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Abstract. Recent advances have improved our method-
ological approaches and theoretical understanding of post-
photosynthetic carbon isotope fractionation processes. Nev-
ertheless we still lack a clear picture of the origin of short-
term variability in δ13C of respired CO2 (δ13Cres) and or-
ganic carbon fractions on a diel basis. Closing this knowl-
edge gap is essential for the application of stable isotope ap-
proaches for partitioning ecosystem respiration, tracing car-
bon flow through plants and ecosystems and disentangling
key physiological processes in carbon metabolism of plants.
In this review we examine the short-term dynamics inδ13Cres
and putative substrate pools at the plant, soil and ecosys-
tem scales and discuss mechanisms, which might drive diel
δ13Cres dynamics at each scale. Maximum reported varia-
tion in dielδ13Cres is 4.0, 5.4 and 14.8 ‰ in trunks, roots and
leaves of different species and 12.5 and 8.1 ‰ at the soil and
ecosystem scale in different biomes. Temporal variation in
post-photosynthetic isotope fractionation related to changes
in carbon allocation to different metabolic pathways is the
most plausible mechanistic explanation for observed diel dy-
namics inδ13Cres. In addition, mixing of component fluxes
with different temporal dynamics and isotopic compositions
add to theδ13Cres variation on the soil and ecosystem level.
Understanding short-term variations inδ13Cres is particularly
important for ecosystem studies, sinceδ13Crescontains infor-
mation on the fate of respiratory substrates, and may, there-
fore, provide a non-intrusive way to identify changes in car-
bon allocation patterns.

Correspondence to:C. Werner
(c.werner@uni-bielefeld.de)

1 Introduction

Stable carbon isotopes have become an important tool to ad-
vance our understanding in carbon cycle processes on dif-
ferent temporal and spatial scales. As carbon travels from
the atmosphere through plants and is respired back to the at-
mosphere by leaf, stems, roots and soil there are many pro-
cesses, which alter the carbon isotope ratio (generally ex-
pressed in theδ-notation (δ13C) in ‰ as the relative devia-
tion of the13C/12C ratio of a sample from the13C/12C ratio
of an international standard). Thus, theδ13C isotope signa-
ture of dark-respired CO2(δ13Cres) is widely used for tracing
carbon flow through plants and ecosystems (e.g. Knohl et al.,
2005; Kodama et al., 2008), partitioning ecosystem respira-
tion (e.g. Bowling et al., 2001; Unger et al., 2010a), and dis-
entangling key physiological processes on the plant and stand
levels (e.g. Yakir and Sternberg, 2000; Gessler et al., 2009a).
Photosynthetic carbon assimilation in C3-plants heavily dis-
criminates against13C, with theδ13C ratio of assimilated car-
bon being related to the ratio of leaf intercellular and ambient
CO2 concentration (Farquhar et al., 1982). Photosynthetic
discrimination leaves an imprint onδ13C of newly produced
assimilates and respired CO2, which are widely used to char-
acterize environmental effects on the physiology of photo-
synthesis. In addition, post-photosynthetic isotope fraction-
ation processes in enzyme reactions of metabolic pathways
downstream of photosynthetic carbon fixation can alter the
isotopic signature of the organic matter among organs and
chemical compound classes and also affectδ13C of respired
CO2. Thus, driven by the work of Jaleh Ghashghaie’s group
and others increasing knowledge on isotope fractionation
during dark-respiration has been acquired during the last
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decade (for reviews see Ghashghaie et al., 2003; Badeck et
al., 2005; Bowling et al., 2008). However, marked diel vari-
ations of dark-respiredδ13Cres, which occur within minutes
to hours over the 24 h cycle, have only lately gained scien-
tific attention (e.g. Barbour et al., 2007; Werner et al., 2007;
Wingate et al., 2010). Ignoring these short-term variations
in δ13Cresmight weaken the power of isotope approaches for
disentangling plant and ecosystem processes.

In spite of recent insights into the origin ofδ13C of differ-
ent carbon pools (see reviews of Badeck et al., 2005; Bowl-
ing et al., 2008; Cernusak et al., 2009), we still lack a clear
picture of the physiological mechanisms resulting in isotopic
fractionation in metabolic processes downstream of photo-
synthesis and their implication for diel variation inδ13C of
different organic carbon fractions and respired CO2.

Here, we provide a survey of marked short-term dynam-
ics in respiredδ13Cres and putative substrate pools at the
plant, soil and ecosystem scale. We have limited this re-
view to exclusive cover publications evaluating diel (24 h)
dynamics inδ13Cresand providing mechanistic explanations.
The mechanistic understanding is a prerequisite for disentan-
gling physiological and environmental information encoded
in short-term variations ofδ13C in both plant organic matter
and respired CO2.

Compared to our progress in understanding isotope frac-
tionation in general and dark respiratory isotope fractionation
in particular, the recognition of diurnal dynamics inδ13Cres
was slow. This was largely attributed to methodological con-
strains hindering high-time resolved analysis ofδ13Cres. Re-
cently technological advances opened new frontiers to assess
the isotopic signature of respired CO2 at time scales from
minutes to hours over the day course, which will be shortly
surveyed in the next section (for detailed methodological de-
scriptions see Sect. 3 in companion paper by Werner et al.,
2011a).

2 New methodological developments in high
time-resolved measurements ofδ13Cres

First attempts to measureδ13Cres were made with gas-
exchange systems coupled to isotope ratio mass spectrom-
eters (IRMS), allowingδ13C analysis of CO2 respired by
leaves, roots or whole plants in an enclosure (normally a cu-
vette or phytotron). Alternatively, detached leaves, roots or
soil have been incubated in small vials (e.g. exetainer). If
flushed with CO2-free air theδ13Cres can be measured di-
rectly within 3 min on a gas bench-IRMS (in-tube incubation
technique, Werner et al., 2007). High precision IRMS en-
ables “on-line”-measurements, where an open gas-exchange
system is directly coupled to the IRMS e.g. via an open-split
and a GC-column for CO2 separation, yielding a time reso-
lution of ca. 5 min (e.g. Schnyder et al., 2003; Klumpp et al.,
2005; Werner et al., 2007). Fully continuous monitoring of
δ13Cres can be achieved with new optical laser spectroscopy,

e.g. tuneable diode laser spectroscopy (TDLS; e.g. Bowl-
ing et al., 2003) or cavity ring down spectroscopy (CRDS;
e.g. Wahl et al., 2006), which continuously measure12CO2
and13CO2 concentrations in the gas stream (e.g. Barbour et
al., 2007) in e.g. gas exchange chambers (e.g. Kodama et al.,
2011) or in ecosystem height profiles (e.g. Wingate et al.,
2010). The temporal resolution and precision depends on the
integration-time and instrument (e.g. 0.25 ‰ at 1 s and about
0.08 ‰ at 30 min integration time forδ13C andδ18O in CO2
with a TDLS; Barthel et al., 2011b).

High temporal resolution measurements ofδ13Cres deter-
mined in non-equilibrated closed chambers (e.g. Maunoury
et al., 2007; Kodama et al., 2008) might, however, be affected
by changes in transport isotope fractionation as the CO2 con-
centration in the chamber increases and could thus intro-
duce errors under particular conditions (Ubierna et al., 2009)
which has created particular concern forδ13C measurements
of soil respiration (e.g. Nickerson and Risk, 2009). Open
dynamic chamber techniques, which can be applied with op-
tical laser spectroscopy (e.g. Bahn et al., 2009; Barthel et
al., 2011a) and continuous measurements ofδ13C in CO2
over soil profiles (cf. Kayler et al., 2008, 2010) can, how-
ever, overcome these potential problems. Thus there are cur-
rently at least three independent techniques, which yield ac-
curate measurement of diel dynamics inδ13Cres, when spe-
cific instrument precautions are taking into account. Given
the fact that observed ranges inδ13Cres exceed by far the
variation, which may be caused by instrumental noise or non-
equilibrium conditions, we have now gained a solid piece
of data on short-term (minutes to day) variation in respired
δ13Cres.

Determination of respiratory substrateδ13C signatures,
which are needed to understand the origins of variation, is
not possible at the same high temporal resolution as measure-
ments ofδ13Cres. Even though hyphenated gas chromato-
graphic (GC) and liquid chromatographic (LC) IRMS tech-
niques have enabled us to assess compound specificδ13C in
organic substrates, destructive sampling and extraction pre-
vents continuous measurements. Moreover, when interpret-
ing data of the isotopic composition of soluble and storage
carbohydrates and other fast-turnover compounds, potential
artefacts related to the extraction procedures have to be taken
into account (Richter et al., 2009). In spite of these problems,
more and more data forδ13C of respiratory substrates is now
available at a temporal resolution of a few hours. This infor-
mation is a first step towards understanding the mechanisms
of variations in diel dynamics inδ13Cresof different plant or-
gans and ecosystem compound, which are summarized in the
next section.
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Table 1. Survey of diel variations in respiredδ13Cres of leaves, roots, trunks, soil and ecosystem respiration (minimum, maximum and
total range within 24 h) and the variation of the putative substrate (glucose (Glu), soluble sugars (SS), sucrose (Suc); water soluble organic
mater (WSOM); bulk organic matter (OM)). The species, growing conditions (field or controlled laboratory conditions (lab)), environmental
factors and references are given; ns – not significant; – not determined.

Diel variation (max.) in respiredδ13Cres (‰) Variation in substrateδ13C (‰) Species Field/ Environ. Reference

Min Max Range Type Min Max Range lab Factors

Diel variation at the leaf scale∗

6.4 SS ns Quercus ilex field Hymus et al. (2005)
4.9 ns Quercus cerris field

−31.0±0.6 −19.5±0.6 11.5 Pinus elliotti field Apr Prater et al. (2006)
−27.6±0.5 −21.6±0.3 6.0 OM −29.9±0.2 −29.1±0.1 0.7 Pinus elliotti field Aug
−29.2±0.4 −21.9±0.3 7.3 OM −30.4±0.1 −29.8±0.0 0.6 Pinus elliotti field Apr

−26.7 −18.3 8.4 Quercus ilex lab Werner et al. (2007)
−26.0 −23.9 2.1 ns Tolpis barbarta lab

−28.6±0.4 −25.7±0.2 2.9 Pinus pinea lab Priault et al. (2009)
−25.9±0.5 −18.6±0.8 7.3 Quercus ilex
−28.8±0.2 −20.9±0.7 7.9 Halimium halimifolium lab
−23.9±0.8 −15.9±0.7 8.0 Arbutus unedo lab
−25.1±0.4 −23.7±0.1 1.4 Ceratoma siliqua lab
−30.2±0.5 −24.0±0.8 6.2 Mentha piperita lab
−30.5±1.1 −26.4±0.7 4.1 Citrus hytrix lab
−27.4±0.4 −20.9±0.6 6.5 Rosmarinus officinalis lab
−24.4±0.7 −21.1±0.4 3.3 Ficus benjamina lab
−24.6±0.6 −24.9±0.9 −0.3 Tolpis barbata lab
−28.5±0.1 −28.1±0.9 0.5 Quercus petraea field
−27.9±0.4 −24.1±0.4 3.9 Sorbus cashmiriana field
−28.1±0.9 −24.2±1.2 3.9 Laurussp field
−27.7±0.4 −26.9±0.6 0.7 Carpinus betulus field
−28.9±0.7 −28.7±0.7 0.2 Poa annua field
−31.9±0.3 −32.2±0.2 −0.3 Bellis perrenis field
−31.7±0.6 −31.6±0.6 −0.3 Trifolium pratensis field

−28.5 −28.1 0.4 SS −30.0 −30.4 −0.4 Quercus petraea lab Werner et al. (2009)
−27.5 −19.4 8.1 SS −23.8 −23.6 0.2 Quercus ilex lab
−25.0 −24.4 0.6 SS −30.4 −30.9 −0.5 Tolpis barbata lab
−29.6 −20.7 8.9 SS −29.7 −28.7 1.0 Halimium halimifolium lab

−21.9±1.3 −14.7±0.5 7.2 WSOM −26.9±1.4 −23.9±0.5 3.0 Acacia longifolia forest summer Rascher et al. (2010)
−18.2±0.5 −15.0±0.5 3.2 WSOM −23.6±0.6 −22.4±0.5 1.2 Acacia longifolia dunes summer
−22.6±0.3 −17.9±0.1 4.7 WSOM −26.4±0.3 −25.7±0.8 0.7 Pinus pinaster forest summer
−24.5±0.8 −16.5±0.1 8.0 WSOM −26.6±0.2 −25.3±0.5 1.2 Pinus pinaster dunes summer

−20.2±1.2 −14.6±0.9 5.6 WSOM −26.9±0.7 −25.7±1.0 – Acacia longifolia field drought Dubbert et al. (2011)
−22.6±1.2 −13.8±1.0 8.8 WSOM −26.5±1 −25.4±0.8 Rosmarinus officinalis field drought
−22.1±1.3 −15.9±2.0 6.2 WSOM −28.2±1 −26.9±1.2 – Halimium halimifolium field drought

−29.9±0.9 −15.1±0.6 14.8 WSOM −31.8±0.3 −30.2±0.2 ns Halimium halimifolium lab Wegener et al. (2010)
−30.1±1.2 −23.5±0.4 6.6 WSOM −30.0±0.3 −28.2±1.1 ns Melissa officinalis lab
−26.2±0.8 −20.8±0.2 5.4 WSOM −28.2±0.8 −27.0±0.7 ns Salvia officinalis lab
−30.6±0.8 −27.2±1.1 3.4 WSOM −30.0±0.9 −28.9±0.1 ns Oxalis triangularis lab
−21.6±0.5 −18.3±0.1 3.3 Quercus ilex field spring Unger et al. (2010a)
−22.6±0.2 −21.8±0.3 0.8 Quercus ilex field drought
−21.6±0.3 −19.2±1.0 2.4 Tuberaria guttata field spring
−28.5±0.6 −24.7±0.4 3.8 Tuberaria guttata field drought

−21.7±0.9 −18.4±0.9 3.3±0.8 Prosopis velutina Riparian dry season Sun et al. (2009)
−20.5±0.6 −17.7±0.9 2.8±0.7 Prosopis velutina Upland dry season
−26.4±1.1 −21.3±1.2 5.1±1.1 Prosopis velutina Riparian wet season
−24.7±1.4 −19.6±0.7 5.1±0.9 Prosopis velutina Upland wet season

−25.0±1.0 −19.1±0.8 5.9 WSOM −27.3±0.4 −26.8±0.7 ns Wheat shoots field summer Kodama et al. (2010)

−28.9±1.5 −27.4±0.4 1.5 SS −31.8±0.6 −28.5±0.4 3.3 Ricinus communis lab Gessler et al. (2009b)
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Table 1. Continued.

Diel variation (max.) in respiredδ13Cres (‰) Variation in substrateδ13C (‰) Species Field/ Environ. Reference

Min Max Range Type Min Max Range lab factors

Diel variation at the trunk/stem scale

−26.8±0.4 −22.8±0.6 4.0 phloem −26.4±1.3 −25.7±0.3 0.9 Pinus silvestris field summer Kodama et al. (2008)

−32.1±0.8 −28.8±0.5 3.3 SS −30.7 −27.7 3.0 Ricinus communis lab Gessler et al. (2009b)

−24.2±0.4 −21.2±0.3 3.0±0.5 Suc −24.6±0.2 −24.0±0.3 0.7±0.5 Quercus patraea forest Apr Maunoury et al. (2007)
−25.9±0.4 −24.9±0.4 1.0±0.2 −24.0±0.5 −23.5±0.2 0.5±0.6 May
−26.1±0.1 −25.2±0.4 0.9±0.3 −25.9±0.2 −25.1±0.4 0.8±0.5 Jun
−24.8±0.2 −22.1±0.5 2.7±0.4 −26.6±0.0 −25.6±0.5 1.0±0.7 Nov

Diel variation at the root scale

−33.3±0.5 −30.5±0.2 2.8 SS −31.4±0.4 −28.5±1.2 2.9 Ricinus communis lab Gessler et al. (2009b)

−28.1±0.3 −22.7±1.8 5.4 WSOM −24.7±0.8 −24.2±0.2 ns wheat field summer Kodama et al. (2010)

−27.3±0.7 −26.1±0.4 −1.2 ns WSOM −24.8±0.6 −23.8±0.6 ns Halimium halimifolium lab Wegener et al. (2010)
−28.0±0.5 −24.6±0.7 −3.4∗ WSOM −27.4±0.1 Melissa officinalis lab
−27.5±0.4 −25.6±0.4 −1.9∗ WSOM −24.9±0.1 Salvia officinalis lab
−29.3±0.7 −28.6±0.7 −0.7 ns WSOM −28.8±0.9 −26.8±1.0 ns Oxalis triangularis lab

−25.3±1.4 −20.2±1.8 5.1 Acacia longifolia field summer Rascher et al. (2010)
−23.7±0.6 −21.4±0.9 2.6 Pinus pinaster field summer

−19.0±1.9 −15.0±1.5 4.0 WSOM −26.8±0.8 −23.9±0.7 2.9 Acacia longifolia field drought Dubbert et al. (2011)
−21.4±1.8 −16.9±0.8 4.5 WSOM −25.7±0.6 −25.0±0.6 0.7 Rosmarinus officinalis field drought
−17.4±1.8 −16.3±1.9 1.1 WSOM −26.8±0.9 −25.4±1 −1.4 Halimium halimifolium field drought

−23.0±0.5 −20.6±0.4 2.4 Tuberaria guttata field spring Unger et al. (2010a)
−25.6±0.2 −21.0±0.5 4.6 Tuberaria guttata drought

SS – soluble sugar; SStot – total soluble sugar fraction; WSOM – water soluble organic matter; SUC – sucrose; ns – not significant (Keeling plot Error no real SD);
∗ leaves were dark-adapted for 5–15 min before measurements.

3 Observed short-term variations inδ13C of respired
CO2

Significant diel variations ofδ13Cres occur in plant leaves,
stems and roots (Table 1) as well as in soil and ecosystem res-
piration (Table 2). Examples for Scots pine (soil and trunk)
and bread wheat (roots and shoots) are shown in Fig. 1.

The largest diel variations in dark-respiredδ13Cres of up
to 11.5 ‰ occurred in leaves (Table 1). A significant in-
crease inδ13Cresduring the photoperiod and a subsequent de-
crease in the dark were found in a variety of drought-adapted
trees and shrubs (e.g. Hymus et al., 2005; Prater et al., 2006;
Sun et al., 2009, 2010; Werner et al., 2009; Unger et al.,
2010a; Rascher et al., 2010) and in wheat (Kodama et al.,
2011; Fig. 1b). An exceptionally high variation of 14.8 ‰
was found in hydroponically grownHalimiumsp. (Wegener
et al., 2010, Table 1). Only in 2007 it was recognized that
different plant functional groups expressed systematic differ-
ences in the magnitude ofδ13Cres diel variability (Werner et
al., 2007): the largest diel variations inδ13Creswere found in
some Mediterranean evergreens, shrubs and aromatic herba-
ceous species, while non-significant diel variations occurred
in fast-growing herbs, grasses and some temperate trees (Pri-
ault et al., 2009). Furthermore, considerable variation of diel
patterns has been observed in response to changing environ-
mental conditions (Table 1, see discussion below).

Plant stems and tree trunks (see Fig. 1a) also exhibited
marked diel variations in emittedδ13CO2 (up to 4 ‰), some-
times associated with marked seasonal differences (e.g. in
Quercus petraea; Maunoury et al., 2007). In contrast to
leaves, where highestδ13Cres values were often observed at
the end of the light period, trunkδ13Cres was most enriched
at night (e.g. inPinus sylvestris; Kodama et al., 2008 and
Ricinus communis; Gessler et al., 2009b).

There is limited information on diel dynamics in root
δ13Cres lending a non-uniform picture: only slight varia-
tions inδ13Cres (<2 ‰) occurred in herbaceous and shrubby
species under controlled conditions (Gessler et al., 2009b;
Wegener et al., 2010). Under natural conditions, however,
root δ13Cres showed a clear diel cycle in wheat (5.4 ‰, Ko-
dama et al., 2011; Fig. 1b) and in a Mediterranean herb,
diel δ13Cres variations increased from 2.4 to 4.6 ‰ during
increasing drought (Unger et al., 2010a). InAcacia longi-
folia andPinus pinastera slight increase at the end of the
light period of ca. 2 ‰ was observed in the field also under
drought conditions (Rascher et al., 2010).

Both ecosystem and soil respiration derive from multiple
sources the latter comprising heterotrophic and autotrophic
rhizosphere respiration. To stress this origin from multiple
sources we term the isotopic composition of CO2 emitted
from the soil or whole ecosystemsδ13CR. Diel variations
in soil δ13CR (0.5–5.8 ‰, Table 2) have been reported in
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Table 2. Survey on nocturnal, diurnal and 24 h-variations in respiredδ13CR (minimum, maximum and total range) and the variation of
the putative substrate (bulk soil OM) of composite fluxes of soil and ecosystem respiration. The ecosystem, environmental conditions and
references are given. When several diel courses were available, the variation in the minimum, maximum and range over the measured period
was given. ns – not significant; – not determined.

Noctural variation in respiredδ13CR (‰) Diurnal variation in respiredδ13CR (‰) Diel (24 h) Substrate Ecosystem Environ. Reference/remarks
δ13C (‰) factors

Min Max Range Min Max Range Range Range

Diel variation at the soil scale

∼ −22−20.5 ∼ −21 1.1 Uncultivated
grass field

Dudziak and Halas (1996)

∼ −25.5 ∼ −20.5 4.0 Field (winter
wheat)

∼ 21.5– ∼ −16.0–17.5 4.0 Deciduous
forest

Aug

−20.0

−26.1±0.6 −23.6±0.2 0.4–1.7 −25.0±1.7 −22.4±1.3 0.3–2.4 2.7 Pinus silvestris
forest

summer Kodama et al. (2008)

−29.3 −25.7 3.6 −29.7 −23.4 4.5 5.8 Wheat field Kodama et al. (2010)2

−26.2±1.8– −25.5±1.1– 0.7–2 −28.4±0.6– −26.3±0.9– 1.8–2.8 2.9–3.6 Mediterranean
oak forest

spring Unger et al. (2010a)3

−27.5±1.1 −25.6±0.7 −29.2±0.6 −26.6±0.8
−26.9±0.4– −23.4±0.7– 3.5 −28.4±0.5– −24.0±0.6– 2.2–4.4 4.9–5.0 Mediterranean

oak forest
drought

−27.8±0.7 −24.3±0.4 −29.3±1.4 −27.0±1.2
−27.1 −24.8 2.6 −27.3–24.6 Mediterranean

oak forest
Apr Maseyk et al. (2009)

−26.3 – ns ns boreal forest Betson et al. (2007)

−27.3 −26.1 1.18 grassland Bahn et al. (2009)4

−32.5 −28.3 4.3 boreal forest Subke et al. (2009)

−27.84– −27.04– 0.74–1.15 −27.98– −26.12– 0.8–2.2 0.9–2.2 Beech-forest Jul Maron et al. (2009)
−28.19 −27.10 −28.35 −27.20

0.3–12.5 Deciduous trees untrenched Moyes et al. (2010)
0.4–10.6 in exp. garden trenched

Diel variation at the ecosystem scale

−27.1±0.3 −23.6∗ −28.0±0.3 ∼ 3 −28.0±0.3 Pinus pinaster
Aı̈t.

drought Oǵee et al. (2003)5

−29.1±0.4– −25.9±0.2– 1.8–6.4 grassland Bowling et al. (2003)6

−26.1±0.3 −22.7±0.8

−29.4±0.4 −27.4±0.5 2.0 Sown grassland Schnyder et al. (2004)7

3.8 Mix deciduous
forest

Knohl et al. (2005)

−27.0±0.4 −21.7±0.9 6.1 Pinus silvestris
forest

summer Kodama et al. (2008)

−29.2±1.0 −26.7±0.7 2.5 Mediterranean
oak forest

May Werner et al. (2006)

−31.1±2.1 −26.9±0.3 4.2 September

Diel variation at the ecosystem scale

−26.9±1.5– −23.4±0.8– 3.5–3.6 Mediterranean
oak forest

spring Unger et al. (2010a)3

−29.7±0.8 −26.1±1.9
−27.9±1.0– −20.1±1.6– 3.9–8.1 Mediterranean

oak forest
drought

−28.2±2.2 −24.0±0.4

∼ −28.2 −25.2 −25.2 −23.3 ∼ 0.6−5 Subalpine forest Bowling et al. (2005)

−27.3±0.6 −23.7±0.7 3.6 Subalpine forest 2006 Riveros-Iregui et al.
−26.9±0.3 −24.3±0.6 2.6 2007 (2011)
−27.3±0.5 −24.3±0.5 3.0 2008

−27.2±0.8 −24.2±0.2 3.0 2009

SOM – Soil organic; ns – not significant
1 atmosphericδ13CO2 above the canopy,2 smoothed data, measured with TDL,3 30 min-Keeling plot intercepts measured every 2-h± standard error for the intercept,
4 mean values of 20-min measurements pooled over three plots and 13–16 days (within a four week period),5 night, all levels together, each time treated separately; day above the
canopy,6 hourly Keeling plot intercepts± standard error for the intercept,7 reports 1-hourly means± SE of Keeling plot intercepts measured during the nights of 20 and 21 July
2004, on a grass-clover mixture (managed pasture) sown in 1999.
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grasslands (Dudziak and Halas, 1996; Bahn et al., 2009),
forests (Kodama et al., 2008; Fig. 1a, Marron et al., 2009),
Mediterranean woodlands (Maseyk et al., 2009; Unger et al.,
2010a, b; K. P. Tu and T. E. Dawson, unpublished data),
and agricultural systems (Kodama et al., 2011), while non-
significant diel variations were detected in a boreal forest
(Betson et al., 2007) (Table 2). A highly variable range in
soil δ13CR of 0.3–12.5 ‰ occurred in an experimental gar-
den with deciduous trees (Moyes et al., 2010).

The information on dynamics of ecosystem respiration
(δ13CR assessed by Keeling-plot approaches) presents again
a very heterogeneous picture: while Ogée et al. (2003) and
Schnyder et al. (2004) found only minor nocturnal varia-
tion of δ13CR (<3 ‰), others report that nocturnal ecosys-
tem δ13CR presented the largest variation among different
respiratory components (Kodama et al., 2008; Unger et al.,
2010a). Nocturnal variations inδ13CR were 6.4 ‰ in a grass-
land (Bowling et al., 2003), 4.2–8.1 ‰ in a Mediterranean
woodland (Werner et al., 2006; Unger et al., 2010a), 6.1 ‰
in a Pinus sylvestrisstand (Kodama et al., 2008), 2.6–3.6 ‰
in a subalpine forest (Bowling et al., 2005; Riveros-Iregui
et al., 2011), and 3.8 ‰ a beech-dominated deciduous forest
(24 h-cycle, Knohl et al., 2005).

The literature overview in this section clearly demon-
strates that the short-term variations inδ13C of respired CO2
do not follow a straightforward pattern and differ between
organs, species, ecosystem compartments and ecosystems.
This indicates the necessity to understand the processes re-
sponsible for the observed patterns and differences among
systems. Accordingly we will now focus on the potential
mechanisms driving these short-term dynamics.

4 Mechanisms

The potential mechanisms, which may drive the diel varia-
tions inδ13Cres /δ13CR on the plant, soil and ecosystem level
can be summarised in three main groups:

M1: Substrate driven variations: short-term variations in
the carbon isotopic signature of the major respiratory
substrate (i.e. sugars or water soluble organic matter)
and/or switches between substrates with different car-
bon isotope composition drive plantδ13Cres.

M2: Isotope fractionation driven variations: changes in
respiratory isotope fractionation in different metabolic
pathways over the diel course determine plantδ13Cres.

M3: Flux ratio driven variations: temporal variability
in the contribution of component fluxes with distinct
isotopic signatures to composite fluxes (e.g. soil and
ecosystem respiration) drive variations inδ13CR.

These three mechanisms are not mutually exclusive and a
combination of these can and most likely does occur. In the
following synthesis we will explore step by step whether the
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 1 

Figure 1 2 

 3 

Fig. 1. Examples for diel variations inδ13Cresand inδ13C of puta-
tive respiratory substrates.(A) shows soil and stemδ13Cres from a
Pinus sylvestrisforest compared toδ13C of phloem exudates (Ko-
dama et al., 2008).(B) shows diel variations in shoot and root
δ13Cres as compared toδ13C in phloem exudate and root water
soluble organic matter inTriticum aestivum(Kodama et al., 2011).
Gessler et al. (2009b) and Brandes et al. (2006) showed that the
δ13C of water soluble organic matter is a reasonably good proxy
for δ13C of the neutral sugar fraction and thus the major respiratory
substrate.

three main mechanisms alone or in combination can explain
the observed short-term variability inδ13Cresandδ13CR. The
complexity of the different processes on the plant level is
indicated in Fig. 2 and summarized in Table 3.

4.1 Substrate driven variations (M1)

It is well established that different mechanisms and processes
can induce diel variations inδ13C of primary assimilates in
leaves and during transport to heterotrophic plant tissues;
thereby potentially inducing short-term variation inδ13Cres
in leaves, stems and root. When we, as a first approximation,
assume that respiration is fed by onlyone major respiratory
substrate pool(i.e. new soluble sugars of current photosyn-
thesis) with a homogenousδ13C (i.e. all substrate molecules
share a comparableδ13C at a given time) the following
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Fig. 2. Physiological processes and isotope fractionations influencing the short-term variation of the carbon isotope signature of organic
compounds and in respired CO2 in leaves (I), on the transport pathway (II), and in the heterotrophic sink tissues (III) of plants. On the left
side of the figure environmental factors potentially affecting carbon isotope fractionation processes are listed. In the middle of the figure
the processes leading to an alteration ofδ13C are given in red. On the right side the effects on the carbon isotope composition of organic
matter and respired CO2 are described. The bold blue arrows denote the carbon flux through the plant. VPD, vapour pressure deficit;Tair, air
temperature;Tleaf, leaf temperature; PAR, photosynthetic active radiation;gs andgm, stomatal and mesophyll conductance, respectively;A,
assimilation rates. Particular processes and mechanisms are denoted in detail in Table 3 (further information is given in the text): substrate
driven variations inδ13Cres: M1.1: photosynthetic discrimination and potential effects on the diel patterns ofδ13C of assimilates; M1.2:
post-photosynthetic carbon isotope fractionation during transitory starch accumulation; M1.3: dampening of the diel variations inδ13C
of phloem sugars during basipetal transport, M1.4: switch between respiratory substrates, M1.5: light enhanced dark respiration (LEDR);
Isotope fractionation driven variations inδ13Cres: M2.1: fragmentation fractionation (i.e. fractionation associated with the fragmentation
of molecules with non-statistical intramolecular carbon isotope distribution), M2.2: variations of fluxes in the metabolic pathways; M2.3:
refixation of CO2 by PEPC.
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Fig. 2. Continued.

mechanisms (M1.1 to M1.4) related to carbon assimilation
and transport could potentially drive diel variability in
δ13Cres of leaves, stems and root.

M1.1: Photosynthetic carbon isotope discrimination
(Farquhar et al., 1982), which determines theδ13C of
primary respiratory substrate, varies over the diurnal course
(e.g. Gessler et al., 2007; Wingate et al., 2010) as a result of
changes in light intensity, air temperature, vapour pressure
deficit (VPD) and other environmental factors, which affect
assimilation, stomatal (gs) and mesophyll conductance (gm)

as well as photorespiration and dark respiration (see Fig. 2
(M1.1), reviewed by Brugnoli and Farquhar, 2000). While
we are able to precisely predict changes in carbon discrimi-
nation and variations inδ13C of fresh assimilates in response
to changes in VPD, light and temperature, much less is
known on the isotopic effects of mesophyll CO2 conduc-
tance (gm), photorespiration and dark respiration throughout
the day (e.g. Warren and Adams, 2006; Wingate et al., 2007;
Lanigan et al., 2008; Tcherkez et al., 2010). There have been
recent insights that there is active regulation of internal CO2
conductance through aquaporins, which are transporting
CO2 across plasma membranes (Hanba et al., 2004; Flexas
et al., 2008). This might allow fast diel adjustment of
mesophyll conductance to meet photosynthetic requirements

(Flexas et al., 2007), but so far measurements of diurnal
dynamics ingm are often constrained by methodological
issues (Pons et al., 2009).

Overall, photosynthetic discrimination alone cannot ex-
plain the strong day-night variations inδ13Cres (and respira-
tory substrate) as it is active only during daylight. In addition,
sugarδ13C values at night are far more positive than pre-
dicted by photosynthetic discrimination alone (Tcherkez et
al., 2004; Gessler et al., 2008) and thus post-photosynthetic
processes must be taken into account in order to fully explain
observed diel variations ofδ13Cres.

M1.2: Post-photosynthetic carbon isotope fractionation
related to transitory starch metabolism. Starch accumu-
lation during daylight and remobilization at night alter the
isotope signal of leaf and phloem-exported sugars on the
diel scale (Tcherkez et al., 2004; Gessler et al., 2008; see
Fig. 2; M1.2). During the day, the synthesis of transitory
starch is either under plant internal control to adapt the stor-
age C supply to environmental conditions (Zeeman et al.,
2007) or occurs mainly when the utilisation of newly pro-
duced triose-phosphates from the chloroplast becomes rate
limiting to carbon assimilation (Beck and Ziegler, 1989).
Gleixner et al. (1998) suggested that transitory starch is
13C enriched relative to soluble sugars because of the iso-
tope effects on the “aldolase-reaction” determined originally
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C. Werner and A. Gessler: Diel variations in the carbon isotope composition 2445

Table 3. Potential mechanisms causing diel variation inδ13Cres at
the plant scale.

Substrate driven variations inδ13Cres

M1.1: Photosynthetic discrimination and potential effects
on the diel patterns ofδ13C of assimilates

M1.2: Post-photosynthetic carbon isotope fractionation
during transitory starch accumulation

M1.3: Isotope effects during basipetal transport: dampening
of the diel variations inδ13C of phloem sugars

M1.4: Switch between respiratory sources with different
isotopic signatures

M1.5: Light enhanced dark respiration (LEDR) after
light-dark transition during decarboxylation of a
malate pool

Isotope fractionation driven variations inδ13Cres

M2.1: Fragmentation fractionation (i.e. fractionation associ-
ated with the fragmentation of molecules with non-
statistical intramolecular carbon isotope distribution)
and enzyme related effects

M2.2: Isotope fractionation due to variations of fluxes in
different metabolic pathways

M2.3: Refixation of CO2 by PEPc

by Gleixner and Schmidt (1997). As a consequence,13C-
depleted triose phosphates are exported from the chloroplast,
which are used for sucrose production during the light pe-
riod and thus influenceδ13Cres. It has also to be mentioned
that the13C enriched transitory starch does not provide sub-
strates for respiratory and photorespiratory decarboxylation
in irradiated photosynthesizing leaves (Ivanova et al., 2008).
During the night the13C-enriched transitory starch is used
for sucrose synthesis. As a result, a∼4 ‰ δ13C oscillation
between light- and dark-exported sucrose has been predicted
and observed (Ghashghaie et al., 2001; Tcherkez et al., 2004;
Gessler et al., 2008, 2009a).

However, these variations in the fast-turnover organic mat-
ter pool in leaves had a much lower day-night amplitude than
the observed diel changes in respiredδ13CO2 (Brandes et al.,
2006, 2007; Gessler et al., 2007, 2008; Kodama et al., 2008;
Werner et al., 2009, see Table 1) and were also phase-shifted
compared toδ13Cres (Kodama et al., 2008, see also Fig. 1).
Furthermore, opposing trends in diel variation ofδ13Cresand
δ13C of the leaf sugars and phloem sugars (Gessler et al.,
2007, 2009b) occurred as shown for leaves ofR. commu-
nis in Fig. 3a. Others found no significant diel variations in
leaf soluble sugars or water soluble organic matter (WSOM)
(Hymus et al., 2005; Sun et al., 2009; Werner et al., 2009;
Wegener et al., 2010; Rascher et al., 2010) but still strong
variations inδ13Cres (Fig. 3b–c), indicating that diel varia-
tions in leafδ13Crescannot be solely explained by changes in
the isotopic signature of the substrate.
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 1 

Figure 3 2 Fig. 3. δ13Cres plotted againstδ13C of potential respiratory sub-
strates during the diel course.(A) data for leaf emitted CO2 and leaf
soluble sugars inR. communisduring a 24 h cycle. Each data point
represents one individual plant at one time point. Samples were
taken twice during the day (10:00; 15:30) and twice during the dark
period (22:30; 03:30). Data are from Gessler et al. (2009b).(B) data
for trunks ofP. sylvestristaken from Kodama et al. (2008). As sub-
strate for respiration we have chosen trunk phloem exudates from
the same position where the CO2 measurements were made. Data
are from diel courses measured every 3 h over 4 days. (C andD)
data fromRosmariuns officinalisof leaves and roots, respectively;
of dark-respiredδ13Cres and WSOM measured every 2–3 h over
the diurnal course in Portugal in May and August from Dubbert et
al. (2011).
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M1.3: Isotope fractionation during carbon transport :
during phloem transport sugars are continuously released
from the phloem but a major part is retrieved again into the
sieve tubes (Van Bel, 2003). This process might be respon-
sible for the intermixing of sucrose molecules with differ-
ent metabolic histories and residence times (Brandes et al.,
2006). As a result, the diel variations inδ13C originating
from starch accumulation and breakdown are dampened with
increasing transport distance along the stem in basipetal di-
rection (Fig. 2; M1.3).

Consequently, the diel cycle ofδ13C in organic matter in
trunks and stems of trees is mainly dependent on the position
along the trunk (Gessler et al., 2007) and dampening as well
as time lags have been observed (Keitel et al., 2003; Bran-
des et al., 2006, 2007). At the tree trunk base often no diel
variation in phloem sugarδ13C was present (Gessler et al.,
2007; Kodama et al., 2008; Betson et al., 2007; Rascher et
al., 2010) whereas strong diel variations inδ13Cresare gener-
ally observed (Kodama et al., 2008; Maunoury et al., 2007).
They thus cannot be explained by variation in substrateδ13C
(Fig. 3b for trunksP. sylvestris).

In roots there are generally only very low or non-
significant short-term variations inδ13C of sugars or WSOM
(Göttlicher et al., 2006; Wegener et al., 2010; Kodama et al.,
2011). The lack of short-term variations in roots (Fig. 3d)
is highly plausible, given the mixing of sugars with different
residence times during phloem transport into the roots. The
only exception we are aware of isRicinus communisgrown
under controlled conditions, whereδ13C of root sugars var-
ied by approx 3.7 ‰ within 24 h (Gessler et al., 2009b),
which also explained 72 % (p < 0.01) of the diel variation of
root δ13Cres. In contrast, in field-grown plants, rootδ13Cres
showed a clear diel variation (Table 1, Unger et al., 2010a),
even without significant variations in the respiratory sub-
strate (Kodama et al., 2011; Fig. 1b).

In conclusion, there is a conceptual framework for
explaining the observed short-term variations inδ13C of
sugars and other fast turn-over carbon compounds (Fig. 2).
However,δ13C variations of new assimilates are too small
or uncorrelated to explainδ13Cres dynamics (Fig. 3), and
thus cannot be solely responsible for the diel variations in
δ13Cres, when one major respiratory pool consisting of one
compound class is assumed to fuel respiration. Another
aspect of substrate-induced variations (M1) might be related
to the use of different respiratory substrates:

M1.4: A switch between respiratory sources of dif-
ferent storage pools or substrate types including, soluble
sugar, starch, lipids or amino acids, or stored and fresh
assimilates with different isotopic signature could account
for variation inδ13Cres (Tcherkez et al., 2003; Nogués et al.,
2004; Fig. 2; M1.4).

Leaf respiration uses several carbon sources with differ-
ent isotopic characteristics and residence times (Schnyder
et al., 2003; Lehmeier et al., 2008, 2010). However, in

spite of differences inδ13C between glucose, fructose and
sucrose, mass-balance calculations taking into consideration
measured diel changes in pool sizes andδ13C signatures
could only explain 1.1 ‰ variation inHalimium halimifolium
even though observed dielδ13Cres variation was 8.9 ‰. The
amount of explainable variation was even less in four other
species (Werner et al., 2009).

The effect of switches between substrate classes (e.g. from
sugars to lipids) onδ13Cres has been shown experimentally
during plant starvation under continuous dark (up to 10 ‰
shift, Tcherkez et al., 2003) and may play a role under
natural conditions in the case of severe stress, like wilting
or senescence (Unger et al., 2010a). However, a complete
shift between different respiratory substrates during the
day seems rather unlikely for healthy plants under ambient
conditions (Hymus et al., 2005). One exception might be
a transient shift in utilization of organic acid pools, which
accumulated in the light and are rapidly decarboxylated
upon darkening.

M1.5: Light enhanced dark respiration (LEDR) is
the transient increase in respiration upon darkening in
a photosynthesis-dependent manner (Azcon-Bieto and
Osmond, 1983; Atkin et al., 1998). Light-acclimated leaves
released strongly13C-enriched CO2 as compared to potential
substrates in the first 5–10 min after darkening followed by
a rapid decline inδ13Cres (Barbour et al., 2007; Werner et
al., 2007). Both the extent of enrichment and the subsequent
13C-depletion augment during the light period (Fig. 4,
Werner et al., 2009) and have been shown to be linearly
related to cumulative carbon gain during the light period
(Hymus et al., 2005) even under different growth-light
conditions (Priault et al., 2009). InRicinus communis
LEDR-dependent13C-enrichment was fully explained with
the accumulation of13C-enriched malate in the light and
rapid malate decarboxylation just after darkening (Gessler
et al., 2009b, see Fig. 2; M1.5). In the light, both glycolysis
and particularly the Krebs cycle (KC) are strongly inhibited
(Tcherkez et al., 2005; Nunes-Nesi et al., 2007). Moreover,
during illumination probably only a non-cyclic Krebs “cy-
cle” operates in autotrophic tissues (Tcherkez et al., 2009;
Sweetlove et al., 2010) because three key enzymes, i.e. the
mitochondrial isocitrate dehydrogenase (Igamberdiev and
Gardestr̈om, 2003), the succinate dehydrogenase (Popov et
al., 2009) and the 2-oxoglutarate dehydrogenase (Gessler et
al., 2009b) are inhibited. As a consequence, malate fixed
via phosphenolpyruvatecarboxylase (PEPc) can accumulate
(see Fig. 5a). However, the malic enzyme is most certainly
associated with an isotope effect. If we assume a dynamic
Rayleigh process (see Gessler et al., 2009b)δ13Cres would
be more depleted immediately after darkening while getting
more enriched as the malate pool declines (Werner et al.,
2009). Indeed, such a transient increase is sometimes
observed during the first 5–10 min upon darkening (Fig. 4,
red arrows); however, a rapid decline from higherδ13Cres
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Fig. 4. Diel (grey dashed arrow) and short-term (red arrows) post-
illumination changes of leaf dark respiredδ13CO2 (δ13Cres) during
25 min dark phases over the diurnal course (grey areas indicate the
dark period). Black bars at the bottom of the figure represent the
time during which the measured leaf was darkened, while the rest
of the plant remained under the growth light conditions. Data are
mean values ofQuercus ilexleaves (n = 3, ± SE), reprinted from
Werner et al. (2009).

values is generally observed during light-dark transitions
(Fig. 4, Barbour et al., 2007; Werner et al., 2007, 2009),
which could indicate several overlaying processes such as
a partitioning of malate between the malic enzyme and
mitochondrial malate dehydrogenase (Werner et al., 2011b).
LEDR is a transient effect and under natural conditions it
has been shown to occur at dusk after sunny days (Barbour
et al., 2011). Based on current knowledge, the short duration
of LEDR cannot explain continuous nocturnal dynamics in
δ13Cres (e.g. Sun et al., 2009, 2010; Unger et al., 2010a).
Furthermore, a diurnal increase inδ13Cres can also be
observed after the first transient LEDR effect (e.g. Fig. 4,
grey arrow) indicating processes in addition to LEDR are
influencingδ13Cres.

In conclusion, it is unlikely that diel variations of respired
δ13CO2 can be entirely explained byδ13C variation in a
single substrate or by a switch between substrates. In au-
totrophic tissues at least part of the day-night differences
in δ13Cres might be attributed to LEDR (Kodama et al.,
2011; Barbour et al., 2011) but these do not apply for non-
photosynthetic tissues. As a consequence isotope fractiona-
tion driven variations (M2) should be taken into account.

4.2 Fractionation driven variations (M2)

Since δ13Cres markedly deviates from substrateδ13C, we
have to assume that diel variation inδ13Cres may be mainly
affected by carbon isotope fractionation during respiration.
The following mechanism might be involved:

M2.1: Fragmentation fractionation and enzyme related
isotope effects: the often observed13C enrichment in
respired CO2 above the organic source is assumed to orig-
inate from the fragmentation of the substrate molecule due
to heterogeneous isotope distribution (Tcherkez et al., 2003,
2004; see Figs. 2f, 5, 6). There is a non-homogeneous distri-
bution of δ13C within the glucose molecule where C-3 and
C-4 are13C-enriched compared to other positions due to
isotope fractionation in the aldolase reaction (Fig. 6, Ross-
mann et al., 1991; Gleixner and Schmidt, 1997; Hobbie and
Werner, 2004). During glycolysis, C-1 of pyruvate derived
from enriched C-3 and C-4 of glucose is decarboxylated by
pyruvate dehydrogenase (PDH) (cf. Tcherkez et al., 2003).
Consequently, the PDH reaction releases13C-enriched CO2,
whereas the remaining molecule enters the Krebs Cycle (KC)
which releases in turn13C-depleted CO2 – compared with the
meanδ13C of the original glucose molecule (see Fig. 5, 6).
Any change in the relative contribution of CO2 decarboxy-
lated in the KC versus by PDH to total CO2 production may
thus cause variations inδ13Cres. Furthermore, kinetic and
equilibrium isotope fractionation in glycolysis and KC may
also occur. Pyruvate is also the substrate for amino acid
synthesis and the PDH reaction has been recognized to im-
ply kinetic isotope effects on all three C atoms of pyruvate
(Melzer and Schmidt, 1987). The kinetic isotope effect on
the PDH reaction is also responsible for the13C depletion of
(acetogenic) lipids (DeNiro and Epstein, 1977), which im-
plies a metabolic branching point at the pyruvate stage. In
case of a non-quantitative conversion of pyruvate to acetyl-
CoA and CO2 and a metabolic branching point at pyruvate,
the kinetic isotope effect on the C-1 of pyruvate will be ex-
pressed in vivo and, as a consequence, the released CO2 will
be depleted in13C relative to C-3 and C-4 of glucose. In
conclusion, it is most likely a mixed influence of fragmen-
tation fractionation and enzymatic isotope effects related to
metabolic flux rates (e.g. see Fig. 5) which together drive
δ13Cres variations.

The potential13C enrichment of PDH-derived CO2 above
the whole glucose molecule as a result of “fragmentation
fractionation” depends on the extent of intramolecular13C
variation. The maximum deviation of a particular C atom
from the averageδ13C value of the molecule was deter-
mined as 6.3 ‰ for glucose in yeast (by stepwise biochem-
ical degradation, Rossmann et al., 1991, see Fig. 6). Re-
cently, NMR data for sucrose showed a somewhat larger en-
richment at the C-3 and C-4 position (Fig. 6) and in par-
ticular a larger intramolecular deviation between the C-4 to
C-6 positions (of 13.3 ‰, Gilbert et al., 2009) compared to
the data from Rossmann et al. (1991: 11.2 ‰). Neverthe-
less, assuming a complete isomerisation reaction between
glyceraldehyd-3-phosphate and dehydroxyacetonphosphate,
the isotopic signature within the pyruvate molecule would be
similar. However, new emerging NMR data indicate that the
heterogeneous13C distribution in carbohydrates may vary
among species and be related to environmental conditions
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Fig. 5. Simplified metabolic scheme showing major fluxes of respiratory substrates (black arrows), isotopic compositions (‰) and fractiona-
tion factors (α) of key enzymes and processes that influenceδ13Cres: C-1 of pyruvate which is decarboxylated during pyruvate dehydrogenase
(PDH) reaction is13C-enriched (−21 ‰), while relatively depleted C-2 and C-3 (−27.0 ‰) which form acetyl-CoA enter the Krebs cycle
(KC) (values based on Rossmann et al., 1991). Two distinct situations are indicated:(A) full decarboxylation of the carbon molecules in
the Krebs cycle (KC) or(B) high investment into secondary metabolism and fatty acid synthesis. Isotope fractionation processes in the KC
are exemplified bycitrate synthaseandα-ketoglutarate (αKG) dehydrogenase (α = 1.023) (see Tcherkez and Farquhar, 2005 and literature
therein, Bulzenlechner et al., 1996; Melzer and Schmidt, 1987; Schmidt, 2003). Further, the potential involvement of an enriched malate
pool (−5.1 ‰, Barbour et al., 2007) which is produced duringphospoenolpyruvate carboxylase(PEPc) reaction with small kinetic enzyme
fractionation against13C (α = 1.002) and equilibrium fractionation against12C (α = 0.991) during HCO−3 equilibration (O’Leary 1981,

Farquhar et al., 1989) is indicated in(A) (dashed line). The humanmalic enzymefractionates in favour of12C (α = 1.014, Rishavy et al.,
2001, see Gessler et al., 2009b), the reaction following a Rayleigh distillation process after the light-dark transition (see also Barbour et al.,
2007). Adapted from Barbour et al. (2007), Werner et al. (2009) and Gessler et al. (2009b).

(Gilbert et al., 2011), which may add to species-specific dif-
ferences inδ13Cres.

Utilizing the data from Rossmann et al. (1991; Figs. 5, 6),
the potential variation inδ13Cres due to fragmentation frac-
tionation can be calculated: if only pyruvate decarboxyla-
tion by PDH is assumed (i.e. when the KC cycle is fully
inhibited in the light)δ13Cres of C-1 of −21 ‰ is released
(Fig. 5b), whereas the complete decarboxylation of the glu-
cose molecules in KC producesδ13Cres of the substrate with
−25 ‰ (Fig. 5a). Thus the shift from 0 to 100 % decar-
boxylation in the KC produces an isotope shift of 4 ‰ (il-
lustrated in Fig. 7 for 0 or 100 % carbon flow into KC de-
carboxylation). However, the KC is also an important source
for amino-acid biosynthesis, providing carbon skeletons for
glutamic and aspartic acid (notably amino acids which are
strongly enriched in13C, Hayes, 2001). If pyruvate is not
fully respired, both equilibrium and kinetic isotope effects
that occur in the KC (Tcherkez and Farquhar, 2005) could
lead to more negativeδ13Cres. The relative decrease in

δ13Cres depends on the carbon partitioning into KC and the
effective enzymatic isotope fractionations, which are depen-
dent on the flux rate.

Figure 7 exemplifies on a theoretical basis the potential
effects of varying carbon flux rates from 0–100 % through
the PDH and KC considering isotope fractionation by (i) cit-
rate synthase (εCS ∼ 23 ‰) and (ii) α-ketoglutarate dehy-
drogenase (εKG ∼ 23 ‰)(fractionation factors taken from
Tcherkez and Farquhar, 2005 and references therein, see also
legend Fig. 5).

If the carbon flow into the KC is low (e.g. 5 %), isotope
fractionation is high and the CO2 released in KC enzymatic
reactions will be strongly depleted in13C (−48.9 ‰). How-
ever this has little effect on the overallδ13Cres as it con-
stitutes only a small fraction which is mixing into the en-
richedδ13CO2 flux released by PDH (−21 ‰). Inversely, if
the carbon flow into KC decarboxylation is high (e.g. 95 %)
the effective isotope fractionation diminishes, andδ13C in
respired CO2 approaches−25 ‰. However, Fig. 7 clearly
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Figure 6 2 

 3 

Fig. 6. Relative intramolecular13C distribution for different carbon
positions calculated as deviation from the meanδ13C of the whole
molecule. Examples are given for glucose (*), determined by step-
wise fermentation by Rossmann et al. (1991) and for the glucose
moiety of sucrose (#) determined by NMR by Gilbert et al. (2009).
Glucose enters glycolysis where two CO2 molecules from the C-
3 and C-4 positions are decarboxylated by pyruvatedehydrogenase
(PDH) and the remaining13C-depleted Acetyl-CoA molecules en-
ter the Krebs cycle (KC).

illustrates that the largest decrease (∼9 ‰) occurs at inter-
mediate mixing ratios (at 50 % in the given example), when
the CO2 release from KC decarboxylation is still relatively
depleted (38.6 ‰) and constitutes two-thirds of the overall
CO2 evolved (due to two decarboxylation steps in the KC) so
that the totalδ13Cres decreases to−29.8 ‰ (Werner, 2010).
Potential isotope fractionation can also occur in the PDH re-
action as explained above, which would further deplete the
Acetyl-CoA at the C-2 position if the reaction was incom-
plete (Melzer and Schmidt, 1987, effect indicated on the z-
axis, Fig. 7).

This example indicates that on a theoretical basis large
isotope effects can occur through fractionation effects and
metabolic branching points in the respiratory pathways, how-
ever to what extend this will be expressed in vivo still re-
mains to be resolved. Only recently, Werner et al. (2011b)
postulated that the isotope effects associated with the KC en-
zyme reactions do most probably not lead to in vivo isotope
discrimination. On the one hand, the inner mitochondrial
membrane is impermeable for acetyl-CoA (Voet and Voet,
1995) and thus acetyl-CoA will react quantitatively with ox-
aloacetate to citrate. As a consequence, the citrate synthase
reaction should not lead to any isotope fractionation in the
acetyl-part of citrate (Werner et al., 2011b). On the other
hand, the whole KC is assumed to work as an organised en-
zyme complex (Srere et al., 1996). The proposed channelling
of the KC substrates at reduced concentrations would avoid
metabolic branching to other enzymatic reactions (Srere et
al., 1996). As a consequence, theoretically possible kinetic
isotope effects on KC enzyme reactions would not be ex-
pressed in vivo (Werner et al., 2011b). We need at that time
clear experimental evidence if kinetic isotope fractionation
occurs in the KC under physiological conditions as postu-
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 1 

Figure 7 2 Fig. 7. Theoretical isotopic fractionation effects during decarboxy-
lation of pyruvate. The theoretical effects were calculated utilizing
a simple mass balance equation, through adding the flux-weighted
isotope ratios of each carbon position (C-1-3):δ13Cres= [f1 ·

δ13C-1 +f2 · (δ13C-2 + εeff(CS)) + f3 · (δ13C-3 + εeff(KG))] /
(f1 +f2 +f3) with f1-3 being the carbon flux (wheref2 equals
f3 as both carbon atoms enter the KC as Acetyl-CoA moiety), and
δ13C-1-3 the isotopic composition of the carbon molecules at the
C-1 to C-3 positions of pyruvate andε denotes the enzymatic iso-
tope effect. The effective enzyme isotope fractionation (εeff) in
the KC of the citrate synthase (εCS) and theα-ketoglutarate de-
hydrogenase (εKG) is dependent on the carbon flow in the KC (see
Hayes, 2001) by:εeff =

α
1+ε·f

−1. Potential fractionation effects
were calculated by varying the carbon flow rates into KC (f2,3)

from 0–100 %, assuming fractionation factor ofεCS and εKG of
−23 ‰ (see Tcherkez and Farquhar, 2005 and Fig. 5 for details).
PDH could also potentially fractionate if the reaction is incomplete
(Melzer and Schmidt, 1987) which would further depleteδ13Cres,
which was tested assumingf1 of 50–100 % (z-axis), but occurrence
of the latter processes in vivo is unknown.

lated by Tcherkez (2010) or not as concluded by Werner et
al. (2011b).

In general, it has to be considered that, both the KC
and to a lesser extend also the mitochondrial PDH are
down-regulated in the light (Budde and Randall, 1990;
Tcherkez et al., 2009; Werner et al., 2009) and that only part
of the KC reactions may function in a non-cyclic manner
(e.g. Sweetlove et al., 2010). In the dark when the KC is
reorganized again, the impact of fragmentation fractionation
together with potential kinetic isotope discrimination in vivo
will depend on how much of the respiratory substrate is
oxidized to CO2 and which portion is used for biosyntheses.
Large fractionation effect within the mitochondria may prob-
ably only be relevant during transitory stages (e.g. during
up-regulation upon darkening). There are, however, other
metabolic branching points within the cell, which could
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lead to fractionation effects and carbon partitioning along
different pathways has to be considered:

M2.2: Variations of fluxes in the metabolic path-
ways: the relative carbon fluxes involved in metabolic
pathways may change depending on the metabolic status of
cells, tissues or plants. Day-night variations with relatively
higher allocation of carbon to isoprenoids (Loivamäki et al.,
2007) and various other secondary compounds (Ayan et al.,
2006) as well as the non-cyclic nature of the KC in the light
(Tcherkez et al., 2009) are thus highly plausible triggers for
changes in the relative contribution of PDH to KC derived
CO2 as described above (see Fig. 2; M2.2).

Increased activity of the oxidative pentose phosphate path-
way (PPP), which decarboxylates the13C depleted C-1 po-
sition of glucose, can be significant in roots (Dieuaide-
Noubhani et al., 1995; Bathellier et al., 2008, 2009). Thus,
temporal changes in the partitioning of carbon originat-
ing from glucose-6-phosphate between glycolysis and PPP
might also be responsible for diel variations inδ13Cres.

Marked differences between carbon allocation into dif-
ferent metabolic pathways, i.e. an increasing secondary
metabolism when carbon accumulated throughout the day,
could be related to differences between plant functional
groups (Priault et al., 2009). A variety of secondary com-
pounds including volatile isoprenoids, oxygenated VOCs,
aromatics, and fatty acid oxidation products can be emit-
ted by plants (e.g. Jardine et al., 2010a). The biosynthesis
evolves the decarboxylation of the13C-enriched C-1 from
pyruvate (or phosphenolpyruvate), leading to the biosynthe-
sis of VOCs from the PDH bypass, 2-C-methy. l-D-erythritol
4-phosphate, and mevalonic, shikimic, and fatty acid path-
ways (e.g. Jardine et al., 2010b). In contrast to the mi-
tochondrial PDH, the plastidial PDH is activated by light-
induced changes in the stroma (Tovar-Méndez et al., 2003)
as it fuels Acetyl-CoA for fatty acid synthesis and secondary
metabolism. Fatty acid biosynthesis involves plastidic PDH.
In the light, CO2 originating from the13C-enriched C-1 of
pyruvate will be released and – most probably – re-fixed dur-
ing photosynthesis. Chain elongation of fatty acids occurs
partially in the cytosol and involves acetyl-CoA originating
(via the citrate shuttle) from the Krebs-Cycle (Bowher et al.,
2008; see Fig. 1 in Werner et al., 2011b). Starting from PEP,
the C-1 of pyruvate is released as CO2 by the mitochondrial
PDH for the acetyl-CoA supply in this reaction. While the
13C-enriched C-1 from pyruvate will be released as CO2,
pyruvate positional labelling showed that the13C depleted C-
2 and C-3 carbon atoms of the acetyl-moiety are emitted as
a variety of volatile isoprenoids and oxygenated VOCs (such
as isoprene, acetaldehyde, ethanol, or acetic acid) (Jardine
et al., 2010b). VOC emissions generally range about 2–5 %
(e.g. Guenther et al., 1995) of mostly recently fixed carbon
(Ghirardo et al., 2011), but can increase at least by an or-
der of magnitude during stress conditions (e.g. Kesselmeier
et al., 2002), which may potentially cause a large effect on

the emittedδ13CO2. In plants, two different pathways are
responsible for the biosynthesis of isopentenyl diphosphate,
which is the central intermediate for isoprenoids (Bick and
Lange, 2003). In the plastidic deoxyxylulose 5-phosphate
(DXP) pathway CO2 originating from the13C enriched C-1
of pyruvate is released in the DXP synthase reaction. To our
knowledge no investigations have been performed whether
there is an in vivo kinetic isotope effect on this reaction.
Since the isoprene synthesis is strongly photosynthesis and
thus light dependent (Niinemets et al., 1999) re-fixation of
the CO2 released in the chloroplast is likely. For the cytosolic
mevalonate pathway acetyl-CoA is the starting point. It orig-
inates from Krebs cycle citrate and thus its supply involves
the release of CO2 originating from the C-1 of pyruvate by
the mitochondrial PDH (see Fig. 2a in Werner et al., 2011b).

Moreover, acetaldehyde is emitted from a variety of plant
species (Nguyen et at., 2009) and one potential mechanism
involved in its production is the decarboxylation of pyruvate
by leaf pyruvate decarboxylase (PDC) (Karl et al., 2002). As
in the PDH reaction, the PDC reaction releases the C-1 of
pyruvate as CO2 and a kinetic isotope effect on this reaction
might cause a further13C depletion of the acetaldehyde pro-
duced (DeNiro and Epstein, 1977).

A pyruvate positional13C-labelling experiment provided
further direct evidence that diel changes in the relative ac-
tivity of the PDH-reaction (measured after 5 min darkening)
occurred in species with marked increase inδ13Cres (Priault
et al., 2009). Diel variations inδ13Cres were related to an
increased metabolic activity of the PDH probably due to an
increase in carbon allocation to secondary metabolism, while
carbon flow into KC remained at a constant low level (Priault
et al., 2009; Wegener et al., 2010). In contrast, an herb with-
out significant diel variation inδ13Cres and presumably low
secondary metabolism had a stable, low activity of both PDH
and KC activity throughout the day (Priault et al., 2009; We-
gener et al., 2010).

Considering mass-balance requirements, the release of
highly enrichedδ13Cres could be counterbalanced by the
emission of13C-depleted VOCs; otherwise a compensating
effect on theδ13C of leaf organic matter would have to occur.
Interestingly, Wegener et al. (2010) observed that strong13C
enrichment of leaf respired CO2 above substrate was highly
correlated with differences in autotrophic vs. heterotrophic
tissue13C, i.e. species with high diel leafδ13Cresenrichment
had larger13C-differences between leaf and root WSOM
than species with lower diel leafδ13Cres. Nevertheless, most
leaves (particularly evergreen or longer-lived leaves) do not
exhibit a progressive13C depletion once the leaf has matured
(Eglin et al., 2009; Werner and Ḿaguas, 2010). Thus, a coun-
terbalancing effect from the emission of VOCs depleted in
13C might be a plausible explanation.

Moreover, a close positive correlation between respi-
ration rate and respiratory isotope fractionation over the
diel course was observed for trunks ofP. sylvestrisand
for shoots of Triticum aestivum(Kodama et al., 2008;
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2011): with more positiveδ13Cres at low compared to
high respiration rates. Comparable results were observed
by Ghashghaie et al. (2003) for three herbaceous species.
Furthermore, as observed by Kodama et al. (2008, 2011)
respiration rates increased linearly with temperature. One
reason for the decreasing13C enrichment of respired CO2
with increasing temperature might be attributed to the
temperature-dependent kinetic isotope effect of the PDH re-
action (Tcherkez et al., 2003). Moreover, as glycolysis
(and thus decarboxylation of pyruvate) are less temperature-
dependent than mitochondrial oxidation capacity and thus
KC mediated CO2 flux (cf. Berry and Raison, 1981; Atkin
et al., 2000), the relative contribution of CO2 from glycoly-
sis to total respiration might also increase at lower tempera-
tures (e.g. in the night) explaining the higher apparent isotope
fractionation at lower respiration rates. Thus, the fractiona-
tion hypothesis based on temporal variations in fragmenta-
tion fractionation during respiration (M2.1) due to changes in
carbon fluxes through different metabolic pathways (M2.2)
might offer a conclusive explanation for day-night variations
of δ13Cres.

A particular case is the variation of carbon fluxes, which
are directed in opposite directions:

M2.3: Re-fixation of CO2 by PEPc causes a CO2
flux in the direction opposite to the respiratory flux (Fig. 2;
M2.3). PEPc discriminates against13C by ca. 2.2 ‰. Equi-
librium dissolution of CO2 into water concentrates13CO2
in the gas phase by 1.1 ‰, while the hydration equilibrium
favours13C by 9 ‰ (O’Leary, 1991), resulting in an overall
discrimination of 5.7 ‰ against12C (Farquhar et al., 1989;
Brugnoli and Farquhar, 2000). Thus PEPc activity causes
the produced organic matter to be13C enriched whereas
the remaining (non-fixed) CO2 is relatively 13C depleted.
Thus (re)-fixation by PEPc can also alter theδ13C of CO2
emitted from a plant. Since both processes and the effective
isotope fractionations cannot be separated the isotopic dif-
ference between putative substrate and respired CO2 is often
referred to as apparent isotope fractionation (e.g. Gessler et
al., 2009b).

It is known that differences in PEPc activity among or-
gans can cause differences in apparent respiratory isotope
fractionation and thus inδ13C of respired CO2 along the
plant axis (Badeck et al., 2005). PEPc activity has been
found in all plant organs (e.g. Hibberd and Quick, 2002;
Berveiller and Damesin, 2008) and thus PEPc activity may
also be involved in diel variations inδ13Cres. The anaplerotic
PEPc reaction in leaves of C3-plants is activated in the light
(Duff and Chollet, 1995) to replenish the carbon skeletons of
the TCA used for biosynthesis. Theoretically, the increased
PEPc activity during day might thus be directly responsible
for 13C enriched CO2 emitted from light acclimated leaves.
In roots and stems, however, Gessler et al. (2009b) did not
find any relation between PEPc activity andδ13Cres. It is
consequently unlikely that PEPc mediated re-fixation of CO2

played a large role in observed diel variations inδ13C. We,
however, need more information on diel variations in PEPc
activity with simultaneous assessments ofδ13Cres from dif-
ferent species to draw more reliable conclusions.

In summary M2.1 and M2.3 can explain part of the vari-
ation in δ13C over the diel course. However, they give no
explanation forδ13Cres values more positive than theδ13C
of the enriched position in glucose (−21 ‰ in our example
calculation Fig. 7, or 4 ‰ above the mean glucoseδ13C, ac-
cording to the values of Rossmann et al., 1991) and thus other
co-occurring processes such as LEDR in leaves must also oc-
cur.

At the soil and ecosystem scale, mixing of different respi-
ratory fluxes varying over the diel course might also be in-
volved in the diel pattern ofδ13C of emitted CO2 and might
even enhance the short-term variations.

4.3 Flux ratio driven variations (M3)

On the soil and ecosystem level the net respiration flux
consists of several component fluxes and mixing between
these fluxes with potentially different isotopic signatures
and associated diel variation in bothδ13Cres and flux
rates has to be considered for the explanation of temporal
variations ofδ13CR. We have discussed above that the diel
patterns (i.e. the timing of maxima and minima) inδ13Cres
differ among respiratory fluxes from different plant tissues.
Furthermoreδ13C of soil and plant respiration are not
synchronous (e.g. Kodama et al., 2008; Unger et al., 2010a),
and even soil and ecosystem respiration fluxes are partially
phase-shifted with distinct diel patterns (e.g. Unger et al.,
2009), so that strong temporal dynamics in the component
fluxes and consequentlyδ13CR of the total flux have to be
expected. There are several processes, which drive the diel
variation in different component fluxes.

M3.1: Effect of diel changes in abiotic drivers and
physical factors on component fluxes:on the one hand
different respiratory components (e.g. above and below-
ground respiratory sources) experience different amplitudes
and phase-shifted diel variations due to changes in abiotic
environmental factors (such as temperature, moisture and
PPFD). On the other hand, respiratory sources differ in their
responsiveness to these abiotic drivers, thus resulting in
changes in the mixing-ratios of respiratory fluxes.

At the soil scale it is often reported that temperature and
moisture are the main drivers for CO2 flux (e.g. Davidson et
al., 1998; Carbone et al., 2008; Paterson et al., 2009), which
are both characterized by a marked diurnal cycle. More-
over, diurnal temperature changes are buffered and phase-
shifted compared to air temperature with increasing soil
depth. As a consequence, the resulting soil and ecosystem
respiration flux consists of a temporally variable mixture of
different component fluxes with different isotope signatures
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(e.g. Werner et al., 2006; Unger et al., 2010a). Many soils
show a marked gradient inδ13C of soil organic matter (SOM)
within the soil profile (Ehleringer et al., 2000). Thus, diel
changes in the contribution of CO2 originating from differ-
ent soil layers and thus from organic substrates with different
δ13C can induce diel variations of the net soil effluxδ13CR.
Maseyk et al. (2009) estimated that the depth-related increase
in SOM and respiredδ13C could contribute to∼0.5 ‰ of the
observed diel-scale variability in soilδ13CR through temper-
ature driven shifts in the relative contribution ofδ13Cres from
different soil depths.

Soil δ13CR can also be influenced by physical effects on
soil CO2 diffusivity (Stoy et al., 2007). The diffusive veloc-
ity of CO2 through the soil pores is altered by the physical
environment, such as porosity and soil moisture (Stoy et al.,
2007), and thus diurnal changes during drying and wetting
of upper soil layers may alter mixing ratios from different
soil depths. Transient diffusive isotope fractionation during
non-steady state conditions could induce diel variation in soil
δ13CR, which seemed particularly large when soil respira-
tory fluxes were low but the variability (fluctuation) was high
(Moyes et al., 2011).

A further aspect is the different responsiveness of respira-
tory components to variations in abiotic drivers. At the soil
scale, CO2 flux derives from two major components with dif-
ferent isotopic signatures: autotrophic and heterotrophic soil
respiration, which are two fully distinct processes, controlled
by different underlying factors (see Brüggemann et al., 2011
and literature therein for details), particularly regarding their
temperature sensitivity. To date, published results yield a
non-uniform picture: in some ecosystems autotrophic soil
respiration was found to have a higher temperature sensitiv-
ity than heterotrophic soil respiration (e.g. Boone et al., 1998;
Bhupinderpal-Singh et al., 2003). In these systems the pro-
portional contribution of autotrophic respiration may there-
fore increase from the morning to the afternoon, thus pro-
ducing diel variations in soilδ13Cres (Carbone et al., 2008;
Marron et al., 2009). In contrast, others (e.g. Bol et al., 2003;
Hartley and Ineson, 2008; Vanhala et al., 2007) suggested
that heterotrophic respiration with recalcitrant soil organic
material as substrate was highly temperature sensitive.

Additionally, it has been suggested that growth respiration
might be temperature insensitive while maintenance respira-
tions might exhibit large temperature sensitivity (Kuzyakov
and Gavrichkova, 2010). If growth and maintenance respi-
ration differ inδ13Cres due to differences in respiratory sub-
strates (see M1) or respiratory isotope fractionation (see M2)
any change in temperature will lead to changes inδ13CR.

Moreover, recently it has been questioned whether soil
respiration is mainly driven by environmental factors such
as soil temperature and moisture (Liu et al., 2006; Vargas
and Allen, 2008; Kuzyakov and Gavrichkova, 2010) as
opposed to biotic factors. There is evidence that soil
respiration can be partially decoupled from soil temperature,
probably because of the impact of recent photosynthates

as substrates for root and (myco)rhizosphere respiration.
Thus substrate-driven changes through the input of labile
carbon compounds needs to be considered as a driving factor
causing short-term variations inδ13CR.

M3.2: Substrate driven changes in component flux
rates due to different responsiveness to input of recent
assimilates: assuming that soil and ecosystem respiration
rates are strongly influenced by photosynthetic assimilate
supply to the soil (cf. Ekblad and Ḧogberg, 2001, recent
reviews by Davidson et al., 2006 and Paterson et al.,
2009; Ḧogberg and Read, 2006; Trumbore, 2006; Bahn
et al., 2009) photosynthesis should influenceδ13CR in
two ways. First the isotopic signature of the labile carbon
transferred from the canopy to roots and rhizosphere should
be imprinted on the CO2 respired from mycorrhizal roots
and associated rhizosphere microorganisms. In addition,
the ratio of heterotrophic to autotrophic contributions to
respiratory fluxes is most likely altered. Soil and ecosystem
δ13CR are indeed often well correlated with environmental
factors driving changes in photosynthetic discrimination
during the preceding days (e.g. Ekblad and Högberg, 2001;
Werner et al., 2006). The rapid transfer of photosynthates
to roots, root exudates and subsequent respiration in the
rhizosphere has been demonstrated by13C labelling exper-
iments (e.g. Carbone and Trumbore, 2007; Högberg et al.,
2008; Bahn et al., 2009; Subke et al., 2009; Barthel et al.,
2011a). Bahn et al. (2009) showed that in a grassland recent
plant-assimilates were respired in the soil from the late
morning hours onwards, whereas previous day assimilates
were the substrate during the night and early morning hours.
Moreover, there are new indications suggesting a tight
and rapid coupling between the onset of photosynthetic
activity during the light period and increased C-supply
to rhizosphere respiration (Mencuccini and Hölttä, 2010;
Kuzyakov and Gavrichkova, 2010), which could be medi-
ated by pressure-gradient waves. This mechanism could
enable a tight coupling between phloem sugar loading with
new assimilates and root-released exudates which would
circumvent the time-lags associated with basipetal transport
ways (Mencuccini and Ḧolttä, 2010).

Thus, the autotrophic soil flux is likely more dynamic over
the diel cycle than heterotrophic respiration resulting in diel
variations in soilδ13CR (e.g. Carbone et al., 2008).

As the soil flux constitutes a large proportion of total
ecosystem respiratory flux in many ecosystems (e.g. David-
son et al., 2006) it may markedly contribute to diel variations
in ecosystemδ13CR. At the ecosystem level, an additional
factor is the fact that respiration of leaves is strongly inhib-
ited in the light (Tcherkez et al., 2008) but may exhibit a
marked increase with very positiveδ13Cres (LEDR) at the
beginning of the dark period (Barbour et al., 2011). A max-
imum peak inδ13Cres after sunset (duration of 60–100 min)
was correlated with the light intensity on the prevailing day,
showing higher13C enrichment during sunny compared to
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cloudy days (Barbour et al., 2011), thus confirming the
patterns observed in leaves (Prater et al., 2006; Priault et al.,
2009). Indeed, markedly13C-enriched CO2 has been mea-
sured in tree crowns at night (Mortazavi et al., 2006). Unger
et al. (2010a) have shown in an isotopic-mass balance ap-
proach how different ecosystem components can vary in flux
rates andδ13Cresover short-term scales, with marked impacts
on ecosystemδ13CR. Given the high short-term dynamics
of multiple sources in an ecosystem, it needs to be criti-
cally reassessed whether a simple two-source mixing model
for Keeling-plots can adequately describe processes at the
ecosystem scale. K. P. Tu and T. E. Dawson (unpublished
data) concluded that the ecosystem mass-balance could be
closed only at predawn, when most ecosystem processes be-
came relaxed and changes in fluxes were small.

A further complication may arise if large portions of
respired CO2 are not released to the atmosphere but inter-
nally transported between organs as it has been suggested
for xylem CO2 (see Teskey et al., 2008). If a large portion
of root respired CO2 is transported via the xylem water in-
side the plant and subsequently re-fixed in stem and twigs
and/or emitted via the stem to the atmosphere, it would add
a further variable source coupled to diel changes in xylem
flow delivering depletedδ13Cres compared to atmospheric
δ13CO2. However, recent studies from Kodama et al. (2008)
and Ubierna et al. (2009) showed that the influence of CO2
from belowground – potentially transported with and stored
in the xylem water – had only negligible influence onδ13Cres
of trunk respired CO2. Aubrey and Teskey (2009) calculated
that on a daily basis, the amount of CO2 that moved upward
from the root system into the stem via the xylem stream in
a poplar plantation rivaled that which diffused from the soil
surface to the atmosphere. If part of this CO2 is released via
trunk or twigs (or refixed via PEPc or stem photosynthesis),
if it deviates inδ13C from CO2 produced in the above-ground
tissues and if the contribution to trunk or stem efflux varies
over the diel course, temporal variations inδ13C of ecosys-
tem respired CO2 would also result.

In summary, the mechanisms driving composite fluxes
such as soil and ecosystem CO2 fluxes are complex, since
changes in the contribution of the relative flux rates of com-
ponent fluxes with different isotopic signatures have to be
taken into account. There is increasing recognition on close
feed-backs between plant carbon assimilation and rhizo-
sphere and soil respiration (see Brüggemann et al., 2011),
but its impact on diel variations inδ13CR remain to be re-
solved. Variable contributions of different component fluxes,
might at least partially explain the strong variations inδ13CR
observed on the ecosystem level. We certainly need exper-
iments targeted towards assessing the short-term variability
of the isotopic fluxes from different ecosystem compartments
and how they contribute toδ13C of ecosystem respired CO2.
The emerging laser spectroscopic techniques which allow di-
rect determination of13CO2 and12CO2 fluxes on the ecosys-
tem level (Griffis et al., 2008) and within individual compart-

ments (Wingate et al., 2010) will provide a powerful tool for
such studies in the future.

5 Conclusions

Our review suggests that direct relations betweenδ13C of re-
cent assimilates as the most probable respiratory substrates
and respired CO2 may not be present on a diel time scale
and that other factors lead to short-term variations inδ13Cres
and in δ13CR of ecosystem-emitted CO2. Temporal varia-
tion of respiratory isotope fractionation due to temperature
effects and changing allocation of carbon to metabolic path-
ways are highly plausible mechanisms that can explain diel
patterns inδ13Cres. For leaves and other autotrophic organs,
LEDR is an additional mechanism most probably responsi-
ble for the observed increase inδ13C directly after sunset and
upon initial darkening. Component fluxes with different and
variable isotopic compositions and flux rates further compli-
cate the interpretation of the respiratory isotope signal at the
plant, soil and ecosystem scale. The quantification of com-
ponent isofluxes at different scales including assessments of
e.g. in vitro enzyme activities, transgenic PEPc knock-out
and overexpressing lines and combined13C-labelling and
natural abundance studies might all give deeper insights into
the origin of short-term variations of respired CO2 in future.

This is highly important since the carbon isotope compo-
sition of plant respired CO2 contains information on the fate
of respiratory substrates, and may, therefore, provide a non-
intrusive way to identify changes in carbon allocation pat-
terns over various scale levels.
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Nogúes, S., Tcherkez, G., Cornic, G., and Ghashghaie, J.: Respi-
ratory carbon metabolism following illumination in intact french
bean leaves using13C/12C isotope labelling, Plant Physiol., 136,
3245–3254, 2004.

Nunes-Nesi, A., Sweetlove, L. J., and Fernie, A. R.: Operation and
function of the tricarboxylic acid cycle in the illuminated leaf,
Physiol. Plantarum, 129, 45–56, 2007.

O’Leary, M. H.: Carbon isotope fractionation in plants, Phytochem-
istry, 20, 553–567, 1981.

Ogée, J., Peylin, P., Ciais, P., Bariac, T., Brunet, Y., Berbigier,
P., Roche, C., Richard, P., Bardoux, G., and Bonnefond, J.
M.: Partitioning net ecosystem carbon exchange into net as-
similation and respiration using13CO2 measurements: A cost-
effective sampling strategy, Global Biogeochem. Cy., 17, 1070,
doi:10.1029/2002GB001995, 2003.

Paterson, E., Midwood, A. J., and Millard, P.: Through the eye of
the needle: a review of isotope approaches to quantify microbial
processes mediating soil carbon balance, New Phytol., 184, 19–
33, 2009.

Prater, J. L., Mortazavi, B., and Chanton, J. P.: Diurnal variation of
theδ13C of pine needle respired CO2 evolved in darkness, Plant
Cell Environ., 29, 202–211, 2006.

Priault, P., Wegener, F., and Werner, C.: Pronounced differences in
diurnal variation of carbon isotope composition of leaf respired
CO2 among functional groups, New Phytol., 181, 400–412,
doi:10.1111/j.1469-8137.2008.02665.x, 2009.

Pons, T. L., Flexas, J., von Caemmerer, S., Evans, J. R., Genty, B.,
Ribas-Carbo, M., and Brugnoli, E.: Estimating mesophyll con-
ductance to CO2: methodology, potential errors, and recommen-
dations, J. Exp. Bot., 60, 2217–2234, 2009.

Popov, V. N., Eprintsev, A. T., Fedorin, D. N., and Igamberdiev,
A. U.: Succinate dehydrogenase inArabidopsis thalianais reg-
ulated by light via phytochrome A, FEBS Lett., 58, 199–202,
2009.
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