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Abstract. A more thorough understanding of the multi-scale
spatial structure of land surface heterogeneity will enhance
understanding of the relationships and feedbacks between
land surface conditions, mass and energy exchanges between
the surface and the atmosphere, and regional meteorolog-
ical and climatological conditions. The objectives of this
study were to (1) quantify which spatial scales are dominant
in determining the evapotranspiration flux between the sur-
face and the atmosphere and (2) to quantify how different
spatial scales of atmospheric and surface processes interact
for different stages of the phenological cycle. We used the
ALEXI/DisALEXI model for three days (DOY 181, 229 and
245) in 2002 over the Ft. Peck Ameriflux site to estimate
the latent heat flux from Landsat, MODIS and GOES satel-
lites. We then applied a multiresolution information theory
methodology to quantify these interactions across different
spatial scales and compared the dynamics across the differ-
ent sensors and different periods. We note several impor-
tant results: (1) spatial scaling characteristics vary with day,
but are usually consistent for a given sensor, but (2) different
sensors give different scalings, and (3) the different sensors
exhibit different scaling relationships with driving variables
such as fractional vegetation and near surface soil moisture.
In addition, we note that while the dominant length scale of
the vegetation index remains relatively constant across the
dates, the contribution of the vegetation index to the derived
latent heat flux varies with time. We also note that length
scales determined from MODIS are consistently larger than
those determined from Landsat, even at scales that should
be detectable by MODIS. This may imply an inability of the
MODIS sensor to accurately determine the fine scale spa-
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tial structure of the land surface. These results aid in iden-
tifying the dominant cross-scale nature of local to regional
biosphere-atmosphere interactions.

1 Introduction

Scaling issues are ubiquitous in land-atmosphere interactions
(Brunsell and Gillies, 2003a; Anderson et al., 2003). They
impact our ability to accurately model and measure the ex-
change of mass and energy across the surface atmosphere in-
terface. Issues with scaling across different spatial and tem-
poral resolutions is complicated through non-linear interac-
tions (Raupach and Finnigan, 1995), feedbacks developing at
preferential scales (Koster et al., 2004) as well as incorporat-
ing the impacts of spatial pattern on mass transfer (Schyman-
ski et al., 2010). These issues may ultimately be impacting
our ability to adequately address the impacts of global cli-
mate change (Wagener et al., 2010).

One aspect of the scaling problem involves aggregation of
fine resolution data to accurately determine the areal average.
This is complicated by the non-linearity of the exchange pro-
cesses governing mass and energy transport (Raupach and
Finnigan, 1995; Western et al., 2002). For example, the areal
average value of evapotranspiration is not a function of the
spatially averaged input fields such as air temperature. This
is particularly problematic when attempting to estimate the
fluxes from satellite data sources, as these platforms observe
the spatially aggregated value of fields such as radiometric
temperature at the satellite resolution.

An approach to confronting this aspect of the scaling prob-
lem is the “effective parameters” approach, in which the con-
ceptual model (e.g. that the flux is proportional to the lo-
cal scalar gradient) was deemed correct, and only the “true”
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value of a conductivity term had to be determined (Lhomme
et al., 1994; Chehbouni et al., 2000). On a more theoretical
level, this necessitates the assumption that the model physics
are also applicable across the range of scales under consid-
eration. Similar issues arise when downscaling from coarser
to finer resolutions, where the problem involves accurately
determining the distribution of the data at resolutions below
that observed by the satellite (i.e. subgrid heterogeneity).

The use of satellite data provides the opportunity to
achieve measurements at a variety of spatial resolutions, but
the interpretation and validation of these measurements are
often unclear (e.g.Wu and Li, 2009). When considering en-
ergy and mass fluxes derived from satellite data, it is nec-
essary to employ some model that translates the input fields
into the flux of interest. For example using a vegetation index
and land surface temperature to derive the evaporative flux
(e.g.Carlson, 2007). This application of a model also entails
a scaling problem. A model calibrated to a particular resolu-
tion may or may not be useful when faced with a change of
resolution, i.e. the so-called equifinality concept (Beven and
Freer, 2001). McCabe et al.(2005) directly incorporated this
concept into a land surface model for determining deriving
temporal variability of evapotranspiration from remote sens-
ing.

However, the application of a model across different spa-
tial resolutions may also lead to different observed scaling
relationships between modeled output fluxes and controlling
variables (Brunsell and Gillies, 2003b). An additional prob-
lematic area that has not been given sufficient acknowledge-
ment is when the models are developed using the preferred
conceptual scales of different scientific disciplines (e.g. at-
mospheric scientists and ecophysiologists) result in perhaps
contrary views of the underlying process (e.g.Jarvis and Mc-
Naughton, 1986).

It is generally felt that higher spatial resolution is bet-
ter for accurately quantifying exchange processes between
the land surface and the atmosphere. However, as the com-
munity moves to higher temporal and spatial resolution for
global monitoring, there is a necessary increase in computa-
tional workload. In some cases higher resolution data may
not be necessary, meaning that it may not contribute ad-
ditional information about the process (e.g.Brunsell et al.,
2008). For example,McCabe and Wood(2006) found that
while MODIS was unable to ascertain the field scale evapo-
transpiration, it was able to accurately determine the water-
shed scale flux. However, a quantifiable method to determine
this is necessary. Therefore, we are faced with the question:
how can we assess the relative importance of different spa-
tial scales of remotely sensed observations, particularly with
respect to seasonal and interannual variations in phenology,
soil moisture etc. on the spatial structure of modeled fluxes?

Recently, tools from information theory have been used to
attempt to address this type of question.Stoy et al.(2009)
attempted to ascertain the “optimum” pixel scale. Using
Shannon entropy and the relative entropy (also called the

Kullback–Leibler divergence), they were able to calculate
the amount of information contributed as the scale of obser-
vation was aggregated. Thus, they were able to define an
“optimum” pixel resolution based on the loss of information.

In addition to assessing the role of pixel aggregation, infor-
mation theory has also been used to examine the flow of in-
formation across the surface-atmosphere interface.Brunsell
(2010) used the information theory metrics of entropy, mu-
tual information content and relative entropy to assess spa-
tial variation in the temporal scaling of daily precipitation.
This technique was able to determine clear scale breaks in
the temporal patterns of precipitation that were not captured
by traditional techniques.

Brunsell and Young(2008) used the metrics to assess the
information gained by surface vegetation as a function of
the time scales of input precipitation field across the Mis-
souri Basin using MODIS and NEXRAD data. They found
a clear relationship between the information content and the
resolution of the data.Brunsell et al.(2008) examined how
evapotranspiration derived from satellite data was sensitive
to different spatial scales of vegetation and soil moisture dy-
namics and found a clear sensitivity to topographic position
and moisture content. Similarly,Ruddell and Kumar(2009)
examined surface–atmosphere fluxes by quantifying the in-
formation transfer using eddy covariance observations. They
were able to quantitatively define surface–atmosphere feed-
backs using this technique.

The previous research has focused on assessing the infor-
mation content and transfer using data from the same spa-
tial or temporal resolutions. We are interested in continuing
this line of research into the applicability of information the-
ory metrics for assessing biosphere–atmosphere interactions.
Here, we wish to examine how different initial spatial resolu-
tions of satellite data impact the relationship between evapo-
transpiration and controlling variables such as soil moisture
and vegetation cover as a function of spatial resolution. This
is essential knowledge for understanding both our ability to
observe scaling relationships as well as to model the impacts
correctly across a wide range of scales.

2 Model Description

The Atmosphere Land Exchange Inverse (ALEXI) surface
energy balance model was specifically designed to minimize
the need for ancillary meteorological data while maintain-
ing a physically realistic representation of land-atmosphere
exchange over a wide range in vegetation cover conditions
(e.g. Anderson et al., 2004). It is one of few land-surface
models designed explicitly to exploit the high temporal reso-
lution afforded by geostationary satellites like GOES.

Surface energy balance models estimate evapotranspira-
tion (ET, W m−2) by partitioning the energy available at the
land surface (Rn−G), whereRn is net radiation andG is the
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soil heat conduction flux, in W m−2 into turbulent fluxes of
sensible heat (H , W m−2) andET:

Rn−G=H +ET (1)

Surface temperature is a valuable metric for constraining
ET because varying soil moisture conditions yield a distinc-
tive thermal signature: moisture deficiencies in the root zone
lead to vegetation stress and elevated canopy temperatures,
while depletion of water from the soil surface layer causes
the soil component of the scene to heat up rapidly.

The land-surface representation in ALEXI model is based
on the series version of the two-source energy balance
(TSEB) model ofNorman et al.(1995), which partitions the
composite surface radiometric temperature,Trad, into char-
acteristic soil (denoted by the subscript S) and canopy (sub-
script C) temperatures,TS andTC, based on the local vegeta-
tion cover fraction (Fr) apparent at the thermal sensor view
angle,f (θ):

Trad(θ)≈ f (θ)TC+[1−f (θ)]Ts (2)

For a homogeneous canopy with spherical leaf angle dis-
tribution and leaf area index (LAI),f (θ) can be approxi-
mated as:

f (θ)= 1−exp

(
−0.5 LAI

cosθ

)
(3)

With information aboutTrad, LAI, and radiative and me-
teorological forcing, the TSEB evaluates the soil and the
canopy energy budgets separately, computing system and
component fluxes of net radiation (Rn=RnC+RnS), sen-
sible and latent heat (H= HC+HS andET = ETC+ ES), and
soil heat conduction (G). Importantly, because angular ef-
fects are incorporated into the decomposition ofTrad, the
TSEB can accommodate thermal data acquired at off-nadir
viewing angles and can therefore be applied to geostationary
satellite images.

The TSEB has a built-in mechanism for detecting thermal
signatures of vegetation stress. A modified Priestley-Taylor
relationship, applied to the divergence of net radiation within
the canopy (RnC), provides an initial estimate of canopy tran-
spiration (ETC), while the soil evaporation rate (ES) is com-
puted as a residual to the system energy budget. If the veg-
etation is stressed and transpiring at significantly less than
the potential rate, the Priestley-Taylor equation will overes-
timateETC and the residualES will become negative. Con-
densation onto the soil is unlikely midday on clear days, and
thereforeES<0 is considered a signature of system stress.
Under such circumstances, the Priestley-Tayler coefficient is
throttled back untilES≈0 (expected under dry conditions).
Both ETC andES will then be some fraction (ET/PET) of
the potentialET rates associated with the canopy and soil.

For regional-scale applications, the TSEB has been cou-
pled with an atmospheric boundary layer (ABL) model to in-
ternally simulate land-atmosphere feedback on near-surface

air temperature. In the ALEXI model, the TSEB is applied
at two times during the morning ABL growth phase (ap-
proximatelyt1 = 1.5 andt2 = 5.5 h after local sunrise), us-
ing radiometric temperature data obtained from a geostation-
ary platform like GOES at spatial resolutions of 5–10 km.
Energy closure over this interval is provided by a simple
slab model of ABL development (McNaughton and Spriggs,
1986), which relates the rise in air temperature in the mixed
layer to the time-integrated influx of sensible heat from the
land surface. As a result of this configuration, ALEXI uses
only time-differential temperature signals, thereby minimiz-
ing flux errors due to absolute sensor calibration and atmo-
spheric and spatial effects (Kustas et al., 2001). The primary
radiometric signal is the morning surface temperature rise,
while the ABL model component uses only the general slope
(lapse rate) of the atmospheric temperature profile (Anderson
et al., 1997), which is more reliably analyzed from synoptic
radiosonde data than is the absolute temperature reference.
To map fluxes at higher resolution than afforded by geosta-
tionary satellites (typically 5–10 km) a flux disaggregation
technique referred to as DisALEXI (Norman et al., 2003)
can be applied. DisALEXI is a nested modeling approach
that uses air temperature diagnosed by ALEXI along with
high resolution LAI andTrad information from polar orbit-
ing instruments like Landsat or MODIS or aircraft, normal-
ized to conserveH at the GOES pixel scale. For comparison
with tower fluxes, DisALEXI fluxes are reaggregated over
the surface source area contributing to the sensor measure-
ment, typically on the order of 100-m in dimension.Ander-
son et al.(2007) summarize ALEXI validation experiments
yielding typical root-mean-square-deviations in comparison
with tower flux measurements (30-min averages) ofH and
ET are 35–40 W m−2 (15 % of the mean observed flux) over a
range in vegetation cover types and climatic conditions. Fur-
ther details about the ALEXI/DisALEXI modeling system
are provided byAnderson et al.(2007).

3 Site description

The study area focuses on AmeriFlux tower site lo-
cated outside of Fort Peck (48◦18′36′′, 105◦06′00′′, eleva-
tion = 634 m a.s.l.) in the northeast corner of Montana. The
tower itself is situated in a grazed grassland along the Poplar
River, but the Landsat scene also contains a significant frac-
tion of rainfed and irrigated agricultural fields. The topog-
raphy is predominantly flat, and there are several lakes and
reservoirs contained within the scene. Soils around the site
are moderately drained clay loams. SeeWilson and Meyers
(2007) for further details on the Fort Peck AmeriFlux site.

The remotely sensed imagery covers a domain of 102.4 km
by 102.4 km centered on the tower location. We applied the
ALEXI/DisALEXI models to derive evapotranspiration on
three days: 30 June (DOY 181), 17 August (DOY 229), and 2
September (DOY 245) in 2002 over the Ameriflux sites in Ft.
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Peck Montana, USA. The Landsat imagery has a resolution
of 100 m, while the MODIS and GOES imagery are resam-
pled to match the 100 m resolution which is output from the
ALEXI/DisALEXI models. These three days were chosen
due to the relatively cloud free nature of the Landsat scenes
on those dates. Rainfall was recorded at the tower in day
prior to each day of analysis. However only DOY 228 re-
ceived a large (18 mm) amount. The other days received
1.6 mm (DOY 181) and 0.6 mm (DOY 245).

4 Methods

4.1 Wavelets

We conducted a wavelet multiresolution analysis to examine
the contribution of different spatial scales to the modeledET.
The wavelet transform is conducted via the translation and
dilation of a mother waveletψ across a data setf as a func-
tion of timet :

W(m,n)= λ
−m/2
0

∫
∞

−∞

f (t)ψ
(
λ−m

0 t−nt0
)
dt (4)

whereW are the wavelet coefficients,m is the dilation and
n is the translation,λ0 is the initial scale andt0 is the initial
translation. The initial scale is twice the resolution of the
measurements and the initial translation is zero. In practice,
the integration would be conducted over the full domain of
interest and not to infinity. The wavelet is given by:

ψm,n(t)=
1√
λm0

ψ

(
t−nt0λ

m
0

λm0

)
(5)

The two-dimensional wavelet analysis is conducted as three
one-dimensional wavelet transforms (Kumar and Foufoula-
Georgiou, 1993). These are conducted in the horizontal
(91(x,y)), vertical (92(x,y)), and diagonal (93(x,y)) di-
rections across the two dimensional dataset:

91(x,y)=φ(x)ψ(y) (6)

92(x,y)=φ(y)ψ(x) (7)

93(x,y)=ψ(x)ψ(y) (8)

whereφ is the scaling function corresponding to the mother
wavelet.

The discrete detailed coefficients (Qm) at each scale are
calculated by the inner product of the spatial data field
f (x,y) and the wavelet transformsPsi:

Qd1
m f =<f,91

mnk > (9)

Qd2
m f =<f,92

mnk > (10)

Qd3
m f =<f,93

mnk > (11)

where the<> denote the inner product.

This analysis returns band-pass filtered versions of the
dataset at each scale of interest. Therefore, the original
dataset (f (x,y)) can be reconstructed from the coarsest
scale (i.e. average) and the residual fluctuations (f ′(x,y)=∑
Q
di
mf ) at each point(x,y):

f (x,y)≈ fm(x,y)+
∑
m≥m0

f ′
m(x,y) (12)

Band-pass and low-pass filtering was conducted for the in-
formation theory metrics. Information theory metrics from
the band-pass filtered data were calculated using the detailed
coefficients at each scale (Qm), while the low-pass filtered
versions were calculated by progressively removing the finer
scales in Eq. (12). This was done in order to ascertain both
the relative contribution of each scale to the spatial variability
(band-pass) as well as to investigate how the different resolu-
tions of the input the data would appear when filtered to the
coarser resolutions. These filtered reconstructions are then
used to compute the information theoretic metrics at each
spatial scale as described next.

4.2 Information theory metrics

In order to assess the statistical variability of the precipitation
fields, we combine the wavelet multi-resolution analysis with
the information theory metrics of entropy (I ) and the relative
entropy (R).

The Shannon entropy is calculated as:

I (x)= −

n∑
i=1

p(xi)log(p(xi)) (13)

wherep(xi) is the probability density function (pdf) of vari-
ablex within a discrete bini of the probability density func-
tion. Entropy is a measure of the statistical uncertainty of
the random fieldx as described by the pdf. The entropy is
a measure of the information (more information results in
lower entropy and vice versa).

In addition to the entropy, the relative entropy (R(x,y))
was also calculated. This is a measure of the distance be-
tween the probability density functions of the two variables
x andy given byp andq respectively. Herep represents
the pdf of the evapotranspiration andq represents either a
coarser scale approximation given from the wavelet decom-
position top or of the remotely sensed fields ofTrad, Rn, and
Fr. ThenR(x,y) is calculated as:

R(x,y)=
∑
i

pi log

(
pi

qi

)
(14)

This can be interpreted as the amount of additional infor-
mation necessary to representp givenq. Thus, the smaller
the value, the better the agreement betweenq andp.
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Fig. 1. ALEXI modeledET fluxes [W m−2] over Ft. Peck Montana USA for three days (left) 181, (middle) 229 and (right) 245 in 2002
derived from three sensors (top) Landsat (middle) MODIS and (bottom) GOES.

5 Results

5.1 Spatial structure of remotely sensed fields and
evapotranspiration

We applied the ALEXI/DisALEXI models to derive evapo-
transpiration on three days: 30 June (DOY 181), 17 August
(DOY 229), and 2 September (DOY 245) in 2002 over the
Ameriflux sites in Ft. Peck Montana, USA. The modeledET
fluxes for each of the days as derived from the sensors Land-
sat and MODIS (DisALEXI) and GOES (ALEXI) are shown
in Fig. 1. Note that the range of modeledET fluxes increases
with the higher resolution satellites, as would be expected.
On each day the observed spatial structure is generally cap-
tured by each of the satellites, but this structure does appear
to change with time.

The meanET flux and spatial standard deviation for each
day derived from each sensor are shown in Table1. In addi-
tion to theET flux, we have also shown the mean and stan-
dard deviations forRn, Trad, Fr, and the ratio of actual to
potentialET (ET/PET) all evaluated under clear-sky condi-
tions whenTrad can be retrieved from thermal band imagery.

Here,ET/PET is used as a proxy for soil moisture content,
sampling the root-zone in well-vegetated areas and the soil
surface layer (top 5 cm) in areas with sparse vegetation (Hain
et al., 2011). Each sensor captures the same temporal trend in
ET: maximum value on DOY 181 and decreasing with time.
All of the sensors show approximately the same spatial mean
as well, although the MODIS value on day 181 is slightly
reduced compared to the other sensors. This same trend was
observed in theRnvalues, but not in theTrad. The tempera-
ture values show a maximum on day 181, but a minimum on
day 229, presumably due to a prior precipitation event. This
is supported by the peak in the soil moisture proxy (ET/PET)
on this day observed by both the Landsat and MODIS sen-
sors. The fractional vegetation shows the expected trend of a
maximum value on day 181 and decreasing with time. Both
the Landsat and MODIS sensors observe approximately the
same values of fractional cover.

To determine the changes in the spatial structure of theET
flux we calculated the wavelet spectra from each sensor for
each day (Fig.2). The overall wavelet variance (area un-
der the curve) is highest for day 181, while the other days
show approximately the same curves for both the Landsat
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Table 1. Spatial mean and standard deviation in parentheses for evapotranspiration (ET, [W m−2]), net radiation (Rn, [W m−2]), surface
temperature (Trad, [C]), fractional vegetation (Fr, [–]), and water limitation (ET/PET, [–]) for each sensor (Landsat, MODIS, and GOES) for
each day of consideration (181, 229, and 245).

Sensor Date ET Rn Trad Fr ET/PET
[W m−2] [W m−2] [C] [–] [–]

Landsat 181 301 (104) 636 (28) 30.9 (3.5) 0.53 (0.17) 0.66 (0.19)
229 208 (53) 527 (18) 21.6 (2.5) 0.26 (0.12) 0.75 (0.16)
245 166 (61) 478 (19) 26.8 (3.0) 0.22 (0.09) 0.60 (0.20)

MODIS 181 276 (87) 649 (17) 32.7 (2.2) 0.50 (0.09) 0.61 (0.17)
229 215 (42) 549 (11) 22.2 (1.8) 0.27 (0.07) 0.74 (0.13)
245 170 (59) 498 (14) 27.4 (2.5) 0.21 (0.06) 0.59 (0.19)

GOES 181 297 (26) 627 (8) 28.7 (0.8) – –
229 210 (18) 523 (6) 20.6 (1.0) – –
245 169 (25) 476 (7) 25.9 (1.3) – –

Fig. 2. Spatial wavelet spectra [Power m−1] for evapotranspira-
tion for each sensor (Landsat, MODIS, and GOES) for each day of
consideration (181, 229, and 245). The arrow denotes the 51 km
scale.

and MODIS sensors. The Landsat data (panel a) shows a
dominant length scale (peak of the wavelet spectra) on the
order of 3.2 km for day 181, with large contributions from all
but the largest scale (102 km). For dates 229 and 245, the
role of this dominant scale is decreased and while the spectra
is relatively flat, there does seem to be a peak in the range of
51 km.

The MODIS data (Fig.2b) also shows larger spatial vari-
ance on day 181, but does not capture the 3.2 km length
scale. The spectra is relatively constant over the range of
6 to 51 km, with a slight peak at the 51 km scale. This peak
becomes slightly more pronounced on the later dates.

The GOES sensor (Fig.2c) shows the same spatial struc-
ture regardless of the day of consideration, with a dominant
length scale on the order of 51 km. The range of this length
scale is slightly increased on day 181, exhibited by an in-
creased contribution to the variance from a smaller spatial
scale (25 km). As time progresses, the overall variance in the
GOES signal decreases.

In addition to calculating the wavelet spectra for the EET
flux, we also calculated the spectra for the dominant con-
trolling variables of surface temperature, net radiation, and
fractional vegetation (Fig.3). The Landsat wavelet spectra
for radiometric temperature (panel a) and net radiation (panel
d) show the same general behavior, with substantially higher
wavelet variance on DOY 181, and reduced values on the
other days. Similar to the wavelet spectra forET, we see an
increase in the dominant length scale from the 3.2 km scale
to the 51 km scale as time progresses, although the 3 to 6 km
range continues to contribute significant portions of the over-
all variance. TheFr spectra (panel g) shows the same spatial
structure on all days with a peak at the 3.2 km scale, and the
overall variance decreases with time.

The MODIS spectra show the same general dominant
length scale (51 km) regardless of the day of consideration
for both theTrad and Rn data fields (panels b and e). The
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Fig. 3. Spatial wavelet spectra [Power m−1] for radiometric temperature, net radiation, and fractional vegetation for each sensor (Landsat,
MODIS, and GOES) for each day of consideration (181, 229, and 245).

MODIS data also shows a general decrease in the overall
wavelet variance as time progresses from DOY 181 to 229
to 245. The spectra show a reduced length scale for the frac-
tional vegetation field relative to the temperature and net ra-
diation, with a peak on the order of 6 km for each of the days.

The GOES data (panels c and f) generally shows the same
structure and variance with a spike in the DOY 229 radiomet-
ric temperature data. The length scale for the GOES temper-
ature data is the same as the MODIS length scale (51 km),
while theRn from GOES is continuously increasing across
the range of scales considered here.

5.2 Multiresolution entropy of evapotranspiration

Next we applied the multiresolution information theory ap-
proach to quantify the information content ofET and associ-
ated data fields. An example of the approach is illustrated in
Fig. 4, where we conducted a multiresolution analysis using
a band-pass filter on the modeledET derived from each of the
sensors for day of year 181. Panel a shows the decomposed
spatial fields for two selected scales (200 m and 51.2 km).
The 200 m scale is below the resolution of the MODIS and
GOES sensors, so not surprisingly, there is little variability at

this scale. The 51 km scale, on the other hand, is remarkably
similar regardless of the sensor.

While the spatial structure in Fig.4 looks similar, the spa-
tial probability density functions do show some variability as
a function of the initial sensor. At the 51 km scale, MODIS
and GOES both show an increased number of pixels in the
−20 to 20 W m−2 ET range (recall that these are the values
contributed from only this scale, not the total flux), while
the Landsat observed more of a single peak. When consider-
ing the difference in the density functions between Landsat
and MODIS, this may point to a fundamental difference in
the ability of the two sensors to detect small changes in the
structure of the spatial field.

From the probability density functions, we calculated the
scalewise entropy (Fig.5) using both band-pass and low-pass
filtered versions of theET flux for each sensor on each day.
Since the band-pass filter decomposes the initial data field
into only the contribution from an individual scale, the asso-
ciated entropy represents the information content of the flux
at that scale. Thus, this can be viewed as addressing “how
much information is contributed from that scale to the total
signal?” In the case of the LandsatET flux (panel a), we see
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Fig. 4. (a)Example of band pass filtered evapotranspiration [W m−2] fields for day 181 for (top) Landsat (middle) MODIS and (bottom)
GOES at two levels of decomposition (left) 200 m and (right) 51 200 m. Note that values indicate only the flux contributed from the individual
scale, not the total evapotranspiration.(b) Shows the associated probability functions for each image in(a).

that each scale is contributing approximately equally to the
observed information content. There is a slight reduction in
the contribution from the largest scale on the later dates.

The MODIS data (panel b) shows a similar result, how-
ever with little information being contributed at the smallest
scales due to the fact that these are below the resolution of
the sensor. On days 229 and 245, there is slight peak in the
information contributed at the 25 km scale. The GOES data
shows a similar behavior across scales (panel c).

The low-pass filtered version of the data is helpful for ad-
dressing the question: “how much information is lost as we
use coarser resolution data?” The Landsat data for day 181
(Fig. 5d), shows an almost continuous drop in information as
the spatial resolution is coarsened. While for the other dates,
this drop in information content is less significant until the
larger spatial scales. The information content from MODIS
ET (panel e), shows almost the same information content un-
til scales on the order of 25 km. The GOES data is similar,
with the exception of day 181, where there is actually in-
creased information in the coarser scales.

5.3 Relative entropy between evapotranspiration and
other fields

To further understand the nature of multiscale interactions
responsible for determining the evapotranspiration flux, we
made use of the relative entropy metric. We can examine
how much information in the spatial structure ofET is due to
the variability of other fields (Trad, Rn, Fr etc.) as a function
of spatial scale.

We calculated the relative entropy between the original
scaleET and the band-pass filtered versions of the radiomet-
ric temperature and net radiation (Fig.6). Recall that the
higher values of RE indicate that more information is neces-
sary to reconstruct theET flux, thus the less information is
being contributed by that scale to the evapotranspiration.

The relative entropy between the LandsatET andTrad is
shown in Fig.6a. TheRE values show relatively constant
variation across scale, with an increase in the RE at the small-
est scales. In addition, this contribution becomes larger as
time passes, thus indicating that theET flux became less de-
pendent upon small scale variations in surface temperature.
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Fig. 5. Multiresolution entropy computed from low-pass (left) and
band-pass (right) wavelet reconstructions for each sensor (rows) and
each day (lines).

This is also observed in the MODIS data (panel b). In addi-
tion, the MODIS data exhibits an interesting variation across
the smallest scales, where the scales up to 3.2 km become
increasingly less important with time. The GOES sensor is
generally unable to detect any change in the contribution as
a function of time, except that day 181 actually shows higher
RE values than the other dates contrary to what is observed
in the other sensors.

The role of net radiation on the spatial structure of the
evapotranspiration flux is also shown in Fig.6. The RE
betweenRnandET from Landsat (panel d) shows the same
variation for days 181 and 229, with slightly higher values
at the smaller scales. Day 245, however, shows a large in-
crease at all scales, in particular the smallest scales up to
the 3.2 km range (except 400 m). The relative entropy from
MODIS (panel e), shows a different behavior, where days
229 and 245 show generally the same values and day 181
shows a similar relationship, but reduced values. The GOES
data (panel f) shows the same behavior as the MODIS sensor.

Figure 7 shows the relative entropy betweenET and
the fractional vegetation and near surface water conditions.
Again, recall that since the GOES sensor does not have a
near-infrared band, these values are only computed for the
Landsat and MODIS sensors. The fractional vegetation (pan-
els a and b) show the same behavior as the radiometric tem-
perature did for the respective sensor. Landsat exhibits a
large increase in the RE on day 245, with increasing RE at

Fig. 6. Relative entropy between each scale of controlling variable
(left) Trad and (right)Rn to the modeledET flux from each sensor
(top) Landsat (middle) MODIS and (bottom) GOES for each day.

Fig. 7. Relative entropy between each scale of controlling variables
(left) Fc and (right)ET/PET to the modeledET flux from each
sensor for each day for (top) Landsat and (bottom) MODIS.

the smallest scales through time. The relative entropy from
MODIS (panel b) shows a pronounced increase with time up
to the 6.4 km scale.

The relative entropy betweenET andET/PET from Land-
sat (Fig.7, panel c) shows generally the same behavior re-
gardless of the day. As the spatial scale decreases, theRE
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increases indicating more additional information is necessary
to capture the trueET behavior. Larger RE values are seen at
the smallest scale on day 245. MODIS RE values (panel d)
show the same behavior on days 181 and 245, with day 229
exhibiting much larger values at the smallest scales. Since
this date has the highest values ofET/PET , we expect that
this is due to the combination of the resolution of MODIS
and the convective nature of precipitation impacting the spa-
tial scales of soil moisture. This is confirmed by the fact that
the site received 18 mm of rainfall on day 228.

6 Discussion

The information content of a modeled field such as evapo-
transpiration is dependent upon both interactions between the
processes determining the evaporative flux such as vegetation
and soil moisture dynamics and the resolution of the initial
data. Characterizing the nature of the relationship with the
initial data resolution is a primary objective of this paper.

We have shown that the change in information content
with resolution can be remarkably small (low pass filtered
entropies shown in Fig.5), and it may not be necessary to
resort to the highest possible resolution of data to adequately
characterize the spatial dynamics associated with the evap-
orative flux in a statistical sense. Obviously, however, the
higher resolution data can provide information to the origi-
nal data series (band pass filtered entropies in Fig.5).

It is not particularly surprising that GOES is incapable
of determining the finer spatial structure that Landsat and
MODIS is capable of. However, it was somewhat surpris-
ing that Landsat fields decomposed to very coarse resolutions
(e.g. compare DOY 245 in Fig.5 panels d and f at the larger
spatial scales) could still possess higher entropy values than
finer resolution GOES data.

More significantly, the relationship between modeled flux
and the input variables depends on the sensor. This is most
clearly seen when examining the relative entropies between
the controlling variables ofTrad, Rn, Fr, and ET/PET be-
tween Landsat and MODIS. Even at scales that both sensors
can resolve, we have shown that different sensors exhibit
different sensitivities to quantities such as the near surface
moisture conditionET/PET or changes in the spatial struc-
ture of the vegetation as captured in the relationships withFr
(Fig. 7).

This could indicate that MODIS is incapable of capturing
the small scale spatial structure as exhibited in the wavelet
variance in Fig.3. The length scales of variability determined
from MODIS are consistently larger than those determined
by Landsat even for scales that are detectable by the MODIS
sensor. Note that this does not imply that MODIS and GOES
are not capable of providing accurate estimation of the larger
scale fluxes (McCabe and Wood, 2006).

Taken together these results suggest that the MODIS sen-
sor is unable to fully characterize the fine spatial structure

of the land surface, and the different sensors characterize the
interactions with fundamental variables (e.g. fractional vege-
tation and soil moisture) differently. This has large potential
ramifications for the assessment of land surface interactions
across spatial scales. It is essential to note that these changes
in the observed interactions are not limited to the smallest
scales (e.g. below the resolution of MODIS), these are at
scales (e.g. 2–6 km) that MODIS should be able to detect
(Fig. 7b and d).

Of course, it remains to be seen how general these results
are. We have examined three dates over one relatively small
geographic area. How land cover, vegetation phenology, etc.
impact these results remains to be seen. However, there is
clear evidence that changes in the spatial structure of soil
moisture as determined from the wavelet spectra has a clear
impact on the spatial structure of the evapotranspiration (e.g.
DOY 229, Fig.7d). In addition, the seasonal variation in the
vegetation productivity as seen in the wavelet spectra also
has a clear imprint on the evapotranspiration (Fig.7b).

A related issue that is beyond the scope of the present work
is the role of the higher temporal coverage provided by the
MODIS and GOES sensors. There is the generally acknowl-
edged trade off between spatial resolution and temporal cov-
erage in remote sensing, but how this trade off actually im-
pacts the information transfer should be investigated more
deeply.

This raises an additional question for future research: how
does the scale of observation impact our ability to model
biosphere-atmosphere interactions at different spatial and
temporal scales? First, however, we must be able to have
some understanding of how these dynamics change across
scale and what the potential ramifications may be. Only then
can we possibly begin to incorporate such dynamics into the
physically based models.

We are inherently assuming that the values derived from
the higher resolution source (i.e. Landsat) are correct. There
is no real evidence to support this assumption, and perhaps
this is simply another aspect of the scale problem that the
community is largely ignoring. Or perhaps, we are simply
susceptible to the same inherent assumption that higher reso-
lution data is fundamentally better. Maybe a better statement
of this assumption is simply that different data sources pro-
vide fundamentally different information and we must use
them all equally in order to fully characterize the cross-scale
nature of biosphere-atmosphere interactions.

In order to address these types of concerns, models such as
ALEXI which are inherently designed to make use of differ-
ent resolution data simultaneously are necessary for examin-
ing these dynamics. These provide a necessary tool for quan-
tifying the model sensitivity to changes in the initial spatial
and/or temporal resolution of the input data.

Biogeosciences, 8, 2269–2280, 2011 www.biogeosciences.net/8/2269/2011/



N. A. Brunsell and M. C. Anderson: Multi-scale spatial structure of evapotranspiration 2279

7 Conclusions

We have applied a wavelet based multiresolution analysis
combined with information theory metrics to assess the ques-
tion: what is the relative importance of different spatial scales
of the remotely sensed observations and the spatial structure
of modeled fluxes? When considering the three dates used
in this analysis, we can also begin to assess the impacts of
seasonal variations in phenology, soil moisture etc. We have
applied the ALEXI model to three days of data for which
we have Landsat, MODIS and GOES data estimates of the
evaporative flux.

There are several important results from this research, in-
cluding (1) spatial scaling characteristics vary with day, but
are usually (though not always) consistent for a given sen-
sor, but (2) different sensors give different scalings. (3) Dif-
ferent sensors show different scaling relationships with the
driving variables. This is related to cross-scale interactions
between different controlling variables and the modelET as
well as the inherent resolution of the initial data. We also
note that while the dominant length scale of the vegetation
index remains relatively constant across the dates, the con-
tribution of the vegetation index to the derived latent heat
flux changes with time. The length scales of variability
are consistently larger when determined from MODIS data
compared to Landsat, even when the Landsat derived length
scales are at scales detectable by MODIS.

These results highlight the importance of explicitly ac-
counting for spatial scaling when considering non-linear in-
teractions that govern biosphere–atmosphere exchange pro-
cesses. The proposed methodology is one such technique for
determining such scaling dynamics. Additional research is
necessary in order to understand the biophysical processes
which give rise to the observed scaling characteristics.
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