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Abstract. Plant growth in Mediterranean landscapes is lim-
ited by the typical summer-dry climate. Forests in these areas
are only marginally productive and may be quite susceptible
to modern climate change. To improve our understanding of
forest sensitivity to annual and seasonal climatic variability,
we use tree-ring measurements of two Mediterranean ever-
green tree species:Quercus ilexL. andArbutus unedoL. We
sampled 34 stems of these species on three different types of
substrates in the Peyne study area in southern France. The
resulting chronologies were analysed in combination with
38 yr of monthly precipitation and temperature data to re-
construct the response of stem growth to climatic variabil-
ity. Results indicate a strong positive response to May and
June precipitation, as well as a significant positive influence
of early-spring temperatures and a negative growth response
to summer heat. Comparison of the data with more detailed
productivity measurements in two contrasting years confirms
these observations and shows a strong productivity limiting
effect of low early-summer precipitation. The results show
that tree-ring data fromQ.ilexandA.unedocan provide valu-
able information about the response of these tree species to
climate variability, improving our ability to predict the ef-
fects of climate change in Mediterranean ecosystems.

1 Introduction

Mediterranean regions are regarded as an outstandingly rich
area with respect to history, geography and biodiversity.
Mediterranean areas are species-rich and form original bio-
geographic regions due to a unique combination of climate,
relief, soil and long-term human use of the landscape (Naveh
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and Kutiel, 1990). The Mediterranean is also a very attrac-
tive place for living and recreation. Pressure on the Mediter-
ranean environment and water resources is therefore high
and generally increasing (Grenon and Batisse, 1989; UNEP,
2009).

Forest growth in Mediterranean environments is mostly
water limited because of the warm, dry summers. This
strong limitation results in slow succession rates and climax
vegetations characterized by moderate or low above-ground
biomass (Di Castri and Mooney, 1973; Rambal, 2001). The
predicted climate change for the Mediterranean countries
consists of an increase of the extreme character, including
longer periods of drought, more concentrated rainfall, and in-
creased mean temperatures (Hertig and Jacobeit, 2008; Gao
and Giorgi, 2008; Gibelin and D́eqúe, 2003). This will pro-
mote drought stress and may lead to a decrease in vegeta-
tion productivity and possible a loss of species (biodiversity)
and ultimately desert-like conditions. Mediterranean ecosys-
tems are very sensitive to climate change, because growth
is already strongly limited and forests are only marginally
productive. Small changes in water availability and temper-
ature may have considerable impacts on the resilience of the
present natural vegetation types. Mediterranean landscapes
have a worldwide significance because their ecosystems are
widely recognized as biodiversity hotspots, with a species
density surpassed only in tropical forests (Gómez-Campo,
1985; Vogiatzakis et al., 2006; Medial and Quezel, 1999).
Apart from its ecological value, vegetation cover also pro-
tects against soil erosion, provides food for livestock and de-
creases flooding risks by interception and retention of pre-
cipitation. Because vegetation has so many functions and
effects on the landscape, any changes in vegetation cover or
productivity will have a large impact on the ecology as well
as for the human inhabitants.
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To accurately predict the possible effects of climate
change on Mediterranean forest ecosystems it is important
to understand the relationship between plant growth and the
most important climate variables. The main question in
this context is: “which climatic variables most strongly af-
fect vegetation productivity?” This study investigates the
local relationship between annual vegetation productivity of
Mediterranean trees and meteorological variables (i.e. annual
and seasonal variations of rainfall and temperature).

Climate-productivity relations have been studied exten-
sively for agricultural crops (e.g. Van Keulen and Wolf,
1986) and to a lesser extent for production forests, but are
largely unknown for many natural vegetation types. Good
progress is being made using computer-modelling experi-
ments (Reichstein et al., 2003; Hoff et al., 2002; Lands-
berg and Waring, 1997; Running and Coughlan, 1988) and
global or regional studies using satellite observation (Field et
al., 1995; Nemani et al., 2003; Reichstein et al., 2007), but
besides flux-tower measurements and small-scale laboratory
tests, little validation data is available (Pereira et al., 2007;
Chiesi et al., 2005; Hanson et al., 2004; Baldocchi and Xu,
2007).

Relating stem growth to seasonal and annual records of
rainfall and temperatures using absolutely dated annual tree-
ring width may result in new information about the effects of
climate change on tree growth in the Mediterranean region.
Stem-growth increments as recorded in annual tree rings are
an accurate record of past stem growth and more generally
of past forest productivity. Productivity and stem growth are
influenced by both regional and local processes. Local fac-
tors like soil depth, nutrient and mineral availability, slope
exposition, and competition between individuals causes stem
growth to show significant local variations. This study how-
ever focuses on the impact of the overall regional variation
of precipitation and temperature on stem growth.

Tree rings are also used as a climate proxy for reconstruct-
ing past climates beyond the available instrumental records
(dendroclimatology) (Briffa, 2000; Jones et al., 1998; Fritts,
1976). Dendroclimatic reconstructions in general focus on
high latitude or high altitude sites where temperature is
the main growth-limiting factor and as a result are mainly
representative for temperature (Martinelli, 2004; Grudd et
al., 2002; Briffa et al., 2004; B̈untgen et al., 2005, 2010).
Mediterranean climates are characterised by a significantly
uneven distribution of rainfall over the year with concentra-
tions of precipitation in autumn and spring, and by a regular
occurrence of severe moisture deficits in the summer months
(Fig. 1). These climatic characteristics cause tree growth to
be mainly limited by water availability. Therefore annual tree
growth in this region most likely reflects water availability or
drought rather than temperature.

The comparison of Mediterranean tree-ring chronologies
of needle-leaf and deciduous species to climate data shows a
positive growth response to winter and spring precipitation,
and a negative response to summer temperature (Martı́n-
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Fig. 1. Yearly average climate diagram of the study area for 1970–
2008. Bars: precipitation, continuous line: average temperature,
dashed lines: monthly average minimum and maximum tempera-
ture.

Benito et al., 2008; Campelo et al., 2007; Tessier et al.,
1994). Longer chronologies of needle-leaf trees have been
successfully used to reconstruct precipitation and drought
fluctuations in the Mediterranean basin and Canadian prairies
for time intervals of 500 yr and longer (Nicault et al., 2008;
Touchan et al., 2005; Case and MacDonald, 1995). Ever-
green trees do not always show a clear winter stop in their
growth because they have leaves all year around. In addi-
tion their growth may halt during summer because of water
shortage. These phenomena cause a lack of well-defined an-
nual rings in their wood. Mediterranean species are there-
fore difficult to date accurately, and few dendrochronolog-
ical studies are available from Mediterranean ecosystems.
Cherubini et al. (2003), however, point out that if sufficient
care is taken with the selection, sampling and counting, it is
possible to use these species for tree-ring analysis. Cheru-
bini et al. (2003) further claim that such analyses would pro-
vide valuable insights in tree-growth processes and sensitiv-
ity of evergreen Mediterranean species to anticipated climate
change.

Recent studies on Holm oak(Quercus ilex) tree-ring
chronologies from Portugal and Spain illustrate the possi-
bility of using this evergreen species for dendroclimatologic
analyses and show good correspondence between tree growth
and precipitation (Campelo et al., 2009) as well as tempera-
ture (Pat́on et al., 2009) in and before the growing season.
Holm oak often shows a double growing season around a pe-
riod of drought-induced rest (Patón et al., 2009; Campelo et
al., 2007). Their conclusion are that spring is the most impor-
tant growing season and that high precipitation in late sum-
mer or early autumn triggers the formation of wide double
rings.
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As part of a larger study of the effects of climatic change
on ecosystem productivity in the Mediterranean we were
keen to know which meteorological variables steer biomass
production most. The common approach in this case is to ap-
ply computer models, which can also be used to evaluate the
effects of different climate-change scenarios. However, val-
idation of model performance is limited by data availability
from small-scale experiments or indirect data from satellite
imagery. In this context tree-ring analysis may provide addi-
tional information on past forest productivity and its sensitiv-
ity to climate variability. The advantage of ring-width data is
that they are available over extended periods of time and are
archived in existing forests. Our study area contains differ-
ent geological substrates which have different water-holding
capacities (Nijland et al., 2010) and we would like to know
if biomass production on different substrates responds dif-
ferently to climatic variables. The two dominant tree species
in the area are strawberry tree (Arbutus unedoL.) and holm
oak (Quercus ilexL.) and we would also like to know if they
show the same growth response to climatic variations.

The research questions of this study therefore are:

1. Which meteorological variables have the strongest ef-
fect on forest productivity of the evergreen Mediter-
ranean speciesQ.ilex andA.unedoas expressed in an-
nual stem-growth increments?

2. Is there a difference in the climate sensitivity ofA.unedo
andQ.ilexco-existing in the same area?

3. Is there a difference in the climate sensitivity of these
species growing on different geological substrates?

2 Methods

2.1 Study Area

The study area is situated in the catchment basin of the Peyne
river, a tributary to the Herault in southern France (Fig. 2).
The region has a Mediterranean sub-humid climate with dry
summers and maximum precipitation in autumn (Fig. 1). The
annual precipitation sum is very variable, ranging from 400
to 1200 mm with a long-term average just below 800 mm.
The mean annual temperature is around 14◦C with monthly
average summer temperatures between 20 and 27◦C and
monthly average winter temperatures between 2 and 10◦C.
The vegetation on the natural sites of the study area is sclero-
phyll and consists mostly of evergreen shrubs and trees, heath
species, odorous herbs and grasses. Dominant species in the
area areQ.ilex (holm oak),A.unedo(strawberry tree),Quer-
cus pubescens Wild.(downy oak) andErica arboreaL. (tree
heath). Mixed deciduous-evergreen oak forests with dense
undergrowth are considered the climax vegetation in the area
(Tomaselli, 1981), but on the marginal soils this vegetation
type usually does not develop. Depending on substrate and

Fig. 2. Location of the study area in Southern France.

history, all types ranging from open scrublands to low dense
forests with sparse understory occur (Sluiter and De Jong,
2007; Debussche et al., 1996). The catchment basin is situ-
ated at the edge of the “Montagne Noir” and is characterized
by a high spatial variation of geological substrates. These
substrates vary with respect to soil type, soil depth and mois-
ture storage capacity, which also might influence the vege-
tation productivity. Trees were sampled on three types of
substrate: dolomite, calcareous sandstone, and flysch (Al-
abouvette, 1982). Soils are shallow and poorly developed
and classify as regosols or lithosols according to the FAO
soil classification system (Driessen et al., 2001).

2.2 Trees

The two dominant tree species of the Peyne area are con-
sidered in this study:Q.ilex andA.unedo. Both species are
evergreen and tree heights in our study area range between 3
and 12 m.

Quercus ilexL. family: Fagaceae. (FR: chêne vert) is
a sclerophyllous oak species abundant in large parts of the
Mediterranean basin. The leaves are persistent, leather like
and variable in form and size. They are mostly elliptical (di-
mensions: 2 to 7 cm long and 1 to 3 cm wide) and some-
times have a spiny edge. Flowering is in spring and the
acorns ripen in one year (Blamey and Gray-Wilson, 2004).
Q.ilex wood is semi-ring-porous with larger vessels formed
in spring and generally smaller vessels spread throughout
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the summer wood. The wood has pronounced radial rays
(Schweingruber, 1993).

Arbutus unedo L.family: Ericaceae. (FR: arbousier) is
a tree-like shrub of the heather family growing up to 10 m
tall. Leafs are dark green and glossy (dimensions: 5 to 10 cm
long and 2 to 3 cm wide), with a serrated margin. It flow-
ers in autumn with panicles of bell shaped flowers and has a
red rough-surfaced berry (diameter: 1 to 2 cm) which ripens
during the next summer season (Blamey and Gray-Wilson,
2004). The wood ofA.unedois diffuse-porous with most of
the vessels formed in spring with often a denser ring of ves-
sels formed at the onset of the growing season.

Most forests in the Peyne area have been managed in
the past as coppices for charcoal production (Mather et al.,
1999). When the forests were cleared, the root systems re-
mained intact and the forests recovered quickly through re-
sprouting. This is still recognizable in the current forest mor-
phology, many smaller stems being grouped in stools that
share a common root system.

2.3 Data collection

To obtain ring-width samples, live tree stems were felled
and disks were cut from a straight section of the stems at
50 to 100 cm from ground level. A first test series of disks
was collected in September 2007. During this field cam-
paign we also sampled a number of trees using an increment
corer. After preparation of the cores it proved impossible to
obtain accurate ring counts based on the narrow cores, for
three reasons: (1) both species show only weak seasonality,
(2) some annual rings are locally missing, and (3)Q.ilexhas
pronounced rays which interfere with the rings in sections of
little annual growth. For these reasons the core samples were
omitted from this study and we focussed on the disks. To
increase the number of samples we collected a second series
of tree disks in June 2009. In total 34 trees where sampled:
19 Q.ilex and 15A.unedo. All disks were prepared by first
sanding them and then polishing them using silicon carbide
abrasive. The prepared disks were digitized on a 2400 dpi
flatbed scanner and their images were enhanced for increased
contrast and sharpness. The rings were counted along two
radial sections following the growth direction of wood. The
location of the sections was chosen visually in order to avoid
sections with strongly compressed rings and reaction wood
as much as possible. The rings were measured manually on
screen using CooRecorder (Larsson, 2010) and while doing
this we verified our observations by looking at the original
wood through a stereomicroscope with magnification of 8×

to 32×. The on-screen method allowed for accuracy assess-
ment and correction of false and missing rings. For the dating
and comparison of tree-ring curves using the program Past4
(Knibbe, 2010). The steps were:

Cross dating the series:(1) Detrending measurement se-
ries using logarithms of first differences between adjacent
ring widths (xi–xi-1) (Holstein, 1980). (2) Calculating Stu-

dent’s t-values based on Pearson cross-correlation coeffi-
cients between the series (Wonnacott and Wonnacott, 1990;
Jansma, 1995). (3) Calculating percentage of parallel varia-
tion between the series “Gleichlaufichkeit” (Holstein, 1980).

Verification of results:to verify results and check for mea-
suring mistakes and missing rings we used: (1) COFECHA
(Holmes, 1983). (2) Visual verification of anomalous
growth, possible missing rings and measuring mistakes
by on-screen comparison of undetrended (raw) ring-width
curves and microscope observations of the colour and cell
structure of the wood.

2.4 Meteorological data

Monthly rainfall sums and temperature averages, were ob-
tained from the Meteo France observation station in Gignac
(43◦39′48′′ N; 3◦33′48′′ E, altitude 58 m), which is about
30 km from the study site and at a similar distance to the
Mediterranean Sea. Data is available from 1970 to 2008
(38 yr). Figure 1 shows the monthly averages over the whole
period of observation.

2.5 Detailed carbon flux data

Gross-Primary-Productivity (GPP) data derived from flux
tower measurements from 2000 to 2008 are used in this study
as source of temporally detailed reference data to complment
the yearly tree ring widths. The CarboEuropeIP site Puech-
abon (FRpue) is situated at approximately 35 km from our
research area in an evergreen forest dominated byQ.ilex. A
detailed analysis of the flux data is published in Allard et
al. (2008) and the data is publicly available (Rambal et al.,
2010). From the available variables in the flux data, we use
the GPP because it is most closely related to photosynthesis
and includes all of the different influces like water availibil-
ity, incoming solar radiation, and temperature.

2.6 Chronologies

The common signal of the individual measurement series
was checked using Cofecha (Holmes, 1983; Grissino-Mayer,
2002). The series were averaged into three chronology types:
(a) one single chronology representing all series regardless of
tree species and substrate; (b) two species-specific chronolo-
gies; and (c) three substrate-related chronologies. For each of
the chronologies we only used samples with a high common
signal as expressed by the series intercorrelation calculated
with Cofecha. Samples with a low common signal caused by
reaction wood, local processes or suspected misdating were
excluded from the chronologies in order to strengthen the
common regional signal in the data. Before combining the
measurements in the chronologies, the individual ring width
series were normalised and detrended using a smoothing-
spline function with 50 % frequency response for a period
of 32 yr (Bunn, 2008). The normalised series are expressed
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as ring width index (rwi), which is the actual ring width di-
vided by the expected (trend) ring width. The average rwi
equals 1 by definition. The chronologies were compared to
monthly precipitation sums and average monthly tempera-
tures, using cross-correlation coefficients (Pearson’s R). In
addition we used Precon (Fritts, 1991) to create bootstrapped
response functions. Bootstrapped response functions are a
statistically more robust way to compare dendrochronologi-
cal and meteorological time series and in addition they allow
for significance testing (Guiot, 1991).

3 Results

Cross-sections were taken from 34 trees in total (19Q.ilex
and 15A.unedo). Stem diameters were between 8 and 16 cm,
which is representative for the tree population in the area.

Annual ring boundaries were difficult to discern in the
samples of both species (clear colour signature was absent)
with average ring widths below 1 mm, and false rings were
often present due to summer dormancy. However, we man-
aged to obtain reliable ring-width measurements and dates
for most tree sections, by closely examining the cell struc-
ture and colour of the wood.

Q.ilexin a productive growth phase shows wide rings, with
the vessel and cell sizes steadily decreasing within the year
(Fig. 3a). In less-productive years its rings are narrow and
contain few vessels that decrease in size in a more irregular
manner. The annual boundaries of narrow rings are char-
acterized by a jump in vessel size that occurs over a wider
section of the wood and usually coincides with a transition
from a darker to a lighter wood colour (Fig. 3b).

A.unedohas fine rays in the wood and is diffuse porous,
but pore density is mostly highest in the earliest-formed part
of the ring (Fig. 3c). False rings frequently occurred within
the annual rings and are most probably caused by different
growing phases and dormancy within the growing season.
These “rings” can be differentiated from true annual rings
because they have vague boundaries rather than the sharp de-
lineation characteristic for winter dormancy (Fig. 3d).

The trees in the study area mostly grow from stools and
therefore have skewed or crooked growth forms. As a re-
sult the samples contain abundant reaction wood, which to
some extent is also reflected by the ring measurements. The
resprouting can also be recognised in the wood section, as
anomalously large first rings (Fig. 4). The root mass is large
compared to the shoot and leaf biomass in this first growth
phase, and competition for light and water is greatly reduced
(Floret et al., 1992; Khatouri, 1992). In recent clearcut, the
canopy is observed to close in around five years after logging,
this is visible in the samples as a decrease and stabilisation
of ring widths.

The longest ring record is 78 yr long and the average
age for all sampled trees is 55 yr. For the analysis we re-
stricted the time series to the maximum length of available

5 mmA

B

C

D

Fig. 3. Example wood sections of(A, B): Q.ilex and (C, D):
A.unedowith true (black arrows) and false (white arrows) rings
marked. The white marking in(A) indicates the decreasing vessel
size within one year. All sections have the same scale.

meteorological data, i.e. 1970 to 2008, which gives a to-
tal of 38 yr. By analysing the data for 38 yr while average
tree age dates back to 55 yr we excluded the anomalously
large rings formed in the first growth years as a result of
re-sprouting. For further analysis, ring width chronologies
were created from the total pool of ring samples (34 trees· 2
samples), and for subsets based on the two tree species and
the three different substrates. The species specific chronolo-
gies each include all substrates, and the substrate specific
chronologies equally represent both species growing on that
substrate. Table 1 lists the different chronologies and their
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FPY282- A.unedo

FPY231 - Q.ilex

FPY302 - Q.ilex

FPY162 - A.unedo

FPY331 - A.unedo

FPY151 - A.unedo

1940 1960 1980 20001950 1970 1990 2008

Fig. 4. Example ring-width series with characteristically large first rings reflecting coppice and resprouting growth of the forest.

descriptive statistics. The correlation and sensitivity of the
A.unedochronology are higher than those ofQ.ilex, indicat-
ing a stronger common forcing onA.unedo. The substrate
specific chronologies show a less clear signal with the highest
correlation for dolomite and the highest sensitivity for flysch.
The number of samples included in the substrate chronolo-
gies is limited, but correlations and sensitivity of the series
are adequate (above the critical level of 0.32 forp = 0.05
andn = 38) for further analysis (Table 1).

The normalised ring-width chronologies show very similar
patterns throughout the analyzed range, indicating a strong
common forcing and accurate relative dating (Fig. 5). Pos-
itive pointer years are visible in 1977, 1992, and 1997 and
negative pointer years are 1995, 2003 and 2006 (Schwein-
gruber et al., 1990).

Climate response

Next we analyzed the relationship between ring width
and weather conditions. The correlation coefficients and
response functions between the annual ring widths and
monthly average temperatures and precipitation sums over
the period from 1970 to 2008 (38 yr) show a consistent and
significant climatic forcing on tree growth (Fig. 6).

The temperature graph shows two main features: a posi-
tive temperature/growth relationship in January to April, and
a negative one in June and July (Fig. 6a). This means that
tree growth benefits from high temperatures at the beginning
of the vegetation period and that growth is reduced if sum-
mer temperatures are high. The precipitation graph shows
a strong positive tree-growth response in May and June, in-

dicating a high dependence of the trees on rainfall in these
months (Fig. 6b). May and June are the most productive
months of the growing season in the area and the clear cor-
relation with precipitation in these months shows that pro-
ductivity is strongly drought limited. A second feature in
the precipitation graph is a small negative growth response
in September and October. The negative response is likely
to be caused by the correlation between warm summers and
high precipitation in these months and shows that the trees in
this area do not benefit from the large amounts of precipita-
tion falling in September and October. The growth potential
in autumn is low because of the declining temperatures and
day length at the end of the vegetation period.

The last bar in each graph shows the relationship between
ring width and yearly averaged temperature and precipita-
tion. The correlation with the yearly variables is low and in-
significant, showing that analysis of yearly averages does not
reveal the actual sensitivity of the trees to climate variabil-
ity. Both graphs also show little correlation with conditions
in the preceding year (August to December), indicating that
there is no memory effect in this ecosystem.

Comparison of the climate response functions ofQ.ilex
and A.unedo(Fig. 7) shows a slight temporal difference
between their growth responses, withA.unedohaving it
strongest response a bit earlier in the season thanQ.ilex.
Apart from this their response is very similar, which is to be
expected because they belong to the same plant-functional
type of evergreen broadleaf trees/shrubs.Q.ilexandA.unedo
can also be found in mixed stands throughout our study area
and other parts of the Mediterranean basin.

Biogeosciences, 8, 1141–1152, 2011 www.biogeosciences.net/8/1141/2011/
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Table 1. Base statistics of the ring-width chronologies.

Total Q.ilex A.unedo dolomite calc. flysch
sandstone

No. trees sampled 34 19 15 8 9 17
Min. age [years] 34 44 34 34 51 44
Max. age [years] 78 76 78 76 60 78
No. trees used 23 12 11 8 7 12
No. radïı 41 19 22 13 12 19
Average ring width [mm] 1.02 0.94 1.06 1.22 0.81 0.91
Min year-av ring width1 [mm] 0.60 0.57 0.53 0.70 0.43 0.58
Max year-av ring width1 [mm] 1.64 1.74 1.93 2.02 1.58 1.50

Normalized and detrended series

Min ring width index 0.65 0.68 0.53 0.58 0.65 0.60
Max ring width index 1.61 1.64 1.98 1.70 1.83 1.59
Average Correlation2 0.42 0.35 0.51 0.50 0.33 0.39
Sensitivity 0.46 0.36 0.55 0.38 0.45 0.49

Correlations between chronologies

all 0.76 0.93 0.84 0.77 0.85
Q.ilex 0.76 0.50 0.79 0.59 0.56
A.unedo 0.93 0.50 0.69 0.71 0.86
dolomite 0.84 0.79 0.69 0.64 0.58
calc. sandstone 0.77 0.59 0.71 0.64 0.50
flysch 0.85 0.56 0.86 0.58 0.50

1 Minimum/maximum of yearly averaged ring widhts in each chronolology.
2 Average correlation between the radii in each chronology over 38 yr.
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Fig. 5. Normalized and detrended average ring width chronologies.

The differences of the response functions for the three
substrate-based chronologies are small (Fig. 8). Conclusive
interpretations based on these response functions are nec-
essarily limited due to the low number of samples in each
class. The most notable difference occurs between the cal-
careous sandstone chronology and those of both other sub-
strates, the sandstone chronology showing lower sensitivity
to summer temperatures and a high response to August pre-

cipitation whereas both other substrate chronologies show no
response to precipitation in August.

To examine the processes underlying the yearly wood pro-
duction in more detail we compared our data to GPP data
from flux tower measurements. We specifically looked at
2004 and 2006 as examples of a typical high productive
(2004) and low productive (2006) year (Fig. 9). The differ-
ence between these two years shows a high correspondence
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Fig. 6. Correlations (bars) and response functions of monthly aver-
age temperatures(A) and precipitation sums(B) with yearly growth
indices of the all tree chronology.
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Fig. 7. Correlations (bars) and response functions of monthly av-
erage temperatures(A) and precipitation sums(B) with yearly ring
widths of theQ.ilex (white) andA.unedo(black) chronology.

with climate response we found in the tree-ring analysis and
therefore provides confirmation of the climate/growth re-
sponses we inferred for Peyne. Two important differences
are visible in the GPP curves of 2004 and 2006. The most
striking difference is the large dip in productivity in May to
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Fig. 8. Correlations of monthly average temperatures(A) and pre-
cipitation sums(B) with yearly ring widths of the dolomite (white),
calc. sandstone (gray), and flysch (black) chronologies.

August of 2006 where only a narrow dip is present in July
and August of 2004. The second difference is a generally
higher productivity during the first half of 2004 than during
the first half of 2006. The large reduction in 2006 summer
productivity is caused by low spring and summer rainfall in
combination with high summer temperatures. In 2004 the
productivity is also reduced during the warmest part of the
summer, but the decline starts much later because of higher
spring precipitation. The high productivity in the first half of
2004 is caused by higher early spring temperatures resulting
in an early start of the growing season.

4 Discussion and conclusions

In this study we present the combined analysis of tree-ring
chronologies of two Mediterranean evergreen tree species
and 38 yr of monthly temperature and precipitation data from
the same area. Despite the difficulties in measuring and dat-
ing the annual rings we found consistent ring-width patterns
and a strong response of tree growth to climate variability.
The analyses prove a significant statistical relation between
annual stem increments and monthly meteorological vari-
ables and the patterns we found provide valuable insights re-
garding the mechanisms behind tree growth and the sensitiv-
ity of the ecosystem to climate variability. The inferred phys-
iological processes are confirmed by a more detailed tempo-
ral look at the ecosystem based on flux-tower measurements.

In our study area, tree growth is purely dependent on
the conditions during the growing season, most importantly
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Fig. 9. Weekly ecosystem gross productivity (black line), average temperatures (dotted line), and precipitation (bars), derived from flux
measurements at Puechabon CarboEuropeIP test site.

rainfall in May and June. This is in contrast to the re-
sults of four independent studies ofQ.ilex ring chronolo-
gies established in Portugal and Spain. These studies show
a stronger sensitivity to winter and early-spring precipita-
tion, most likely because of greater water retention in the
soil (Campelo et al., 2009; Patón et al., 2009; Gea-Izquierdo
et al., 2009; Nabais et al., 1998). A study on youngQ.ilex
trees grown from acorns in Montpellier (60 km from our site)
shows a response that is similar to the Peyne response, with
high climate sensitivity during the current growing season
and no response to the conditions during the preceding year
(Zhang and Romane, 1991). The response functions for both
temperature and precipitation (Fig. 6) show no significant
growth response to weather conditions in August, while this
month is in the middle of summer season. A possible expla-
nation of this phenomenon is that even in wetter or cooler
years both trees species show very little growth in August
because growth is still limited by drought and/or heat. The
difference we found between the calcareous sandstone and
both other substrate chronologies indicates that the vegeta-
tion on the former substrate maintains a better growth poten-
tial throughout the dry season. Trees on calcareous sandstone
show a stronger positive response to August rainfall, which
fits with the higher clay content and the deep water retention
that is found on this substrate (Nijland et al., 2010)

Modern climate change is expected to intensify the typi-
cal characteristics of the Mediterranean climate. Tempera-
tures will increase throughout the year, and rainfall will con-
centrate more in autumn and winter, leaving a more persis-
tent dry period in summer (Hertig and Jacobeit, 2008; Gao
and Girogi, 2008; Gibelin and D́eqúe, 2003). Our results
show that especially an intensification of summer drought
may have serious deteriorating effects on tree growth.

The results of a combined analysis of monthly meteorolog-
ical records and annual tree-ring widths can provide valuable
insights in ecosystem functioning and its sensitivity to cli-
mate variability and possible climate change. As ring widths
from the past are archived in living trees and are readily avail-
able for at least the past five decades in most standing forests,
they are an important information source for the prediction
and modelling of vegetation development. This source at
present is underused in Mediterranean climates (Cherubini
et al., 2003).

Accurate parameterisation of productivity models is com-
plicated by the scarcity of field data, for example from de-
tailed gas exchange or sap-flow measurements. In absence
of other data, ring widths may be used to determine the rela-
tive importance of different limiting factors (e.g. water, tem-
perature) on productivity throughout the year. Integration
of model results and ring measurements may aim at repro-
duction of ring width chronologies using forest simulation
models, but can also aim at matching the seasonal sensitiv-
ity of the models to climatic variability to the response func-
tion derived from the analysis of tree ring and meteorological
data. By calibrating the models using the seasonal patterns
of limiting factors in addition to the total annual productiv-
ity or resulting leaf area, the model results are greatly im-
proved especially towards the assessment of climate-change
vulnerability. If climate-related stem growth is representa-
tive for the overall growth of trees (with other biotic and
abiotic factors having a relatively weak impact), and if stem
growth during a period of already increased temperature can
be compared to growth before increased greenhouse gas con-
centrations, then the conclusion would be justified that the
growth-climate relations we established will be valid in the
future. However, the Mediterranean climate is very variable
and predicted changes are smaller than the current year to
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year variability contributing to the likeliness of the relation
remaining valid in a future changed climate. Although de-
tailed plant-physiological studies remain very important for
the understanding of plant growth and ecosystem function-
ing, tree-ring analysis seems to be a very promising tool for
expanding both the temporal scale as well as the geographi-
cal coverage of field-validation data.

In this study we focussed on ring width data only, but other
studies in Mediterranean areas suggest that more detailed
measurements of wood anatomy (Campelo et al., 2010) or
including double ring data (Campelo et al., 2007; Zhang and
Romane, 1991) may also provide information on the sensi-
tivity of trees to climate.

In conclusion, we found that the evergreensQ.ilex and
A.unedoin the Peyne area in southern France are very sensi-
tive to precipitation in the months from April to July and are
also sensitive to spring and summer temperatures.The trees
hardly benefit from the precipitation surplus in autumn and
winter. Both species effectively show a very similar pat-
tern in their climate response. There are little differences
between the substrate-related responses, with the examined
substrates all being shallow but characterized by different
water-retention capacities. Trees growing on the calcareous
sandstone are more sensitive to August rainfall than on the
other substrates which indicating a larger growth potential
during the driest and warmest part of the summer.

Tree-ring analysis of Mediterranean evergreen species is
not easy because of frequent false rings and unclear ring
boundaries, but accurate measurement and dating is possi-
ble if enough care is taken during the preparation and mea-
surement of the samples. Combining ring-width chronolo-
gies with meteorological records provides useful information
on vegetation functioning and climate sensitivity. Tree stems
contain much information that is of great interest to produc-
tivity modelling and climate-impact predictions. This infor-
mation is archived and readily available in every forest.
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