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Abstract. Several studies sustained the possibility that
a photochemical reflectance index (PRI) directly obtained
from satellite data can be used as a proxy for ecosystem light
use efficiency (LUE) in diagnostic models of gross primary
productivity. This modelling approach would avoid the com-
plications that are involved in using meteorological data as
constraints for a fixed maximum LUE. However, no unifying
model predicting LUE across climate zones and time based
on MODIS PRI has been published to date. In this study, we
evaluate the effectiveness with which MODIS-based PRI can
be used to estimate ecosystem light use efficiency at study
sites of different plant functional types and vegetation densi-
ties. Our objective is to examine if known limitations such
as dependence on viewing and illumination geometry can be
overcome and a single PRI-based model of LUE (i.e. based
on the same reference band) can be applied under a wide
range of conditions. Furthermore, we were interested in the
effect of using different faPAR (fraction of absorbed photo-
synthetically active radiation) products on the in-situ LUE
used as ground truth and thus on the whole evaluation exer-
cise. We found that estimating LUE at site-level based on
PRI reduces uncertainty compared to the approaches rely-
ing on a maximum LUE reduced by minimum temperature
and vapour pressure deficit. Despite the advantages of us-
ing PRI to estimate LUE at site-level, we could not establish
an universally applicable light use efficiency model based on
MODIS PRI. Models that were optimised for a pool of data
from several sites did not perform well.

Correspondence to:A. Goerner
(anna.goerner@bgc-jena.mpg.de)

1 Introduction

Sound estimates of gross primary productivity (GPP) are es-
sential for an accurate quantification of the global carbon cy-
cle and an understanding of its variability (Schulze, 2006).
Many diagnostic models of primary productivity are based
on a light use efficiency approach (Running et al., 2000; Yuan
et al., 2007; Beer et al., 2010, e.g.).

All light use efficiency models represent photosynthetic
assimilation of vegetation as a function of the amount of pho-
tosynthetically active radiation absorbed by plants (aPAR)
(Monteith, 1972; Running et al., 2000). In these models, all
environmental and biophysical constraints on the conversion
of photo energy to plant biomass are aggregated in the term
light use efficiency (LUE). GPP is thus calculated as:

GPP= LUE × aPAR (1)

aPAR= faPAR× PAR (2)

where faPAR is the fraction of absorbed photosynthetically
active radiation. The simplicity of this approach, with lit-
tle need for ancillary data, makes it possible to base these
models on remote sensing products and meteorological fields
(Hilker et al., 2008c; McCallum et al., 2009). Thus, an im-
portant prerequisite for application on the global scale is ful-
filled.

It should be noted, although the definition of aPAR is clear,
faPAR and incident PAR derived from different sources and
can differ substantially (e.g.McCallum et al., 2010).

LUE is influenced by many factors and thus varies in space
and time. Factors limiting LUE include plant water availabil-
ity and atmospheric water demand as well as temperature and
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plant nutrition. LUE is usually modelled by constraining a
certain maximum LUE according to a set of environmental
conditions (e.g.Running et al., 2000; Yuan et al., 2007; Horn
and Schulz, 2010). The determinants of LUE and on which
time-scales they act are only partially resolved. Among the
main difficulties on the daily to annual time-scales are finding
a suitable surrogate for ecosystem water limitation (Garbul-
sky et al., 2010a) and the accuracy of the available meteoro-
logical data (Heinsch et al., 2006).

It is thus attractive to derive LUE directly from just one
kind of satellite data, without relying on estimates of differ-
ent meteorological variables. Two types of remotely sensed
data are candidates for this: fluorescence and the photochem-
ical reflectance index (PRI).

While studies using airborne fluorescence measurements
had promising results, the signal-to-noise ratio needs to be
improved to be useful for satellite-based observations; efforts
are ongoing (Meroni et al., 2009). The PRI combines re-
flectance at 531 nm (ρ531) with a reference wavelength insen-
sitive to short-term changes in light energy conversion effi-
ciency (ρref) and normalises it (Gamon et al., 1992; Pẽnuelas
et al., 1995):

PRI= (ρ531 − ρref)/(ρ531 + ρref) (3)

The original PRI formulation byGamon et al.(1992) used
550 nm as the primary reference band since, according to a
study on sunflowers, it seemed least affected by changes in
green canopy structure. It also had 531 nm and reference
wavelength swapped compared to recent use (c.f. Eq.3).
Later studies noted that for leaf-level reflectance, 570 nm
appears to normalise best for confounding effects like pig-
ment content and chloroplast movement (Gamon et al., 1993,
1995). Thus, 570 nm became the most widely used PRI ref-
erence band. Recently,Middleton et al.(2009) showed for
a douglas fir forest that reference bands in the ranges 540–
574 nm, 480–515 nm and 670–680 nm have a high correla-
tion with foliage LUE. An overview on protocols used for
PRI studies can be found in a review byGarbulsky et al.
(2010b).

PRI can be a useful proxy for LUE because changes in
reflectance at 531 nm are a side effect of mechanisms that
protect the photosynthetic system in the leaves from excess
light by down-regulating carbon assimilation (for an exten-
sive summary, seeMiddleton et al., 2009; Coops et al., 2010).
PRI also correlates with the total content of carotenoid pig-
ments (Stylinski et al., 2002), this needs to be considered
when looking at seasonal changes in PRI.

At site level, PRI has been shown to give good estimates of
LUE when derived from field spectrometers (Gamon et al.,
1992), but also from airborne sensors (Nichol et al., 2000,
2002; Rahman et al., 2001). Recently, the MODIS sensor
on TERRA and AQUA has also been used successfully at
ecosystem scale (Rahman et al., 2004; Drolet et al., 2005,
2008; Garbulsky et al., 2008; Goerner et al., 2009; Xie et al.,
2009). MODIS provides a useful temporal resolution, a band

around 531 nm, but not the reference band at 570 nm. Thus,
the MODIS PRI has been based on several alternative refer-
ence bands. However, the PRI has some well known limita-
tions (Grace et al., 2007). Multiple studies showed that the
PRI signal is affected by the viewing and illumination geom-
etry, including the fraction of sunlit and shaded leaves seen
by the sensor, canopy structure, and background reflectance
(Barton and North, 2001; Nichol et al., 2002; Súarez et al.,
2008; Sims and Gamon, 2002; Louis et al., 2005; Drolet
et al., 2008; Hilker et al., 2009; Middleton et al., 2009).
These difficulties, along with data access problems, might
have hindered the evaluation of an LUE model based on
MODIS PRI across space and time. So far it is unclear if
one model can be applied at multiple sites. Also, the ques-
tion remains whether one MODIS PRI reference band can
be recommended for all sites, or if different reference bands
have to be used depending on for example plant functional
type and vegetation density.

Despite the fluctuations in illumination geometry, dimen-
sion of the surface area sensed by each instantaneous field-
of-view and background reflectance at every site, the site
level models based on MODIS PRI published so far yielded
good agreement with observed LUE. That considerable po-
tential exists for mapping LUE with a common model has
also been shown byDrolet et al.(2008), who found a unify-
ing model for eight sites in central Saskatchewan. These bo-
real sites are close to each other (within the confines of one
satellite scene), hence they can be simultaneously monitored
instead of by comparing data from different image acquisi-
tions. The viewing geometry and atmospheric disturbance of
the satellite signal is therefore similar. Consequentially, the
next step is to evaluate PRI based models across sites and
satellite scenes.

In this study, we evaluate the effectiveness with which
MODIS-based PRI can be used to estimate ecosystem light
use efficiency (LUE) at study sites of four distinct plant func-
tional types and different vegetation densities. Our objec-
tive is to find out if the limitations can be overcome and
a single PRI-based model of LUE (i.e. based on the same
reference band) can be applied under a wide range of con-
ditions. Furthermore, we were interested in how different
fAPAR products affect the in-situ LUE estimates which are
used as ground truth.

2 Data and methods

2.1 Selection of study sites

To be able to properly evaluate the PRI-based LUE esti-
mates, we conducted this study at a selection of sites from
the FLUXNET LaThuile data set that provides the neces-
sary gross primary productivity and site meteorology data
(www.fluxdata.org).
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Table 1. Overview of the sites used in this study.

Site code Site name Lat, Lon Data PFT (dominant species) LAI References
(flux tower) used

ZA-Kru Skukuza, Kruger −25.0197, 2001– Savanna (Combretum 1 (area average trees,Scholes et al.(2001);
National Park 31.4969 2003 apiculatum, Sclerocarya max.) Kutsch et al.(2008)
(South Africa) birrea, Acacia nigrescens) 3 (within tree

canopy, max.)
1 (herbaceous layer,
avg.)

FR-Pue Puechabon (France) 43.7414, 2000– evergreen 2.8± 0.4 Allard et al.(2008)
3.59583 2006 broad-leaved forest

(Quercus ilex L)
IT-Cpz Castelporziano 41.7052, 2000– evergreen broad-leaved 3.2–3.8 Tirone et al.(2003)

(Italy) 12.3761 2006 forest (Quercus ilex L.)
US-MMS Morgan Monroe 39.3231, 2000– deciduous broad-leaved 4.8 Schmid et al.(2000)

State Forest (US) −86.4131 2005 forest (sugar maple, tulip
poplar, sassafras, white and
red oak)

US-Me2 Metolius – 44.4523, 2003– evergreen needle-leaved 2.8 (overstorey), Thomas et al.(2009)
intermediate aged −121.557 2005 forest (Pinus ponderosa) 0.2 (understorey)
ponderosa pine (US)

Here, we focus on non-boreal forest/savanna sites with wa-
ter stress during part of the year. Some sites have to be ex-
cluded because of too few valid PRI data. Such data scarcity
can be caused by frequent cloud cover or saturation of the
satellite signal at sparsely vegetated sites. The largest limi-
tation on the number of relevant sites is the size of the tar-
geted ecosystem surrounding the flux tower. It must be large
enough to contain the footprint of a≥1×1 km MODIS pixel
so that the flux tower footprint is representative of the re-
motely sensed footprint.

We thus conducted our analysis on 5 sites: two dry-
summer subtropical evergreen broad-leaved forests, a site
with vegetation typical for tropical savanna, a humid-
subtropical deciduous forest and a dry-summer subtropical
evergreen needle-leaved forest. All years for which eddy co-
variance and MODIS data are available simultaneously were
analysed (Table1). Castelporziano is a borderline case re-
garding the extension of the target ecosystem. For this site,
we discarded satellite scenes in which the pixel containing
the flux tower is partially made of non-forest.

2.2 In-situ LUE

We define LUE as the effectiveness with which an ecosystem
uses absorbed photosynthetically active radiation (aPAR) to
produce photosynthates (recorded as gross primary produc-
tivity, GPP):

LUE =
GPP

faPAR× PAR
(4)

We used daily and half-hourly GPP data derived from eddy
covariance measurements, in-situ PAR measurements from
the Fluxnet LaThuile data base, and different satellite based
faPAR data sets. The eddy covariance data were processed
using the standardised methodology described inPapale et al.
(2006); Reichstein et al.(2005). We calculated aPAR as
the product of available photosynthetically active radiation
(PAR, here in the form of average daylight photosynthetic
photon flux density – µmol m−2 s−1) and the fraction of PAR
that is actually absorbed by the vegetation (faPAR).

Since representative in-situ faPAR measurements are
scarce, and considering potential application of the PRI
model to a larger area, we used satellite based faPAR data
to calculate aPAR. Readymade faPAR products are known
to differ from each other (McCallum et al., 2010). To
test the impact of product choice on the evaluation of the
PRI-models we used three different faPAR sets: the MODIS
collection 5 MOD15A2 and MYD15A2 products (https:
//lpdaac.usgs.gov/lpdaac/products/modisproductstable/
leaf areaindex fraction of photosyntheticallyactive
radiation/8day l4 global 1km/mod15a2) (2000–2006,
8-days-composite), the SeaWiFS-based faPAR of the Joint
Research Centre (http://fapar.jrc.ec.europa.eu) (2000–2006,
although much of the 2006 data were discarded because
of poor quality flags, 10-days-composite) and the SPOT-
Vegetation based Cyclopes faPAR product (Baret et al.,
2007) (only available for 2000–2003, 10-days-composite).
The faPAR data were quality checked and linearly inter-
polated to daily time steps, except for periods where no
good data were recorded for longer than 19 days (equal to
1 missing value in the aggregated SeaWiFS and Cyclopes
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Table 2. Bandwidth of the MODIS spectral bands used in this study.
The narrow red bands 13 and 14 were excluded right from the begin-
ning because they tend to saturate over land (Goerner et al., 2009).

Band Bandwidth (nm) Use in this study

1 620–670 PRI, NDVI
2 841–876 NDVI
4 545–565 PRI

10 482–493 PRI
11 526–536 PRI
12 546–556 PRI

products) or 23 days (equal to 2 missing values in the
aggregates MODIS product). The light use efficiency
calculated with these faPAR data is denoted as LUEMODIS,
LUESeaWiFSand LUECyclopes. For the US-Me2 site, no valid
aPAR is contained in the Cyclopes data set throughout the
study period.

2.3 Modelling LUE from MODIS based PRI

2.3.1 Acquisition and processing of MODIS reflectance
data

To process the MODIS data for this study, we modified the
procedure described byDrolet et al.(2005) as follows. Three
MODIS products were downloaded from the Level 1 and At-
mosphere Archive and Distribution System (http://ladsweb.
nascom.nasa.gov). Of those products, from both the Terra
and Aqua satellite, we selected all scenes containing the
tower locations. The MOD/MYD021KM product contains
calibrated digital signals measured by the MODIS sensor,
from which at-sensor reflectances and radiances can be cal-
culated from two pairs of scale and offset terms included
in the product (Toller et al., 2005). We calculated top-of-
atmosphere reflectances for the spectral bands listed in Ta-
ble 2. The MOD/MYD03 product has the same spatial ex-
tent and resolution and provides the geographic coordinates
as well as the solar and sensor zenith and azimuth angles of
each pixel. These geolocation data were used to extract the
spectral information of the pixel closest to each tower loca-
tion. The MOD/MYD04 were used for an initial cloud cover
screening.

Those acquisition dates were discarded where the quality
flags attached to the MODIS products indicated saturation of
a detector, where cloud cover is likely or where the sensor
viewing angle at the tower site is more than 40◦ (otherwise
the MODIS pixel footprint would get too large, the result
being a mixed signal from different land cover classes, c.f.
Wolfe et al., 1998).

Light reaching a satellite sensor after traveling trough the
atmosphere is inevitably affected by scattering and absorp-
tion. In addition, natural surfaces reflect light differently
subject to the viewing geometry. Ideally, data recorded by

a satellite sensor should be corrected for these wavelength-
dependent effects to make the reflectances computed from
these records comparable. Albeit, from a previous study
(Goerner et al., 2009) and preliminary experiments we know
that correcting MODIS reflectances with bidirectional re-
flectance distribution function (BRDF) parameters from ex-
isting data bases either has no effect on the PRI signal (when
using POLDER/PARASOL based parameters (Bacour and
Bréon, 2005), see Fig. 2 in the Supplement) or only seems
to increase noise in the PRI signal (when using the MODIS
MOD43 product, see Fig. 3 in the Supplement). Additional
doubt about the usefulness of correcting reflectance data for
this study using ready made products is caused by the un-
availability of a BRDF model and atmospheric parameters at
the exact acquisition time and spatial resolution of the radi-
ance data and some of the spectral bands listed in Table2.
Because the need for synchronous estimates of atmospheric
parameters flagged as high quality also reduces the number
of available observations, we chose not to correct specifically
for atmospheric or surface anisotropy effects. To some de-
gree, a correction is inherent in a ratio made of reflectances
that are not too far apart in the visible part of the solar spec-
trum.

The MODIS cloud mask does not allow the detection of
cloud cover or cloud shadows with absolute certainty. To rule
out cloudiness, we visually checked for each day if the daily
course of incident PAR (measured in-situ as Photosynthetic
Photon Flux Density on half-hourly basis) follows an ideal
curve. Acquisition dates at which the measured PAR at the
flux towers notably differs from the PAR pattern during cloud
free days at the same time of year were excluded from further
analysis (see Fig. 1 in the Supplement for example).

2.3.2 Preparation of vegetation indices

The standard configuration of the PRI (Eq.3) has to be
adapted to the spectral bands available on MODIS (Drolet
et al., 2005). The MODIS band 11 is centred at 531 nm
(cf. Table2). As the MODIS-sensor is not equipped with
a spectral band centred at 570 nm, we tested bands 1 (620–
670 nm), 4 (545–565 nm), and 12 (546–556 nm) as poten-
tial reference bands, in accordance with the proposition of
Drolet et al.(2005, 2008). A modification of PRI has been
computed from top-of-atmosphere reflectances for each of
the 4 reference bands, denoted by PRI1, PRI4. PRI10, and
PRI12. We compared the performance of the PRI as a proxy
of LUE against what can be achieved with a well known
broadband vegetation index. The NDVI is known to respond
to changes in biomass, but also chlorophyll content as well
as leaf water stress (Myneni et al., 1995; Treitz and Howarth,
1999). The index is hence useful to see which part of the
variation in LUE can be explained already by factors other
then changes in the composition of xanthophyll pigments.
We calculated the Normalised Difference Vegetation Index

Biogeosciences, 8, 189–202, 2011 www.biogeosciences.net/8/189/2011/
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Table 3. Overview of abbreviations used for “in-situ” light use efficiency and for LUE modelled from vegetation indices (The models
denoted with∗ were established for each site (for all MODIS viewing angles and also specifically for viewing angles<10◦) as well as for
all evergreen sites combined and the two evergreen oak sites combined.)

abbreviation explanation

LUE used for evaluation
LUEMODIS light use efficiency calculated from site GPP, site PAR, and MODIS faPAR
LUESeaWiFS light use efficiency calculated from site GPP, site PAR, and JRC SeaWiFS faPAR
LUECyclopes light use efficiency calculated from site GPP, site PAR, and Cyclopes faPAR

LUE modelled from vegetation indices, general scheme*
LUEPRIX, Y LUE modelled from regression between PRIX (i.e. with reference band X) and LUEY

LUE modelled from vegetation indices, example
LUEPRI1, SeaWiFS LUE modelled from regression between PRI1 and LUESeaWiFS
LUEPRI LUE modelled from regression between PRI and observed LUE (summary term for multiple models)
LUENDVI , MODIS LUE modelled from regression between NDVI and LUEMODIS

LUE calculated using look-up table and site meteorology
LUEMOD17 LUE calculated from biome specific MOD17 parameters and siteTmin, VPD
LUEMOD17, opt LUE calculated from optimised biome specific MOD17 parameters and siteTmin, VPD

(NDVI) (Tucker, 1979) from reflectance data:

NDVI =
ρNIR −ρred

ρNIR +ρred
=

ρbd2−ρbd1

ρbd2+ρbd1
(5)

2.3.3 Empirical PRI-based LUE models

Exponential relationships between observed LUE
(LUEMODIS, LUESeaWiFS, LUECyclopes) and PRI were
explored with Bayesian hierarchical models. Models were
established separately for each version of PRI with data
binned as follows:

– observations from all evergreen sites combined (i.e. FR-
Pue, IT-Cpz, US-Me2; separate models for NDVI, PRI1,
PRI2. PRI10 and PRI12),

– observations from the two evergreen broad-leaved sites
combined (i.e. FR-Pue, IT-Cpz; also separate models for
each vegetation index),

– one site specific model (for sensor viewing zenith angles
≤ 40◦), this results in five models per vegetation index,

– separate bins for each range of viewing zenith angles
(0–10◦, 10–20◦, 20–30◦, 30–40◦) for each site, this re-
sults in 20 models per vegetation index.

Results for all those viewing angle bins are listed in the
Supplement. In the following we will only show outcomes
for the complete range of viewing angles and near-nadir ob-
servations (0–10◦). The variance explained with models fit-
ted to the other bins lies in between those two. Table3 gives
an overview of how observed and modelled light use efficien-
cies are denoted in this study.

2.4 LUE modelled fromT min , VPD and plant functional
type

For benchmarking the performance of vegetation index-
based LUE proxies, we also calculated the LUE in the way it
is operationally used in the MODIS GPP algorithm (Heinsch
et al., 2003). In this approach, a biome-specific maximum
light use efficiency is reduced by a vapour pressure deficit
scalar and a minimum temperature scalar. These attenua-
tion scalars are calculated from daily daylight VPD andTmin
based on linear ramp functions, the parameters of which are
contained in the biome property look-up table (BPLUT).

LUEMOD17= LUEmax, BLUT × f(VPD)× f(Tmin) (6)

We computed LUEMOD17 using the standard MOD17 pa-
rameters and LUEMOD17.opt using parameters that have been
optimised per site and year by Enrico Tomelleri (see section
on LUE models in the Supplement ofBeer et al., 2010).

As this study is concerned with the site level, we use
for both LUEMOD17 and LUEMOD17.opt site measurements of
VPD andTmin from the Fluxnet LaThuile data set instead
of the 1◦ by 1.25◦ NASA Data Assimilation Office (DAO)
data routinely fed into the MODIS GPP algorithm.This way
we also exclude uncertainties in the DAO meteorology as an
additional source of error.

www.biogeosciences.net/8/189/2011/ Biogeosciences, 8, 189–202, 2011
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Fig. 1. Comparing daily and half-hourly light use efficiency (based on MODIS faPAR) for all the cloud free times where MODIS PRI is
available. The times of MODIS overpass are given in the upper right corner of each panel.

3 Results

3.1 Are LUEs at times of MODIS overpass
representative for the whole day?

The MODIS sensors operate sun-synchronous, i.e. images
are only acquired within a certain window of local time
(morning through midday on the Terra platform, midday
through afternoon on the Aqua satellite). As a first step in
our analysis, we checked if the LUE at time of satellite over-
pass is representative for the whole day. For the five sites in
this study, half-hourly LUEMODIS during the time of MODIS
overpass can explain 65% (ZA-Kru) through 92% (FR-Pue)
of the variability in daily LUEMODIS (c.f. Fig.1). The slope
of the regression line between half-hourly and daily LUE for
ZA-Kru has the strongest deviation from the 1:1 line. Mid-
day LUE at ZA-Kru is lower compared to other sites, while
LUE in the late afternoon and evening is on average higher
than at the other sites. This might be due to differences in
moisture limitation. The atmospheric moisture demand in-
creases during middays stronger than at the other study sites
(see Figs. 5 and 6 in Supplement).

The relationship between halfhourly and daily LUE re-
mains the same when using other faPAR products. This jus-
tifies the use of PRI “snapshots” to estimate daily LUE.

3.2 Which MODIS-PRI version suits which setting?

In the next step of our analysis, we only use LUEMODIS to
evaluate the different modelled LUEs and to figure out which
PRI configuration is most useful for which site. Afterwards,
the effect of using different faPAR products is scrutinised us-
ing only the best suited PRI reference bands.

As an example for the relationship between PRI and LUE,
Fig. 2 shows PRI1 and LUEMODIS for all five studies sites
as well as for the combined evergreen and oak models
(c.f. Sect.2.3.3). We chose exponential functions to avoid
negative modelled LUEs. The divergences between the fitted
models become already apparent in this example.

For all LUE modelled site-specific based on PRI and
NDVI, the correspondence with LUEMODIS is better for near-

nadir observations than for all observations together (c.f.R2s
in Fig. 3).

LUEMODIS can be modelled properly based on PRI
for the savanna site ZA-Kru (R2 for near nadir observa-
tions [R2

nadir] = 0.78, R2 for all observations [R2
all] = 0.49)

and for the deciduous broad-leaved forest site US-MMS
(R2

nadir= 0.71, R2
all = 0.46). LUEMODIS can be reasonably

well modelled for the two evergreen oak forest sites (FR-Pue:
R2

nadir= 0.57,R2
all = 0.45; IT-Cpz:R2

nadir= 0.43,R2
all = 0.44).

The modelling of LUEMODIS for the evergreen needle-leaved
forest US-Me2 is less successful using PRI (R2

nadir= 0.37,
R2

all = 0.2, see also the table in the Supplement).
The optimal reference band for the PRI differs between

sites. For three sites with completely different character-
istics, LUEPRI1, MODIS with a site-specific model explains
most of the variability in daily LUEMODIS (ZA-Kru, FR-Pue,
US-MMS). PRI4 is most suitable for modelling LUE at IT-
Cpz. LUEPRI12, MODIS works best at the US-Me2 site.

3.3 Can LUE estimation from MODIS-PRI be
generalised?

Ideally, a model of light use efficiency would be parame-
terised once for all possible cases, or for well defined cat-
egories, and could then be applied to other location in the
same range of environmental conditions. When applying the
model that has been established for the pooled evergreen-site
observations at site level, the correspondence with observed
LUE values is low (c.f. Figs.2b, 3, 4) as it can be expected
for sites of different plant functional type and location. Even
when parameterising a model for the two evergreen broad-
leaved forest sites with the same dominant species, the ex-
plained variability is low.

3.4 How does LUE modelled from MODIS-PRI
compare to other LUE models?

Of course, estimating LUE from PRI would not be justified
if the same or a better accuracy can be achieved with mod-
els/data that are already operational.

LUENDVI , MODIS resulted only for the two sites with high
deciduousness in a slightly better agreement with observed
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LUE: for near-nadir observations in ZA-Kru, and when using
all observations in US-MMS. The differences inR2 to the
best LUEPRI are only 0.03% and 0.2% (c.f. Fig.3, Table in
the Supplement).

For the sites we have studied, LUEMOD17 has in every set-
ting much less agreement with observations than LUEPRI.
LUEMOD17, opt. performs much better, though not superior to
LUEPRI except at FR-Pue with MODIS viewing angles rang-
ing from 0–40◦. The agreement between LUEMOD17.opt and
the reference LUE increases slightly (without changing any
of the statements above) when using faPAR from MODIS
collection 4 instead of 5 to calculate LUEMOD17 because the
MOD17 parameters have been optimised based on collec-
tion 4 data (not shown). Note that, while benchmarking with
LUEMOD17 and LUEMOD17.opt provides an additional point
of reference, the main evaluation is performed with in-situ
LUE.

3.5 Which influence does the choice of an faPAR
product have on PRI evaluation?

For the deciduous forest site (US-Me2), the choice of fa-
PAR product does not influence the relationship between ob-
served and modelled LUE. The temporal dynamics of both
the MODIS and SeaWiFS faPAR are very similar, Cyclopes
faPAR is not available for this site.

The strongest faPAR induced difference in fit between
models and observations occurs at the deciduous broad-
leaved US-MMS forest. There, using MODIS faPAR results
in the best fit. Cyclopes faPAR for US-MMS shows a too
gradual decrease in autumn/winter and a too early (but at the
same time too slow) increase in spring. In contrast, the Sea-
WiFS faPAR seems to have too steep increases and decreases
and the beginning and end of the growing seasons (data not
shown).
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Fig. 5. Scatterplots withR2 of faPAR from different products (Black: MODIS – M), Red: SeaWiFS – S, Blue: Cyclopes – C) vs. PRI with
site-specific most suitable reference band. Significance codes:p value≤0.001:∗ ∗∗; p value≤0.01:∗∗

In contrast with the other two faPAR products, Cyclopes
faPAR at the ZA-Kru savanna site has a lower amplitude and
does not seem to track the beginning and end of the growing
season properly (concluded from comparing faPAR and GPP
time series, data not shown). This might be the reason of
the poor agreement between model and observation for the
Cyclopes based LUE. SeaWiFS faPAR captures the length of
the growing season for this savanna site well, which might be
the reason for the higher agreement when using this faPAR
product.

At the FR-Pue evergreen oak forest, both the MODIS and
the SeaWiFS faPAR product show hardly any seasonality.
This is probably why, despite MODIS faPAR having higher
absolute values, choosing one or the other faPAR product has
no influence on model fit. Cyclopes faPAR for the FR-Pue
site has higher values in winter. The model fit is worse when
LUE is based on Cyclopes faPAR.

At the other evergreen oak forest, IT-Cpz, using SeaWiFS
faPAR instead of the other fapar products to calculate in-situ
LUE results in a higher agreement with LUEPRI (c.f. Fig.4).
A reason might be that the MODIS faPAR algorithm depends
on proper biome classification and biome-specific canopy
structures and soil patterns (McCallum et al., 2010).

3.6 Influence of vegetation structure on the PRI signal

For the deciduous sites (ZA-Kru and US-MMS), the MODIS
photochemical reflectance index can be estimated from fa-
PAR (see Fig.5). The intra-annual changes in MODIS PRI
are related to the temporal dynamics of total leaf area.

The fraction of PAR absorbed by the vegetation at the ev-
ergreen sites shows little seasonal variation compared to the
changes in PRI. Thus, for these sites the changes in PRI can-
not be explained by variation in faPAR. This suggests that
the changes in PRI in those evergreen sites are more a result
of changes in leaf pigment composition rather than structural
changes.

3.7 Sensitivity of the different modelled LUEs to
seasonal and interannual variability

The modelling approaches detailed in this study
(c.f. Sects.2.3.3, 2.4) differ in how well they are capa-
ble of reproducing annual and interannual variations in
LUE.

At the evergreen oak site FR-Pue, LUEPRI1 does cap-
ture the seasonal dynamics, including the decline in LUE
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Fig. 6. Top: Time series of observed LUE as 14-day moving average (based on MODIS faPAR) and modelled LUEs (exponential model
based on PRI with reference band 1, MOD17, and optimised MOD17) at the FR-Pue site. Bottom: Water deficit in mm (calculated from
field capacity and in-situ soil water content measurements).
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Fig. 7. Top: Time series of observed LUE as 14-day moving average (based on SeaWiFS faPAR) and modelled LUEs (exponential model
based on PRI with reference band 4, MOD17, and optimised MOD17) at the IT-Cpz site. Bottom: Water deficit in mm (calculated from
water balance).

during summer drought, but not the interannual variability
(c.f. Fig. 6). The observed LUE decline in summer is more
pronounced during the 2003 heat wave, while the LUEPRI1
amplitude is similar to other years.

LUEMOD17 is less capable of capturing the summer de-
pression than the PRI based model. LUEMOD17.opt repro-
duces the minimum of summer depression well, but the mod-
elled summer depression is much longer than observed.

At the other evergreen oak site, IT-Cpz, no distinct inter-
annual variability is observed. The seasonal cycle is cap-
tured well by LUEPRI4 (c.f. Fig.7). Depending on the faPAR
product used for the in-situ LUE, LUE is severely over- or
underestimated by LUEMOD17, the seasonal cycle is not well
reproduced. LUEMOD17.opt shows a dampened seasonal cy-
cle and in general underestimates LUE.

At US-MMS the time series has gaps during cloud cover
in winter time, but there are still enough observations and

PRI data to estimate the annual minimum in LUE. There is a
peak in observed LUE in summer 2002 that is not reproduced
by LUEPRI1, otherwise the seasonality is tracked well (not
shown). LUEMOD17 does not match the LUE observations in
spring and autumn, while LUEMOD17.opt underestimates the
LUE peak in summer.

The evergreen needle-leaf site (US-Me2) possesses a low
seasonal variability of LUE. The small fluctuations that are
observed are neither well simulated by LUEPRI, nor by
LUEMOD17 or LUEMOD17.opt (not shown).

The short LUE time series of the savanna site is mim-
icked well by the PRI model, apart from an overestimation
in 2002 and some missed nuances (not shown). LUEMOD17
and LUEMOD17 values underestimate LUE observations, ex-
cept for the southern-hemisphere winter in 2002, when the
observed LUE is low compared to other years.
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4 Discussion and conclusions

We conclude that in general estimating LUE at site-level
based on PRI reduces uncertainty compared to the other ap-
proaches we tested. There is only one set of LUE observa-
tions which can be slightly better approximated by an LUE
model based on VPD andTmin than by LUEPRI: the 0–40◦

viewing zenith angle FR-PUE data (c.f. Figs.3, 4). Note that
this LUE is not derived from the standard MOD17 parame-
ters, but from parameters that have been optimised per site
and year. This indicates that, at site level, MODIS-based PRI
is very competitive as a proxy for light use efficiency.

It is apparent that fine-tuning maximum light use effi-
ciency as well as the VPD andTmin parameters improves
the performance of MOD17 type models of LUE (and ulti-
mately GPP). However, our results support the growing body
of evidence suggesting thatTmin and VPD alone are not suffi-
cient to characterise temporal LUE (and hence GPP) dynam-
ics due to i.e. drought stress (Kanniah et al., 2009; Maselli
et al., 2009; Garbulsky et al., 2010a). Soil water availability
determines stomatal conductance (Rambal et al., 2003) and
hence productivity to a large extent and must be considered
in LUE models that constrain a maximum LUE with environ-
mental variables. Soil water estimates are difficult to obtain
over larger regions. Estimates derived from remote sensing
data are still poor, especially for forests (Guglielmetti et al.,
2008). Surrogates of soil water content based on evapotran-
spiration and precipitation could be a viable alternativeLe-
uning et al.(2005); Coops et al.(2007). Remotely sensed
indices of vegetation water content such as the land surface
water index (Xiao et al., 2005) or surface temperature might
also help to obtain the seasonal variations of LUE in models
that determine photosynthetic efficiency from environmental
stresses (Hilker et al., 2008c). For these approaches, con-
straints due to different image acquisition geometries must
also be considered.

For the South-African savanna site and the humid sub-
tropical deciduous broad-leafed forest (US-MMS), the accu-
racy of LUE modelled from NDVI is comparable to that of
LUEPRI. At both sites, vegetation greenness and faPAR (as
well as leaf area) are intrinsically linked to CO2 exchange.
Hence NDVI and faPAR display similar seasonal dynamics
as light use efficiency (Garbulsky et al., 2010b). The PRI
signal in general is influenced both by changes in vegetation
structure and by changes in pigment composition. Unsur-
prisingly, the gain in accuracy through using PRI instead of
NDVI or faPAR is highest for evergreen sites where changes
in LUE are largely unrelated to greenness and changes in leaf
area simply because there is little change in greenness over
time while LUE varies significantly (see alsoRunning and
Nemani, 1988; Gamon et al., 1992; Garbulsky et al., 2010b).

Despite the advantages of using PRI to estimate LUE at
site-level, we found no universally applicable light use effi-
ciency model based on MODIS PRI. Models that are opti-

mised for a pool of data from several sites do not perform
well.

Plant functional type, even dominant species is not a suf-
ficient criterion to generalise PRI based models. The two
sites that are dominated by Quercus ilex, FR-Pue and IT-Cpz,
seem to have a very different spectral response at comparable
LUE levels since their optimal reference bands are 1 (red)
and 4 (green). The different behaviour at IT-Cpz might be
brought about by a different stand structure, as for example
manifested in a higher LAI (c.f. Table1), as well as higher
ground water levels due to the closeness of the sea and hence
less water stress (Valentini et al., 1992).

The optimal reference bands we determined (MODIS
bands 1, 4, 12) fall within the spectral regions identified by
Middleton et al.(2009); Cheng et al.(2009) as useful PRI
reference wavelengths in a study on foliar LUE in a Dou-
glas fir stand. Middleton et al.(2009) also showed that a
PRI based on the relatively broad spectral bands of MODIS
(10 nm) correlates well with PRI values derived from 3 nm
wide bands. The results of our analysis suggest that the us-
ability of different reference wavelength might depend on
species composition and stand structure. The first study on
PRI byGamon et al.(1992) pointed out that no single refer-
ence wavelength suited all purposes equally well (e.g. track-
ing LUE in unstressed and water stressed sunflowers). The
review byGarbulsky et al.(2010b) points out that the optical
properties of the canopy are influenced – apart from species
and environmental conditions – by the fraction of dead and
woody biomass, vegetation density and spectral properties
of the soil, all of which can affect the suitability of refer-
ence bands. The present study adds to the body of knowledge
showing that 570 nm is not the only reference bands suitable
for PRI. A data base encompassing more sites with a diver-
sity of functional and structural traits would be desirable to
arrive at a final conclusion in this regard.

To increase the amount of data useful for a parameter es-
timation, it would be helpful to include more heterogeneous
sites in future analysis. A footprint climatology assessment
such as described byChen et al.(2009) in combination with
multi-angular high spectral resolution measurements (Hilker
et al., 2008b) would be valuable for optimising model pa-
rameters in these cases. The impact of the sun’s position on
the PRI-LUE relationships in this study should be limited by
the similar data acquisition times (c.f. Fig.1). Nevertheless,
a follow on-study should consider the sensor angle relative
to the position of the sun to obtain certainty on the influence
of the image acquisition geometry on the PRI-LUE relation-
ship.

Using only PRI values for near-nadir satellite observations
does improve the accuracy of LUE predictions compared to
using the whole range of viewing angles, or observations
binned in off-nadir 10◦ wide bands of viewing zenith angle.
In a boreal setting, modelling LUE only based on PRI derived
from backscatter reflectance also explained LUEobs variance
better than when using observations combined (Drolet et al.,
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2005, 2008). This is an indirect way of tackling the depen-
dence of reflectance on viewing geometry. When looking
from different angles, different fractions of e.g. tree canopy,
understorey/grass, and soil will be visible to the sensor and
result in a variation of surface reflection. Excluding off-
nadir observations reduces this effect. For example, the va-
lidity of the more densely vegetated and homogeneous FR-
Pue site is less effected by viewing angle then the savanna
site where the contribution of trees to the signal by MODIS
is more dependent on viewing angle. Another reason why
near nadir data might have a better correspondence with in-
situ LUE is a smaller atmospheric effect on PRI/NDVI due
to the shorter Earth surface-satellite distance at small view-
ing zenith angles. The drawback of excluding part of the
data is of course that the temporal coverage might become
inadequate.Hilker et al.(2009) found that most of the direc-
tional effects on the LUE-PRI relationship can be attributed
to atmospheric scattering. The standard single orbit algo-
rithms such as 6S (Vermote et al., 1997) cannot compensate
for this atmospheric disturbance. MAIAC, a generic aerosol-
surface retrieval algorithm recently developed for MODIS
(Lyapustin and Wang, 2009) showed promising results for
detecting subtle changes in narrow waveband indices such as
PRI (Hilker et al., 2009).

Another promising approach seems to be the considera-
tion of shadow fraction in PRI-based estimations of PRI.
Ground-based pilot studies have been very successful in do-
ing so (Hall et al., 2008; Hilker et al., 2009). The fraction of
shaded/sunlit parts of the canopy has an important influence
on the light use efficiency of vegetation and not just the PRI
signal. However, which fraction of sunlit leaves is seen by a
satellite depends on the position of the sensor relative to the
canopy and the sun as well as the canopy structure. If the
vegetation structure is not well known, uncertainty remains
whether changes in PRI are due to a different position of the
sensor or due to actual changes in LUE. For space-borne PRI
studies, multi-angular acquisitions, taken within a short time
period in which LUE is constant, are necessary (Coops et al.,
2010).

Future research directions to improve the knowledge on
PRI could include the development of physically-based mod-
els that predict reflectance changes at 531 nm. Innovations in
this regard must allow leaf optical properties to vary with
leaf-level illumination conditions and base the computation
of reflectance changes on down-regulation of photosynthesis
(Coops et al., 2010).

In summary, when calibrated at site level a model based
on MODIS PRI gives better or at least as good estimates of
ecosystem light use efficiency as the other approaches we
tested. In this study, an universally applicable model relating
LUE to MODIS PRI across different sites could not be found.

Supplement related to this article is available online at:
http://www.biogeosciences.net/8/189/2011/
bg-8-189-2011-supplement.pdf.

Acknowledgements.We are grateful for discussions with col-
leagues at the MPI for Biogeochemistry. We also appreciate the
discussions on surface anisotropy with François-Marie Bréon. Two
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