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Abstract. The response of the coastal ocean influenced by
both river discharges and inputs of photosynthetically de-
rived organic carbon product of upwelling, was evaluated by
estimating rates of microbial hydrolysis of macromolecules
with the goal of estimating the potential degradation capa-
bility of the coastal ecosystem off central Chile. Extracel-
lular enzymatic activity (EEA) in seawater was dominated
by aminopeptidase activity on substrate L-leucine-4-methyl-
7-coumarinylamide (MCA-leu) (1.2 to 182 nmol l−1 h−1)

followed by 4-methylumbelliferyl-ß-D-glucoside (MUF-
glu) (0.08–61 nmol l−1 h−1) and 4-methylumbelliferyl-ß-D-
cellobiose (MUF-cel) (0.15–7 nmol l−1 h−1), with the high-
est rates measured during spring-summer. In riverine wa-
ters, extracellular enzymatic hydrolysis remained within
the range of 45 to 131 nmol l−1 h−1 for MCA-leu and
ca. 20 nmol l−1 h−1 for glucosidic substrates, year-round.
Contrary to the EEA observed for the marine water col-
umn, surface sediment extracellular enzymatic hydrolysis
of MCA-leu (0.04 to 6.13 nmol g−1 dw h−1) was in the
same order of magnitude as the rates observed for MUF-
cel (0.004 to 5.1 nmol g−1 dw h−1) and MUF-glu (0.007 to
10.5 nmol g−1 dw h−1). Moreover, hydrolysis in sediments
was characterized by higher rates during winter compared
with spring-summer in the coastal and estuarine zone. The
five years of data allowed us to evaluate the potential capa-
bility of microbial processing of organic carbon in the coastal
area adjacent to the Itata river discharge where the increase in
primary production in the productive seasons is accompanied
by the increase in hydrolysis of macromolecules.

Correspondence to:S. Pantoja
(spantoja@udec.cl)

1 Introduction

Although continental shelves (global area 26× 1012 m2) sus-
tain high primary production, and estuaries (global area
1.05× 1012 m2) are reservoirs of terrestrial primary produc-
tion transported by rivers, both constitute a small fraction of
the global ocean (7.5 %, Cai et al., 2011. Several studies have
shown that continental shelves sequester more than 40 % of
oceanic carbon (Hedges and Keil, 1995; Muller-Karger et
al., 2005), however, there are uncertainties as to our abil-
ity to quantify the exchange of carbon between marine and
terrestrial systems (Liu et al., 2000), and difficulties in eval-
uating the main processes controlling the fate of terrigenous
carbon in coastal waters and sediments (Hedges and Keil,
1995). These knowledge gaps have impeded us from de-
termining why most of the terrestrial carbon (ca. 0.25 Pg)
transported to the ocean by world rivers every year (Cauwet,
2002) disappears from the reservoir of dissolved organic mat-
ter in the ocean (Hedges and Parker, 1976) and marine sedi-
ments (Hedges, 2002). Considering the refractory nature of
terrestrial carbon (Hedges, 1992), Hedges and Keil (1995)
posed the conundrum of the relatively short residence time
of terrestrial organic matter compared with the seemingly
labile plankton-derived marine organic molecules, pointing
to the role of the coastal ocean in processing organic matter
(Rabouille et al., 2001).

In coastal upwelling ecosystems, the biological commu-
nity thrives in an environment of high availability of organic
molecules derived from high primary production rates, thus
enhancing microbial secondary production (e.g., Quiñones
et al., 2010). The coastal ocean in the Humboldt Current
System off central Chile at 36.5◦ S (Fig. 1) is under the in-
fluence of seasonal upwelling and associated productivity
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FIGURE 1 767 

 768 

769 Fig. 1. Study area and location of the sampling stations in the
coastal ocean adjacent to the Itata River off Central Chile. Map
generated using the software Ocean Data View (Schlitzer, 2010).
Color scale in the ocean represents depth in meters as shown in the
bar to the right.

cycles (Daneri et al., 2000). In this area, coastal upwelling in-
teracts with two seasonal physical processes that modify ver-
tical stratification: the heat balance in the mixed layer during
the austral summer, and the fresh water balance during the
austral winter due to greater freshwater discharges from the
Bio-Bı́o and Itata rivers (Sobarzo et al., 2007). The interplay
of upwelling and freshwater discharge has a noticeable ef-
fect on the chemistry and biology of the water column. For
instance, at a site 30 km offshore, we observed that biogenic
opal from diatom productivity dominates the water column
during summer, whereas lithogenic opal predominates dur-
ing austral winter (Śanchez et al., 2008).

It has been observed that microbial heterotrophic activity
is enhanced by the input of organic matter by both phyto-
plankton production and riverine sources, thus explaining the
enhanced microbial consumption rates at the boundaries be-
tween river and oceanic waters (Albright, 1983; Kirchman et
al., 1989). Only a small fraction of the organic matter pool
are monomers capable of being directly transferred to mi-
croorganisms for remineralization, thus efficient hydrolysis
and utilization of autochthonous and allochthonous biopoly-
mers, such as proteins and carbohydrates, are crucial for sus-
taining high microbial growth rates and associated degrada-
tion of organic matter (Azam, 1998). The extracellular en-
zymes of aquatic microbes (Chróst, 1991) are key compo-
nents in the hydrolysis of abundant marine biopolymers. Ex-
tracellular hydrolysis is the initial step in carbon mineraliza-
tion in which organic macromolecules are broken down into
smaller substrates capable of being incorporated across the
cell membrane of microorganisms (e.g. King, 1986; Chróst,

1991; Hoppe, 1991; Pantoja et al., 1997; Arnosti, 2003),
thereby affecting the fate of organic matter in the marine en-
vironment (Arnosti, 2011).

In this paper, we undertook the study of the temporal and
spatial varibility of extracellular enzymatic hydrolysis of car-
bohydrates and proteins, as a proxy of microbial reworking in
the coastal upwelling ecosystem adjacent to the Itata River in
central Chile (Fig. 1). We used fluorogenic molecules MUF-
glu, MUF-cel and MCA-Leu to represent substrates of differ-
ent reactivity and different models of extracellular enzymes
(glucosidase, glucanase, and aminopeptidase, respectively).
Thus, we represented the labile marine organic matter as the
protein model molecule MCA-leu, and the more refractory
pool of organic matter associated to river input as the cellu-
lose model molecules MUF-glu and MUF-cel.

We aim to obtaining a deeper understanding of the degra-
dation capability of this coastal area in relation to carbon
availability for heterotrophic consumption. An accurate in-
sight into the magnitude of organic matter reworking of the
coastal ocean is needed to understand how the coastal ocean
could respond to natural and anthropogenic perturbations
(Ver et al., 1999; Rabouille et al., 2001).

2 Materials and methods

2.1 Study area

We studied the coastal zone off central-southern Chile
(ca. 36.5◦ S) under the direct influence of the Humboldt Cur-
rent System (Strub et al., 1998). One of the main features
of this coastal system is the occurrence of fertilization events
due to upwelling of sub-surface nutrient-rich waters into the
photic zone during the austral spring-summer (e.g. Ahumada
and Chuecas, 1979, which promotes very high primary pro-
duction rates (Daneri et al., 2000; Montero et al., 2007), and
significant commercial fish landings (Quiñones et al., 2010).
Upwelling waters also carry low oxygen concentrations thus
generating a seasonal suboxic layer below 20 m water depth
(Sobarzo et al., 2007).

The thermal structure of the water column during spring
and summer is controlled by solar radiation in the top 10
m and upwelling favorable wind stress below 15 m depth,
resulting in a stratified surface layer and lower temperature
waters under the thermocline. During winter, haline strat-
ification is observed in the top layer due to precipitation,
enhanced freshwater discharge from the Bio-Bı́o and Itata
rivers, and downwelling below the thermocline induced by
northerly winds (Sobarzo et al., 2007). The coastal ocean
receives a noticeable amount of terrigenous material from
the adjacent rivers, evidenced by the dominance of lithogenic
over biogenic opal during the austral winter (Sánchez et al.,
2008) and the presence of lignin phenols in coastal sediments
(Schubert et al., 2000).
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Observations were carried out in the marine and river-
ine environments of Central Chile encompassing latitudes
from 36◦10′ S to 36◦7′ S and from 73◦10′ W to 72◦40′ W sur-
rounding the Itata river mouth and as far as 20 NM (37 km)
from the coast (Fig. 1). Sampling covered coastal areas un-
der direct influence of the river discharge and under a strong
seasonal regime of upwelling and marine productivity. The
Itata River runs for ca. 195 km and its water mass transport
at the mouth is, on average, 240 m3 s−1 (Dussaillant, 2009).
During December 2009, the submarine outfall disposal for
residues from the waste treatment plant of a major pulp mill
was installed in December 2009. The pipe is 2 km long, and
is located at 30 m depth near sampling station 6 (Fig. 1).

2.2 Water and sediment sampling

We carried out 26 sampling campaigns between 2006 and
2010 covering 16 field observations during the austral spring-
summer and 10 in autumn-winter (Table 1) onboard the re-
search vessel Kay-Kay II (University of Concepción) and
small boats for estuarine and river sampling. Thirty loca-
tions were visited; 3 river sampling sites, 1 estuarine site,
and 26 in the coastal ocean (Fig. 1). Our data set included a
quasi-monthly sampling at the Coastal Time Series Station
of the COPAS Center (Station 18,http://www.copas.udec.
cl/eng/research/serie). This coastal station is characterized
by a marked seasonality in hydrographic conditions as a re-
sult of intensive upwelling during austral spring and summer,
and the freshwater input during winter (Sobarzo et al., 2007).
Seasonality is also observed in marine productivity and com-
munity respiration (Montero et al., 2007), chlorophyll-a and
phytoplankton biomass (González et al., 2007).

Seawater and river samples were collected with Niskin
bottles and polypropylene carboys for surface samples,
which were used for the determination of nutrients,
chlorophyll-a, proteins, primary production and extracellular
hydrolysis of proteins and carbohydrates. Water samples for
these parameters were collected at several depths between 1
and 110 m. Surface (0–1 and 1–2 cm) sediment samples were
collected with a box corer or a Van Veen grab, then stored at
4◦C until arrival at the laboratory to be processed for hydrol-
ysis incubation experiments.

2.3 Water column measurements

Temperature, salinity and oxygen in the water column were
recorded with a Sea Bird SBE 19 plus CTD and data
were processed with the Ocean Data View 4.3.5 software
(Schlitzer, 2010). Water samples for NO−

3 were filtered
through 0.7 µm (Whatman GFF) and both filtrate and fil-
ters were frozen at−20◦C. The filtrate was analyzed for
nitrate with the spectrophotometric method of Strickland
and Parsons (1972), and filters were split for the determi-
nation of chlorophyll-a by fluorometry (Parsons et al., l984)
and particulate proteins by HPLC. Particulate proteins were

analyzed as total hydrolyzable amino acids by high pressure
liquid chromatography coupled to an on-line fluorescence
detector set up at 330 nm (excitation) and 450 nm (emission)
on a Shimadzu HPLC, fluorescence detector, and autosam-
pler. Subsamples of filters were placed in 2 mL of N2-purged
hydrolysis solution for 1.5 h at 150◦C and neutralized.
Aliquots of the neutralized solution were derivatized before
injection with o-phthaldialdehyde and 2-mercaptoethanol ac-
cording to Mopper and Lindroth (1982). Separation and
quantification of 15 amino acids were done in a C18 Kro-
masil column using a gradient program of 0.025 M sodium
acetate and 5 % tetrahydrofurane. Dissolved proteins were
analyzed as dissolved combined amino acids on subsamples
of acidified filtered seawater after subtracting the concentra-
tion of dissolved free amino acids. HPLC analysis was per-
formed as before.

Determinations of rates of primary production were car-
ried out at 5, 10, 20, 30 and 40 m depth at Station 14 (Fig. 1)
from changes in dissolved oxygen concentrations observed
after incubating in situ light and dark bottles (Strickland,
1960). Water from Niskin bottles was transferred to 125 mL
borosilicate bottles (gravimetrically calibrated). At each in-
cubation depth, five clear and five darkened bottles were in-
cubated in situ for 8–9 h, attached to a surface buoy mooring
anchored to the ocean floor, and then treated with the Winkler
reagents. Oxygen concentrations were determined manually
according to the Winkler method (Strickland and Parsons,
1972) using an automatic Dosimat Metrohm 665 burette and
by visual end-point detection. Oxygen production was con-
verted to carbon units using a photosynthetic quotient of 1.25
and rates calculated as [O2] after incubation in clear bottles
minus [O2] after incubation in darkened bottles. Discrete pri-
mary production rates were integrated for the whole water
column. Our data were combined with additional primary
production measurements published by Daneri et al. (2000)
in the area 35◦00′ S to 39◦00′ S and 73◦00′ W to 75◦00′ from
36 observations from 1989 to 1991.

One-liter water subsamples from Niskin bottles were im-
mediately removed and placed in acid-clean carboys until ar-
rival in the laboratory (10 h later). Carboys with water sam-
ples were darkened and kept at 4–7◦C on board using water
baths with icepacks or a refrigerator. While the incubation
system was being prepared back in the laboratory (1–2 h),
carboys were kept in a cold chamber at 4–7◦C in the dark-
ness. After addition of the substrate, flasks were incubated
at ca. 10◦C under continuous agitation. This temperature is
representative of the in situ temperature (9.9–12.8◦C).

Estimates of extracellular enzymatic activity were
conducted based on duplicate 5 mL-aliquots of sea-
water, which were incubated in darkness with L-
leucine-4-methylcoumarinyl-7-amide (MCA-leu), 4-
methylumbelliferyl-ß-D-cellobiose (MUF-cel) and 4-
methylumbelliferyl-ß-D-glucoside (MUF-glu) at 10 µM final
concentrations (Hoppe, 1983). Fluorescence was measured
at time zero, and every 2 h for 6 h at 365 nm excitation
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Table 1. Sampling cruises and samples collected from 2006 to 2010 in the study area.

Area/Cruise Mo/yr Measurements

Coastal zone (PIMEX 1) 08/2006 O2, temperature, salinity, nutrients, chlorophyll-a, sediment stable isotopes,
primary production rates

Coastal zone (PIMEX 2) 01/ 2007 O2, temperature, salinity, nutrients, chlorophyll-a, sediment stable isotopes,
primary production rates, carbon sinking fluxes, particulate protein,
enzymatic hydrolysis

Coastal zone (PIMEX 3) 08/2007 O2, temperature, salinity, nutrients, chlorophyll-a, sediment stable isotopes,
carbon sinking fluxes, particulate protein,
enzymatic hydrolysis

River & Estuary 10/2007 O2, temperature, salinity, nutrients, chlorophyll-a, enzymatic hydrolysis
River & Estuary 01/2008 Enzymatic hydrolysis
Coastal zone (PIMEX 4) 04/2008 Primary production rates, carbon sinking fluxes, enzymatic hydrolysis
Coastal zone (PIMEX 5) 06/2009 O2, temperature, salinity, nutrients, chlorophyll-a, enzymatic hydrolysis
Coastal zone (PIMEX 6) 07/2009 O2, temperature, salinity, nutrients, chlorophyll-a, enzymatic hydrolysis
Coastal zone (PIMEX 7) 10/2009 O2, temperature, salinity, nutrients, chlorophyll-a, enzymatic hydrolysis
Coastal zone (PIMEX 8) 01/2010 O2, temperature, salinity, nutrients, chlorophyll-a, enzymatic hydrolysis
Coastal zone (PIMEX 9) 08/2010 O2, temperature, salinity, nutrients, chlorophyll-a, enzymatic hydrolysis
River & Estuary 08/2010 O2, temperature, salinity, nutrients, chlorophyll-a, enzymatic hydrolysis
Coastal zone (PIMEX 10) 10/2010 O2, temperature, salinity, nutrients, chlorophyll-a, enzymatic hydrolysis
Coastal zone 01, 02, 03, 05, 09, 10/2008 & O2, temperature, salinity, nutrients, chlorophyll-a, enzymatic hydrolysis
(St. 18 COPAS Time Series) 01, 02, 03, 04, 05, 08, 09, 11/2009

and 455 nm emission. Boiled seawater was used to check
background fluorescence, which was negligible at those
wavelengths.

Calibration curves were constructed by measuring the flu-
orescence of standard solutions of MCA and MUF prepared
in unfiltered seawater at concentrations ranging between 0.03
and 0.5 µM. Standard curves were prepared for each exper-
iment. A one-point calibration was done at the beginning
of the incubation using 0.5 µM MCA and the calibration
curve at the end of every experiment with hydrolysis prod-
ucts MCA and MUF at concentrations ranging between 0.03
and 0.5 µM. The largest change in fluorescence before and
after the experiment for the 0.5 µM MCA was 2 %. First or-
der rate constants were calculated from the slope of the plot
ln [C0/(C0-P)] vs. time, where C0 is the initial concentra-
tion of the substrate (MCA-leu, MUF-glu, MUF-cel) and P
is the concentration of the product (MCA, MUF) at timet

(Pantoja and Lee, 1994). Actual hydrolysis rates were calcu-
lated by multiplying rate constants by C0. Discrete rates were
depth-integrated throughout the water column, and carbon
hydrolysis rates calculated using the conversion factor of 72
for MUF-glu and MCA-leu, and 144 for MUF-cel (Hoppe,
1983).

During April 2007, we determined the enzyme parame-
tersKs andVmax with MCA-leu and MUF-cel by incubating
surface water samples using 0.75, 5, 20, 50, 100, 250, and
500 µM of substrates. All experimental samples were treated
as described above.

2.4 Surface sediment measurements

Sediment samples were maintained in containers with
icepacks or in a refrigerator at 4◦C until arrival in the labo-
ratory (within 10 h). Estimates of extracellular enzymatic ac-
tivity in sediments were carried out in duplicate undisturbed
sediment mini-cores containing∼10 mL wet sediment. Sed-
iments were inoculated with MCA-leu, MUF-cel, and MUF-
glu at∼50 µM final concentrations (Meyer-Riel, 1986), and
incubated in the dark at ca. 10◦C. At time courses 0 and 9 h,
the sediment was centrifuged at 3500 rpm for 5 min, and the
supernatant was filtered through 0.2 µm Durapore filters and
the fluorescence measured. Calibration curves were deter-
mined with pore water as described above. Boiled sediment
was used to check background fluorescence, which was neg-
ligible at those wavelengths. Grams of dry sediment were
transformed to sediment volume as in Berner (1980).

Primary production rates, hydrolysis rates of the water col-
umn and the hydrolysis rates in surface sediments were av-
eraged for winter (June to August), and the period spring-
summer (September to March).

3 Results

3.1 Physical-chemical and biological characteristics in
the coastal area adjacent to the Itata river mouth

Seasonal variability was observed in the vertical distri-
bution of temperature. Thus, during winter cold waters
(< 11−12◦C) were homogeneously distributed in the wa-
ter column (Fig. 2a). In contrast, during spring and summer
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FIGURE 2 770 

 771 

772 Fig. 2. Cross sections of temperature (◦C, panelsA, B), salinity (panelsC, D), oxygen (µM, panelsE, F) during austral winter (left) and
spring-summer (right) panels in the Itata river and the adjacent coastal area. X-axis is the distance from the coast. Map generated using the
software Ocean Data View (Schlitzer, 2010).

temperatures higher than 13◦C and a stratified water column
were observed (Fig. 2b). The horizontal distribution of tem-
perature showed changes seaward, with the thermocline ob-
served at∼10 m at coastal stations and∼30 m at offshore
stations during the spring-summer period (Fig. 2b). In con-
trast, during winter temperature remained homogeneously
distributed along the gradient (Fig. 2a).

Seasonal variability in salinity was also observed in sur-
face waters, with low salinity (28.5–33) recorded during win-
ter in the top∼5 m depth, indicating the influence of fresh-
water from the Itata river discharge reaching more than 7 km
offshore (Fig. 2c). During spring and summer, salinity was
more homogeneously distributed and the influence of fresh-
water was restricted to surface waters in the top∼3 km off-
shore (Fig. 2d).

Permanently suboxic conditions (< 22µM O2) were evi-
denced below∼60 m depth during the entire sampling period
(Fig. 2e and f). Although no major temporal changes were
observed in oxygen concentrations, during spring-summer
the oxycline raised about 20 m in coastal stations (Fig. 2f).
That pattern was similar to those observed for temperature
(with cold waters reaching about 20 m) indicative of up-
welling waters.

The concentration of nitrate ranged between 5 and 20 µM
in the top∼30 m during winter (Fig. 3a). Below this depth,
concentration of nitrate was in the order of 25 µM (Fig. 3a).
Nitrate ranged between 10 and 20 µM in the top 20 m dur-
ing spring-summer (Fig. 3b). The highest concentrations
(∼40 µM) of nitrate during the austral spring and summer
were observed in bottom waters (Fig. 3b), reaching ca. 20 m

depth toward coastal stations, suggesting the effect of sea-
sonal upwelling as described before.

Suspended particulate chlorophyll-a showed large differ-
ences between the austral winter and spring-summer (Fig. 3c
and d). During the latter, values in the range of 10 and
> 30 mg m−3 were observed in surface waters (Fig. 3d),
while during winter, maximum chlorophyll-a only reached
values of about 5 mg m−3 (Fig. 3c). Along the seaward gra-
dient, the highest concentrations of chlorophyll-a were ob-
served within 15 km from the coast in surface waters during
spring-summer (Fig. 3d).

Suspended particulate proteins in the water column
showed differences in surface waters depending on season,
> 2 µM during spring-summer in the upper 20 m, and about
1 µM during winter (Fig. 4). Below 30 m depth, concentra-
tions decreased to ca. 0.5 µM in both winter (Fig. 4a) and
spring-summer (Fig. 4b). Concentration of dissolved pro-
teins (as dissolved combined amino acids) was generally
higher in winter than in spring-summer and generally in-
creasing with depth in winter (Fig. 4c and d). Spring-summer
concentrations decreased with depth from a maximum of
3.1 µM at 10 m depth to a minimum of 1.2 µM below 40 m
(Fig. 4d).

3.2 Extracellular enzymatic hydrolysis in the water
column from the river to 20 km offshore

Extracellular enzymatic hydrolysis in surface seawater was
dominated by aminopeptidase activity (MCA-leu), which
ranged from 1.2 to 182 nmol l−1 h−1 and was at least one
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FIGURE 3 773 
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775 
Fig. 3. Cross sections of nitrate (µM, panelsA, B), chlorophyll-a (mg m−3, panelsC, D) during austral winter (left) and spring-summer
(right) panels in the Itata river and the adjacent coastal area. X-axis is the distance from the coast. Map generated using the software Ocean
Data View (Schlitzer, 2010).
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FIGURE 4 776 

 777 

778 Fig. 4. Suspended particulate (A, B) and dissolved (C, D) protein
concentration in the water column (µM) during the austral winter
(left panels) and spring-summer (right panels). Values are average
determinations for all sampling sites and depth. Bars are standard
deviations.

order of magnitude higher than the activity observed for
substrates MUF-glu (0.08–61 nmol l−1 h−1) and MUF-cel
(0.15–7 nmol l−1 h−1) (Fig. 5). Seasonal differences were
observed in extracellular enzymatic activity with the high-
est hydrolysis rates of MCA-leu (181.9 nmol l−1 h−1), MUF-
glu (61 nmol l−1 h−1), and MUF-cel (7 nmol l−1 h−1) during
spring- summer in the coastal area between 0 and 20 km
from the coast (Fig. 5b, d, f). During winter, extracellular
hydrolysis in the coastal area decreased to values ranging
from 1.2 to 56.7 nmol l−1 h−1 for MCA-leu and from 0.08
to 6.9 nmol l−1 h−1 for glucosidic substrates MUF-cel and
MUF-glu (Fig. 5a, c, e).

Along the river stations, extracellular enzymatic hydrol-
ysis remained within the range of 40 to 131 nmol l−1 h−1

for MCA-leu and about 20 nmol l−1 h−1 for glucosidic
substrates during winter (Fig. 5a, c, e). During sum-
mer, hydrolysis of MCA-leu averaged 101± 20 nmol l−1 h−1

in the river, 83.3± 20 nmol l−1 h−1 in the estuary and
93.5± 50.2 nmol l−1 h−1 in coastal waters. During spring-
summer extracellular hydrolysis of MCA-leu in riverine wa-
ters averaged 96± 20 nmol l−1 h−1 (n = 7) and was similar to
those observed in coastal waters 93.5± 50.2 nmol l−1 h−1)

(n = 34). No major changes in hydrolysis rates were ob-
served between riverine and coastal waters for MUF-glu
(Fig. 5c, d), while MUF-cel hydrolysis was higher in the
river than in coastal waters (Fig. 5e, f). The ratio of the
potential activity of protein vs. carbohydrate hydrolysis
[(kMCA−leu)/(kMUF−cel + kMUF−glu)] showed a general in-
crease towards the marine sites (Fig. 6a), which was more
pronounced during winter (inset Fig. 6a).
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FIGURE 5 779 

 780 

781 Fig. 5. Enzymatic extracellular hydrolysis of substrates MCA-leu (A, B), MUF-glu (C, D), MUF-cel (E, F) in surface waters during the
winter (left panels) and spring-summer (right panels) in relation to distance from the coast (negative distances represent river sampling sites).
Rates are in nmol l−1 h−1. Blue symbols are discrete values and red symbols are average rates (±SD) if possible.
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FIGURE 6 782 

 783 

784 Fig. 6. Relationship between the ratio of hydrolysis rate constants
(k) kMCA−leu/(kMUF−glu + kMUF−cel) and distance from the coast
(negative distances represent river sampling sites) for the water col-
umn (A) and surface sediments (B). The insets show the winter data.

3.3 Extracellular enzymatic hydrolysis in surface
sediments along a river-offshore gradient

Contrary to the observed for the water column, in sur-
face sediments extracellular enzymatic hydrolysis of MCA-
leu (0.04 to 6.13 nmol g−1 dw h−1) was in the same
order of magnitude to those observed for MUF-cel
(0.004 to 5.1 nmol g−1 dw h−1) and MUF-glu (0.007 to
10.5 nmol g−1 dw h−1) substrates (Fig. 7). In addition, sea-
sonality of hydrolysis was characterized by higher rates dur-
ing winter than in spring-summer in the coastal and es-
tuarine zones (Fig. 7). Extracellular hydrolysis of MCA-
leu ranged from 0.04 to 6.13 nmol g−1 dw h−1 during win-
ter (Fig. 7a), and from 0.24 to 2.78 nmol g−1 dw h−1 during
spring-summer (Fig. 7b). For glucosidic substrates, extra-
cellular hydrolysis during winter ranged between 0.007 and
13.1 nmol g−1 dw h−1 (Fig. 7c, e) and during spring and sum-
mer from 0.27 to 9.33 nmol g−1 dw h−1 (Fig. 7d, f) in the area
adjacent to the Itata river discharge.

No major seasonal changes were observed in extracel-
lular enzymatic hydrolysis in riverine sediments, and the
estimated rates were in the low range of those observed
for coastal sediments (Fig. 7). Hydrolysis of MCA-leu
ranged from 0.07 to 2.3 nmol g−1 dw h−1 during winter and
from 0.11 to 0.38 nmol g−1 dw h−1 during spring-summer
(Fig. 7a and b). For glucosidic substrates, hydrolysis rates
ranged from 0.30–0.86 and 0.069–1.7 nmol g−1 dw h−1 dur-
ing spring-summer (Fig. 7d and f) and winter (Fig. 7c

www.biogeosciences.net/8/2063/2011/ Biogeosciences, 8, 2063–2074, 2011
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FIGURE 7 785 

 786 

787 Fig. 7. Enzymatic extracellular hydrolysis of substrates MCA-leu (A, B), MUF-glu (C, D), MUF-cel (E, F) in surface sediment during winter
(left panels) and spring-summer (right panels) in relation to distance from the coast (negative distances represent river sampling sites). Rates
are in nmol l−1 h−1. Blue symbols are discrete values and red symbols are average rates (±SD) when possible.

and e). The ratio of protein to carbohydrate hydrolysis
[(kMCA−leu/(kMUF−cel + kMUF−glu)] remained approximately
constant throughout the year and across the river and shelf
surface sediments (Fig. 6b). In almost 50 % of the cases car-
bohydrate hydrolysis was higher than MCA-leu rates (inset
Fig. 6b).

The comparison of rates of hydrolysis of MCA-leu over
time at a site near the outfall pipe did not show any difference
in degradation attributable to the effect of the discharge from
the secondary treatment of the pulp mill industry in the wa-
ter column (Fig. 8a). On surface sediments, we observed an
increase in extracellular enzymatic activity in the few mea-
surements carried out after the outflow was introduced in this
coastal area (Fig. 8b). Considering that the outfall pipe (30 m
depth) remains below the thermocline when the water col-
umn is stratified (spring and summer), we cannot rule out
any possible effect of the outflow on surface sediments.

4 Discussion

4.1 Physical-chemical and biological characteristics in
the coastal area adjacent to the Itata river mouth

Temporal changes in hydrographic conditions were observed
in the coastal area adjacent to the Itata river reflecting the
seasonal variability described for the Humboldt Current Sys-
tem off central-southern Chile (Strub et al., 1998; Daneri et
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FIGURE 8 788 

 789 

 790 Fig. 8. Hydrolysis rates of MCA-leu in surface water (panelA) and
surface sediment (panelB) at sampling station 6 (Fig. 1), where a
sewage outfall was installed on December 2009 (vertical arrow).

al., 2000; Figueroa and Moffat, 2000; Sobarzo et al., 2007).
During spring-summer, an increase in surface temperature
and a shallow thermocline indicates a stratified water column
(Fig. 2a and b). During this period, cold, nutrient-rich and
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Table 2. Primary production in the upper 40 m of the water column
in central-southern Chile according to Daneri et al. (2000), and mea-
surements carried out during this study in January 2007, April 2008,
and August 2006.

Month/year Primary production
(mol C m−2 d−1)

January 0.48
January-07 0.10
February 0.08
March 0.19
April 0.16
April-08 0.06
May 0.15
June 0.08
July 0.04
August 0.05
August-06 0.00
September 0.41
October 0.25
November 0.51
December 0.17

oxygen-depleted waters reaches ca. 20 m depth in the coastal
area (Fig. 2), pointing to the influence of upwelling condi-
tions on the vertical structure of the water column. During
winter, a low salinity layer along the coastal offshore gradi-
ent in surface waters (∼0–5 m) was observed (Fig. 2c and
d), indicating the influence of the freshwater input from the
Itata river. These seasonal changes in hydrographic variabil-
ity are consistent with previous studies in this coastal ecosys-
tem (Sobarzo et al., 2007) that identified both upwelling
events and freshwater influx from the river discharges as the
main processes determining the vertical structure of the water
column.

As a consequence of the upwelling, high primary pro-
duction is observed in the coastal ecosystem off central-
southern Chile during spring and summer (Daneri et al.,
2000; Montero et al., 2007). Our results for the area adja-
cent of the Itata river mouth showed differences in produc-
tivity rates between austral winter (∼0 mol C m−2 d−1) and
spring- summer (0.1 mol C m−2 d−1). These values were in
the range of previous measurements in the area (Table 2)
(Daneri et al. (2000). In addition, higher values of primary
production during summer were accompanied by high con-
centrations of chlorophyll-a (Fig. 3b) and particulate proteins
(Fig. 4b). During winter, photosynthetic production in the
coastal ecosystem off Chile decreases (Daneri et al., 2000;
Montero et al., 2007), as reflected by chlorophyll-a (Fig. 3a)
and proteins (Fig. 4a) observed in the study area.

4.2 Extracellular enzymatic hydrolysis in seawater
and surface sediments

The saturation experiment resulted in aKs (Michaelis-
Menten constant) and Vmax of 12 µmol l−1 and
0.13 µmol l−1 h−1, respectively, for MCA-leu and of
38 µM and 1 µmol l−1 h−1 for MUF-cel. For comparison of
Ks the concentration of dissolved proteins in surface waters
averages 3.8± 2.6 µM in winter and 2.5± 2.7 µM in spring
summer of the study area (Fig. 4c and d), and polysaccharide
concentrations range from 1 to 82 µM for several oceans
(Pakulski and Benner, 1994; Myklestad and Børsheim,
2007).

Several patterns in the rates of hydrolysis are observed in
this study. First of all, rates of hydrolysis of protein sub-
strates were 4 to 7 times higher than those of carbohydrates
in seawater (Fig. 5). This pattern has been previously ob-
served (e.g. Arnosti, 2011) and has been attributed to the
preferential mineralization of organic nitrogen with respect
to carbon in the marine environment (Lee et al., 2004), and
may be supported by more bacterial taxa with genes encod-
ing transporters of amino acids rather than sugars (Poretsky
et al., 2009). In estuarine and riverine waters and sediments,
we observed that rates of hydrolysis of protein were 5–10
times faster than hydrolysis of carbohydrates (Fig. 5). Within
the water column, hydrolysis rates of all substrates were al-
ways higher in surface waters (data not shown), as previously
shown for this ecosystem (Gutiérrez et al., 2011) and other
coastal areas such as the Gulf of Genoa, off the Ligurian
Coast in the Mediterranean Sea (Misic and Fabiano, 2006),
as well as in the upwelling ecosystem of northern Chile (Pan-
toja et al., 2009). This pattern is attributed to the enhance-
ment of primary production and associated exudation of or-
ganics in the photic zone (Gutiérrez et al., 2011), a trend that
has also been observed with amino peptidase activity along
an eutrophication gradient in lakes (Chróst and Siuda, 2006).
A correlation analysis using Spearman rank order resulted
in significant association of water column hydrolysis of all
substrates with chlorophyll-a, (p < 0.006), and of MCA-leu
with chlorophyll-a, temperature and oxygen (p < 0.0003).
These results coincide with the general idea of enhancement
of hydrolytic activity with substrate availability previously
stated.

We observed seasonal differences in the potential activity
on glucosidic and protein substrates in river, estuarine and
coastal waters (Fig. 5). Hydrolysis of the three substrates
was higher during winter in the river and the estuary com-
pared to marine sites, whereas in spring-summer, this pattern
was not evident and hydrolysis of MCA-leu and MUF-glu
was approximately constant across all environments, show-
ing a decrease in activity of MUF-cel towards marine sites
(Fig. 5). For comparison, in a transect from the Sacramento
River towards the Central Bay in the northern San Fran-
cisco Bay, Murrel et al. (1999) observed generally higher
activity of amino peptidase in marine waters, and higher
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ß-glucosidase activity in river waters. Rates of hydrolysis es-
timated for the sites located along the Concepcion coast (this
study) were comparable to those measured in northern San
Francisco Bay. However, our rates of hydrolysis of protein
for the Itata river were much lower than those measured by
Karrasch et al. (2006) in the nearby Bio-Bı́o river, and within
the range of those estimated for surface waters of the Ottawa,
Maumee and Hudson rivers in north America (Sinsabaugh et
al., 1997).

An increase in hydrolysis rates of MCA-leu, MUF-glu,
and MUF-cel was observed in coastal waters during spring-
summer compared to winter (Fig. 5), probably associated
with the enhancement of biological activity in marine waters
reflected in an increase in the input of photosynthetic organic
matter, as supported by the relation between EEA induced
by MCA-leu, MUF-glu, and MUF-cel and chlorophyll-a

(p = 0.00001, 0.00004, and 0.03, respectively). Other stud-
ies reporting similar trends in hydrolysis along trophic gra-
dients, such as for amino peptidase activity in the Caribbean
Sea (Rath et al., 1993) and the Northern Adriatic Sea (Karner
et al., 1992). However, organic matter supply may not be
the only controlling factor of extracellular enzyme activity
since the lack of a trend has also been observed between glu-
cosidase activity and organic matter supply in the Northern
Adriatic Sea (Karner et al., 1992).

Hydrolysis in surface sediments followed different pat-
terns than those of the water column (Fig. 7), and was within
the same order of magnitude as previous measurements in
surface sediments in other coastal zones (e.g., Meyer-Reil,
1986, 1987; Mayer, 1989). Hydrolysis rates of MCA-leu,
MUF-glu and MUF-cel were higher in the coastal and es-
tuarine sediments than in river sediment during the entire
study period. Here, hydrolysis of MCA-leu did not domi-
nate, and even some of the fastest rates were those of MUF-
glu (Fig. 7). This difference between microbial enzyme ac-
tivities in the water column and sediment is not unexpected
since both environments might have different communities
with different enzyme capabilities (Arnosti, 2008).

The temporal pattern in extracellular enzymatic hydroly-
sis in surface sediments was also different to that observed
in seawater, and higher hydrolysis rates were observed dur-
ing winter compared to spring-summer in coastal sediments
(Figs. 6 and 7). This suggests that riverine transport of ter-
restrial organic matter may enhance hydrolysis during win-
ter. In support of this hypothesis, we had previously observed
dominance of particulate lithogenic opal over biogenic dur-
ing austral winter in the coastal zone (Sánchez et al., 2008).

4.3 Carbon fluxes in the coastal zone adjacent to
the Itata River

Using fluxes measured in this study and previous reports for
primary productivity in the study area (Table 2), we pro-
duced a simple carbon budget for the coastal area adjacent to
the Itata river discharge to determine whether our measured

fluxes match those of the production of organic carbon. Ad-
ditionally, we were also interested in estimating the poten-
tial capability of processing organic carbon as the input of
allochthonous organics may increase as a consequence of in-
creasing usage of the coastal area.

Depth integrated extracellular enzymatic hydrolysis rates
(6MCA-leu + MUF-glu + MUF-cel) were estimated from
the average of individual measurements collected during
winter and spring-summer (Table 1) to generate aver-
age profiles of hydrolysis for the coastal zone. Sedi-
ment hydrolysis rates were at least three times lower than
those of the water column amounting to 0.02± 0.01 and
0.02± 0.02 mol C m−2 d−1 in winter and spring-summer, re-
spectively. In the water column, integrated rates were
higher, 0.06± 0.01 and 0.3± 0.03 mol C m−2 d−1 in win-
ter and spring-summer, respectively. The difference in
hydrolysis between spring-summer and winter represents
the excess hydrolysis between the two periods that we
assume is independent of the concentration of substrate
used for the incubation. Assuming that extracellular en-
zymatic hydrolysis responds mainly to the availability of
organic matter, then “1 hydrolysis” must reflect the in-
crease in primary production between spring-summer and
winter (“1 primary production”). Thus,1 hydrolysis
for the water column was 0.3± 0.03 mol C m−2 d−1 and
null for surface sediments. Primary production in the
study area ranged from 0 to 0.08 mol C m−2 d−1 dur-
ing winter and 0.08 to 0.48 mol C m−2 d−1 during spring-
summer (Table 2), resulting in a1 primary production of
0.3± 0.2 mol C m−2 d−1. Our results showed a proportional
increase of about 0.25 mol C m−2 d−1 in hydrolysis and pri-
mary production from austral winter to spring- summer. The
magnitude of the increase of both fluxes was in the same or-
der of magnitude suggesting a coupling between the synthe-
sis of marine organic matter and the processing of organic
polymers.

In conclusion, our study highlights the differences in hy-
drolytic activity in response to water column and surface sed-
iment variability, and the potential importance of protein and
carbohydrate hydrolysis in river waters, comparable to those
of the marine coastal environment.
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