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Abstract. Modelling leaf phenology in water-controlled
ecosystems remains a difficult task because of high spatial
and temporal variability in the interaction of plant growth
and soil moisture. Here, we move beyond widely used lin-
ear models to examine the performance of low-dimensional,
nonlinear ecohydrological models that couple the dynamics
of plant cover and soil moisture. The study area encompasses
400 000 km2 of semi-arid perennial tropical grasslands, dom-
inated by C4 grasses, in the Northern Territory and Queens-
land (Australia). We prepared 8-year time series (2001–
2008) of climatic variables and estimates of fractional veg-
etation cover derived from MODIS Normalized Difference
Vegetation Index (NDVI) for 400 randomly chosen sites, of
which 25% were used for model calibration and 75% for
model validation.

We found that the mean absolute error of linear and non-
linear models did not markedly differ. However, nonlinear
models presented key advantages: (1) they exhibited far less
systematic error than their linear counterparts; (2) their error
magnitude was consistent throughout a precipitation gradi-
ent while the performance of linear models deteriorated at
the driest sites, and (3) they better captured the sharp transi-
tions in leaf cover that are observed under high seasonality
of precipitation. Our results showed that low-dimensional
models including feedbacks between soil water balance and
plant growth adequately predict leaf dynamics in semi-arid
perennial grasslands. Because these models attempt to cap-
ture fundamental ecohydrological processes, they should be
the favoured approach for prognostic models of phenology.

Correspondence to:P. Choler
(philippe.choler@ujf-grenoble.fr)

1 Introduction

Most recent advances in empirical models of leaf phenology,
i.e. the time dependence of Leaf Area Index (LAI), have been
made for temperate deciduous forests where temperature is
the main controlling factor (Chuine, 2000). By contrast, leaf
phenology in water-limited ecosystems remains poorly cap-
tured by current broad empirical approaches (Botta et al.,
2000). Yet, water is the main controlling factor of ecosystem
functioning for more than 50% of the land mass (Churkina
and Running, 1998; Huxman et al., 2004). Models of leaf
phenology are an essential component of land surface mod-
els (review in Pitman, 2003). Leaf phenology not only de-
termines the favourable period for carbon uptake, but also
modifies important surface parameters such as albedo and
roughness, which feedback on exchanges of mass and energy
between land and atmosphere (Pielke et al., 1998; Dickinson
et al., 1998; Bounoua et al., 2006).

Two main reasons explain why capturing leaf dynamics
in water-limited ecosystems. remains a challenge. First,
soil water balance, which has long been recognized as a key
driver of plant growth in water-limited ecosystems (Walker
and Langridge, 1996; Farrar et al., 1994), is highly variable
at the landscape scale and hence difficult to predict in global
models. Spatial variability in precipitation and large-scale
modelling of runoff and drainage are among difficulties en-
countered (Teuling and Troch, 2005). By contrast, mean air
temperature exhibits smoother variations along broad latitu-
dinal or elevation gradients. Second, there are immediate
and important feedbacks of plant growth on soil moisture
content through water extraction by roots during transpira-
tion. Contrary to temperature or heat, water is a depletable
resource exploited by plants at a rate dependent on both re-
source (soil water availability) and leaf biomass (Raupach,
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2007). The coupled dynamics between soil moisture and
vegetation growth exhibit strong nonlinearities as highlighted
in several conceptual papers in the emerging field of ecohy-
drology (Rodriguez-Iturbe et al., 2001; Daly and Porporato,
2005). So far, however, there has been no attempt to eval-
uate the performance of these nonlinear approaches using
long data records of climate and remotely-sensed vegetation
greenness.

Long time series of remotely-sensed data of phenology
provide opportunities to relate vegetation cover or greeness
with climatic controls (Pettorelli et al., 2005; Daly and Por-
porato, 2005). A large number of regional (Ji and Peters,
2004; Farrar et al., 1994; Richard and Poccard, 1998) and
global (Potter and Brooks, 1998; Lotsch et al., 2003) stud-
ies have examined the response of greenness to rainfall or
estimates of soil moisture. Most of these studies used linear
modelling, with model performance usually maximised by
smoothing or lagging the predictors, usually rainfall time se-
ries. Though these modelling approaches have proven to be
efficient, they do not make explicit the processes linking pre-
cipitation, soil moisture dynamics, and water use by plants to
sustain growth.

The motivation of the present study is to examine whether
low-dimensional, nonlinear models outperform their linear
counterparts for predicting leaf phenology in water-limited
ecosystems. Our philosophy for nonlinear modelling is to
capture plant-soil moisture coupled dynamics, while keeping
the model tractable and comparable in complexity with a lin-
ear model that typically uses 3–5 parameters. This constraint
in the number of parameters obviously leads to simplifica-
tions for soil water balance and plant growth. However, our
purpose is to seek a simple, transparent and portable model
that can be used with readily available large-scale climatic
and remotely-sensed data and that will enable its inclusion in
global land surface models.

Numerous studies have shown that the Normalized Dif-
ference Vegetation Index (NDVI) can be used as a proxy
for green vegetation fraction (Myneni et al., 1995; Carl-
son and Ripley, 1997), especially for grassland ecosystems
where the maximum Leaf Area Index (LAI) does not exceed
3–4 (Choudhury et al., 1994; Carlson et al., 1995; Carlson
and Ripley, 1997). In this paper, NDVI calculated from re-
flectances in the red and near infrared wavebands from the
MODerate Imaging Spectroradiometer (MODIS) was used
to characterize the phenology of the Australian semi-arid
Mitchell grasslands. The use of the Mitchell grasslands as
a case study was motivated by three factors. First, these
grasslands are known to exhibit a rapid response to precipita-
tion (Christie, 1981). Second, phenology is driven by growth
of one life-form, i.e. perennial grasses, which removes the
problem of differentiating tree and grass contributions to the
NDVI signature (Archibald and Scholes, 2007). Third, these
grasslands are distributed along a large precipitation gradient
in northern Australia, offering the opportunity to examine the
ability of a single set of parameters to predict leaf dynamics

under contrasting precipitation regimes. Our study has three
steps: (i) calibrating linear and nonlinear models using time
series of climate and NDVI-derived vegetation cover for 400
randomly chosen sites within the Mitchell grasslands; (ii) ex-
amining the ability of these models to capture the dynamics
of test data sets of vegetation cover; and finally (iii) compar-
ing the performance of these models to predict yearly inte-
grated values of vegetation cover.

2 Material and methods

2.1 Study area

The study area of approximately 400 000 km2 corresponds
to the Mitchell Grass Downs ecoregion (Bailey, 2004), ex-
tending from central Northern Territory to central southern
Queensland, Australia (Fig. 1). The lack of trees has been
attributed to cracking clay soils and fire prior to European
settlement (Orr, 1975). The grasslands are dominated by
C4 perennial grasses, among which Mitchell grass (Astrebla
spp.), feather-top wire grass (Aristida spp.) and Blue grass
(Dichanthiumspp.) are the commonest. These grasslands
support an extensive pastoral industry, and shifts in species
composition and vegetation cover in response to sheep or
cattle grazing have been documented (Orr, 1980a; Foran
and Bastin, 1984). The climate is predominantly tropical
semi-arid and exhibits a large north-south rainfall gradient.
Annual rainfall is associated with pronounced wet-dry sea-
sonality. Most of the Mitchell grasslands sites receive be-
tween 300 and 400 mm of precipitation during the wet pe-
riod from November to April (Fig. 2a). Precipitation di-
minishes in amount and seasonality towards the southeast
(Fig. 1). Maximum temperatures remain high throughout the
year, though winter (July) minima are significantly lower in
southern Queensland compared with the Northern Territory
(Fig. 1).

2.2 Datasets

Four hundred sites were randomly chosen within the area
of Mitchell grasslands, as classified in the digital map
of Australia’s Native Major Vegetation Subgroups (Aus-
tralian Government, Department of the Environment, Wa-
ter, Heritage and the Arts, (http://www.environment.gov.au/
erin/nvis/mvg/). To avoid potential edge effects, we excluded
from our dataset all 0.05 degree MODIS cells that were di-
rectly adjacent to other vegetation subgroups, usually Euca-
lypt open woodlands. Vegetation physiognomy for all sam-
pled points was further checked using Ikonos images avail-
able on Google Earth version 4. 3 (http://earth.google.com/).

Annual vegetation often dominates in heavily grazed areas
surrounding cattle watering points, causing the peak NDVI
signal to occur more rapidly after the first rainfalls and to be
narrower than for perennial-dominated communities (Pickup
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Fig. 1. Geographical distribution of Mitchell grasslands (grey) and location of the 400 random sites investigated. Left and right panels
show monthly means (+ 1 sd) of precipitation (mm) and mean temperature (◦C) over the period 1961–1990 as recorded in 8 weather stations
within or nearby the Mitchell grasslands area. Abbreviations are as follows: Bru: Brunette Downs; Bur: Burketown; Ric: Richmond; Ura:
Urandangi; Vic: Victoria Rivers. Map uses Albers Equal Area Conic projection.

et al., 1998). The location of permanent and semi per-
manent sources of water for stock (bores and dams) was
obtained from Geoscience Australia’s Geodata Topo 250K
vector product (http://www.ga.gov.au/mapspecs/250k100k/).
These data were used a posteriori to test for a potential ef-
fect of the distance to the nearest watering point on model
performance.

To calculate NDVI, we used reflectances in the red and
near infrared wavebands from MODIS (MOD09A2 Col-
lection 5) obtained from the Oak Ridge National Labora-
tory Distributed Active Archive Center (http://daac.ornl.gov/
MODIS/modis.html). The period analysed was from the be-
ginning of July 2000 to end of June 2008 for a total of 368 pe-
riods of 8 days each (except for the last period of each year
where the period was shorter). Reflectances were averaged
over a 2×2 km area around the target point. We tested differ-
ent areas (4, 16 and 25 km2) and found no significant effect
on the analysis described below. Pixel values that did not
have the highest quality flag value were discarded and miss-
ing values were interpolated using a two order polynomial
fitting method. Because less than 2% of the data was miss-
ing, it is unlikely that the details of the gap-filling method
will significantly affect the final results.

Following Carlson et al. (1995), we normalized the NDVI
values to estimate the green vegetation fractionV , as follows:

V = [(NDVIobs−NDVI0)/(NDVI∞ −NDVI0)]
γ (1)

where NDVIobs is the observed pixel value, NDVI0 is that
for bare soil and NDVI∞ is that for full vegetation cover.
Different values forγ have been used in previous studies:
γ =1 in a linear mixing model (Gutman and Ignatov, 1998)

or γ =2 as in (Choudhury et al., 1994; Seaquist et al., 2003).
There was no qualitative change in the relative performance
of the models whenγ was varied between these two values
and results below are given forγ =2. Averaged NDVI values
during the dry season (July) were used to estimated NDVI0
for each soil type as soil properties may affect reflectances
(Montandon and Small, 2008). A value of 0.75 was assigned
for NDVI∞, corresponding to the averaged maximum NDVI
observed during the wet season in the most productive North-
Western Mitchell grasslands near the Gulf of Carpentaria.
Note that a lower value of 0.5 was reported for African trop-
ical grasslands in Seaquist et al. (2003) using NOAA 8 km
Pathfinder Land data archive.

Before modelling, time series ofV were filtered to sup-
press unusually high or low values. We applied a weighted
moving average filter in which the original data valueV at
ti is replaced by the value of a quadratic polynomial fitted
for 2n + 1 points, withn being the number of time steps
preceding or followingti (Savitzky and Golay, 1964). The
Savitzky–Golay filter has been shown to perform well for
minimizing noise in NDVI time series (Hird and McDermid,
2009). We used a moving window of lengthn = 2, which is
narrow enough to follow rapid changes in NDVI while still
able to reduce noise efficiently .

Daily time-series of precipitation (P) and potential evap-
otranspiration (E) were retrieved from the 0.05 degree
resolution SILO database (Australian Government, Bureau
of Meteorologyhttp://www.bom.gov.au/silo/). E refers to
a Priestley-Taylor estimate of potential evapotranspiration
given by 1.26sRn/(s +γ ), whereRn is the net radiation ab-
sorbed by vegetation and soil,s is the slope of water vapour
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Fig. 2. Relationship between the maximum vegetation cover (Vmax)

over the period 2000–2008 and the mean “summer”, i.e. from
November to April(A) and the mean “winter”, i.e. from May to
October(B) precipitation. Each point represents one of the 400 ran-
dom sites investigated. Dotted lines represent median values.

saturation versus temperature curve andγ is the psychromet-
ric coefficient (Priestley and Taylor, 1972). Cumulative val-
ues ofP and E matching the 8-day MODIS time periods
were prepared for each site. Gridded data were produced
by spatial interpolation of ground-based observations as de-

scribed in Jeffrey et al. (2001). This dataset is useful for cap-
turing the regional-scale and broad inter-annual patterns of
climate variability, but it is of more limited use at finer scales,
e.g. rainfall patterns of individual events. For the sampled
area, the nearest weather station or rain gauge did not exceed
30 km for 80% of the sites.

Soil data were obtained from the Atlas of Australian Soils
(McKenzie et al., 2000; McKenzie and Hook, 1992). The
dominant soil type in the Mitchell grassland ecoregion is
cracking clay soil. Most of the eastern and northern sites are
deep cracking grey soils, coded Ug5.2 and hereafter named
“grey soils”, while the south-western sites in Queensland
exhibit brown-red clay soils, coded Ug5.32 and hereafter
named “brown-red soils”. Maps for saturated soil water con-
tent (Wsat) and soil depth (Z) given in McKenzie et al. (2000)
were used to calculate a common mean value of 450 mm for
soil available water capacity (Wcap). We did not have enough
data to discriminate soil types on the basis ofWcap.

2.3 Modelling approach

We compared two classes of low-dimensional models, here-
after M1 and M2, with the aim of predicting 8-year long time
series of soil water content (W in mm) and vegetation cover
(V dimensionless). Both models are biophysical in origin,
i.e. based on conservation principles, rather than being sta-
tistical models based on purely empirical curve fitting. We
attempted to incorporate the processes and their feedbacks
that govern the mass conservation balance of soil water (W)

and leaf carbon store represented by the proxy variableV .
Models M1 and M2 differed in the way these processes are
represented and coupled as detailed below.

In model M1, changes inV are linearly related to changes
in W and there is no feedback betweenV andW . Because
we assume a linear response ofV toW , M1 is referred to as a
linear model hereafter. This model is given by:

(M1)

{
Wt+1 = Wt +Pt −α1

(
Wt

Wcap

)
Et

Vt+1 = Vt +α2(Wet−L −Wet−L−1)
(2)

subject to

– (i) Wt=0 = W0 Vt=0 = V0

– (ii) Wt+1 = max (0, min (Wcap, Wt ))

– (iii) Wet = max (0,Wt −α3 )

– (iv) Vt+1 = max (Vmin, min (Vmax, Vt ))

Soil moisture content is calculated using a one-layer bucket
model with precipitation (P ) as input, and evaporation and
run-off as outputs. Total evaporation is represented as a func-
tion of potential evapotranspiration (E), relative soil water
content (W/Wcap) and an exponential decay parameterα1.
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Note that there is no distinction between bare soil evapora-
tion and plant transpiration in M1. Initial values ofV andW

at t = 0 are specified by condition (i). Soil moisture content
W is allowed to vary in the interval [0,Wcap]. All precipita-
tion is assumed to run off whenW reachesWcap (condition
ii).

The parameterα2 determines the linear sensitivity ofV
to changes inWe, i.e. the soil water that can be extracted
by plant roots. In M1A, there is no threshold for determin-
ing We, i.e. we setα3 = 0 and henceWe= W , whereas in
M1B, the thresholdα3 is an optimized parameter andWe=
W−α3 ≤ W (condition iii).

V is allowed to vary in the interval [Vmin,Vmax] (condition
iv). Vmax is a site-specific value that corresponds to the maxi-
mum value ofV for the time series. Finally, M1 incorporates
a lag in the number of time steps (L) to account for a delayed
response of leaf growth to seasonal water availability.L has
a considerable effect on model performance and all analyses
were performed withL = 2 (16 days) since this consistently
gave the best results. Note that includingL adds one more
parameter to M1.

In model M2, changes inV are non-linearly related to
changes inW and there is a feedback betweenV and
W through explicit incorporation of plant transpiration. Be-
cause we assume a non linear response ofV toW , M2 is re-
ferred to as a nonlinear model hereafter. This model is given
by:

(M2)

Wt+1 = Wt +Pt −β1(1−Vt )
(

Wt

Wcap

)
Et −β2VtWet

Vt+1 = β3

(
Wet

Wcap−β5

)
Vt

(
1−

Vt

Vmax

)
−β4Vt

(3)

subject to

– (i) Wt=0 = W0; Vt=0 =V0

– (ii) Wt+1 = max (0, min (Wcap, Wt ))

– (iii) Wet = max (0,Wt −β5 )

– (iv) Vt+1 = max (Vmin, min (Vmax, Vt ))

Soil moisture content is calculated using a one-layer bucket
model with precipitation (P) as input, bare soil evaporation,
plant transpiration and run-off as outputs. Bare soil evap-
oration is represented as a function of the bare soil fraction
(1−V ), soil relative water content (W/Wcap), potential evap-
otranpiration (E) and a parameterβ1. Plant transpiration is
modelled as a water-limited process dependent upon the frac-
tion of plant cover (V ), the amount of extractable water by
roots (We) and a parameterβ2 that accounts for plant wa-
ter extraction ability. As for M1, we distinguish two cases
for the calculation ofWe: in M2A, We=W , i.e. we setβ5 =
0, whereas in M2B, the threshold parameterβ5 is optimized
and it is possible thatWe< W , i.e. the amount of water ex-
tractable by roots can be less than the total amount of water
in the soil.

The dynamics ofV is governed by a growth and a mortal-
ity term. Growth is represented by a logistic equation (Ver-
hulst, 1838) with a growth rate,β3, dependent on the relative
amount of extractable soil water content, i.e. the termWe /
(Wcap − β5) and a carrying capacityVmax. Leaf mortality is
a function ofV and a decay rate parameter,β4. A non-zero
minimum value ofV , Vmin, is required to ensure initiation of
leaf growth at the start of the wet season in M2 (see Dick-
inson et al., 2008 for further discussion). This small amount
of persisting aboveground biomass may correspond to near-
ground leaf and shoot primordia of perennial grasses. Choos-
ing contrastingVmin values did affect parameter estimates in
M2, but did not change the goodness-of-fit statistics. Here,
we setVmin = 0.001. For consistency, the same lower limit
value forV was used in M1 and M2 althoughVmin had no
impact on M1 parameter estimates.

There is no need to include a lag parameter in M2 because
the logistic growth model is able to simulate low responsive-
ness ofV to initial increase ofW . A similar coupled non-
linear relationship betweenV andW has been recently pro-
posed by De Michele et al. (2008).

2.4 Model calibration and validation

Parameter estimation was performed using calibrating
datasets comprising 100 randomly selected sites. Parame-
ter estimation only relied on the available remotely-sensed
data of greenness since we had no soil water content data
to add further constraints on parameter estimates. Parame-
ters were optimized using the R package rgenoud (Mebane
and Sekhon, 2009). This optimization method combines a
derivative-based quasi-Newton algorithm developed by Byrd
et al. (1995) and a genetic algorithm. Derivative-based meth-
ods are efficient to find local optima. However, for diffi-
cult convergence problems where multiple local minima ex-
ist, these methods are notoriously poor at finding a global
solution. Therefore, a genetic algorithm is necessary for a
thorough search of the parameter space. The quasi-Newton
algorithm allows setting of the lower and upper bounds for
a given parameter. This flexibility was required to constrain
all parameters to be positive. In addition,β4 the fraction of
existingV that disappears at each iteration (see Eq. 3) was
constrained to be less or equal than one. For each of the 100
calibrated sites, a Coefficient of Variation of the Mean Ab-
solute Error, hereafter CVMAE, was calculated as the Mean
Absolute Error (MAE) normalised to the mean of observa-
tions (Eq. 4). Because calibrating sites differ by their mean
vegetation cover, MAE naturally tend to increase with in-
creasing mean vegetation cover. We used CVMAE to ensure
that each calibrating site had a similar weight on the final
estimate of goodness-of-fit. To remove the undesirable influ-
ence of outliers, we minimized the median CVMAE value of
the 100 training sites, instead of its mean or its sum. There-
fore, the objective function,F , was:

F = median(CVMAE1,CVMAEi,CVMAEN ) (4)

www.biogeosciences.net/7/907/2010/ Biogeosciences, 7, 907–920, 2010
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with

CVMAEi = MAEi/V̄i,o =

(
1

n

n∑
t=1

∣∣Vi,p −Vi,o

∣∣)/V̄i,o

wheret is time in periods of 8 days,n is the number of time
periods,N=100 is the number of calibrating sites,Vi,p and
Vi,o are the predicted and observed values of vegetation cover
for site i, respectively, and̄Vi,o is the mean vegetation cover
of sitei. We followed recent recommendations on model per-
formance evaluation (Willmott and Matsuura, 2005, 2006)
and used MAE as the best measure of average error magni-
tude of a model. This is because goodness-of-fit statistics
based on the squaring of an error term, e.g. Mean Square
Error (MSE) or Root Mean Square Error (RMSE), are more
sensitive to the distribution of errors and often lead to over-
weighting outliers. However, we have tested alternative cost
functions with squared error terms and this did not change the
conclusions of our study. We performed 30 different calibra-
tion runs, each conducted with a different subset of 100 sites.
The mean values of each parameter resulting from these cal-
ibration runs are given in Table 1.

Parameter estimates from each calibration run were used
to predict time series ofV and W for the remaining 300
testing sites. Several goodness-of-fit statistics were then cal-
culated including R-squared, MSE, CVMSE and their root-
mean-square RMSE and CVRMSE, but again MAE and CV-
MAE were primarily used to assess model performance. The
advantage of using the sum of squared errors as goodness-
of-fit statistics is that they can be additively partitioned into
a systematic and an unsystematic component as described by
Willmott (1982). For example, in the case of CVMSE:

CVMSEs,i =
1

n

n∑
t=1

(
_

V i,p −Vi,o)
2/V̄i,o (5)

CVMSEu,i =
1

n

n∑
t=1

(Vi,p −
_

V i,p)2/V̄i,o (6)

with
_

V i,p = a+bVi,o

where a and b are the intercept and slope of the least
square regression between the predicted and observed val-
ues of V for the calibrating sitei, respectively. From
Eq. 5, the percentage of systematic error was calculated as
100*(CVMSEs,i /CVMSEi) and that of unsystematic error as
100*(CVMSEu,i /CVMSEi). A systematic error approaching
zero is indicative of a model structure that adequately cap-
tures the system dynamics. Using model II regression, or
Standardized Major Axis (SMA) regression (Warton et al.,
2006), we also tested whether the slopeb was significantly
different from 1, and the intercepta significantly different
from 0.

To test whether the change from M1A to M1B, and from
M2A to M2B, provides a better fit, we estimated the likeli-
hood ratio:

LR = nlog(MSEA/MSEB) (7)

where MSEA(MSEB) is the Mean Square Error of model
M1A or M2A (M1B or M2B). The likelihood ratio signifi-
cance test was based on the assumption that LR follows aχ2

distribution with one df (i.e. the difference in number of pa-
rameters between models A and B). The Akaike’s Informa-
tion Criteria (AIC) was also evaluated for each model as:
AIC = 2p + log (L), wherep is the number of parameters
andL is the maximum likelihood of the model.

Finally, we conducted sensitivity analyses by varying one
model parameter while keeping the other parameters con-
stant and calculating the relative effect on CVMAE. We did
not have any firm uncertainty to provide for NDVI input data,
except one from subjective expert judgment (Raupach et al.,
2005). Both models exhibited the same sensitivity to this
source of uncertainty (data not shown). We also examined
the relationships between model residual and distance to the
nearest weather station as a way to assess sensitivity of model
performance to accuracy of climate data.

Numerical simulations, statistical analyses and all graph-
ics were performed within the R software environment (R
Development Core Team, 2007). The source code is avail-
able upon request. All computations were performed on the
cluster HealthPhy (CIMENT, Université J. Fourier – Greno-
ble I).

3 Results

Figure 2a shows that there is a positive relationship between
the maximum vegetation coverVmax and the mean precipita-
tion during the wet summer period (R2 = 0.31,P < 10−4),
though there was large scatter around 300–400 mm. No such
relationship is observed for the dry winter period (Fig. 2b)
and we did not find any correlation betweenVmax and mini-
mum, maximum or mean temperature (data not shown).

Table 1 summarizes the calibrated values of the parame-
ters for the four models. Estimates from different calibration
runs showed similar variation, i.e. coefficients of variation
ranging from 10% to 20%, with the noticeable exception of
β5 for M2B and to a lesser extent ofβ2 for M2A (Table 1).
There was a strong discrepancy between M1B and M2B in
the estimate of the threshold value forW , with α3 = 72 mm
andβ5 = 10 mm. With such a low value forβ5, it is not
surprising that the estimates for the other four parameters,
from β1 to β4, were very similar between M2A and M2B
(Table 1).

Whatever the goodness-of-fit statistic, the performance of
M1A was markedly lower than M1B (Table 2). The log-
likelihood ratio test showed that there was a significant im-
provement of M1B over M1A by adding the extra parameter
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Table 1. Calibrated values of parameters for linear (M1) and nonlinear (M2) models (see Eqs . 2 and 3). Mean (± se) and coefficient of
variation (CV) were calculated from 30 calibration runs each using 100 randomly sampled calibrating sites. The mean values of the objective
function, i.e. the median of CVMAE (see Eq. 4), are also indicated.

Model Statistics Objective Function Parameters
(CVMAE) α1 α2 104 α3

M1A Mean (± se) 0.77 (± 0.0021) 3.88 (± 0.05) 7.64 (± 0.14)
CV (%) 1.5 7.7 10.2

M1B Mean (± se) 0.65 (± 0.0027) 1.97 (± 0.06) 13.73 (± 0.46) 71.58 (± 2.97)
CV (%) 1.7 11.9 13.7 17.1

Model Statistics Objective Function Parameters
(CVMAE) β1 β2 β3 β4 β5

M2A Mean (± se) 0.67 (± 0.0038) 6.17 (± 0.24) 0.48 (± 0.03) 12.14 (± 0.48) 0.6 (± 0.03)
CV (%) 2.3 16.2 23.5 16.2 19.7

M2B Mean (± se) 0.65 (± 0.0019) 5.24 (± 0.18) 0.63 (± 0.02) 12.04± 0.27) 0.53 (± 0.02) 9.79 (± 1.39)
CV (%) 1.6 18.7 18.3 12.1 19.6 76.7
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Fig. 3. Robustness of M1B (A, C) and M2A (B, D) to parameter uncertainty. Histograms show the effect of an increase (grey) and a decrease
(black) of a parameter on the relative change of CVMAE. Magnitude of the change in parameter value is± 10% (A, B) and± CV (C, D),
where CV is the coefficient of variation resulting from the calibration runs (see Table 1).

α3 in the optimization process (Table 2). While there was no
marked contrast in the overall accuracy between M1B, M2A
and M2B as measured by MAE, CVMAE or by CVRMSE,
there are significant differences in error partitioning, with an
inflated systematic error of 55% for M1B compared to M2A
(31%) or M2B (29%). The higher bias in M1B was due to
a consistent underestimation ofV (SMA slope of 0.77). Ex-

cept for M1A, no model had a SMA intercept that differed
significantly from 0 (Table 2). The addition of one param-
eter,β5, in M2B did not lead to significant improvement of
nonlinear model (Table 2, see log likelihood ratio test be-
tween M2A and M2B). Therefore, we chose to keep the sim-
plest nonlinear model, i.e. M2A, for further comparison with
M1B.
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Table 2. Compared performance of linear (M1) and nonlinear (M2) models (see Eqs. 2 and 3). After each of the 30 calibration runs,
goodness-of-fit statistics were calculated for the 300 remaining testing sites. Therefore, reported values are the means of 30 estimates.n is
the number of time steps. See Material and Methods for details on statistics.

M1A M1B M2A M2B

Number of parameters 3 4 4 5
n 368 368 368 368
R2 0.68 0.73 0.70 0.71
MAE 0.034 0.028 0.029 0.029
CVMAE 0.839 0.673 0.678 0.681
RMSE 0.071 0.060 0.064 0.064
CVRMSE 1.721 1.537 1.589 1.591
Systematic error (%) 86.1 55.3 32.1 29.1
Unsystematic error (%) 13.9 44.7 67.9 70.9
Elevation (SMA) 0.0093 −0.0005 −0.0068 −0.0078
P(H0:elevation=0) 0.03 0.24 0.26 0.23
Slope (SMA) 0.47 0.77 0.86 0.89
P(H0:slope=1) 0.006 0.053 0.106 0.109
LogLikelihood 403.4 470.8 447.4 447.9
LogLikelihood ratio test χ (M1A,M1B)=135 χ (M2A,M2B)=1

(P < 10−4) (ns)
Akaike Information Criterion −1848.0 −1980.8 −1933.9 −1932.9

Sensitivity analysis indicated that both M1B and M2A
were fairly robust, because a±10% change in each parame-
ter led to less than a 3% change in CVMAE (Fig. 3a and b).
When ranges of parameter values obtained from the calibra-
tion runs were taken into account (Table 1), the sensitivity to
parameter uncertainty became higher for M2A than for M1B
(Fig. 3c and d). For M2A, sensitivity toβ2 was much lower
than for the other three parameters even ifβ2 exhibited a
higher CV than the other parameters (Fig. 3d and Table 1).
There was significant sensitivity of state outputV to β3 and
β4 i.e. the parameters describing the nonlinear response of
plant growth to soil water content in M2. This tends to in-
dicate that M1 and M2 represent two different solutions in
the state space and that optimized parameters of M2 yield a
solution that differs from a linear model.

Two examples of predicted time series ofV using M1B
and M2A are shown in Fig. 4. The first example (Fig. 4a)
corresponds to a relatively dry site with weak seasonality,
while the second experiences heavier rainfalls and a more
pronounced seasonality inV (Fig. 4b). Soil moisture dy-
namics predicted with M2A exhibited more rapid changes
and was “peakier” than with M1B. This was particularly the
case at the end of the wet season, for example in 2006 at the
dryer site and in 2004 and 2006 at the wetter site. This af-
fected the predictedV time series which also showed higher
contrasts between dry and wet periods in M2A compared to
M1B. Yearly maximum values ofV tended to be underesti-
mated by M1B, for example in 2001 and 2006 at the dryer
site and in 2003 and 2004 at the wetter site. While the timing
for leaf onset and leaf offset were correctly predicted by both

models, they were less successful in reproducing the multi-
annual variations in peak amplitude, for example 2003 at the
dryer site and 2002 at the wetter site.

The magnitude of error (CVMAE) tended to increase with
decreasing summer rainfall for M1B (Fig. 5a), whereas CV-
MAE of M2A was much more consistent throughout the
rainfall gradient (Fig. 5b). Both models exhibited a signif-
icantly higher CVMAE for south-western sites with “brown-
red” soils than for northern sites with “grey soils” (data not
shown), but because soil type and summer rainfalls covar-
ied in space, we were unable to distinguish the relative im-
portance of these two factors. There were no relationships
between model performance and distance to the nearest rain
gauge (Fig. 5c and d) and distance to the nearest stock water-
ing point (Fig. 5e and f).

Finally, we explored the ability of both models to predict
the integrated value of vegetation cover (6V ) from July to
June. Consistent with model performance reported above
(see Table 2), Fig. 6 shows that6V predicted using model
M1B were strongly underestimated in the most productive
years (slope of SMA = 0.66), whereas the magnitude of er-
ror for M2A did not change with soil moisture availability
(slope of SMA = 0.95). On the other hand, there were many
cases for which M2A underestimated6V compared to ob-
servations when6V < 2 (Fig. 6b). As a result, the SMA
slope of M2A shifted to the right and the SMA intercept was
significantly different from zero (Fig. 6b).
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Fig. 4. Example of two 8-year time series of rainfall and predicted soil water content (W in mm) and vegetation cover (V ) for a relatively
dry site(A) and a wetter site(B). Dotted lines are for observed time series ofV . Plain lines represent predicted values with M1B (grey) and
M2A (black).

4 Discussion

From our exploration of the ability of linear and nonlinear
models to predict NDVI-derived vegetation cover in semi-
arid perennial grasslands, we conclude that that both types
of models had a similar Mean Absolute Error. However, the
nonlinear model had the following advantages: (1) it exhib-
ited far less systematic error (Table 2); (2) it had a better
ability to capture the sharp transitions in leaf cover, espe-
cially under high seasonality of precipitation (Fig. 4); (3) its
performance did not deteriorate in the driest sites (Fig. 5a and
b); and (4) its parameters are more meaningful because the
model captures the fundamental feedbacks between soil and

plant growth through a process-based approach. The main
caveat of the nonlinear model was its slightly greater sensi-
tivity to parameter uncertainty (Fig. 3c and d). These points
are discussed below.

Most previous studies that have examined relationships
between NDVI and climate have done so with linear corre-
lation or regression analyses. Model performance has usu-
ally been evaluated using Pearson correlation coefficients (du
Plessis, 1999; Wang et al., 2001; Paruelo and Lauenroth,
1998; Chamaille-Jammes et al., 2006; Richard and Poccard,
1998; Wang et al., 2003) although this metric is a poor indi-
cator of goodness-of-fit (Willmott, 1982; Willmott and Mat-
suura, 2006). In contrast, this paper compares two differ-
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on model performance estimated by CVMAE. For each of the 400 sites, predicted values were calculated with model M1B (A, C and E) and
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Biogeosciences, 7, 907–920, 2010 www.biogeosciences.net/7/907/2010/



P. Choler et al.: Seasonal leaf dynamics in tropical grasslands 917

0 2 4 6 8

0

2

4

6

8

Observed Integrated Vegetation Cover

P
re

di
ct

e
d 

In
te

g
ra

te
d

 V
e

g
e

ta
tio

n
 C

ov
e

r (A)

0 2 4 6 8

0

2

4

6

8

Observed Integrated Vegetation Cover

P
re

di
ct

e
d 

In
te

gr
at

ed
 V

eg
e

ta
tio

n 
C

o
ve

r (B)
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tion cover with model M1B(A) and model M2A(B). Each point
represents one site for one year. Dotted lines show the 1:1 relation-
ship and plain lines show the Standardized Major Axes (SMA).

ent process-oriented models of phenology and we did not
include purely statistical models of NDVI-rainfall relation-
ships. Data not shown indicate that, in our case, purely sta-
tistical models give very similar results to M1 but with a
larger systematic error and strong deterioration in model per-
formance for the driest part of the rainfall gradient. More
than two thirds of the NDVI-vegetation cover variability was
explained by the M1 and M2 models (see R-squared values in
Table 2) indicating a high responsiveness of these grasslands
to soil water balance. Similar values have been reported for
other tropical grasslands found on clay soils (Nicholson and
Farrar, 1994; Farrar et al., 1994). Our study expands on pre-

vious literature because (1) we examined the appropriateness
of different process-based model structure to address NDVI-
precipitation relationships and (2) we provided a more com-
prehensive analysis of model performance. In particular, er-
ror partitioning indicated that in the case of linear models,
no parameter set was able to give unbiased estimates at each
time step and along the rainfall gradient (Table 2 and Figs. 4,
6). The nonlinear model greatly reduced the systematic com-
ponent of the error but not the overall uncertainty in model
predictions (Table 2). There is no single criterion for a model
to be acceptable (Rykiel, 1996), but we advocate that for a
given error magnitude it is preferable to retain the model that
exhibits the minimum bias.

Several studies have focused on the relationships between
climate and yearly or seasonally integrated values of NDVI,
used as a proxy of productivity (examples in Paruelo and
Lauenroth, 1998; Propastin and Kappas, 2008). Such an ap-
proach cannot identify fine timing of leaf onset, growth and
offset events which are crucial for land surface modelling
(Pielke et al., 1998; Dickinson et al., 1998; Bounoua et al.,
2006). In the semi-arid tropical grasslands investigated here,
the dynamics of leaf cover are characterized by abrupt tran-
sitions associated with seasonal water availability (Fig. 4).
The amplitude of change in leaf cover in response to soil wa-
ter content at the start of the growing season was better cap-
tured by a nonlinear logistic growth than by the linear model.
The same holds for the senescence phase for which the feed-
back of plant cover on soil moisture was critical to simulate
the decline inV . Sharp peaks of leaf biomass in response
to resource pulses have long been viewed as archetypal ex-
amples of nonequilibrium dynamics (Seastedt and Knapp,
1993; Blair, 1997). The structure of nonlinear models pro-
vides much more flexibility to capture these transient max-
ima. Conversely, finding a common threshold value ofW

for peak initiation remains a delicate task for nonlinear mod-
els, as evidenced by the high coefficient of variation reported
for β5 in M2B (Table 2). Indeed, nonlinearities in M2 natu-
rally tend to exacerbate errors associated with uncertainty in
parameters (compare Fig. 3c and d). The nonlinear models
satisfactorily predicted peak amplitude and integrated values
of plant cover when soil available water was large (Figs. 4
and 6), but an unresolved issue is their tendency to predict
lower values when seasonal soil water availability was more
limited (Fig. 6b).

The concept of rain-use efficiency has arisen from a num-
ber of studies that examined how precipitation drives phe-
nology in the tropics (Nicholson and Farrar, 1994). Empiri-
cal estimates of rain-use efficiency typically result from ap-
plying a low-pass filter to precipitation time-series and then
correlating vegetation indices to these smoothed and lagged
time-series of predictors. By contrast, a nonlinear mod-
elling framework decomposes rain-use efficiency into differ-
ent components. For example, it makes explicit the relation-
ship between water extraction by roots (β2) and plant growth
rate (β3), i.e. the increment of leaf area for a given amount
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of water extracted from the soil. This opens avenues for link-
ing nonlinear phenological models to those used to describe
plant physiology or biomass allocation in land surface mod-
els.

There are several reasons why both models fail to explain
more NDVI-vegetation cover variability, including (1) obser-
vation errors, (2) neglect of other forcing variables and (3)
failure of both model structures. As an example of possible
observational biases, we found abnormally low NDVI values
during the build up phase at the start of the wet season, pos-
sibly related to insufficient removal of cloud contamination
of the NDVI data. It is likely that predictive models of NDVI
time series are more sensitive to this source of errors than
models using integrated values during the growing season.
Second, there are a number of potential site-specific factors
not included in the models that might affect plant phenologi-
cal response such as contrasting soil water holding capacity,
soil fertility, species composition, plant functional diversity,
and grazing intensity. It is obviously impossible to translate
all these effects into a four parameter model. Our preliminary
studies did not provide any evidence for an effect of the dis-
tance to the nearest watering point, which can be viewed as a
surrogate of grazing intensity. Neither did we find that tem-
perature or photoperiod having any significant impact on the
leaf dynamics of grasslands in the area covered. Third, the
models did not take into account multiannual dynamics. For
example, several drought years combined with overgrazing
trigger a sharp decline in perennial grasses (Orr, 1980b). Al-
ternatively, two or three consecutive wet years would favour
recruitment of new grasses and hence increase the carrying
capacity of a given site. Further refinements of the models
should be able to combine short-term and long-term effects
of the soil water balance. An option would be to add a third
state variable representing root storage capacity of carbohy-
drates.

Both models were ecohydrological in essence because
they included equations for soil water content and leaf dy-
namics. Regrettably, no data are available for soil moisture
dynamics and so calibration and validation of models were
only based on remotely-sensed estimates of NDVI. To match
the scale and the spirit of our study, remotely-sensed esti-
mates of soil moisture would be the most appropriate to pro-
vide an independent validation of the model. The available
products (RADAR, estimates from NDVI and surface tem-
perature, gravimetric methods) all have problems which pre-
vent them from being used in the short term. These problems
include data processing and validation, non-independence
from NDVI and too coarse a spatial resolution. At this stage,
our models have generated hypotheses on soil water dynam-
ics that need to be further tested as remotely-sensed soil
moisture data improve over time.

5 Conclusions

There have been very few attempts to calibrate and vali-
date coupled dynamical systems model of soil moisture and
plant cover by using time series of remotely sensed data
(Seaquist et al., 2003; Hess et al., 1996). Indeed, there is
still a gap between empirical, remote-sensing oriented mod-
elling of NDVI-precipitation relationships and more concep-
tual and theoretical efforts towards process-oriented ecohy-
drological models (Porporato et al., 2002; Rodriguez-Iturbe
et al., 2001). Our study contributes to bridging this gap by
showing that simple nonlinear models of phenology can pro-
vide both elegant and mechanistic understanding on how pre-
cipitation variability affects vegetation growth in semi-arid
grasslands. Further work should examine whether this mech-
anistic framework is also appropriate to modelling phenology
at a larger scale, especially for other water-limited ecosys-
tems of the world.
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