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T. Gruenwald6, S. Lehuger7, and C. Bernhofer6

1Laboratoire des Sciences du Climat et de l’Environnement (LSCE), CEA CNRS UVSQ, Orme des Merisiers, UMR1572,
91190, Gif-sur-Yvette, France
2Centre International de Recherche sur l’Environnement et le Développement-CNRS/EHESS, Nogent sur Marne, France
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Abstract. This paper is a modelling study of crop manage-
ment impacts on carbon and water fluxes at a range of Euro-
pean sites. The model is a crop growth model (STICS) cou-
pled with a process-based land surface model (ORCHIDEE).
The data are online eddy-covariance observations of CO2 and
H2O fluxes at five European maize cultivation sites. The re-
sults show that the ORCHIDEE-STICS model explains up
to 75 % of the observed daily net CO2 ecosystem exchange
(NEE) variance, and up to 79 % of the latent heat flux (LE)
variance at five sites. The model is better able to repro-
duce gross primary production (GPP) variations than terres-
trial ecosystem respiration (TER) variations. We conclude
that structural deficiencies in the model parameterizations of
leaf area index (LAI) and TER are the main sources of er-
ror in simulating CO2 and H2O fluxes. A number of sensi-
tivity tests, with variable crop variety, nitrogen fertilization,
irrigation, and planting date, indicate that any of these man-
agement factors is able to change NEE by more than 15 %,
but that the response of NEE to management parameters is
highly site-dependent. Changes in management parameters
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are found to impact not only the daily values of NEE and
LE, but also the cumulative yearly values. In addition, LE
is shown to be less sensitive to management parameters than
NEE. Multi-site model evaluations, coupled with sensitivity
analysis to management parameters, thus provide important
information about model errors, which helps to improve the
simulation of CO2 and H2O fluxes across European crop-
lands.

1 Introduction

The global carbon budget has significantly changed due to
various human activities. Agriculture, as a main way to pro-
duce food and feed, is one of these activities. In Europe,
where they cover 1.10 to 1.24 M km2 (FAOSTAT, 2003; Ger-
vois et al., 2008) croplands are estimated to be a net source of
CO2 to the atmosphere (Vleeshouwers and Verhagen, 2002;
Janssens et al., 2003; Ciais et al., 2009). In addition, cropland
CO2 fluxes impact the phase and amplitude of atmospheric
CO2 concentration over the European continent (Smith et
al., 2002; Freibauer et al., 2004). Similarly, H2O fluxes
are strongly modified by the presence of cropland vegetation
(Baldocchi, 2003; Valentini, 2003), which in turn feeds back
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on regional temperature and on soil moisture (Pongratz et al.,
2009). In turn, climate change is likely to have wide-ranging
influences on crop productivity and water resources (IPCC,
2007) in many regions of the world. Compared to forest and
grasslands, croplands are more intensively managed, result-
ing in a complex and dynamic interrelation of physical, bio-
logical processes with human management parameters (An-
tle et al., 2001). This suggests that cropland management
have considerable impacts on the fluxes of CO2 and H2O.
Interactions between climate and crops must deserve more
attention in assessing greenhouse gas mitigation and adap-
tation options in the agricultural sector (Falloon and Betts,
2010). Continuous micrometeorological measurements of
the net exchange of CO2, H2O and heat between various
terrestrial ecosystems and the atmosphere have been devel-
oped worldwide using the eddy-covariance technique since
the 1990’s (Baldocchi et al., 2001; Baldocchi, 2003; Valen-
tini, 2003). However, these point-scale flux measurement
time-series may prove difficult to scale up for quantifying
regional carbon and water budgets due to spatial and tem-
poral variations in climate, soil properties and management
practices (Kucharik and Twine, 2007), although promising
up-scaling studies were recently published (Jung et al., 2009;
Beer et al., 2010).

Land surface models are powerful tools for quantifying
and understanding the energy, H2O and CO2 exchanges be-
tween the terrestrial biosphere and the atmosphere. During
the past few decades, numerous models have been developed
worldwide. ORCHIDEE (ORganising Carbon and Hydrol-
ogy In Dynamic EcosystEms) is a model developed for con-
ducting continental carbon and water cycle research (Ciais et
al., 2005; Piao et al., 2007). ORCHIDEE, initially designed
based upon leaf and plant-scale physiological theories, has
been tested in simulating energy transfer, water vapor and
carbon exchanges between vegetation and atmosphere at for-
est flux sites (Viovy, 1997; Ciais et al., 2005). At crop sites,
ORCHIDEE, which considers grid cells with croplands to be
covered by productive natural grasses, is shown to be unable
to capture the seasonal cycles of CO2 and H2O fluxes (Krin-
ner et al., 2005).

We hypothesize that this shortcoming of the model re-
flects the absence of crop-specific phenology and manage-
ment parameterization. Therefore, a specifically-designed
crop growth model named STICS (Simulateur mulTIdisci-
plinaire pour les Cultures Standard; Brisson et al., 1998;
Brisson et al., 2002) has been coupled with ORCHIDEE. The
ORCHIDEE-STICS coupled model was tested against flux
measurements at two eddy covariance sites in the US, over
winter wheat and maize, respectively (Gervois et al., 2004;
De Noblet-Ducoudre et al., 2004). At these two US sites, the
model showed a satisfactory fit to observed NEE and energy
budget, but its performance regarding different components
of carbon fluxes has not been evaluated.

The CO2, H2O and energy exchanges between the atmo-
sphere and cultivated lands depend not only on climate vari-

ables and soil properties, but also on management practices
(Kucharik and Twine, 2007). Parameters such as crop vari-
ety, planting date, N-fertilization, and irrigation differ across
regions and change with time as well. Although remote
sensing may provide some information about crop N con-
tent (Bausch and Duke, 1996), crop water status (Jackson
et al., 1981; Moran et al., 1994) and phenology (Viña et
al., 2004), these observations do not meet the requirement
of direct regional GPP estimation over croplands (Reeves et
al., 2005). On the other hand, cropland models, driven by
meteorological variables and site-specific parameters, can be
used to conduct regional estimation of carbon and water va-
por budgets (Andrew et al., 2005; Verma et al., 2005; Yan
et al., 2007), but crop variety and management information
are often lacking. An accurate estimation and analysis of the
model uncertainties at site scale, where the fluxes can be di-
rectly compared against observations, are necessary prior to
regional or continental applications.

The objectives of this paper are: (1) to evaluate the per-
formance of the ORCHIDEE-STICS land surface model in
modelling CO2, H2O fluxes and biometric variables over
croplands at five maize sites in Europe; and (2) to quantify
the uncertainties caused by different management parame-
ters, in order to estimate their impacts on large scale integra-
tion studies.

2 Material and method

2.1 European maize cultivation sites description

Among the crop sites studied during the CarboEurope project
(Dolman et al., 2006) we select the site-years for which
maize was cultivated at least one year. This leads to select
five sites each with one year of maize rotation (two sites
in France, two sites in Netherlands and one in Germany).
The geographic information (longitude and latitude), crop-
ping year, soil type (FAO classification) and mean growing
season meteorological variables (temperature and rain) for
five European maize sites are listed in Table 1. Soil properties
(e.g. texture, field water capacity and wilting point), which
are essential parameters of ORCHIDEE-STICS model, are
measured or estimated at each site. At all sites, maize is
grown for animal feed production in the study year. Variety,
planting and harvest dates, fertilization and irrigation events
are listed in Table 2. These data are used to develop the con-
trol simulation of the model.

The Grignon (GRI) site is located about 40 km west of
Paris, France. The crop rotation of the Grignon experi-
ment includes maize, winter wheat, winter barley and mus-
tard which is planted to serve as a catch crop to reduce ni-
trate leaching during winter. Dairy cow slurry is applied
between the harvest of barley and the planting of mustard
on 31 August 2004, and before maize sowing on 16 April
2008. Lamasqùere (LAM) is located in south west of France.
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Table 1. Geographic information (longitude, Lon. and Latitude, Lat.), cropping year, soil type (FAO classification) and main growing season
(GS) meteorological variables (temperature, Ta and Rain, unit in◦C and mm, respectively) for five European maize sites. The 3-letters code
name is the abbreviation used in the paper.

Site Full name Country Lon. Lat. Year Soil type GS Ta GS Rain

DIJ Dijkgraaf Netherlands 5◦38′ E 51◦59′ N 2007 Haplic Gleysol 15.8 453
GRI Grignon France 1◦58′ E 48◦51′ N 2005 Luvisol 17.2 169
KLI Klingenberg Germany 13◦31′ E 50◦53′ N 2007 Gleysol 14.4 593
LAM Lamasqùere France 1◦24′ E 43◦50′ N 2006 Luvisol on Alluvium 19.6 153
LAN Langerak Netherlands 6◦21′ E 53◦24′ N 2005 Eutric thaptohistic Fuvisol 17.0 403

Table 2. Crop variety, planting/harvest date, fertilization and irriga-
tion.

Site Variety Planting Harvest Nitrogen Irrigation
fertilization

DIJ La Fortuna 4 May 27 Sep 212 kg N ha−1 0 mm
GRI Anjou 288 9 May 28 Sep 140 kg ha−1 0 mm
KLI Rosalie∗ 23 Apr 2 Oct 84 kg ha−1 0 mm
LAM Goldaste 1 May 31 Aug 91 kg ha−1 147.8 mm
LAN La Fortuna 18 May 19 Oct 65 kg ha−1 0 mm

The symbol “∗” indicates unknown crop variety, and recommended
variety is used.

Previous cultivated crops are maize (2004) – triticale (2005)
– maize (2006) – winter wheat (2007) – maize (2008) – win-
ter wheat (2009). More detailed information on site charac-
teristics and general information on soil and meteorology can
be found in B́eziat et al. (2009).

The sites Dijkgraaf (DIJ) and Langerak (LAN) are located
in east and west of the Netherlands, respectively. Flux mea-
surements started in 2007 at DIJ and in 2005 at LAN. The
main cultivated crop is maize at both sites.

The site Klingenberg (KLI) is located in East of Germany.
This site has been established in 2004. Cultivated crops
include winter barley (2004), rapeseed (2005), and winter
wheat (2006), maize (2007) and spring barley (2008).

Grown variety is different at each of these five sites. Plant-
ing dates differ by up to 25 days, ranging from 23 April (KLI)
to 18 May (LAN) and the growing season length extends
from 123 to 163 days. Amount of N fertilizer also varies
from 65 kg N ha−1 (LAN) to 212 kg N ha−1 (DIJ). Irrigation
(147.8 mm) is applied at LAM site only (Table 2).

2.2 Eddy covariance system and meteorological
measurements

At each site an eddy covariance (EC) system is installed to
measure the fluxes of CO2, water vapor and sensible heat.
The EC system consists of a fast response infrared gas an-
alyzer (LI7500, LiCor, Lincoln, NE, USA) and a three-

dimensional sonic anemometer (CSAT3, Compbell Scientific
Inc, Logan, UT, USA). The system is a standard monitoring
system used in theCarboeuropeandFluxnetnetworks (Dol-
man et al., 2006). Data are recorded with personal computer
at a sampling frequency of 25 Hz for each channel. Aver-
age values are calculated and recorded at 30 min interval and
used for analysis.

Meteorological measurements are made at each site on an
hourly time step. Measured meteorological variables con-
siste of long- and short-wave radiation, air temperature, rela-
tive humidity, wind speed, precipitation, and mean near sur-
face atmospheric pressure.

The flux time series are handled for checking for anoma-
lous values arising from sensors malfunctioning caused in
particular by interference of water condensation and rain
drops with the optical path of the IRGA. NEE data associ-
ated with weak turbulence conditions are also rejected. Good
quality data are then gap-filled using the CarboEurope-IP
methodology (Reichstein et al., 2005; Papale et al., 2006a,
b; Moffat et al., 2007; B́eziat et al., 2009). The gap-filling
procedure consists in replacing missing values of NEE by av-
erage values under similar meteorological conditions within
a time window of 67 d. Similar meteorological conditions are
defined with global radiation, air temperature and vapor pres-
sure deficit that must not deviate from the period to gap-fill
by more than 50 W m−2, 2.5◦C, and 5.0 hPa, respectively. If
no similar conditions were present within the time window,
the length of the averaging window was increased.

Net radiation, air temperature, and precipitation during the
growing period at the five sites are shown in Fig. 1. The
meteorological conditions are largely different among sites.
DIJ and LAN sites have median precipitation (400–450 mm),
and KLI is wetter site (593.0 mm) during the growing sea-
son. The growing season precipitation at GRI and LAM
is quite low, with 152.7 mm and 169.4 mm, respectively.
These two dryer sites in France have high solar net radia-
tion (278.6 and 234.7 W m−2) and warmer air temperature
(19.6 and 17.2◦C) during the growing season, mirroring low
precipitation. In contrast, the wettest KLI site in Germany is
characterized by a cooler growing season air temperature of
14.4◦C.
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Fig. 1. Net radiation (Rn, dashed line), temperature (Temp, solid
line), and precipitation (Prec, gray bar) during the growing season
at 5 maize sites. Rn and Temp are smoothed for 5 days and Prec is
shown on daily basis. The first vertical dashed line x = 45 is defined
as the end of the early crop growth period, and x = 115 is defined as
the start of the late crop growth period. Between the two lines, it is
defined as the middle crop growth period.

2.3 Biometric measurements

At KLI site, leaf area index (LAI) and above ground biomass
(AGB) are measured in a destructive manner. At other sites,
LAI is measured on the basis of 30 randomly spatially dis-
tributed plants by means of a LiCor planimeter (LI3100,
LiCor, Lincoln, NE, USA). LAI measurements are made
on 15 to 20-day interval. At harvest, 30 randomly spa-
tially distributed plants are destructively collected and crop
aboveground biomass including stem, leaf and ear (for grain
maize) are measured using a balance (SPU 4001, OHAUS,
Pine Brook, NJ, USA).

2.4 ORCHIDEE-STICS model

ORCHIDEE-STICS is a coupled model (Gervois et al.,
2004; De Noblet-Ducoudre et al., 2004) between the generic
process-oriented ecosystem model ORCHIDEE (Krinner et
al., 2005) and the crop growth model STICS (Brisson et al.,
1998, 2002, 2003). ORCHIDEE has robust physiological pa-
rameterizations to simulate energy-, hydrology- and carbon-
related processes for diverse natural vegetation grouped into
Plant Functional Type (PFT). On the one hand, the version of
ORCHIDEE used in this study has no supply of nitrogen, and
thus misses a critically important process to sustain growth
and to achieve higher crop yield. In addition, crops have
a very specific phenology, that is discarded in ORCHIDEE.
On the other hand, STICS model developed for agronomical
research is able to simulate crop growth processes for dif-
ferent crops and varieties (Brisson et al., 1998; Brisson et
al., 2002), but it is rather simple for handling ecosystem pro-

cesses. In the coupled ORCHIDEE-STICS model, STICS is
responsible for calculating LAI and crop height that are given
on a daily time step to ORCHIDEE. STICS also accounts for
management action not available for ORCHIDEE, and con-
sequently allows for nitrogen and water stress can be allevi-
ated by fertilization and irrigation. STICS automatically cal-
culates fertilization and irrigation requirements and timing,
based upon calculated “optimal” plant requirements (Brisson
et al., 1998, 2002). When nitrogen or water become limit-
ing, a certain amount is applied daily until requirements are
fulfilled. This “automatic management” option is used for
investigating the model sensitivity to management practices
(see Sect. 2.5). ORCHIDEE-STICS was previously found to
have underestimated 30 % of maize yields at country scale
in Europe (Gervois et al., 2008). Smith et al. (2010) adjusted
parameters related to photosynthetic capacity (Vcmax) and en-
vironmental stress factors to apply the coupled ORCHIDEE-
STICS model across the European continent. However, even
after these improvements, the model still underestimated the
assimilation capacity and maize yields. The most likely rea-
son may be a too-low value ofVcmax (i.e. without any stress).
In the first version of ORCHIDEE (Krinner et al., 2005),
Vcmax for maize is set as 39 µmol m−2 s−1 which is directly
derived from a universal model of C4 photosynthesis (Col-
latz 1992). In the CLASS crop model, theVcmax value is
54 µmol m−2 s−1 (Kothavala et al., 2005) and aVcmax value
of 63± 4 µmol m−2 s−1 is found by Kim et al. (2007). The
Vcmaxvalue of maize determined from field measurements at
the DIJ site is in the range 62–72 µmol m−2 s−1 (Cor Jacobs,
personal communication, 18 February 2009). In this study,
we prescribedVcmax= 100 µmol m−2 s−1, in absence of any
stress.

Above ground biomass is diagnosed from the
ORCHIDEE-STICS output as the sum of leaf, above
ground sap and heart wood tissues, and fruit carbon output
variables weighted by a conversion coefficient of carbon to
biomass (Goudriaan et al., 2001).

2.5 Simulation set-up for model’s sensitivities to crop
varieties and management practices

In this section, we describe the ORCHIDEE-STICS model
control and sensitivity runs.

2.5.1 Control simulation

The model is run on hourly time step. Soil properties in-
cluding texture (sand, silt and clay fractions) and meteo-
rological forcing are derived from site measurements. In
the control simulation experiment, on-site observed infor-
mation on fertilization, irrigation, and planting dates is pre-
scribed to ORCHIDEE-STICS. For crop variety, the version
of STICS that we use includes 8 different maize varieties,
each described by a set of parameter values, but none of these
matches the exact variety planted on the studied sites. Thus,
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Table 3. A summary of the simulation set-up for the model sensitivity tests.

Simulation Variety Fertilization Irrigation Planting date

Control simulation FURIO Observed Observed Observed
Variety sensitivity 1 DK250 Observed Observed Observed
Variety sensitivity 2 DK604 Observed Observed Observed
Fertilization sensitivity FURIO Model calculated Observed Observed
Irrigation sensitivity FURIO Observed Model calculated Observed
Early planting sensitivity FURIO Observed Observed Observed−25
Late planting sensitivity FURIO Observed Observed Observed+25

we select a moderate thermal requirement variety, FURIO,
as the control variety by default (Lemaire et al., 1996).

2.5.2 Sensitivity tests with perturbed management
parameters

A summary of the simulation set-up for model sensitivities
is listed in Table 3. For testing the model sensitivity to dif-
ferent crop varieties, two other sets of simulation with two
varieties with shorter (DK250) and longer (DK604) thermal
requirements than FURIO are performed. For the sensitivity
to planting date, two scenarios are created, with planting pre-
scribed 25 days earlier and later than the observed planting
date, respectively. In order to guarantee the crop being ma-
tured for the late planting sensitivity test, the harvest date is
set as 1 December. For early planting simulation, the harvest
date is kept as observed. For these sensitivity tests far from
real world conditions, we use the automatic management op-
tion of STICS, instead of the true values prescribed in the
control simulation.

2.6 Taylor plot analysis

A Taylor diagram (Taylor, 2001) is used to present the agree-
ment between model and data and the model sensitivities to
management parameters. Three statistical indicators, cor-
relation coefficient (R), standard deviation (STD) normal-
ized by observed STD (NSTD) and root mean square error
(RMSE), are displayed on a Taylor diagram. The perfor-
mance of model simulation is specified by a single point, the
R value being the polar angle, and NSTD the polar axis. The
higher theR and the closer to 1 the NSTD, the better the
agreement between model and data is. When comparing two
simulations with different parameter values, the longer the
distance between the two simulation points, the greater the
sensitivity to that parameter.
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Fig. 2. Simulated vs. measured LAI at site DIJ, GRI, KLI, LAM,
and LAN. The first vertical dashed line x = 45 is defined as the end
of the early crop growth period, and x = 115 is defined as the start
of the late crop growth period. Between the two lines, it is defined
as the middle crop growth period. Error bars are the stand error
of the mean at DIJ, GRI, LAM and LAN, and are the 10 % of the
observations at KLI where only mean values of observations are
available.

3 Results and discussion

3.1 Comparison between simulated and measured
biometric variables

Figure 2 compares the simulated LAI for control simula-
tion and the observations at DIJ, GRI, KLI, LAM, and LAN
sites. ORCHIDEE-STICS is able to produce a good agree-
ment with observed LAI at DIJ, GRI, and LAN sites. At
KLI site, the simulated LAI lags the measurements by 7 to
10 days during the stage of quick increase of LAI (45–80
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Fig.3. Simulated (white bar) vs. measured (gray bar) above ground biomass (AGB) at 967 

harvest date. Error bars are the standard error of the mean at DIJ, GRI, LAM and LAN, 968 

and is the mean standard error of the other four sites at KLI where only mean value of 969 

observation is available. 970 
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Fig. 3. Simulated (white bar) vs. measured (gray bar) above ground
biomass (AGB) at harvest date. Error bars are the standard error
of the mean at DIJ, GRI, LAM and LAN, and is the mean stan-
dard error of the other four sites at KLI where only mean value of
observation is available.

Days After Planting (DAP)). The discrepancy between the
simulated and the measured LAI during the late period can
be partly explained by a hail storm (38 mm in 30 min) that
caused damage to plants on 88 DAP (20 July 2007). Over-
all, a shortcoming of STICS is the underestimated peak LAI
value at four of the five sites (excluding DIJ site). STICS
assumes that the crop is able to complete a specific phase of
its development only once a cumulative temperature thresh-
old is reached (Brisson et al., 1998, 2002). This oversimpli-
fied requirement of LAI development is a source of discrep-
ancy with observed LAI. LAI calculated by STICS is closely
dependent on the water and nitrogen stress. At the GRI
and LAM sites, where growing seasonal temperature is high
(17.2 and 19.6◦C, respectively) and growth period available
water (precipitation plus irrigation) is low (169.4 mm and
300.5 mm, respectively), the model predicts lower LAI val-
ues compared to observations. High temperature definitely
accelerates LAI development and shortens the period of leaf
biomass accumulation, while low precipitation induces wa-
ter stress on the development of LAI. In addition, our simu-
lations do not consider organic fertilization delivered in the
previous winter at LAM site, which may explain why simu-
lated LAI is too low at this site. Finally, it is seen in Fig. 2
that the modeled senescence phase, when LAI is decreasing
before harvest, occurs too sharply compared to the measure-
ments (Fig. 2).

Comparisons between simulated and observed above
ground biomass (AGB) at harvest are shown in Fig. 3.
ORCHIDEE-STICS produces acceptable estimations of
AGB at DIJ and LAN sites, with error percentage (EP = ratio
of the difference between the observed and modeled to the
observed value) of 16 % and−7 %, respectively. However,
large discrepancies are seen at LAM site, with EP =−47 %.
At the LAM site where LAI is highly underestimated, AGB
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Fig.4. Evolution of 5-days smoothed NEE (left) and LE (right) during the growing period 973 

at the five maize sites. Circle symbols indicate eddy covariance observed values and blue 974 

line indicates values simulated by ORHICDEE-STICS. The fluxes are smoothed over 975 

consecutive 5 days. The first vertical dashed line x=45 is defined as the end of the early 976 

crop growth period, and x=115 is defined as the start of the late crop growth period. 977 
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at KLI subplot indicates the hail storm event on x=88. 979 

Fig. 4. Evolution of 5-days smoothed NEE (left) and LE (right)
during the growing period at the five maize sites. Circle symbols
indicate eddy covariance observed values and blue line indicates
values simulated by ORHICDEE-STICS. The fluxes are smoothed
over consecutive 5 days. The first vertical dashed line x = 45 is
defined as the end of the early crop growth period, and x = 115 is
defined as the start of the late crop growth period. Between the two
lines, it is defined as the middle crop growth period. The solid bold
line at KLI subplot indicates the hail storm event on x = 88.

is consistently underestimated. Due to mismatch of LAI in
early stage and hail storm damage in the middle of growth
period, the model overestimates AGB at KLI site. The linear
correlation coefficient between the average LAI bias (simu-
lated minus observed LAI) and AGB bias is 0.81 at five sites,
indicating that the AGB model error is mainly resulted from
the error in LAI.

3.2 CO2 and H2O flux simulations

3.2.1 Seasonal variations of CO2 fluxes

The dynamics of daily NEE and LE at the five maize sites
are shown in Fig. 4. All model and data values are smoothed
using a 5-days running means to eliminate high frequencies.
The ORCHIDEE-STICS model has a fair ability to repro-
duce seasonal variations of NEE over all sites. The coef-
ficient of determination (R2) between simulated and mea-
sured NEE are 0.73, 0.57, 0.23, 0.74, and 0.48 at DIJ,
GRI, KLI, LAM, and LAN sites, respectively. Root mean
square error (RMSE) for NEE at the five sites are 0.55,
0.67, 1.63, 0.51, and 0.84 gC m−2 day−1, which is lower
than for the standard version of ORCHIDEE compared at
selected FLUXNET sites (2 gC m−2 d−1 in Chevallier et al.,
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Table 4. Statistical model benchmarking criteria (R2 and RMSE)
for four major output flux variables (NEE, LE, GPP, and TER) at
five European maize sites. The unit of RMSE for NEE, GPP, and
TER is gC m−2 day−1 and that for LE is W m−2.

Site R2 RMSE
NEE LE GPP TER NEE LE GPP TER

DIJ 0.73 0.33 0.68 0.09 0.55 1.28 0.79 2.53
GRI 0.57 0.65 0.72 0.74 0.67 0.61 0.56 0.69
KLI 0.23 0.43 0.34 0.41 1.63 1.07 1.65 1.50
LAM 0.74 0.79 0.83 0.81 0.51 0.50 0.45 0.59
LAN 0.48 0.29 0.32 0.03 0.84 0.96 1.06 1.19

2006). Therefore, accounting for crop specific parameters
given by STICS seems to reduce the error of ORCHIDEE.
For GPP, the model is able to explain 68, 72, 34, 83 and
32 % of the variance, with RMSE values of 0.79, 0.56, 1.65,
0.45, 1.06 gC m−2 d−1; against only 9, 74, 41, 81, and 3 %
for TER, with RMSE values of 2.53, 0.69, 1.50, 0.59, and
1.19 gC m−2 d−1 (Table 4). Among the five sites, the max-
imum of observed NEE reaches−15 gC m−2 d−1. Con-
trolled by different climatic conditions and crop develop-
ment, the timing of peak uptake of NEE differs between
sites. ORCHIDEE-STICS captures the amplitude and the
timing of NEE peak uptake correctly at the GRI and LAM
sites, and fairly DIJ and LAN. A visible mismatch is seen
at KLI in the mid-late growth period, probably reflecting
non-modeled hail storm (see above) damage. By splitting
the growing season to pre- and post-hail storm periods,R2

values are 0.75 before vs. 0.03 after; RMSE are 1.8 before
vs. 5.3 gC m−2 d−1 after, for NEE. For LE,R2 is slightly im-
proved from 0.45 to 0.62, but RMSE is increased from 16 to
27 W m−2 between pre- and post-hail storm periods.

During the early crop growth period (from planting date to
45 DAP), TER is larger than or comparable with GPP. There-
fore, all sites show a small source of CO2 or neutral, while air
temperature remains relatively low. At three out of the five
sites (GRI, KLI and LAM), the observed sign and trend of
early-growth NEE is well captured by the model. At the two
other sites (DIJ and LAN) the observed NEE values during
the early crop growth fluctuate between 0 and 5 gC m−2 d−1

(source) while the average differences between the simulated
and observed NEE are−2 and−0.5 gC m−2 d−1 (sink) re-
spectively. This suggests that other factors such as rotation
history and soil tillage that are not described in ORCHIDEE-
STICS affect TER and consequently push NEE towards a
CO2 source (Aubinet et al., 2009).

During the middle crop growth period (from 46 DAP to
115 DAP), all maize fields act as CO2 sinks, with GPP ex-
ceeding TER. The magnitude of the sink depends not only
on meteorological variables but also on soil moisture. At
the LAM site, the combination of high solar radiation and
warm temperature, and the low precipitation (153 mm) com-

Table 5. Variety-specific threshold values of growing degree day
(GDD, ◦C) and the values described in STICS.

Site Variety GDD threshold GDD threshold in STICS

DIJ La Fortuna 1653 1730–1955
GRI Anjou 288 1670 1730–1955
KLI Rosalie 1700 1730–1955
LAM Goldaste 1920 1730–1955
LAN La Fortuna 1653 1730–1955

pensated by irrigation (150 mm) lead to high GPP, but the
observed TER is high as well. As a consequence, NEE tends
to be as small CO2 sink. At the GRI site, crop growth pe-
riod precipitation is also low (170 mm), but solar radiation
and air temperature remain moderate. Therefore, the interac-
tive effects of radiation, temperature and precipitation do not
significantly suppress NEE uptake, unlike observed at LAM
site. The ORCHIDEE-STICS model reproduces these varia-
tions of NEE in the middle crop growth period well, excepted
for the colder KLI site, examined below.

During the late growth period (DAP> 115), the observed
NEE uptake of CO2 weakens due to plant senescence. The
simulated NEE uptake is overestimated at DIJ, KLI, and
LAN. The cause of this overestimation can be attributed to
overestimation of LAI by STICS (Fig. 2). The observed LAI
keeps its peak value for only about 2 weeks, and then slowly
decreases towards zero. Oppositely, the simulated LAI re-
mains at its maximum during four weeks after reaching its
maximum value, and then drops to 0 at harvest. Such a
mismatch of LAI during the late growth period affects the
model performance for NEE, especially at sites like KLI or
DIJ where growing season temperatures are relatively low
(Table 1). The observed decline of LAI in the late growing
period reflects plant senescence, but too cool temperatures at
the KLI and DIJ sites do not allow to meet the STICS model
requirement of growing degree day (GDD) to complete phys-
iological maturity, and the modeled crops are just mature by
the prescribed harvest date.

3.2.2 Seasonal variations of latent heat flux

At the GRI and LAM sites, both simulated and observed LE
present seasonal variations. At the three other sites, however,
LE does not show apparent seasonal variations, but fluctu-
ates between 0 and 120 W m−2. The lack of a trend in sea-
sonal LE measured at these sites may come from frequent
precipitation (total precipitation during growing season with
452, 593, and 403 mm, respectively), low net radiation (190,
228, and 215 W m−2, respectively) and associated high rela-
tive humidity (75, 76, and 80 %, respectively). ORCHIDEE-
STICS is generally able to capture the LE differences be-
tween sites. Overall, ORCHIDEE-STICS is able to explain
33, 65, 43, 79 and 29 % of the observed cross-sites variance,
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Fig.5. Taylor diagram plot of the simulated daily GPP, TER, NEE, and LE against EC 981 

observations at five maize sites. Normalized standard deviation (STD) is defined as the 982 

simulated variables divided by the observed one. Point O is defined as the “observation”. 983 

Root mean square error (RMSE) is also normalized by the observed mean value. R is the 984 

correlation coefficient. 985 
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Fig. 5. Taylor diagram plot of the simulated daily GPP, TER, NEE,
and LE against EC observations at five maize sites. Normalized
standard deviation (STD) is defined as the simulated variables di-
vided by the observed one. Point O is defined as the “observation”.
Root mean square error (RMSE) is also normalized by the observed
mean value.R is the correlation coefficient.

respectively. The RMSE values at five sites are 1.3, 0.6, 1.1,
0.5, and 1 W m−2, respectively. The discrepancy between
simulated and measured LE can also be partly explained by
imbalance in the energy budget with the eddy covariance
technique (Wilson et al., 2002; Li and Yu, 2007), whereas
the model always ensures energy balance closure.

3.2.3 Overall evaluation of ORCHIDEE-STICS

The overall model performance in simulating the seasonal
variations of NEE, LE, TER, and GPP is summarized with
a normalized Taylor plot (Taylor, 2001) in Fig. 5. Among
all plots in Fig. 5, normalized standard deviation (STD), root
mean square error difference (RMSD), and correlation coef-
ficient (R) for observations are always 1, 0, and 1, respec-
tively. Correlation coefficients for modeled GPP are high
around 0.9 except at the KLI and LAN sites withR values
being slightly lower than 0.7. For TER simulations,R values
are low at sites DIJ and LAN in the Netherlands (0.29 and
0.18). For NEE, high correlation coefficients are obtained
between simulated and observed values at four out of five
sites. Similar to the model good performances for GPP and
NEE, the simulation results of LE also giveR values in the
range of 0.5 to 0.9.
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Fig.6. Accumulated NEE, ET, GPP, and TER during the growing period. Gray bars 988 

indicate the observed values and white bars indicate the simulated ones. 989 
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Fig. 6. Accumulated NEE, ET, GPP, and TER during the grow-
ing period. Gray bars indicate the observed values and white bars
indicate the simulated ones.

3.2.4 Seasonal budgets

Figure 6 shows the comparisons between simulated and ob-
served seasonally cumulative NEE, LE, GPP, and TER since
planting date. The cumulative NEE is in good agreement
with the observed values at GRI and LAM sites, with EP val-
ues of 2 % and 1 %. However, a large discrepancy exists be-
tween the simulation and the observation at the three other
sites, cumulative NEE being over-estimated by the model
(i.e. too much uptake). The EP values of NEE are 49 %,
125 %, and even 377 % at the DIJ, LAN and KLI sites. The
cumulative NEE bias may result from overestimated GPP
and LAI during the late crop growth, as shown above. At GRI
and LAM sites, the seasonal change in NEE is maybe well
reproduced because of error compensation between underes-
timated GPP and TER (Fig. 6). At DIJ, KLI, and LAN where
the simulated seasonal change in NEE is overestimated, the
bias results from the simulation of GPP or TER or both.

For cumulative LE seasonal changes, the model presents
good (EP range between 2 % and−13 %) results compared
to observation at four out of five sites. High-bias in LE simu-
lation at the KLI site (EP = 64 %) may be due to non-modeled
damage caused by hail.

The model reproduces an acceptable cumulative GPP at
DIJ, GRI, and LAN sites, with EP values less than 15 %, but
overestimates GPP at KLI and LAN sites (EP = 58 %) and
underestimates it at LAM (EP =−32 %) (Fig. 5). The bias
of GPP is related to the bias of LAI (Suyker et al., 2004; Xu
and Baldocchi, 2004), and the bias of GPP also explains the
bias of AGB (comparing Fig. 5 and Fig. 3).

For cumulative TER, the model has rather poor perfor-
mances with an obvious underestimation of this flux at all
sites. The EP values range between 31 % and 52 % across
the five sites. This indicates structural model deficiencies in
describing the processes controlling cumulative TER, e.g. no
vertical distribution of soil C pools, soil C initialization bias
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Fig.7. Modeled vs. simulated daily average water use efficiency (WUE) at 5 maize sites. 992 

The dotted line indicates the 1:1 line. The solid line indicates the linear regression and the 993 

dashed lines represent the 3σ confidence limits.  994 

 995 

Fig. 7. Modeled vs. simulated daily average water use efficiency
(WUE) at 5 maize sites. The dotted line indicates the 1:1 line. The
solid line indicates the linear regression and the dashed lines repre-
sent the 3σ confidence limits.

caused by unknown site cultivation history. Currently, TER
is considered as the sum of heterotrophic and autotrophic
respirations (Krinner et al., 2005). Part of the model-data
mismatch for TER at LAM and LAN may be explained by
a GPP bias (see Fig. 5). On the other hand, at DIJ and
KLI where modeled NEE right after planting is underesti-
mated (see Fig. 4), most of the model error should be related
to TER simulation since no autotrophic respiration was in-
volved in this period. The heterotrophic respiration in the
model is computed by assuming the soil carbon balance in
steady-state equilibrium, but this hypothesis may not be true
in reality (Carvailhais et al. 2008), especially for agroecosys-
tems where the soil is commonly disturbed by various human
activities.

3.3 Water use efficiency

The crop water use efficiency (WUE, gC mm−1H2O) is de-
fined as the ratio of daily GPP to daily ET. The comparison
between simulated and observed daily WUE at the 5 maize
sites is shown in Fig. 7. Generally, the WUE is low in the
beginning of the growing season and immediately after har-
vest. The higher values of WUE occur during the peak of
the growing season, when crop LAI approaches or stays at its
maximum. During this peak crop growth period, the WUE of
maize is observed to reach 8–15 gC mm−1 H2O. Comparison
between simulated and observed WUE shows a linear rela-
tionship at the 5 sites. The model is able to explain 51, 31,
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Fig.8. Changes in model benchmarking statistics for the sensitivity of the simulated NEE 997 

to management parameters, varieties (upper left), fertilization (upper right), irrigation 998 

(lower left), and planting date (lower right). The statistics for the management practice 999 

simulation are plotted at the tail of the arrows (number 1), and the arrows (number from 2 1000 

to 7) point to the statistics for the control simulations. At each site, the longer the arrow, 1001 

the more sensitive is ORCHIDEE-STICS to a change in management parameter. 1002 

Normalized standard deviation (STD) is defined as the simulated variables divided by the 1003 

Fig. 8. Changes in model benchmarking statistics for the sensitivity
of the simulated NEE to management parameters, varieties (upper
left), fertilization (upper right), irrigation (lower left), and plant-
ing date (lower right). The statistics for the management practice
simulation are plotted at the tail of the arrows (number 1), and the
arrows (number from 2 to 7) point to the statistics for the control
simulations. At each site, the longer the arrow, the more sensitive
is ORCHIDEE-STICS to a change in management parameter. Nor-
malized standard deviation (STD) is defined as the simulated vari-
ables divided by the observed one. Root mean square error (RMSE)
is also normalized by the observed mean value.R is the correlation
coefficient.

23, 57, 31 % of the variance in observed WUE at DIJ, GRI,
KLI, LAM, and LAN, respectively. Although the correlation
coefficients between the simulated WUE and the measured
WUE are low, the majority of the measured WUE values are
within the 3σ confidence limits of the linear regression. An-
other possible source of errors in simulating WUE may orig-
inate from the energy imbalance problem of eddy covariance
technique (Li and Yu, 2007).

3.4 Sensitivity of modeled fluxes to management
practice

3.4.1 Effects of different management parameters on
NEE and LE daily fluxes

We select NEE and LE as two representative fluxes impacted
by varying management parameters. Figure 8 shows the Tay-
lor plot (Taylor, 2001) of the response of NEE to parame-
ter values for varieties, fertilization, irrigation, and planting
date.

From Fig. 8, we find that NEE responds sensitively to crop
varieties at three sites (KLI, LAM, and LAN). However, at
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Fig. 9. NEE Sensitivity Index versus mean value of maximum LAI. Sensitivity Index is 1008 
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Fig. 9. NEE Sensitivity Index versus mean value of maximum LAI.
Sensitivity Index is defined as the ratio of difference between “refer-
ence simulation” and “control simulation” to “control simulation”.
Control simulation is referred to: variety FURIO, observed fertil-
ization, irrigation, and observed planting and harvest dates. Mean
value of maximum LAI is referred to the mean LAI between control
and alternative variety simulations.

the other two sites (DIJ and GRI), NEE is weakly sensi-
tive to that parameter. It is the difference in climate which
modulates the sensitivity to crop varieties among sites. In
the STICS model, varieties are described by different GDD
thresholds (listed in Table 5), especially for the crop develop-
ment stage during which leaves grow the most. Compared to
the control simulation variety parameters, the total GDD re-
quirement of the 2 other varieties used in the sensitivity study
differ by ±100 degree-days. Thus, this GDD difference im-
pacts on the length of the period of maximal leaf growth (up
to the maximal LAI) and consequently on the maximal LAI
value reached during the growing period. When changing
of crop variety, the date at which LAI is maximal (dmax)
is shifted by±6 days and the maximal LAI changes from
0.25 to 0.85 m2 m−2 depending of the site. This spread in
the response on maximal LAI value is attributed to differ-
ent leaf growth rate simulated on each site and to the shift
of dmax, but it can’t explain the simulated NEE sensitivity
to crop varieties amongst sites. In fact, the NEE sensitivity
is best correlated with the mean value between control va-
riety and alternative variety of the maximal LAI. Figure 9
shows the mean LAI value (between control and alternative
variety) on the 5 studied sites against the sensitivity index of
NEE to crop variety (see Fig. 11). It is found that the ab-
solute values of sensitivity index of NEE to crop variety is
closely related to the mean value of maximum LAI between
the control and alternative variety (R2

= 0.80) (Fig. 9). Be-
cause the LAI value reached amongst site is mainly function
of climate, we can confirm that the NEE sensitivity to crop
varieties is driven by climate.
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Fig.10. Changes in normalized pattern statistics for the response of the simulated LE to 1015 

crop varieties (upper left), fertilization (upper right), irrigation (lower left), and planting 1016 

date (lower right). The statistics for the management practice simulation are plotted at the 1017 

tail of the arrows (number 1), and the arrows (number from 2 to 7) point to the statistics 1018 

for the control simulations. At each site, the longer the arrow, the more sensitive is 1019 

ORCHIDEE-STICS to a change in management parameter. Normalized standard 1020 
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Fig. 10.Changes in normalized pattern statistics for the response of
the simulated LE to crop varieties (upper left), fertilization (upper
right), irrigation (lower left), and planting date (lower right). The
statistics for the management practice simulation are plotted at the
tail of the arrows (number 1), and the arrows (number from 2 to
7) point to the statistics for the control simulations. At each site,
the longer the arrow, the more sensitive is ORCHIDEE-STICS to a
change in management parameter. Normalized standard deviation
(STD) is defined as the simulated variables divided by the observed
one. Root mean square error (RMSE) is also normalized by the
observed mean value.R is the correlation coefficient.

Regarding fertilization, at LAN site where fertilization
is applied at a low rate (65 kg N ha−1), a large sensitivity
of NEE is found when automatic fertilization is given by
STICS, instead of the prescribed observed values. At sites
with moderate fertilization (LAM and KLI with 84 kg N ha−1

and 91 kg N ha−1, respectively), the model shows smaller
sensitivities than at sites with low fertilization rate. At
sites with high fertilization rates (DIJ and GRI with 212
and 140 kg N ha−1, respectively), the NEE sensitivity is very
small (Fig. 8). Therefore, the sensitivity to N-fertilization de-
pends on how close to optimal fertilization each site is, which
indicates good performances of STICS to diagnose plant ni-
trogen requirements.

The response of the simulated NEE to irrigation has large
difference among five sites. The change in the statistical
criteria (STD, RMSD, andR) is very large at GRI, a dry
site (Fig. 8). However, this response is weaker at the DIJ
site. Such inter-site differences in the NEE sensitivity to ir-
rigation can be explained by differences in the total amount
of available water in soil profile during the crop growth pe-
riod. The total growing season precipitation at KLI and DIJ
are 593 mm and 453 mm, respectively. compared to only
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Fig.11. Summary sensitivity of NEE (left) and LE (right) to crop varieties (simulations 1, 1026 

2, 3), fertilization (4), irrigation (5), and planting dates (6 for early planting and 7 for late 1027 

planting). Normalized standard deviation (STD) is defined as the simulated variables 1028 

divided by the observed one. Root mean square error (RMSE) is also normalized by the 1029 

observed mean value. R is the correlation coefficient. All statistical indicators (STD, 1030 

RMSE, and R) are computed with five maize sites. The lower and upper lines of the box 1031 

indicate 25 and 75 percentiles, respectively. The thick black line in the box is the median 1032 

value. The whiskers (horizontal bars beyond the box) represent 1.5 times of the 1033 

interquartile range. Outliers are displayed with a red “+” sign. 1034 

 1035 

Fig. 11. Summary sensitivity of NEE (left) and LE (right) to crop
varieties (simulations 1, 2, 3), fertilization (4), irrigation (5), and
planting dates (6 for early planting and 7 for late planting). Normal-
ized standard deviation (STD) is defined as the simulated variables
divided by the observed one. Root mean square error (RMSE) is
also normalized by the observed mean value.R is the correlation
coefficient. All statistical indicators (STD, RMSE, and R) are com-
puted with five maize sites. The lower and upper lines of the box
indicate 25 and 75 percentiles, respectively. The thick black line in
the box is the median value. The whiskers (horizontal bars beyond
the box) represent 1.5 times of the interquartile range. Outliers are
displayed with a red “+” sign.

169 mm at GRI, where no additional water is supplied by ir-
rigation. At the other low-precipitation site, LAM, the grow-
ing season precipitation is only 153 mm, but 148 mm of irri-
gation is applied during the growing period. Therefore, the
response of NEE to irrigation at LAM shows a weaker sensi-
tivity than at GRI. Thus, like for fertilization, the differences
between actual amounts and optimal crop water requirements
determine the NEE sensitivity to the irrigation parameter.

Simulated seasonal variations of NEE are sensitive to
changes in planting date (Fig. 8). A planting date shifted
by 25 days causes a very significant change in simulated
NEE over all the sites. The change is reflected by decreased
R and increased STD in the Taylor diagram. The reason
of this is that in the Control simulation, crop development
has generally already benefited of several GDD during the
25 first days after planting. In the “late planting” sensitiv-
ity, crop development cannot benefit for these GDD which
causes a large phase lag of NEE. By contrast, planting the
seeds 25 days earlier than in the “control” experiment in-
duces a shorter phase lag (asymmetric sensitivity) because
generally few GDD are accumulated in this early 25-day pe-
riod. Figure 10 shows the sensitivity of LE to crop man-
agement practice parameters. There is no large change (see
length of the arrow) in statistical criteria for the responses
of LE to varieties and fertilization at most sites, contrary to
NEE. Only a weak sensitivity is found for the response of
LE to varieties (LAM) and fertilization (LAN). At the dry
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Fig. 12. Sensitivity index (SI) of cumulated NEE (upper) and LE
(lower) during the growing season to different management prac-
tices. Sensitivity index is defined as the ratio of difference between
“reference simulation” and “control simulation” to “control simula-
tion”. Control simulation is referred to: variety FURIO, observed
fertilization, irrigation, and observed planting and harvest dates.
The two horizontal dashed lines y =±15 % indicate the threshold
value for significant sensitive index.

sites GRI and LAM where the available water (precipitation
plus irrigation) is low, a significant sensitivity of LE to irri-
gation is found. At other sites, the automatic model irriga-
tion amounts given by STICS do not induce any significant
change in LE because of the difference in available water
between prescribed and model automatic irrigation amounts
is very small. Compared to crop varieties, fertilization, and
irrigation parameters, planting date is the most sensitive pa-
rameter in determining LE, and NEE as well. A later planting
date causes a greater change in simulated LE.

Sensitivity of the fluxes (NEE and LE) to crop variety
and management practice at all maize sites is summarized in
Fig.11. Box plot with median and interquartile values show
that all statistical criteria for model performances (STD,
RMSE, andR) vary largely across the different sites. Nor-
malized STD varies from 0.7 to 2.0, and normalized RMSE
between 0.3 and 2.0 for NEE. The median values of nor-
malized STD and RMSE for NEE also deviate from unity.
However, normalized STD and RMSE for LE are located in
relatively narrow range and the median values of normalized
STD and RMSE are close to unity, showing clearly that the
simulated LE is less sensitive than NEE.
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3.4.2 Effect of management parameters on cumulative
seasonal fluxes

In order to test the sensitivity of cumulative fluxes to manage-
ment parameters, a sensitivity index (SI) is defined as the ra-
tio of the difference between cumulative simulated and mea-
sured fluxes to the cumulative measured flux (Fig. 12). It is
found that SI can vary with crop varieties and management
practices, but the sensitivity to a specific management param-
eter is site-dependent. It is evident that the magnitude of SI
is closely related to the difference between the observed and
the model-automatically assigned values for fertilization and
irrigation. If the difference is large, the value of SI is large
as well. For example, at the driest and non-irrigated GRI
site, NEE shows a largest SI for the irrigation parameter. At
the least fertilized site of LAN (65 kg N ha−1), the simulated
cumulative NEE has a significant sensitivity to fertilization.
For the sensitivity of the cumulative NEE to crop varieties, at
the LAM and LAN sites, SI values are larger than 15 %. For
planting date simulations, the SI shows a value larger than
15 % at LAM site for late planting and at LAN site for early
planting, while all the SI values are lower than 15 % at the
three other sites. In this respect, it is found that the cumu-
lative annual NEE is less sensitive to planting date than the
daily NEE variation. By contrast, the sensitivity of annual
NEE to other management parameters is similar to the one of
seasonal NEE. This finding suggests that a shift in planting
date strongly impacts the phase of the NEE while the other
drivers impact more the amplitude.

Compared to seasonally cumulative NEE, cumulative LE
is found to be less sensitive to crop varieties and nitrogen
applications (Fig. 12) at all five sites, where all SI values are
less than 15 %. The model presents large response of LE to
irrigation with a larger than 15 % of SI at KLI site only. Early
planting with 25 days causes large LE responses at DIJ, KLI
and LAN sites, while late planting with 25 days produces
negative effects on cumulative LE at three out of five sites
(KLI, LAM and LAN).

4 Discussion

Compared to other terrestrial systems, agricultural ecosys-
tems are maybe more complicated to simulate, and highly
affected by management. Some recent ecosystem models
are capable of taking into account for the effects of man-
agement practices. Although these ecosystem models are far
from perfect, they are widely used for applications related for
instance to food security or soil C sequestration rates. How-
ever, ecosystem models should be benchmarked against in
situ measurements and their sensitivities to those manage-
ment factors with largely spatial variations should be investi-
gated before running regional or global applications.

In this paper, by evaluating the ORCHIDEE-STICS model
at five maize sites over Europe, it is found that the model
performance differs across sites, and for the different output

variables (e.g. GPP, TER, NEE or LE) even at one site. At
the sites where LE and GPP are poorly modeled, the main
reason of the model-data mismatch is the phase-lag in simu-
lated LAI, given by STICS in our case. Therefore, improv-
ing the LAI seasonal dynamic in future studies should po-
tentially improve the performance in simulating GPP and LE
because both are highly dependent of LAI, as documented by
Suyker et al. (2004) and Xu and Baldocchi (2004). TER in
ORCHIDEE-STICS is simulated as the sum of autotrophic
and heterotrophic respirations. Autotrophic respiration is
strongly depended on plant biomass and temperature, while
heterotrophic respiration is related to soil temperature, soil
moisture and soil carbon pools. Quantifying heterotrophic
respiration is subject to large uncertainties (Trumbore, 2006).
In the current version of ORCHIDEE, two bucket layers
(ground and below ground) are considered for soil moisture
and 7 layers for soil temperature. The accuracy of soil mois-
ture simulation is not good enough. The deficiency of mod-
eled soil temperature and moisture may be part of the reason
of the disagreements between the measured and the simu-
lated TER. Further, the response of TER to soil moisture is
also found to be very uncertainty in nature (Falloon et al.,
2011). At the sites where GPP and LE are well simulated,
but TER (and therefore NEE) are poorly captured, apart from
the errors from soil temperature, moisture and carbon pools,
the steady-state spin up of soil C pools is a likely reason of
over-estimated TER. Each crop site soil C content is strongly
affected by various human activities, for example ploughing,
crop rotation, fertilization and irrigation, which all have the
potential for moving soil C away from steady state (Aubinet
et al., 2009). Therefore, taking into account previous land-
use history will certainly improve the model performance in
TER and hence NEE simulations, for instance by replacing
steady-state carbon stocks with observed soil C stocks.

Maize, a thermophilous crop, is widely cultivated in West-
ern Europe over a region bounded by 40◦ N–55◦ N in latitude
and 9.5◦ W–19.5◦ E in longitude (Gervois et al., 2008). Over
this maize grown area (defined as maize exceeding 5 % of
the total land area), total annual precipitation ranges from
500 to 1400 mm, and annual mean temperature varies from
6 to 17◦C. At the five studied sites, total annual precipita-
tion fluctuates between 460 and 970 mm and mean annual
temperature varies from 8.5 to 13.5◦C during the simulated
year. Thus, four out of the 5 sites are representative of the
climate space of maize cultivation in Europe. However, pre-
cipitation may not suffice to satisfy with the water-demand
during the crop growing period, with water stress causing
lower yield. Irrigation, therefore, is applied to guarantee
crop yield in areas such as LAM site. Across the 5 sites of
the study, nitrogen application and precipitation ranges have
large gradients. Planting date has 25-day difference across
the sites and we also conducted additional simulations with
actual planting date±25 days. The sites representativeness
of European-wide maize cultivation climatic conditions and
of management practice makes our result suitable to infer
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which parameters will impact European scale maize yield
simulations. The lack of the information about crop vari-
eties and management practices may not produce very sig-
nificant change in LE but may cause large uncertainties for
NEE when the model is applied on a grid. In order to enhance
the model performance, further improvement in the calcula-
tion of LAI and TER are necessary. Another potential way to
improve the performance of CO2 and H2O budgets would be
to assimilate remotely sensed LAI, soil moisture and/or soil
temperature into the model (Viovy et al., 2001; Peylin et al,
2005; Luo et al., 2009).

5 Conclusions

We evaluated the performance of the ORCHIDEE-STICS
model against online CO2 and H2O fluxes at five maize eddy-
covariance sites from the CarboEurope project. The results
suggest that this generic land surface model driven by a crop-
specific phenology, is able to capture the seasonal dynamics
of NEE and LE. However, at sites with low air temperature
during the growing period, the model presents a phase lag
of 7 to 10 days in LAI compared to the observations. This
model LAI bias explains most of the error of GPP and LE.
Overall, ORCHIDEE-STICS explains more than 70 % of the
variances (R2) of any observed daily component of NEE and
LE fluxes at DIJ and LAM, around 50 % of the variance at
GRI and LAN, and less than 30 % at KLI site. Among four
flux variables against which the model was benchmarked, cu-
mulative GPP during the growing season is best reproduced.
For LE, the agreement between the measurement and the
simulated is acceptable as well. The cumulative TER is con-
sistently underestimated at all sites, causing overestimation
of the mean annual NEE.

Sensitivity analysis by varying management parameters
indicates that crop variety, fertilization, irrigation and plant-
ing date, shows that any of considered factors is able to cause
large changes in the simulated NEE and LE. Nevertheless,
the sensitivity of LE to management parameters is lower than
that of NEE. The variations of management practices affect
not only daily NEE and LE changes, but also seasonal cumu-
lative values, the latter being much more site-dependent. For
irrigation and fertilization changes, the sensitivity to specific
management practice on NEE and LE strongly depends on
the difference between actual and potential (optimum) water
or nitrogen status of each site.

Multi-site model benchmarking and sensitivity analysis is
useful to identify the model weaknesses and to further im-
prove the model structure. This study provides a hint on
the accuracy and uncertainties that can be expected from of
model gridded simulation of carbon and water vapor flux at
European scale.
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