA 1.279 7.511 −1.087 7.810 – – 232.4
World Ocean 1.319 7.347 −1.137 3.619 89.6 103.5 89.6
Atlantic Ocean 1.319 7.603 −1.114 −11.065 39.7 33.9 171.6
Pacific Ocean 1.319 7.240 −1.162 9.859 42.0 48.4 66.8
Indian Ocean 1.319 7.507 −1.131 −5.925 34.9 21.3 213.7
Atlantic (60◦ N → 90◦ N) 1.319 7.612 −1.246 −11.252 1.7 2.7 196.0

(30◦ N → 60◦ N) 1.319 7.595 −1.145 −10.625 12.1 10.5 194.8
(0◦ N → 30◦ N) 1.319 7.583 −0.858 −13.622 72.5 6.7 1195.5
(30◦ S→ 0◦ N) 1.319 7.706 −1.118 −16.919 10.6 4.2 228.0
(60◦ S→ 30◦ S) 1.319 7.458 −1.147 −2.888 8.6 8.3 145.3

Pacific (30◦ N → 60◦ N) 1.319 7.431 −1.148 −1.037 7.3 5.9 105.8
(0◦ N → 30◦ N) 1.319 6.884 −1.356 30.760 15.6 9.8 69.7
(30◦ S→ 0◦ N) 1.319 7.018 −1.186 22.641 14.4 11.8 57.6
(60◦ S→ 30◦ S) 1.319 7.485 −1.140 −4.483 24.2 17.9 160.5

Indian (0◦ N → 30◦ N) 1.319 7.537 −1.076 −7.692 3.9 2.0 211.0
(30◦ S→ 0◦ N) 1.319 7.480 −1.149 −4.392 11.6 8.2 221.8
(60◦ S→ 30◦ S) 1.319 7.289 −1.184 6.471 10.7 10.3 186.5

Southern (90◦ S→ 60◦ S) 1.319 7.498 −1.293 −5.144 5.4 5.2 251.1

Table 7. As Table1 except TrOCA optimisation using “Cant -free” regions defined by ventilation age tracer. Cant is assumed zero in these
regions and is estimated at peak CFC-11 locations. Optimised values of TrOCA parametersa, b, c andd are shown for a range of geographical
domains, together with the regional and global Cant inventories that result from their use. The table also includes the corresponding actual
Cant simulated by OCCAM. Cant inventories are in Pg C, with negative values of TrOCA estimates set to zero.

TrOCA parameters Cant inventory
Domain a b c d Regional Global

×10−2
×105 TrOCA Actual TrOCA

Default TrOCA 1.279 7.511 −1.087 7.810 – – 232.4
World Ocean 1.099 7.221 −1.073 1.132 180.1 103.5 180.1
Atlantic Ocean 1.125 7.506 −1.084 −13.320 56.5 33.9 182.8
Pacific Ocean 1.068 7.135 −1.075 4.523 89.4 48.4 179.4
Indian Ocean 1.241 7.363 −1.142 −0.787 31.2 21.3 185.0
Atlantic (60◦ N → 90◦ N) 0.880 7.087 −0.694 −1.887 6.2 2.7 108.0

(30◦ N → 60◦ N) 1.238 7.525 −1.138 −9.704 12.1 10.5 173.3
(0◦ N → 30◦ N) 1.261 7.622 −1.119 −14.269 9.2 6.7 189.0
(30◦ S→ 0◦ N) 1.285 7.654 −1.124 −15.090 5.9 4.2 181.7
(60◦ S→ 30◦ S) 1.340 7.551 −1.135 −7.382 10.9 8.3 166.8

Pacific (30◦ N → 60◦ N) 1.155 7.248 −1.199 2.336 9.8 5.9 168.4
(0◦ N → 30◦ N) 1.000 7.015 −1.100 7.916 25.0 9.8 236.8
(30◦ S→ 0◦ N) 0.977 7.137 −0.993 −0.392 26.7 11.8 308.7
(60◦ S→ 30◦ S) 1.257 7.432 −1.149 −3.899 27.5 17.9 175.5

Indian (0◦ N → 30◦ N) 1.118 7.436 −1.004 −10.885 3.2 2.0 411.0
(30◦ S→ 0◦ N) 1.242 7.393 −1.139 −2.528 11.2 8.2 215.9
(60◦ S→ 30◦ S) 1.374 7.469 −1.190 −1.594 13.2 10.3 207.3

Southern (90◦ S→ 60◦ S) 1.339 7.449 −1.347 −1.653 3.6 5.2 283.7
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Table 8. As Table7 except Cant is integrated only in regions where ventilation age is below 173 years.

TrOCA parameters Cant inventory
Domain a b c d Regional Global

×10−2
×105 TrOCA Actual TrOCA

Default TrOCA 1.279 7.511 −1.087 7.810 – – 232.4
World Ocean 1.031 7.281 −1.060 −5.161 190.8 103.5 190.8
Atlantic Ocean 1.229 7.556 −1.100 −11.867 47.3 33.9 175.8
Pacific Ocean 0.968 7.143 −1.039 −0.669 91.3 48.4 215.1
Indian Ocean 1.241 7.531 −1.125 −10.052 31.9 21.3 186.4
Atlantic (60◦ N → 90◦ N) 0.865 7.086 −0.753 −2.314 5.6 2.7 91.4

(30◦ N → 60◦ N) 1.129 7.417 −1.117 −8.093 12.8 10.5 156.4
(0◦ N → 30◦ N) 1.295 7.542 −1.104 −8.707 9.2 6.7 190.3
(30◦ S→ 0◦ N) 1.279 7.668 −1.131 −16.024 5.8 4.2 182.0
(60◦ S→ 30◦ S) 1.380 7.576 −1.144 −7.361 10.6 8.3 178.2

Pacific (30◦ N → 60◦ N) 1.127 7.330 −1.107 −3.511 8.5 5.9 158.7
(0◦ N → 30◦ N) 0.645 6.762 −0.636 −2.337 108.7 9.8 1359.5
(30◦ S→ 0◦ N) 0.781 7.040 −0.833 −6.806 43.1 11.8 673.1
(60◦ S→ 30◦ S) 1.267 7.482 −1.137 −6.302 28.0 17.9 175.2

Indian (0◦ N → 30◦ N) 0.960 7.310 −0.883 −12.453 5.6 2.0 748.3
(30◦ S→ 0◦ N) 1.175 7.512 −1.085 −12.048 11.4 8.2 269.9
(60◦ S→ 30◦ S) 1.393 7.467 −1.190 −0.831 12.8 10.3 215.5

Southern (90◦ S→ 60◦ S) 1.386 7.519 −1.295 −3.882 3.6 5.2 263.6

5 Summary and conclusions

Using theoretical considerations, we have demonstrated that
the TrOCA method is a classical back-calculation technique,
and that the TrOCA tracer itself is actually identical (except
for a constant factor) to the C∗ tracer introduced byGruber
et al. (1996). Variations in this tracer reflect the combined
impact of the air-sea exchange of CO2 and O2. The chal-
lenge, as is the case with all back-calculation techniques,
is the estimation of the pre-industrial, preformed value of
TrOCA. It turns out that the TrOCA method is potentially
exceptionally prone to errors in this estimation for two rea-
sons. Firstly, any parameterization for the pre-industrial, pre-
formed value of TrOCA needs to accurately capture a large
dynamic range of this tracer, a range that is several times
larger than the Cant signal that should be determined. Sec-
ondly, the relationship of TrOCA with temperature and alka-
linity is likely much more complex than a simple four para-
metric curve would suggest, primarily because the air-sea ex-
change of CO2 scales very poorly with temperature (and also
alkalinity).

Using biogeochemical tracer distributions derived from an
ocean general circulation model, we have examined the im-
pact of these challenges for the TrOCA method in a quan-
titative manner. We find that the standard TrOCA method
considerably overestimates the model’s “true” anthropogenic
CO2 by about a factor of 2. Applying default TrOCA to
global fields of observed ocean properties from the GLO-
DAP and World Ocean Atlas climatologies also produces a

large (about 50%) overestimate of the ocean’s anthropogenic
CO2 content relative to other established methods of decon-
volution (Gruber et al., 1996) and the most recent estimate of
Khatiwala et al.(2009).

In order to test how sensitive these results are to pos-
sible deficiencies of our model, we followed the approach
outlined byTouratier et al.(2007) and re-parameterised the
TrOCA method utilising a range of different calibration data
sets in the optimisation process. While the results showed
regional differences for different calibration data sets, the
overall conclusion that TrOCA tends to considerably over-
estimate anthropogenic CO2 remains unchanged. Further-
more, the results of this procedure suggest that no single
TrOCA parameter set can operate “universally” across the
world ocean. However, given that the TrOCA method is op-
timised inTouratier et al.(2007) using global-scale data, it
is difficult to justify its applicability at other scales. Within
the framework of our model, we also show that TrOCA’s in-
herent assumption of similar surfacepCO2 disequilibrium in
the 1990s and in the pre-industrial world is not critical.

According to our model-based analysis, the main error in
the TrOCA estimates comes from the errors associated with
estimating the pre-industrial value of the approximately con-
servative TrOCA tracer, TrOCA0, consistent with the the-
oretical arguments. Assuming no anthropogenic impact on
oxygen and alkalinity, this directly corresponds to errors in
the estimate of natural DIC, C0,TrOCA

T (Eq. 21). Although

the relative errors of C0,TrOCA
T are small, the absolute errors

are of comparable magnitude to the total anthropogenic CO2
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Fig. 12. Zonal average comparison of observational (left column) and OCCAM simulated biogeochemical fields. Potential

temperature (top;◦C) is derived from the World Ocean Atlas (2001; Conkright et al., 2002). DIC (middle; mol m−3) and

alkalinity (bottom; eq m−3) are derived from the GLODAP climatology (Key et al., 2004).Note that the vertical scale on each

panel is non–linear to emphasise the upper 1000 m of the ocean, and that the GLODAP climatology does not include any data

at latitudes greater than 65◦N.
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Fig. A1. Zonal average comparison of observational (left column) and OCCAM simulated biogeochemical fields. Potential temperature
(top; ◦C) is derived from the World Ocean Atlas (2001;Conkright et al., 2002). DIC (middle; mol m−3) and alkalinity (bottom; eq m−3) are
derived from the GLODAP climatology (Key et al., 2004). Note that the vertical scale on each panel is non-linear to emphasise the upper
1000 m of the ocean, and that the GLODAP climatology does not include any data at latitudes greater than 65◦ N.

signal, preventing the TrOCA method from recovering Cant
in our OCCAM simulation. Consequently, the failure of the
application of synthetic data from OCCAM in the creation of
TrOCA variants is unsurprising.

In conclusion, our theoretical and model-based analyses
suggest that the TrOCA method cannot be recommended to
reconstruct anthropogenic CO2 on the basis of DIC obser-
vations. The potential errors are substantially larger than
those associated with alternative methods, for which similar
model-based assessments suggested biases of less than 10%.

Looking ahead, the issue of estimating Cant from one-time
survey data is becoming less of an issue, as we increas-
ingly have data available from repeated occupations of long-
transects (seeSabine and Tanhua, 2010 for a recent sum-
mary). The identification of the changes in DIC, and the
underlying changes in Cant and natural DIC represent a sub-
stantial remaining challenge, although several methods, such

as the extended MLR (e.g.Friis et al., 2005) have been pro-
posed. However, a model-based assessment of such methods
by Levine et al.(2008) demonstrated that each of these meth-
ods have substantial potential biases, requiring further inves-
tigations to fully characterize the errors associated with esti-
mates of decadal changes in the ocean carbon cycle. Thus,
whether the goal is to estimate the oceanic uptake of Cant
since pre-industrial times from one-time survey data, or the
change in Cant content over decadal time-scales on the basis
of repeat data, substantial challenges remain to not only de-
termine the best estimate, but also to fully characterize the
associated errors.

Appendix A

The following equations describe the tendency terms operat-
ing on the biogeochemical tracers in the model.
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Fig. 14. Comparison of zonally–averaged observational and model fields of primary production (top), (sea - air)∆ pCO2

(middle) and air–sea CO2 flux (lower). Primary production observations are derived by applyingthe VGPM (Behrenfeld and

Falkowski, 1997), Eppley–VGPM (Carr et al., 2006) and CbPM (Westberry et al., 2008) productivity models to SeaWIFS fields

of surface chlorophyll for the period 2003 to 2004. (Sea - air) ∆ pCO2 and air–sea CO2 flux observations are those estimated

by Takahashi et al. (2009) for the standardised year 2000. The corresponding model output are the averages of these fieldsfor

the matching periods.
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Fig. A3. Comparison of zonally-averaged observational and model
fields of primary production (top), (sea-air)1 pCO2 (middle) and
air-sea CO2 flux (lower). Primary production observations are de-
rived by applying the VGPM (Behrenfeld and Falkowski, 1997),
Eppley-VGPM (Carr et al., 2006) and CbPM (Westberry et al.,
2008) productivity models to SeaWIFS fields of surface chlorophyll
for the period 2003 to 2004. (Sea-air)1pCO2 and air-sea CO2 flux
observations are those estimated byTakahashi et al.(2009) for the
standardised year 2000. The corresponding model output are the
averages of these fields for the matching periods.
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+[ 2·RCa(k) ·TCa ]︸ ︷︷ ︸
inorganic remin.
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Fig. 15. As Figure 9 but showing error inC0
T (estimated - simulated) plotted against actualCant (top left), potential temperature

(top right) oxygen (bottom left) and alkalinity (bottom right). EstimatedC0
T here is based on the TrOCA variant optimised with

the full global calibration dataset. In each case the colourscale is identical and denotes the logarithmic density of OCCAM grid

cells (cell volume is ignored here). The plots indicate relationships between TrOCA variant error and the ocean properties used

in the TrOCA equation.
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Fig. A4. As Fig. 9 but showing error in C0T (estimated – simu-
lated) plotted against actual Cant (top left), potential temperature
(top right) oxygen (bottom left) and alkalinity (bottom right). Es-
timated C0

T here is based on the TrOCA variant optimised with the
full global calibration dataset. In each case the colour scale is iden-
tical and denotes the logarithmic density of OCCAM grid cells (cell
volume is ignored here). The plots indicate relationships between
TrOCA variant error and the ocean properties used in the TrOCA
equation.

∂O2

∂t
= +

[
θphy·FPP(J, QN ) ·P

]︸ ︷︷ ︸
primary production

−
[
θphy·φ ·GP

]︸ ︷︷ ︸
messy feeding

(A8)

−[ θnit ·EZ ]︸ ︷︷ ︸
Z excretion

−[ θrem·RZ ]︸ ︷︷ ︸
Z respiration

−
[
θphy·µP1

]︸ ︷︷ ︸
P metab. loss

−[ θzoo·µZ1 ]︸ ︷︷ ︸
Z metab. loss

−[ θnit ·µDN ]︸ ︷︷ ︸
DN remin

−[ θrem·µDC ]︸ ︷︷ ︸
DC remin

+
[
Fatm,O2

]︸ ︷︷ ︸
air-sea flux

where,

J (k)=

∫ zk+1

zk

F(Izk ·exp{−(kw+(kc ·P(k))) ·z})dz (A9)

FI =
(Vt ·α ·I )√

(V 2
t +(α2 ·I2))

(A10)

Vt =Vp ·1.066θ (A11)

QN =
N

kN + N
(A12)
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Fig. 16. As Figure 6 except TrOCA variants optimised using actual OCCAM Cant.
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Fig. A5. As Fig. 7 but showing TrOCA variants optimised using
actual Cant. Cant in mmol m−3.

FPP(J, QN )= min(J, Vt ·QN ) (A13)

GP =
g ·kg P

2
·Z

g + (kg ·P 2)
(A14)

µP1 =φP1 ·P (A15)

µP2 =φP2 ·P 2 (A16)

IN = (1 − φ) ·GP (A17)

IC = (1 − φ) ·(θP ·GP ) (A18)

θF =
IC

IN
(A19)

FZ =
βC ·kC ·IC

θZ
(A20)

EZ = IC ·

(
βN

θF
−
βC ·kC

θZ

)
(A21)

RZ = (βC ·IC) − (θZ ·FZ) (A22)

µZ1 =φZ1 ·Z (A23)

µZ1 =φZ2 ·Z2 (A24)

µDN =µD ·DN (A25)

µDC =µDC ·DC (A26)

FCa= Fixed fraction of primary production (A27)

TCa=

∫ k=66

k=1
FCa·FPP(J, QN ) ·θP ·P (A28)

fCa(k)= exp(−
z(k)−zCa

dCa
) (A29)

RCa(k)= fCa(k−1)−fCa(k) (A30)

θphy=
32

16
+

(
θP ·

119

106

)
(A31)

θzoo=
32

16
+

(
θZ ·

119

106

)
(A32)

θnit =
32

16
(A33)

θrem=
119

106
(A34)

Vz =V0 + (0.02·z) (A35)

where,

Phytoplankton
Vp Maximum growth rate (at 0◦C) 0.6 d−1

α Initial slope of P-I curve 0.025 (W m−2)−1 d−1

kw Background attenuation coefficient 0.04 m−1

kc Phytoplankton self-shading coefficent 0.03 m−1 (mmol N m−3)−1

KN DIN uptake half-saturation concentration 0.5 mmol N m−3

φP1 Density-independent loss rate 0.05 d−1

φP2 Density-dependent loss rate 0.05 d−1 (mmol N m−3)−1

FCa CaCO3 fraction of total primary production 0.01 –
θP C:N ratio 6.625 mol C (mol N)−1
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Fig. A6. As Fig.7 but showing TrOCA variants optimised using actual Cant. Cant in mmol m−3.

Zooplankton
g Maximum grazing rate 2.0 d−1

kg Prey capture rate 1.0 m6 (mmol N)−2 d−1

βN N assimilation efficiency 0.77 –
βC C assimilation efficiency 0.64 –
kC Net C growth efficiency 0.80 –
φ Grazing inefficiency (messy feeding) 0.23 –
φZ1 Density-independent loss rate 0.03 d−1

φZ2 Density-dependent loss rate 0.20 d−1 (mmol N m−3)−1

θZ C:N ratio 5.625 mol C (mol N)−1

Other parameters
µD Detrital N remineralisation rate 0.05 d−1

µDC Detrital C remineralisation rate 0.04 d−1

Vmin Detrital sinking speed at 0 m 3.5 m d−1

zCa Minimum CaCO3 dissolution depth 127 m
dCa CaCO3 dissolution e-folding length scale 3500 m
Omin Aerobic remineralisation O2 minimum 4.0 mmol O2 m−3

θphy Oxygen evolution/consumption via P 9.4375 mol O2 (mol N)−1

θzoo Oxygen consumption via Z 8.3149 mol O2 (mol N)−1

θrem Oxygen consumption by C remineralisation 1.1226 mol O2 (mol C)−1

θnit Oxygen consumption by N nitrification 2.0 mol O2 (mol N)−1

Appendix B

Prior to using simulation output with the TrOCA method,
OCCAM’s performance in representing the period 1864–
2004 was assessed, with particular regard to the model’s car-
bon cycle and its simulated Cant and CFC-11 distributions.

The distribution of CFC-11 for the mid-1990s from the
GLODAP climatology (Key et al., 2004) was compared
to the corresponding annual average OCCAM output from
1995. While OCCAM generally captures the (primarily
temperature-dependent) patterns of surface CFC-11 distribu-

tion, concentrations are generally elevated over those from
GLODAP. This is most noticeable in the Southern Ocean,
where isolines of CFC-11 are shifted up to 10◦ northwards.
Integrating through the full water column, the GLODAP cli-
matology estimates a total CFC-11 inventory of 0.540 Gmol,
while OCCAM simulates a significantly greater uptake of
0.790 Gmol (+49%; this figure is corrected for the data gaps
in the GLODAP climatology). This high oceanic inventory
of CFC-11 places OCCAM near the top of the range (ap-
proximately 0.45–0.85 Gmol) of OGCMs surveyed by the
OCMIP-2 project (Dutay et al., 2002; OCCAM uses the same
CFC-11 protocol as the OCMIP-2 OGCMs).

Figure 2 shows vertically-integrated Cant for the GLO-
DAP climatology (Key et al., 2004) and the OCCAM sim-
ulation (see also Fig.3 for corresponding vertical distribu-
tion). The GLODAP field shown here is an estimate of the
distribution of Cant based on indirect observations and the
1C∗ method (Gruber et al., 1996; Sabine et al., 2004). As
such, it is an estimate based upon an alternative technique
to the TrOCA method examined here. Generally, OCCAM’s
Cant distribution is broadly in agreement with that of GLO-
DAP, but with a number of regional discrepancies. Most no-
tably, OCCAM estimates a much lower inventory of Cant in
North Atlantic Deep Water (NADW). While OCCAM still
identifies this water mass as that most penetrated by Cant,
model concentrations are noticeably lower than in GLODAP.
The waters of the Pacific basin show much greater agree-
ment between the two estimates, though the Pacific sector
of the Southern Ocean (and the Southern Ocean in general)
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shows differences. The extent of Cant penetration of South-
ern Ocean waters is broader in OCCAM, particularly with
regards to the most southern waters adjacent to Antarctica.
OCCAM also estimates lower Cant in the equatorial regions
of both the Atlantic and Indian basins. The estimates of
the GLODAP climatology in these regions are considerably
more variable than in OCCAM. Nonetheless, integrating Cant
at the global scale finds totals of 8.66 Pmol (GLODAP) and
8.11 Pmol (OCCAM;−6.4%) in relatively close agreement.
This underestimation of oceanic uptake is in part related to
the initiation of the historical simulation in 1864. As noted in
the main text, this “short-cut” skips approximately 100 years
during which the ocean absorbed Cant. To estimate the sig-
nificance of this omission, we compared OCCAM with out-
put derived from an earlier in-house simulation that included
the full industrial period and which utilised the same carbon
cycle sub-model embedded in a different, lower resolution
GCM (the “SOC” model; seeMatsumoto et al., 2004). We
found that by 1864 the ocean contained approximately 15%
of the total Cant absorbed by the 1990s. This suggests that
OCCAM’s small underestimate of the Cant inventory would
most likely overestimate were this earlier period also simu-
lated.

FiguresA1 andA2 present the zonally averaged distribu-
tions of the model tracers relevant to TrOCA (potential tem-
perature, DIC, alkalinity, oxygen, CFC-11 and Cant) along-
side those from the World Ocean Atlas and GLODAP clima-
tologies. These show OCCAM’s generally good agreement
with observational (or derived, in the case of Cant) fields,
but also indicate some systematic problems with the sim-
ulation. As mentioned above, OCCAM significantly over-
estimates the CFC-11 inventory of the ocean, and this can
be seen at high latitudes (particularly in the southern hemi-
sphere) in Fig.A2. This is caused by excessive ventilation
of deeper waters in these regions, and can also be seen in
the fields of oxygen and Cant. In the case of the latter, its
distinct zonal distribution (higher surface concentrations oc-
cur in warm, tropical waters) contrasts with that of CFC-11
(higher surface concentrations occur in cold, polar waters),
and excessive high latitude ventilation acting on these distri-
butions may explain OCCAM’s elevated uptake of CFC-11
relative to Cant.

Finally, Fig. A3 compares observational and OCCAM pri-
mary production (Behrenfeld and Falkowski, 1997; Carr et
al., 2006; Westberry et al., 2008) and (sea-air)1 pCO2 and
air-sea CO2 flux (Takahashi et al., 2009; including October
2009 corrections). In terms of primary production, the model
shows the greatest discrepancy with observations in the sub-
tropics. In these regions, the model typically underestimates
production in the gyre centres and shows a more pronounced
“equatorial stripe” of higher productivity. The model is gen-
erally in better agreement at higher latitudes, although it un-
derestimates productivity in the northern hemisphere (espe-
cially with respect to the VGPM model). The model shows
greater agreement with observational (sea-air)1 pCO2 and

related air-sea CO2 flux, and generally captures the zonal
trends of both. The greatest discrepancy in these fields lies
in the equatorial region, where the model underestimates the
air-sea gradient ofpCO2 and the outgassing of CO2 to the
atmosphere.

Notwithstanding the deficiencies described above, we
judged that OCCAM’s performance was still adequate for it
to serve as a synthetic data set for the TrOCA method.

Appendix C

In the following, we show that C∗ is approximately equal
to the sum of1Cgasexand (scaled) O∗2. Since TrOCA and
C∗ are equivalent (see Eq.18), this demonstrates the ap-
proximate equivalence of pre-industrial TrOCA (TrOCA0)
to this scaled sum, and allows us to understand variations
in TrOCA0 as reflecting the impacts of the air-sea fluxes of
CO2 and O2 on the seawater concentrations of DIC and O2.

1Cgasex=CT−rC:P · P−
1

2
· (AT+rN:P · P)−Cant−Cref (C1)

O∗

2 = O2−rO2:P · P (C2)

Making the simplifying assumption that we are in the pre-
industrial period (i.e. Cant =0), we can compute the scaled
sum (with Cref = 0, andα=

−rC:P
rO2:P

= −rC:O2) as follows:

1Cgasex+α ·O∗

2=CT−rC:P· P−
1

2
·(AT +rN:P· P) (C3)

+
(
α · (O2−rO2:P · P)

)

1Cgasex−rC:O2 · O∗

2 = CT −rC:P · P (C4)

−
1

2
·(AT +rN:P·P)−

(
rC:P

rO2:P
· (O2−rO2:P · P)

)

= CT −rC:P · P−
1

2
· (AT +rN:P · P) (C5)

−

(
rC:P

rO2:P
· O2

)
+

(
rC:P

rO2:P
· rO2:P · P

)

= CT −
1

2
· (AT +rN:P · P)−rC:O2 · O2 (C6)

The soft tissue correction in the alkalinity term,(rN:P · P),
can also be approximated as(rN:O2 · O2), transforming the
resulting equation such that it approximates C∗ (Eq.12) and
TrOCA (Eq.18):

1Cgasex−rC:O2 · O∗

2 ≈ CT −rC:O2 · O2 (C7)

−
1

2
·
(
AT +rN:O2 · O2

)
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≈ C∗ (C8)

≈
1

a
· TrOCA (C9)
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ter Brown, Marta Álvarez and Elaine McDonagh for general
discussions of the TrOCA method; and the WOCE community
for making their observational archive both available and easily
accessible. The authors are also grateful to Catherine Goyet and
an anonymous referee for their detailed comments on an earlier
version of this manuscript. The authors would additionally like to
acknowledge the assistance of the editorial staff of Biogeosciences
in the production of this publication. AY is funded on a UK
National Environment Research Council (NERC) standard grant
(NE/C00387X/1). NG acknowledges support by ETH Zürich. The
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Östlund, G. and Stuiver, M.: GEOSECS Pacific radiocarbon, Ra-
diocarbon, 22, 25–53, 1980.

Palmer, J. R. and Totterdell, I. J.: Production and export in a global
ocean ecosystem model, Deep-Sea Res. I, 48, 1169–1198, 2001.

Papaud, A. and Poisson, A.: Distribution of dissolved CO2 in the
Red Sea and correlation with other geochemical tracers, J. Mar.
Res., 44, 385–402, 1986.
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