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Abstract. The performance of the joint assimilation in a land
surface model of a Soil Wetness Index (SWI) product pro-
vided by an exponential filter together with Leaf Area Index
(LAI) is investigated. The data assimilation is evaluated with
different setups using the SURFEX modeling platform, for a
period of seven years (2001–2007), at the SMOSREX grass-
land site in southwestern France. The results obtained with
a Simplified Extended Kalman Filter demonstrate the effec-
tiveness of a joint data assimilation scheme when both SWI
and Leaf Area Index are merged into the ISBA-A-gs land sur-
face model. The assimilation of a retrieved Soil Wetness In-
dex product presents several challenges that are investigated
in this study. A significant improvement of around 13 % of
the root-zone soil water content is obtained by assimilating
dimensionless root-zone SWI data. For comparison, the as-
similation of in situ surface soil moisture is considered as
well. A lower impact on the root zone is noticed. Under spe-
cific conditions, the transfer of the information from the sur-
face to the root zone was found not accurate. Also, our results
indicate that the assimilation of in situ LAI data may correct a
number of deficiencies in the model, such as low LAI values
in the senescence phase by using a seasonal-dependent error
definition for background and observations. In order to ver-
ify the specification of the errors for SWI and LAI products,
a posteriori diagnostics are employed. This approach high-
lights the importance of the assimilation design on the qual-
ity of the analysis. The impact of data assimilation scheme
on CO2 fluxes is also quantified by using measurements of
net CO2 fluxes gathered at the SMOSREX site from 2005 to
2007. An improvement of about 5 % in terms of rms error is
obtained.

Correspondence to:J.-C. Calvet
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1 Introduction

The objective of data assimilation is to combine optimally
data from different sources that bring complementary infor-
mation on a geophysical system. The development of Land
Surface Models (LSM) able to simulate photosynthesis pro-
cesses, surface carbon fluxes and vegetation biomass allows
the joint assimilation of soil moisture data together with Leaf
Area Index (LAI) estimates.

The Leaf Area Index is an important factor controlling sur-
face evapo-transpiration, as it impacts the exchange of water
vapor and CO2 between the vegetation canopy and the at-
mosphere. Several studies (Jarlan et al., 2008; Sabater et al.,
2008) have shown the potential of assimilating LAI to esti-
mate the vegetation characteristics and to reduce model un-
certainties.

Soil moisture is a key variable to be initialized in meteoro-
logical models since the partition between sensible and latent
heat fluxes depends on the quantity of water in the soil avail-
able in the root zone. The characterization of soil moisture
in deep layers is more important than the surface soil mois-
ture since the superficial reservoir has a small capacity and
almost no memory features. As the near-surface soil mois-
ture (wg) is reasonably well correlated with the profile soil
moisture content under specific circumstances, the retrieval
of root-zone soil moisture (w2) using surface observations is
possible (Calvet and Noilhan, 2000).

The simulatedw2 may be improved by ingesting remotely
sensed surface soil moisture data into LSM through data as-
similation techniques. In a number of studies (Entekhabi
et al., 1994; Houser et al., 1998; Walker et al., 2001; Draper
et al., 2009) it has been shown that data assimilation tech-
niques permit to reconstructw2 from observedwg.

The main problem to be tackled in using an advanced
land data assimilation system (LDAS) from a Numerical
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Weather Prediction (NWP) perspective is the additional com-
putational cost of model integration. By assimilating the data
into an off-line version of the land surface model, this bur-
den is affordable. A study concerning the surface analysis
for ALADIN NWP model was performed byMahfouf et al.
(2009). A simplified version of the Extended Kalman Filter
(EKF) was developed in order to assimilate screen-level air
temperature and air humidity into the off-line ISBA (Interac-
tion between Soil Biosphere and Atmosphere) land surface
model (Noilhan and Mahfouf, 1996).

Accurate estimates ofw2 are important also for many
applications in hydrology, agriculture and climate studies
where the uncoupled mode can be used. Within the Global
Monitoring for Environment and Security (GMES) initiative,
coordinated efforts are made to produce global biophysical
variables that describe the continental vegetation state, radi-
ation budget and water cycle with the objective of develop-
ing and validating pre-operational land information services.
In particular, new satellite-derived products of soil moisture
(Soil Wetness Index) and LAI are being produced. Including
this new information in the LDAS and assessing its impact
should contribute to a better characterization of the vegeta-
tion state, the surface fluxes (carbon and water) and the asso-
ciated soil moisture, at both global and regional scales.

In a number of previous studies (Pauwels et al., 2007;
Sabater et al., 2008; Albergel et al., 2010), the joint assimi-
lation of near-surface soil moisture and LAI was considered
in order to assess to what extend the use of both sources of
information leads to an improvement of model results. They
underlined the positive impact of assimilation on the sim-
ulated soil moisture, LAI and/or biomass. The latter two
studies were conducted with the ISBA-A-gs model (Calvet
et al., 1998), the CO2-responsive version of ISBA by using
simplified 2D-variational or filtering methods. They used the
two-layer version of the model to represent soil processes.

This study is a preliminary evaluation at a local scale of the
use of a retrieved soil moisture product based on ground ob-
servations, namely SWI together with LAI in a LDAS. We
use a Simplified Extended Kalman Filter (SEKF) scheme
to incorporate both SWI and LAI data into the ISBA-A-gs
model at the SMOSREX grassland site, in south-western
France. The period under investigation extends over seven
years from 2001 to 2007, including a large range of climatic
conditions. In contrast to previous similar studies, the three-
layer version of the model is used (Boone et al., 1999).

The aim of this work is twofold. First, the use of a root-
zone soil moisture product derived from the exponential fil-
ter method proposed byWagner et al.(1999) and modified by
Albergel et al.(2008), using in situ near-surface soil moisture
data is assessed. This product is expressed in terms of Soil
Wetness Index (SWI) and defined as the profile soil mois-
ture content. On one hand, this new product may play the
role of an “observed” root-zone product that can be assimi-
lated directly into a model in order to improve the simulated
soil moisture. It may overcome the modeling uncertainties

related to the coupling mechanism between the surface and
deep soil moisture reservoir in land surface models for data
assimilation (Kumar et al., 2009). On the other hand, the use
of SWI provided by an exponential filter arises several ques-
tions that need to be addressed. One of them is associated
with the difficulty of specifying the time length parameter of
the exponential filter for producing SWI since, in theory, it
should depend upon soil characteristics (sand and clay con-
tent, soil depth, etc.), whereas in practice it is set to a constant
value. Also one should be aware that the data produced by
an exponential filter may have auto-correlated errors. The
assimilation of in situ superficial soil moisture is considered,
also. In this case, the assimilation exploits the connection
between the surface and the root zone as described by the
force-restore dynamics of ISBA-A-gs. In order to compare
the performance of the LDAS when SWI andwg data are
used, the impact on the root-zone soil water content is eval-
uated againstw2 in situ measurements for both types of as-
similated products.

Second, as the description of background and observation
uncertainties is of high importance for an optimal data assim-
ilation scheme, several choices of error definition for LAI
were tested.Pauwels et al.(2007) used synthetic observa-
tions with different degree of uncertainties in order to assess
whether a high observational error is still useful for assim-
ilation. Their conclusion is that even with large uncertain-
ties (1 m2 m−2 for LAI), observations are beneficial for the
model simulation. Our approach was to gain insight of the
uncertainty settings, under realistic conditions. The objective
was to calibrate these parameters to achieve the best possible
filter performance. As a result, magnitude-dependent errors
are proposed. The accurate description of the errors for both
the background model and data is hampered by many factors
as deficiencies in the model representation of physical pro-
cesses and uncertainties in retrieval procedures for measure-
ments. The interest of using a-posteriori diagnostics that may
correct the misspecification of background and observation
errors was underlined in the literature, e.g.Talagrand(1999),
Desroziers and Ivanov(2001). Therefore, an a-posteriori in-
vestigation of the analysis quality is performed in this study.

Observation data sets, the ISBA-A-gs land surface model
and the data assimilation scheme are described in Sect.2.
In Sect.3 the results are presented for a 7-year period and
discussed for a number of configurations of the LAI assimila-
tion. Several diagnostics are calculated in order to choose the
background and observation errors to be used in the LDAS.
Section4 describes the assimilation of in situ superficial soil
moisture. In Sect.5 the impact of the joint assimilation of
SWI and LAI on carbon flux are presented. Finally, Sect.6
discusses and summarizes the main conclusions of the study.
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2 Methodology

2.1 Data set

In this study, soil moisture data were obtained from the in-
strumentation installed at the Soil Monitoring of Soil Reser-
voir Experiment (SMOSREX) site near Toulouse in south-
western France (De Rosnay et al., 2006) for a period of seven
years from 2001 to 2007. Ground based measurements of
soil moisture were gathered with an half hourly time step
by using impedance sensors installed at different soil depths
from soil surface (0–6) cm to 90 cm. The observedwg val-
ues were calculated by averaging surface soil moisture be-
tween 0 and 6 cm from four devices placed at four different
locations of the SMOSREX site. The root-zone soil mois-
ture observations were estimated by integrating the soil water
content over a profile of 0.95 m. Measurements of root-zone
soil moisture are not assimilated in the model, but used for
validation purposes.

Soil moisture values from surface measurements were
converted into a Soil Wetness Index through the recursive ex-
ponential filter procedure described byAlbergel et al.(2008).
This approach was calibrated over the SMOSREX site, by
scaling the near-surface soil moisture measurements with the
minimum and maximum values ofwg time series. These nor-
malized values of near-surface soil moisture (SWIg

o) were
used to calculate the SWI product over a period of seven
years. The exponential filter method converts the volumet-
ric water content in the surface layer into SWI values using
a tunable time scale parameterT . This parameter accounts
for the most relevant processes that may affect the temporal
variations of soil moisture. A time scale ofT = 11 days was
found suitable for the SMOSREX site (seeAlbergel et al.,
2008, for a detailed description).

The recursive exponential algorithm takes into account a
gain factorG that relates the past SWI estimates to the cur-
rent observation for the superficial layer at timet in such a
way that the influence of past measurements decreases:

SWIo(t) = SWIo(t0)+G(t) ·
[
SWIg

o(t)−SWIo(t0)
]
, (1)

G(t) =
G(t0)

G(t0)+exp
(
−

t−t0
T

) , (2)

where SWIo represents the soil wetness index estimates and
t0 is the previous time. The result is a dimensionless value
scaled between 0 (dry) and 1 (wet). As the exponential filter
product may have time correlated errors, the retrieved SWI
is incorporated into the model once every three days which
reduces the temporal correlation of the data.

The LAI of the SMOSREX grassland was measured fre-
quently from spring to summer, but rather rarely during cold
periods. A large dispersion of the observations was noticed
for 2001–2002. Therefore, from January 2001 to July 2003,
the LAI values were obtained from these measurements by
using an interpolation method as in a number of previous

studies, e.g.Sabater et al.(2008); Rüdiger et al.(2010); Al-
bergel et al.(2010). For the remaining period until December
2007, the LAI data were retrieved from surface reflectance
measurements following a method proposed byRoujean and
Lacaze(2002). In order to be consistent with the sampling
time of satellite data, the LAI measurements were assimi-
lated every ten days.

2.2 Land surface model

In this study the experiments were conducted with the SUR-
FEX modeling platform (Le Moigne et al., 2009) developed
at Mét́eo France. The simulations were performed in the off-
line mode (no atmospheric coupling was used). The system
was forced by the surface atmospheric variables provided by
the SAFRAN (Syst̀eme d’analyse fournissant des renseigne-
ments atmosph́eriques̀a la neige) mesoscale analysis system.
The SAFRAN analysis provides hourly atmospheric forcing
variables (precipitation, air temperature, air humidity, wind
direction and speed, incident radiation) using information
from more than 1000 meteorological stations and more than
3500 daily rain gauges throughout France. An optimal inter-
polation method is used to assign values for each analyzed
variable on a 8 km grid over France.

SURFEX contains the land surface model ISBA-A-gs
(Calvet et al., 1998; Gibelin et al., 2006) which was de-
veloped to allow the simulation of photosynthesis and the
growth of vegetation with different biomass reservoirs. The
vegetation biomass and LAI variables are governed by photo-
synthesis and evolve dynamically in response to weather and
climate conditions. Namely, photosynthesis permits plant
growth through the net assimilation of CO2, and a deficit of
photosynthesis triggers higher mortality rates. A linear rela-
tionship between the active biomass and Leaf Area Index is
expressed as:

Ba = α ·LAI , (3)

whereα may depend upon vegetation type, nitrogen supply
and climate.

The three soil layer version of ISBA is used in this study
(Boone et al., 1999). By including a third soil water reservoir
in standard ISBA, it is possible to distinguish between root-
zone and a base-flow layer. Soil moisture is represented by
the near-surface soil moisturewg (representative of the first
soil centimeter), the root-zone soil moisturew2 (over a soil
depth of 0.95 m) and a soil moisture valuew3 in the recharge
zone (0.5 m). The total soil depth is set to 1.45 m. Soil and
vegetation parameters for the SMOSREX grassland site were
taken from the ECOCLIMAP global database of soils and
ecosystems (Masson et al., 2003), except for the soil depth
in the root zone. Its value of 0.95 m was chosen in order
to compare the observed and simulated soil moisture over
the same soil depth. The values of the soil parameters used
in this study, together with the maximum and minimum of
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Table 1. Soil parameters used for ISBA-A-gs at the SMOSREX
location. The last two lines represent the threshold values forw2
used to define the simulated Soil Wetness Index.

Soil parameters

Symbol Units Value

Root-zone layer depth d2 m 0.95
Recharge zone layer depth d3 m 0.50
Sand content SAND % 33.25
Clay content CLAY % 29.25
Field capacity wfc m3 m−3 0.29
Wilting point wwilt m3 m−3 0.20
Maximumw2 content max(w2) m3 m−3 0.34
Minimum w2 content min(w2) m3 m−3 0.16

modeled soil moisture content in the root zone are listed in
Table1.

Generally, the Soil Wetness Index is defined by a linear
relation accounting for the limit conditions, namely the min-
imum and maximum volumetric soil moisture contents, de-
noted byw:

w(t) = wmin+SWI(t) ·(wmax−wmin). (4)

In the model,wmin and wmax are set to the wilting point
(wwilt ) and to the volumetric field capacity (wfc), respectively
(see Table1). Therefore, the standard definition of the Soil
Wetness Index is:

SWI(t) =
w2(t)−wwilt

wfc −wwilt
. (5)

On one hand, the SWI values computed using Eq. (5) can
exceed either 0 or 1 values. Negative values represent soil
water content below the wilting point (meaning that the plant
roots cannot extract water from the soil). The values larger
than 1 indicate wet soils (soil water content being above the
field capacity). On the other hand, the result of an exponen-
tial filter applied to superficial measurements is expressed in
terms of soil wetness fraction that ranges between 0 and 1
only. Therefore, for our data assimilation experiments, the
background counterparts SWIb are calculated by normaliz-
ing the root-zone soil moisture time series (as resulting from
the model free run) with their maximum and minimum val-
ues over the whole period of seven years.

SWIb(t) =
w2(t)−min(w2)

max(w2)−min(w2)
. (6)

2.3 Data assimilation scheme

In sequential data assimilation the system state estimate,
given by a solution of the model equations, is updated at each
time when measurements are available. This update is usu-
ally referred to as the analysis. The Extended Kalman Filter
(EKF) is a sequential data assimilation method that has been

used in a number of papers for land data assimilation applica-
tions (Walker and Houser, 2001; Sabater et al., 2007; Draper
et al., 2009; Seuffert et al., 2004; Drusch et al., 2009; Al-
bergel et al., 2010). They show that this filter can produce
satisfactory estimates of soil moisture.

The model equations are discretized according to:

xt = M(xt−1). (7)

Here, the forward operator is the land surface scheme ISBA-
A-gs denoted byM. This operator computes the time evo-
lution of the control vectorx = (w2,Ba), which contains
the root-zone soil moisture and the active biomass at time
t given their values at previous time. An observation opera-
tor H maps the state vectorx into the observation spaceyo.
Equations (3) and (6) provide the link between the simulated
observations and control variables:

yo
= H ((w2,Ba)) =

(
SWIb,LAI

)
. (8)

The Extended Kalman filter (EKF) uses the full nonlinear
model to propagate the state estimate, but uses a local lin-
earization of the dynamics to propagate the state uncertainty,
that is the error covariance matrix. A finite difference method
is used to linearize the forecast model, as well as the obser-
vation operator by performing model integrations with per-
turbed initial values of the state vector. The EKF scheme
was described byMahfouf et al.(2009) and used for the as-
similation of near-surface soil moisture by several authors,
e.g.Draper et al.(2009), Albergel et al.(2010).

The EKF calculation of the analysis increment (1xt ) at
time t when an observation is available is given by:

1xt = K t ·
[
yo

t −H(xt )
]
, (9)

whereK represents the Kalman gain calculated by using the
assumed diagonal covariance matrices of the background (B)
and observation (R) errors as in the following expression:

K t = BtH>
t ·

[
HtBtH>

t +Rt

]−1
. (10)

HereH is the Jacobian matrix of the linearized observation
operatorH. In the EKF formulationBt is obtained by prop-
agating the error covariance matrix from previous timet0 to
observation timet through the Jacobian matrix of the forward
modelM :

Bt = MB t0MT . (11)

In this study, we assume a static behavior of the background
error matrixB that is considered constant at the beginning
of each analysis step. This assumption is based on the fact
that the increase in the background error during each for-
ward propagation step is balanced by the decrease of the er-
ror through the previous analysis step. Moreover, the results
obtained bySabater et al.(2007) suggest that the analysis
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Fig. 1. The SEKF data assimilation design for LAI and SWI com-
ponents. SWIo observations in the root zone are derived from nor-
malized surface soil moisture SWIo

g using the exponential filter.

is more stable and accurate by using a fixed background er-
ror over the SMOSREX site. It results in a Simplified Ex-
tended Kalman Filter (SEKF) algorithm described byMah-
fouf et al. (2009) and used successfully for the assimilation
of near-surface soil moisture by several authors, e.g.Draper
et al. (2009), Albergel et al.(2010). Figure1 illustrates the
data assimilation procedure.

A mean volumetric standard deviation (std) error of
0.02 m3 m−3 was chosen as suggested bySabater et al.
(2008) after one year of calibration run at SMOSREX lo-
cation. This value leads to an error of 0.1 for SWIb. In this
study, it was assumed that the observation and background
errors are equal.

Several configurations of LAI background (and observa-
tion) error were tested. Figure2 summarizes the setups of
five experiments where the value ofσLAI is defined as a
function of LAI. In the first experiment (option 1), the back-
ground (observation) error is set to 20 % of the LAI value.
This rather empirical option was used byJarlan et al.(2008)
andRüdiger et al.(2010), as they underlined the need for a
variable error definition. The next three options are repre-
sented by a constant error for LAI values less than 1, 2 and
3 m2 m−2, respectively. For values larger than these quanti-
ties,σLAI is proportional to the modeled (observed) LAI, as
in option 1. The last experiment takes into account the con-
figuration proposed bySabater et al.(2008) with an overall
constant std error of 1 m2 m−2. Also, it was assumed that the
LAI observation and background errors are equal.

In order to quantify the assimilation performance, the root-
mean square (rms) error is computed using all available data
(daily LAI and SWI observations). The impactI of the as-
similation with respect to the model is calculated as:

I = 100·
rmsmodel−rmsassim

rmsmodel
. (12)

Fig. 2. The LAI error standard deviation as a function of LAI values
for ISBA-A-gs for the SMOSREX grassland.

2.4 Diagnostic on background and observation errors

The performance of an analysis scheme depends on appropri-
ate statistics for background and observation errors. Wrongly
specified error parameters may negatively affect the analysis.
One source of information relies on the statistics of the inno-
vations (observations-minus-background) and can be viewed
as an a priori diagnostic. This approach was extensively
investigated in the literature (Hollingsworth and L̈onnberg,
1986; Andersson, 2003; Mahfouf et al., 2007). Several
authors have proposed a posteriori verification based on
statistics of observations-minus-analysis (Talagrand, 1999;
Desroziers and Ivanov, 2001) that potentially provide an ad-
ditional consistency test of an assimilation scheme.

For diagnosis purposes the following quantities are com-
puted:

1. the differencesdo
f = yo

− H
(
xf

)
called innovations

(background departures),

2. the differencesda
o = yo

−H (xa) called residuals (anal-
ysis departures),

3. the differencesda
f = H (xa)−H

(
xf

)
called analysis in-

crements in observation space.

The diagnosed values of the background (σ
f
i ) and observa-

tion (σ o
i ) error variances may be computed a posteriori as in

the following formulas:(
σ

f
i

)2
=

1

ni

(
da
f

)T

i

(
do
f

)
i
=

1

ni

∑
ni

(
ya
i −y

f
i

)(
yo
i −y

f
i

)
, (13)

(
σ o

i

)2
=

1

ni

(
da
o

)T

i

(
do
f

)
i
=

1

ni

∑
ni

(
yo
i −ya

i

)(
yo
i −y

f
i

)
, (14)
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Fig. 3. Time series of observed, modeled and assimilated SWI
(top) and soil moisturew2 (m3 m−3) measured and modeled be-
fore and after assimilation (bottom) of SWI from 2001 to 2007 for
the SMOSREX grassland.

whereni is the number of measurements,yo
i is the value of

the i-th observation, andyf
i , ya

i represent their forecast and
analysis counterparts, respectively.

3 Results and discussions

3.1 Modeled soil moisture and Leaf Area Index

The temporal behavior of modeled root-zone soil moisture
w2 illustrated in Fig.3, bottom panel (in blue line), for the 7-
year period at SMOSREX, shows that the inter-annual cycles
of w2 are reasonably well reproduced. However, the model
slightly underestimates the soil moisture data during winter
and spring, and largely overestimates the observed values of
w2 in summer and autumn. There are significant differences

between the magnitude of observed and simulated soil mois-
ture from 2003 to 2007.

The model is able to simulate the vegetation growth and
senescence in response to meteorological conditions (Fig.4,
blue line). In summer low soil water contents are well corre-
lated with reduced active biomass. In the ISBA-A-gs simula-
tions, the start of the growing season tends to occur later than
in the observations (as was noticed byBrut et al., 2009, com-
paring the model to satellite data), with a lag of about one
month. Similarly, the summertime senescence phase may be
delayed, especially in the first three years.

In 2001, the majority of precipitation occurred in spring,
whereas in 2002 large amounts of rainfall were observed
later during the summer (humid and cool summer). Also,
the spring of 2007 was characterized by unusual increased
precipitation in southern Europe. In relation to these wet
conditions, the LAI maximum is highly overestimated by the
model for these three years. For the remaining periods, de-
spite the temporal shift, the magnitude of the model is consis-
tent with the observed LAI values. In contrast, the years 2003
and 2004 were very dry, accelerating the vegetation mortal-
ity during summertime. In particular, the unusual lack of
precipitation in spring 2003 caused an early stress of the veg-
etation. The senescence occurred early (in June) resulting in
the smallest LAI amplitude cycle over the 7-year period.

A second yearly LAI maximum caused by a re-growth of
the vegetation, was observed for several years, with rather
high value in 2003 and 2005. In 2003 the model is not able
to reproduce the vegetation re-growth. In contrast, the au-
tumns of 2005 and 2006 are characterized by the ability of
the model to capture the re-growth of the vegetation in re-
sponse to rainfall events which occurred at the end of the
summer.

3.2 Jacobian estimates

The examination of the Jacobian matrices is important for
understanding of the data assimilation performance. The
evolution of the background error covariance matrix by the
forward model is performed through its Jacobian matrix
(Eq.11), while the Jacobian of the observation operator (H)
is required to calculate the Kalman gain (Eq.10).

For the soil moisture component of the state vector, per-
turbations of a 10−4

× (wfc −wwilt ) magnitude were used to
estimate the tangent linear modelM as well as the Jacobian
H. Several studies have showed that these very small pertur-
bations lead to good approximations of the linear behavior.
The dynamic of the model as captured by the term∂w2(t)

∂w2(t0)
of

the tangent linear model was analyzed extensively byDraper
et al.(2009).

For LAI, values of 10−3 corresponding to LAI perturba-
tions of about 0.003 m2 m−2 were used to compute the Jaco-
bians following the sensitivity study performed byRüdiger
et al. (2010). In the latter study the structure of the∂LAI (t)

∂LAI (t0)
Jacobian term was discussed in detail.
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Fig. 4. Time series of observed, modeled and assimilated LAI
(m2 m−2) for option 1 (top), option 3, (middle) and option 5 (bot-
tom), from 2001 to 2007 for the SMOSREX grassland.

Fig. 5. Seasonal evolution of the Jacobian term for the observation
operator (∂LAI

∂w2
) in blue together with the modeledw2 (m3 m−3) in

red over the 7-year period (2001–2007).

Figure5 shows that, generally, the∂LAI (t)
∂w2(t0)

Jacobian term
has positive values. However, zero values and slightly nega-
tive values are also found. Very small negative Jacobian val-
ues (10−3) have a relative frequency of 30.2 %. Generally,
they occur during the winter season. The soil water content
exceeds the field capacity in about 80 % of these cases. Two
types of nonnegative values can been distinguished: positive
and strongly positive. Forw2 values above the wilting point,
the water perturbations directly impact photosynthesis and
plant growth and an increase in soil moisture triggers an in-
crease in biomass production. Large Jacobian values (larger
than 5) that represent 0.38 % of the population correspond
to periods of water stress. Under the limit condition when
w2 approaches the wilting point, small increases inw2 may
cause a large increase in biomass production. When the Ja-
cobian values are strictly zero (occurrence of 14.8%), there
is no sensitivity of LAI to soil moisture. The histogram of
w2 corresponding to zero Jacobian (not shown) presents a
bimodal probability density function. The two modes cor-
respond to periods of severe drought (whenw2 < wwilt ) or
water excess (whenw2 > wfc). These periods coincide with
the senescence phase or with low vegetation growth at win-
tertime, respectively. Zero Jacobian values also occur when
the LAI reaches its prescribed minimum threshold value of
0.30 m2 m−2.

The term ∂SWI(t)
∂LAI (t0)

is dominated by plant-transpiration pro-
cesses. Positive LAI perturbations during either growing or
re-growing vegetation phases cause enhanced plant transpi-
ration and water extraction rate. This results in a reduction of
soil water content and negative values of this Jacobian term
are found (not shown).

3.3 Joint assimilation of LAI and SWI

In order to illustrate how the assimilation procedure per-
forms, time series of modeled, observed and assimilated LAI
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Table 2. The impact (given in %) on LAI of the assimilation in the five experiments used in this study, year by year and for the 7-year period
(2001–2007) for the SMOSREX grassland.

Leaf Area Index

2001 2002 2003 2004 2005 2006 2007 2001–2007

Option 1 73.4 78.5 35.6 47.5 33.9 29.2 43.0 53.8
Option 2 70.3 75.5 40.3 52.5 38.1 32.8 48.5 56.0
Option 3 61.2 71.2 53.3 63.3 42.9 38.6 54.1 59.1
Option 4 46.6 66.3 55.7 64.0 42.9 39.8 52.3 54.5
Option 5 42.7 64.5 55.8 63.5 41.5 39.6 41.3 51.1

are depicted in Fig.4 for several error specifications used
in this study. The main differences between different op-
tions are observed for the years 2003 and 2004, in the pe-
riod of vegetation re-growth (September–October), when the
model tends to largely underestimate the observed LAI. Us-
ing a std error proportional to LAI values (option 1), the fil-
ter is able to reduce the difference between the model and
the measurements (Fig.4, top panel). When the other op-
tions are used (for example, option 3 middle panel, option 5
bottom panel in Fig.4), the filter becomes less confident in
the model simulation when the modeled LAI is low. Conse-
quently, measured LAI values higher than simulated LAI val-
ues have more weight in calculating the Kalman gain and the
assimilation is closer to the observations. Between two as-
similation cycles, when no observation is available, the plant
growth cannot be maintained. The trajectory is systemat-
ically drawn back towards low model values, even though
there is no strong soil water constraint in the root zone. This
suggests that other mechanisms (as the response to light or
to temperature) play a role in the vegetation re-growth. This
should be taken into account in order to improve model re-
sults persistently. Moreover, the possibility of conflicting in-
formation coming from LAI and soil moisture data streams
(e.g. increase in LAI while the model has reached a com-
pletely dry state) may occur. The filter can balance the in-
fluence of the opposing tendencies according to the assumed
errors of each component of assimilation, but cannot correct
a systematic bias.

At summertime, a decrease of the updated SWI compo-
nent corresponding to a reduction of soil moisture (Fig.3,
top panel) accelerates the vegetation mortality (Fig.4, top
panel). For example, from June to August 2003, the positive
bias in the modeled SWI is reduced by half, on average, by
the assimilation. For the same period, the bias in the LAI
values is significantly reduced, as the increased water stress
enhances the vegetation mortality. Also a significant lower
updated SWI in June 2004 causes a higher rate of vegetation
mortality during the following months of July and August.
This is beneficial to the analyzed LAI, now closer to the ob-
servations. Hence the assimilation acts in a coherent manner
by reducing the LAI towards the low observations.

Fig. 6. Evolution of the LAI rms error as a function of choices of
error std: option 1 (σLAI ∝ LAI), option 2 (σLAI = 0.2 for LAI < 1),
option 3 (σLAI = 0.4 for LAI < 2), option 4 (σLAI = 0.6 for LAI <

3) and option 5 (σLAI = 1). The rms error is calculated using all
available data.

Not only the senescence season benefits from the assim-
ilation. The delay at the start of the vegetation is corrected
by the filter, from 2004 to 2007. In 2003, the measured LAI
peak of about 3 m2 m−2 occurs in May, while the model pre-
dicts a lower peak value in June. Though the filter is not ef-
fective in increasing the LAI maximum, the delay is slightly
reduced (Fig.4). The same behavior is noticed in 2007. The
simulated LAI maximum occurs in July when the modeled
water stress becomes important. After the assimilation, the
peak is shifted one month back.

The convergence of the algorithm with different choices
of the error std was investigated. The daily background and
analysis departures were used in order to calculate the rms
error. Figure6 shows the rms error averaged over the 7-year
period. The model LAI rms error is of 0.98 m2 m−2. Much
lower values are achieved with all the analyses, and the low-
est rms error (0.40 m2 m−2) is obtained with option 3.

In Table2 the quantification in percents of the assimilation
impactI on the LAI component (see Eq.12) is given for each
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year as well as for the whole period. For the first two years
the annual performance of the assimilation is larger when us-
ing option 1, maybe due to the different treatment in process-
ing the observed data. For the remaining period a constant
improvement is observed when moving from option 1 to the
other options. A LAI improvement ofI = 53.8 % over all
the period is obtained by using option 1, while by choosing
either option 3 or 4 we can notice a larger improvement of
59.1 % and 54.5 %, respectively.

Regarding the soil moisture scores, the root-mean square
error and bias computed for SWI and root-zone soil moisture
are listed in Table4 for each year and for the whole period
2001–2007. The assimilation of SWI significantly reduces
the bias between the model and the retrieved SWI (Fig.3,
top panel) as well as the rms error from 0.091 to 0.023.
The rms error calculated for the root-zone soil moisture be-
fore and after assimilation of SWI decreases from 0.042 to
0.036 m3 m−3. This results in a substantial correction of
aroundI = 13.4 % of the root-zone soil moisture towards the
measurements when compared to the model simulations over
the 7-year period. The annual bias in the root-zone is also re-
duced, except for the two first years. In autumn 2001, an
important increase of the wet bias is noticed (Fig.3, bottom
panel). During this period, very low LAI values (less than
0.5 m2 m−2) were assimilated and the updated LAI was close
to these observations. This causes lower plant transpiration
that results in an augmentation of soil water content in the
root zone.

These results are obtained when using option 3 for the LAI
error specification. No significant sensitivity of soil moisture
to the different choices of LAI error was found.

3.4 Diagnostic results

Figure7 shows the histograms of innovation and residual dis-
tributions for SWI and LAI. For SWI a Gaussian least square
estimate of the innovation mean and variance from a sample
of 847 members provides a wet bias (µ = −0.012) with a std
of σ = 0.09. If the background and observation errors are
uncorrelated and normal distributed, the variance of the in-
novations is represented by the sum of observation and back-
ground variances (Andersson, 2003). Here, one can notice
that the chosen errors for the observations and for the back-
ground are not consistent with the statistics of the innova-
tions. The LAI innovations present a left tailed distribution
and flatter than a normal distribution (Fig.7, bottom). As ex-
pected, the std of residuals is reduced compared to those of
innovations from 0.96 to 0.29.

A posteriori diagnostics (see Eq.13) were computed for
LAI by using the analysis outputs corresponding to each
choice of the error. Seasonal diagnostics were produced
for both background and observation errors in all cases (see
Figs.8 and9). The background error is overestimated for all
options and for all seasons, except during wintertime for the
first two options when the specified error is larger than the

Fig. 7. Innovation (dashed line) and residual (solid line) histograms
for (top) SWI and (bottom) LAI.

diagnosed error. Among the other options, option 3 seems
to have a less mismatch. A large discrepancy between the
specified and the estimated observation error is noticed, for
example, in winter and spring for the first two options. This
shows that too much confidence is given to observations at
the start of the growing period. In option 3, these differences
are reduced showing a better agreement between specified
and estimated observation errors.

As the use of a retrieved soil moisture product may be
subject of poorly known errors, the same diagnostics were
calculated for SWI observations and the soil moisture state
variable. The diagnosed values show that the SWI observa-
tion error is highly overestimated (around 68 %), while the
background error ofw2 is overestimated by 25 % (Fig.10).
The new diagnosed values of the error std are 0.03 for SWI
and 0.015 m3 m−3 for w2. They lead to a better match with
the innovation statistics (not shown).

Next, a new joint data assimilation experiment, called di-
agnostic experiment, was performed by replacing the initial
background error of soil moisture and the SWI observation
error with their diagnosed values. For LAI, the model and
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Fig. 8. Seasonal LAI diagnostics of background errors for all five
options used in this study calculated over the 7-year period (2001–
2007). The estimated (diagnosed) values are in black, the specified
values in gray.

Table 3. Comparison of the LDAS performance (in %) calculated
over the 7-year period (2001–2007) when using the specified (ini-
tial experiment) and diagnosed (diagnostic experiment) values for
the root-zone soil moisture and SWI. Option 3 for LAI error speci-
fication is used in both experiments.

Initial experiment Diagnostic experiment

LAI 59.1 58.6
SWI 63.8 72.3
w2 13.4 13.4

observations errors were maintained as for option 3. In Ta-
ble3 we compare the performance of these two experiments:
initial and diagnostic. The impact of the new experiment on
the LAI variable is almost the same. A higher assimilation
impact can be noticed for SWI from 63.8 % to 72.3 %, as
the SWI observations are now supposed to be more accurate.
The fact of using accurate background and observation errors
results in the same impact of 13.4 % on the soil water con-
tent. Indeed improving the performance of the system with
respect to the SWI component does not necessarily provide a
better result in terms ofw2. The explanation lies in the def-
inition of the observation operator. The fact that minimum
and maximum values of soil water simulated by the model

Fig. 9. As in Fig. 8, except for observation errors.

are different from those observed may lead to a systematic
bias between the model and the observations that is not cor-
rected through data assimilation.

4 Assimilation of superficial soil moisture

As mentioned in the introduction, assimilation of superficial
soil moisture data has already been extensively discussed in
the literature. In contrast to the assimilation of SWI, the near-
surface soil moisture increments are propagated to the deeper
layers by the model. The performance of the assimilation
depends on how the model transfers the information from
the surface to the root zone.

In this study, in situ superficial soil moisture data were
assimilated with a frequency of one observation every three
days at 06:00 UTC. Automatic measurements are provided
with a mean volumetric error std of 0.03 m3 m−3. In order to
take into account the representativeness error, a larger error
std of 0.04 m3 m−3 was considered in this experiment. The
state vector consists of root-zone soil moisture and LAI as
in the previous experiments. Together with superficial soil
moisture, LAI data are assimilated using option 3 for the er-
ror specification.

Data assimilation techniques are designed to correct ran-
dom errors in the model and rely on the assumption of un-
biased background and observations. However, the model
simulations and data are typically different which may cause

Biogeosciences, 8, 1971–1986, 2011 www.biogeosciences.net/8/1971/2011/



A. L. Barbu et al.: Assimilation of Soil Wetness Index and Leaf Area Index 1981

Table 4. Statistics on SWI andw2 (m3 m−3) before and after assimilation of soil wetness index SWI, year by year and for the 7-year period
(2001–2007).

Assimilation of SWI

Statistics on SWI 2001 2002 2003 2004 2005 2006 2007 2001–2007

model 0.107 0.077 0.109 0.089 0.070 0.094 0.085 0.091
rms

assim 0.024 0.024 0.019 0.025 0.024 0.023 0.021 0.023

model −0.060 −0.005 0.036 0.038 0.005 0.027 0.047 0.012
bias

assim −0.006 −0.002 0.001 0.005 −0.0007 −0.004 0.001 0.0007

Statistics onw2 2001 2002 2003 2004 2005 2006 2007 2001–2007

model 0.019 0.034 0.040 0.045 0.040 0.054 0.053 0.042
rms

assim 0.028 0.029 0.033 0.038 0.037 0.043 0.043 0.036

model 0.005 0.019 0.023 0.030 0.029 0.043 0.042 0.027
bias

assim 0.014 0.020 0.017 0.025 0.028 0.037 0.034 0.025

Table 5. Statistics onwg andw2 (m3 m−3) before and after assimilation of surface soil moisturewg , year by year and for the 7-year period
(2001–2007).

Assimilation ofwg

Statistics onwg 2001 2002 2003 2004 2005 2006 2007 2001–2007

model 0.057 0.046 0.064 0.048 0.048 0.053 0.049 0.053
rms

assim 0.043 0.042 0.063 0.047 0.048 0.052 0.048 0.050

model −0.026 −0.011 0.017 0.005 −0.001 −0.005 0.013 −0.0007
bias

assim −0.013 −0.005 0.013 0.004 −0.002 −0.008 0.010 0.0009

Statistics onw2 2001 2002 2003 2004 2005 2006 2007 2001–2007

model 0.019 0.034 0.040 0.045 0.040 0.054 0.053 0.042
rms

assim 0.035 0.037 0.029 0.037 0.038 0.046 0.046 0.039

model 0.005 0.019 0.023 0.030 0.029 0.043 0.042 0.027
bias

assim 0.018 0.025 0.014 0.025 0.026 0.038 0.037 0.026

large systematic discrepancies in soil moisture climatolo-
gies. Several authors pointed to the need of rescaling the
information before assimilation (Reichle and Koster(2004);
Drusch et al.(2005); Crow et al., 2005). In this study, the
bias betweenwg data and the model output was removed by
using the Cumulative Distribution Function (CDF) matching
as proposed byReichle and Koster(2004) over the 7-year pe-
riod. The cumulative distribution of the difference between
the model and the observations is plotted against the obser-
vations in Fig.11 where, for example, very wetwg observa-
tions induce a negative bias. A 7th-order polynomial is used
to calibrate this ranked distribution.

Similar to Table4, Table 5 shows the annual statistical
scores in terms of rms error and bias computed for both soil
moisture components in surface and root zone, respectively.

Three cases may be distinguished: (1) a reduction of the neg-
ative bias inwg causing an increase of the positive bias inw2
(2001–2002), (2) a reduction of the positive bias inwg to-
gether with a decrease of the positive bias inw2 (2003, 2004
and 2007) and (3) an increase of the negative bias inwg to-
gether with a decrease of the positive bias inw2 (2005 and
2006). The impact of assimilatingwg on the root-zone soil
moisture gives an improvement of about 7.9 % over all the
period, lower than by assimilating SWI (13.4 %).

Comparison ofw2 estimates after the assimilation of SWI
and wg are illustrated in Fig.12 for the years 2001 and
2003. The time series show also the root-zone soil mois-
ture from the free run as well as the ground based measure-
ments. These two years were chosen as they presented con-
trasting meteorological conditions. For the year 2001, the
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Fig. 10. Seasonal soil moisture diagnostics of background (left)
and observation errors (right) used in this study calculated over the
7-year period at SMOSREX location. The estimated (diagnosed)
values are in black, the specified values in gray.

two analyzedw2 show a comparable behavior in spring, sum-
mer and autumn, with a wet bias during the latter season for
both estimates. In response to a significant correction of the
large negative (dry) bias inwg in October (see Fig.13in con-
junction with Table5), the existing positive (wet) bias inw2
is increased in November. Consequently, a largerw2 value is
estimated and the updatedw2 through the assimilation of sur-
face observations diverges from the much lower model tra-
jectory. This divergence has an overall detrimental impact
on the statistics for 2001 and influences negatively the soil
moisture evolution at the beginning of 2002.Sabater et al.
(2008) noticed a similar degradation of thew2 analysis for
this period. Under unusual conditions (such as the long dry
period from September to December 2001), the assimilation
of surface soil moisture may be problematic. This reveals the
weakness of using a limited number of soil layers with large
differences between layer thickness. By assimilating SWI
observations, the analyzedw2 does not diverge, whereas the
bias and the rms error increase as well (see Table4 for the
year 2001).

In 2003, the analyzedw2 derived from the assimilation of
wg is generally closer to the observations than the analyzed
w2 derived from the assimilation of SWI (Fig.12, bottom
right panel). During the unusual dry summer, very low vol-
umetricw2 values are observed and the assimilation of SWI
does not permit to represent this phenomenon. During the
period of June and July, whenw2 is constantly below the
wilting point, the assimilation presents a saturation regime
due to the imposed minimum threshold in the definition of
SWI. After the severe drought period at the beginning of the
summer, precipitation occur in August. By assimilating SWI,
the soil water content is rapidly shifted to rather wet condi-

Fig. 11. Calibration of the cumulative distribution function of
in situ data and simulated superficial soil moisture (m3 m−3) by
a 7th-order polynomial fit over the 7-year period (2001–2007) at
SMOSREX location.

tions which tend to degrade the simulation ofw2. It seems
that in such extremely dry conditions, the exponential filter is
quite sensitive to changes in superficial soil moisture. On the
other hand, the assimilation ofwg data does not cause a large
discrepancy inw2. Very poor statistical scores (Table5) for
wg in contrast to better scores forw2 may be explained by the
weak vertical coupling of the model during marked drought
periods (Kumar et al., 2009).

Albergel et al.(2010) have assimilated LAI andwg in
ISBA-A-gs for the SMOSREX grassland. Although they
used a different soil model (2 layers instead of 3) and dif-
ferent background and observation errors, they obtained (on
average, over the 2001–2007 period) similar scores.

5 Effect of data assimilation on modeled carbon dioxide
fluxes

The evolution of LAI is based on the biomass production due
to the photosynthetic process. The photosynthesis module
of ISBA-A-gs estimates the vegetation net CO2 assimilation
from which the biomass and LAI are predicted. Figure14
illustrates the coherent impact of LAI updates on the carbon
flux for the year 2007. Increased LAI values in the grow-
ing season (March–April) due to data assimilation correc-
tions (top panel) trigger an increased photosynthetic activ-
ity (bottom panel). In the same manner, lower LAI values
corresponding to the mortality phase (July–September) cause
a decrease in the CO2 uptake when compared to the model
simulations.

In order to quantify the contribution of the data assimi-
lation on the fluxes, measurements of net CO2 flux or Net
Ecosystem Exchange (NEE) and of latent and sensible heat
fluxes have been gathered at the SMOSREX site for three
years from 2005 to 2007. The CO2 flux data were filtered
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Fig. 12. Time series of root-zone soil moisture before and after
assimilation of SWI andwg againstw2 measurements (m3 m−3)
for 2001 (top) and 2003 (bottom), respectively.

using three criteria: wind direction (between 225 and 315◦),
absence of water deposition and a site-dependent threshold
of friction velocity (larger than 0.16 m s−1) that account for
a sufficient turbulent exchange (Albergel et al., 2010). The
flux observations are averaged over 30 min, corresponding
to the interval of model outputs. A total of 1609, 1790 and
2469 half-hourly observations are used for 2005, 2006 and
2007, respectively. In terms of rms error, an improvement of
around 5 % is noticed for each year. For example, the rms er-
ror decreases from 4.25 to 4.01 µmol CO2 m−2 s−1 for 2006,
keeping a high correlation and reducing the bias (as listed in
Table6). For 2005 and 2007, the assimilation improves the
rms and correlation scores, but not the bias. The effect of soil
moisture and LAI analysis has a limited impact on surface
energy fluxes (sensible and latent heat fluxes) (not shown).

Table 6. Statistics of simulated and updated CO2 fluxes (mi-
cro mol m−2 s−1) after assimilation of LAI and SWI for ISBA-A-gs
from 2005 to 2007, as well as for the 3-year period (2005–2007) for
the SMOSREX grassland.

2005 2006 2007 2005–2007

model 3.91 4.38 4.25 4.21
rms

assim 3.69 4.14 4.01 3.98

model 0.99 1.81 0.25 0.91
bias

assim 1.15 1.25 0.63 0.96

model 0.72 0.73 0.57 0.63
corr

assim 0.76 0.71 0.62 0.69

Fig. 13. Time series of observed, modeled and assimilated surface
soil moisture (m3 m−3) for 2001. The observations were rescaled
in order to match their statistical distribution to those of ISBA-A-gs.

6 Conclusions

This work is a first attempt to assimilate a SWI derived from
the exponential filter method in a LSM. A posteriori diag-
nostics are also employed for the first time in order to verify
the specification of the errors for SWI and LAI. This study
comprises the Simplified Extended Kalman Filter procedure
in different setups within the SURFEX modeling platform
for a period of seven years with contrasted meteorological
conditions. The results demonstrate the effectiveness of a
joint data assimilation scheme when both SWI and LAI were
merged into the ISBA-A-gs land surface model. The verifica-
tion of the assimilation impact on the root-zone soil moisture
was performed using ground based observations.

The SWI product has advantages that can be exploited for
successful data assimilation in a LSM. The rationale of using
a SWI product instead of a volumetric surface soil moisture is
that the propagation of information from the surface layer to
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Fig. 14. Time series of observed, simulated and assimilated LAI
(m2 m−2) (top) and corresponding daily evolution of simulated and
updated CO2 fluxes µmol CO2 m−2 s−1 (bottom) for the year 2007
for the SMOSREX grassland site.

the root zone may not be completely accurate due to a weak
coupling between the two quantities for certain areas or for
specific time periods. This can explain why the assimilation
of SWI outperform the assimilation ofwg in this study.

At the same time, one should be aware that the use of
SWI poses a set of challenges related to theoretical proper-
ties associated to the data assimilation components, namely
measurements, modeling and assimilation algorithms. Errors
that may affect the analysis can be introduced at each level
of the data assimilation procedure. The uncertainties in the
observations derived from the exponential filter are difficult
to estimate. Therefore, in this study, a posteriori diagnos-
tics were used in order to verify the error specifications. In
theory, the presence of autocorrelated observing errors is not
compatible with the filter assumptions. The lack of serially-
independent errors may be overcome by using more robust
methods (Crow and van den Berg, 2010). For example, a col-
ored noise process with a given time correlation length may
be envisaged for a stochastic representation of observations.

Significant improvements were obtained for LAI. Exten-
sive simulations with the Simplified Extended Kalman Filter
show that the choice of background and observation errors
used in the assimilation is a key issue. By using different
options, large LAI corrections are obtained during the senes-
cence periods when the model tends to overestimate the LAI
values. Our results indicate that the assimilation of LAI may
correct another deficiency in the model, namely a delay in
the start of the growing period. The results of statistical in-
vestigations support a variable error definition that takes into
account the seasonal characteristics of LAI. The LDAS is
shown to improve the carbon flux simulations.

Many studies involving LSM evaluations indicate the pres-
ence of systematic biases between the observations and the

model outputs for soil moisture (Walker et al., 2003; Walker
and Houser, 2004; De Lanoy et al., 2007) and LAI (Jarlan
et al., 2008; Brut et al., 2009; Lafont et al., 2010). Even
after quality control and calibration, under the conditions of
an existing bias-free observational system, incorrect model
parameterization and uncertain model inputs cause the pres-
ence of a systematic bias in the model forecast for both soil
moisture and LAI. For example, in this study, it was noticed
that after the assimilation of an LAI observation, the model
tends to drift back to a biased state. When the observed LAI
value is large and the model shows a dry state, the LAI incre-
ments could be positive, but the model is not able to maintain
a high LAI value. If the conflicting information provided by
the observations is reliable, it points towards an error in the
LSM and/ or parameters (e.g. too shallow root zone) that the
assimilation cannot correct. On one hand, this suggests that
the model itself should be improved through enhanced pa-
rameterizations or parameter tuning. On the other hand, this
is an indication that the bias should be included in the anal-
ysis system as demonstrated byDrécourt et al.(2006), De
Lanoy et al.(2006).

The computational effort of a filter is an important aspect
for operational applications and monitoring activities. The
computational cost of the EKF is generally low. The LDAS
should be able to incorporate near-real time satellite data at
large scale. Therefore, the methodology demonstrated in this
study has been implemented in the SURFEX platform and
can be used as a guideline in more comprehensive experi-
ments for regional applications. The next step is to extend
these results over the France domain by using a mosaic ver-
sion of the ISBA-A-gs model instead of using only one cover
(grassland) option as was considered in this study at local
scale. This approach will make possible to aggregate the in-
formation from different ecosystem types in several covers
in order to describe the regional vegetation state. Satellite
SWI (e.g. the Advanced Scatterometer (ASCAT) instrument
provides a normalized soil moisture product) and LAI will
be ingested in the LDAS which is of high interest for land
carbon monitoring.
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