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Abstract. More reliable estimates of the carbon (C) stock
within forest ecosystems and C emission induced by defor-
estation are urgently needed to mitigate the effects of emis-
sions on climate change. A process-based terrestrial bio-
geochemical model (VISIT) was applied to tropical primary
forests of two types (a seasonal dry forest in Thailand and
a rainforest in Malaysia) and one agro-forest (an oil palm
plantation in Malaysia) to estimate the C budget of tropi-
cal ecosystems in Southeast Asia, including the impacts of
land-use conversion. The observed aboveground biomass in
the seasonal dry tropical forest in Thailand (226.3 t C ha−1)
and the rainforest in Malaysia (201.5 t C ha−1) indicate that
tropical forests of Southeast Asia are among the most C-
abundant ecosystems in the world. The model simulation
results in rainforests were consistent with field data, except
for the NEP, however, the VISIT model tended to underes-
timate C budget and stock in the seasonal dry tropical for-
est. The gross primary production (GPP) based on field ob-
servations ranged from 32.0 to 39.6 t C ha−1 yr−1 in the two
primary forests, whereas the model slightly underestimated
GPP (26.5–34.5 t C ha−1 yr−1). The VISIT model appropri-
ately captured the impacts of disturbances such as deforesta-
tion and land-use conversions on the C budget. Results of
sensitivity analysis showed that the proportion of remaining
residual debris was a key parameter determining the soil C
budget after the deforestation event. According to the model
simulation, the total C stock (total biomass and soil C) of
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the oil palm plantation was about 35 % of the rainforest’s C
stock at 30 yr following initiation of the plantation. How-
ever, there were few field data of C budget and stock, espe-
cially in oil palm plantation. The C budget of each ecosystem
must be evaluated over the long term using both the model
simulations and observations to understand the effects of cli-
mate and land-use conversion on C budgets in tropical forest
ecosystems.

1 Introduction

More detailed estimations of the carbon (C) stocks within
forest ecosystems and of C emissions induced by deforesta-
tion are important environmental research goals. According
to various estimates, C emission from land-use change ac-
counts for about 12 % (van der Werf et al., 2009) or 20 %
(IPCC, 2007) of the total anthropogenic emissions world-
wide. Numerous studies have evaluated the amount of C
emission due to deforestation around the world using vari-
ous models (Cramer et al., 2004; Huang et al., 2008; Kato
et al., 2009; McGuire et al., 2001; Ramankutty et al., 2007;
Shevliakova et al., 2009). To evaluate the annual C emis-
sion from land-use change, several models considered the
different decay rates of harvested forest products based on
the method of Houghton et al. (1983). Cramer et al. (2004)
reported that C emission due to land-use change had a great
uncertainty in Southeast Asia; Houghton (1999) estimated
the value as 1.08 Gt C yr−1, whereas the estimate of Cramer
et al. (2004) was 0.30–0.49 Gt C yr−1. Model simulations
suggested that, despite uncertainties in the deforestation area,
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a large amount of C would be released through deforesta-
tion in the future (Cramer et al., 2004). Kato et al. (2009)
estimated that 44.4 Gt C had been emitted globally over the
prior 100 yr, and the global C emission induced by land-use
change was estimated as 0.5 Gt C yr−1 in the 1980s. On a
regional scale, many model simulations of the impacts of
deforestation have specifically examined Amazonian forests
(e.g., Malhi et al., 2008), whereas fewer studies have inves-
tigated the impacts of land-use change on the C stocks of
ecosystems in Southeast Asia.

According to the Global Forest Resource Assessment con-
ducted in 2010 (FAO, 2010), tropical forests (excluding rub-
ber plantations) accounted for 19.3 million ha. Between 1990
and 2007, the area of tropical forests in Malaysia had de-
creased by 1.2 million ha. Those deforested areas have been
converted mostly into farmland or agro-forests. Especially
the area of oil palm plantations in Malaysia increased rapidly,
from 2.0 million ha in 1990 to 4.2 million ha in 2007 (FAO,
2010). Consequently, Malaysia has become one of the major
palm oil-producing countries, producing more than 40 % of
the world’s supply (Fitzherbert et al., 2008).

A more detailed understanding of the impacts of defor-
estation on the net C budget of ecosystems in Southeast
Asia is needed for C management and mitigation of climate
change. In the present study, we adopted a process-based ter-
restrial biogeochemical model, Vegetation Integrative SImu-
lator for Trace gases (VISIT), to estimate the C budget of pri-
mary tropical forest ecosystems and the impacts of land-use
conversion, while considering both instantaneous emissions
from rapidly released C from pools and gradual decomposi-
tion of slowly released C from pools, such as coarse woody
debris. The change in vegetation structure (e.g., amount of
biomass and canopy leaves), plant ecophysiological proper-
ties (e.g., photosynthetic capacity and respiration), and soil
biogeochemical properties (e.g., soil texture) are important
factors to include in models for a more detailed assessment.
Furthermore, in the case of cropland, we must consider C ex-
ports through crop harvests when evaluating the net ecosys-
tem C budget (e.g., net biome production (NBP): Chapin
III et al., 2006; Poulter et al., 2010). The objectives of the
present study were to: (1) clarify the similarities and differ-
ences between a wet and dry tropical forest to evaluate the
potential applicability of the VISIT model, (2) compare the
model simulations of tropical ecosystems with field data and
modify the VISIT model accordingly, and (3) evaluate the C
budget before and after land-use conversion in Malaysia us-
ing the VISIT model. Based on our findings, we discuss the
potential applicability of the VISIT model and some prob-
lems related to its application in Southeast Asia.

2 Materials and methods

2.1 Site description

The present study was conducted in two primary forests,
a rainforest (RF) in Malaysia and a dry evergreen forest
(DEF) in Thailand, and in an oil palm plantation (OPP) in
Malaysia (Fig. 1). The RF was in the Pasoh Forest Re-
serve (2◦5′ N, 102◦18′ E), and OPP was adjacent to the re-
serve. The annual mean air temperature in the Pasoh area was
27.1◦C (1992–1994; Bekku et al., 2003), and the monthly
mean maximum and minimum air temperatures were 32.5◦C
and 22.5◦C in the Pasoh area, respectively (1991–1997;
Manokaran et al., 2004). The annual precipitation ranged
from 1450 to 2341 mm (1995–2000; Malaysian Meteorolog-
ical Services). The RF is a tropical evergreen forest domi-
nated by Dipterocarpaceae, with total aboveground biomass
of 403 t dry matter ha−1 in 1998 (Hoshizaki et al., 2004). At
OPP, oil palms (Elaeis guineensis) were planted first around
1976 and clear-cut in October 2001; palm seedlings were re-
planted in 2002 for the second rotation. The soil type in RF
was classified as Haplic Acrisol (Yamashita et al., 2003) and
the soil texture at 5-cm depth was heavy clay in RF and sandy
clay loam in OPP (Adachi et al., 2005), respectively. Soil
C contents at 5-cm depth in RF and OPP were 2.92 % and
1.55 %, respectively (Adachi et al., 2006).

The DEF was located at the Sakaerat Environmental Re-
search Station (14◦30′ N, 101◦55′ E). The annual mean tem-
perature was 24.1◦C, and the monthly mean maximum and
minimum air temperatures were 28.1◦C and 21.0◦C, re-
spectively (2001–2003; from the AsiaFlux Database). The
annual precipitation was 1733 mm in 2003 (Ishida et al.,
2006). Dipterocarpaceae, Moraceae and Meliaceae trees are
dominant (Yamashita et al., 2010). The total aboveground
biomass was 452.6 t dry matter ha−1 in 1993 (Kanzaki et al.,
2009). The soil type in DEF was classified as Orthic Acrisols
(FAO/UNESCO: Sakurai et al., 1998), and the soil C content
was 2.48 % at 5-cm depth (Yamashita et al., 2010).

2.2 Model overview

A process-based terrestrial biogeochemical model (VISIT)
was developed based on a simple C cycle model (Sim-
CYCLE: Ito and Oikawa, 2002; Kato et al., 2009), in which
the atmosphere-ecosystem exchange and internal dynamics
of C are simulated at a daily time step. The VISIT model was
originally developed for a cool-temperate deciduous broad-
leaved forest (Inatomi et al., 2010; Ito, 2010a), and it sim-
ulates long-term C dynamics including the impacts of for-
est disturbance (temperate forest: Ito et al., 2005). The
ecosystem budget of CO2, that is, the net ecosystem pro-
duction (NEP), is obtained as the difference between pho-
tosynthetic uptake (gross primary production, GPP) and res-
piratory emissions from plants and microbes. The CO2 ef-
flux from the soil surface, that is, the soil respiration (SR),
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Fig. 1. Locations of the dry evergreen forest (DEF) in Thailand and the rainforest (RF) and the oil palm plantation (OPP) in Peninsular
Malaysia. Climate data for(a) DEF (2001–2003, from the AsiaFlux Database) and(b) RF and OPP (1991–1997, from Manokaran et al.,
2004). Solid and broken lines show the monthly means of daily maximum and minimum air temperatures, respectively; vertical bars show
the monthly precipitation.

is obtained as the sum of plant root respiration and micro-
bial heterotrophic respiration. These biogeochemical C flows
are calculated based on models of the ecophysiological re-
sponses of the vegetation to environmental parameters.

Figure 2 shows an overview of the VISIT model, which
was developed based on Sim-CYCLE with three main im-
provements. First, the ecosystem C stock is divided into
more detailed compartments in the VISIT model. For exam-
ple, understory plants (C3 grasses and shrubs) are explicitly
separated from canopy trees, and litter and humus C stocks
are subdivided into multiple compartments with different
turnover times. As a result, the ecosystem structure of the C
stock is represented by four sectors: canopy trees, understory
plants, litter and humus (Fig. 2a). Second, the VISIT model
was able to evaluate the impacts of forest disturbance and
land-use change (Fig. 2b). To evaluate the effect of land-use
conversion from a primary forest to an oil palm plantation,
we incorporated three processes in the model: (1) remov-
ing the existing aboveground forest biomass (wood harvest),
(2) residual (or leaving) woody and root debris (residual de-
bris), and (3) planting of oil palm seedlings. The year of
disturbance and planting of oil palm seedlings can be set for
anytime, but this event occurred only once in this model. Be-
cause oil palm seedlings were replanted in 2002 for second
rotation in OPP, the disturbance event from forest to oil palm
plantation in the VISIT model was set for 2001 in Fig. 9c.
After planting, oil palm seedlings are managed as they grow
in the VISIT model. Once a tree is 5 yr old, 5 % of its leaves
are pruned each year and added to the litter C pool. More-
over, oil palm fruits are harvested from stem at 10 yr of age in

the VISIT model, accounting for a C loss of 3.3 t C ha−1 yr−1

based on a report of palm oil yields (2.8 t ha−1; Stone, 2007).
Third, the VISIT model enables us to evaluate atmosphere-
ecosystem exchange of not only CO2, but also other green-
house gases (CH4 and N2O; Inatomi et al., 2010); however,
this exchange is not discussed in the present study.

2.3 Ecophysiological and soil parameters used in
the model

Representative ecophysiological parameters of the primary
forests (DEF and RF) and OPP are presented in Table 1. The
single-leaf photosynthetic rate was calculated using the max-
imum photosynthetic rate under light-saturation, the light-
use efficiency and the photosynthetic photon flux density
(Ito and Oikawa, 2002). Although the VISIT model does
not simulate the stem density explicitly, the difference be-
tween the forest and oil palm canopies can be captured rea-
sonably well as the differences in photosynthetic capacities
and allocation coefficients. The soil characteristics of DEF,
RF, and OPP were represented by three soil parameters (bulk
density, and sand and clay contents) obtained from previous
reports and field measurements (Table 2). These parame-
ters are important for characterising hydrological and bio-
geochemical properties to evaluate the C stock of the soil
and C sequestration following the land-use change. Soil
solid volumes within 100-ml soil core samples were mea-
sured using a three-phase meter (DIK-1121; Daiki Rika Ko-
gyo Co. Ltd., Konosu, Japan). The fresh weight of each
sample was measured and the material was dried at 105◦C
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Fig. 2. An overview of the VISIT model for(a) primary forest and(b) land-use change (LUC) from forest to oil palm plantation. The C flux
among the compartments and the atmosphere represent net ecosystem production (NEP), net primary production (NPP) and gross primary
production (GPP); net biome production (NBP) consists of NEP and carbon flux from LUC.

Table 1. VISIT model parameters for the primary forest (dry evergreen forest and rainforest) and oil palm plantation.

Parameters Unit Forest Oil palm plantation

Maximum photosynthetic rate µmol CO2 m−2 s−1 20 20
Leaf allocation coefficient fraction 0.1 0.2
Aboveground allocation coefficient fraction 0.55 0.60
Specific leaf area cm2 g−1 170 150
Stem growth respiration coefficient fraction allocated carbon 0.25 0.18
Root growth respiration coefficient fraction allocated carbon 0.35 0.32
leaf maintenance respiration coefficient 0.001 fraction biomass (15◦C) 1.57 1.30
Sapwood maintenance respiration coefficient 0.001 fcation biomass (15◦C) 0.25 0.06
Fine root maintenance respiration coefficient 0.001 fcation biomass (15◦C) 0.35 0.60
Heartwood maintenance respiration coefficient 0.001 fcation biomass (15◦C) 0.014 0.008
Coarse root maintenance respiration coefficient 0.001 fcation biomass (15◦C) 0.055 0.150
Harvest leaf every year1 % of leaves yr−1 – 5.0
Harvest oil palm (from stem) every year2 t C ha−1 yr−1 – 3.3

1 Conducted 5 yr after planting,2 Conducted 10 yr after planting.

for 48 h. The dry weight was measured to calculate the vol-
umes of the water and gas phases within the core samples
(Hillel, 1998).

2.4 Input data for the VISIT model

For each site, we repeatedly conducted a spin-up calcula-
tion for 2000 yr to create appropriate initial states of ecosys-
tem C pools and budgets using the climate data for 1948–
2008. Moisture conditions such as soil water content, which
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Table 2. Soil parameters measured at the dry evergreen forest (DEF) in Thailand and the rainforest (RF) and oil palm plantation (OPP) in
Malaysia.

Site Vegetation Sakaerate, Thailand Pasoh, Malaysia

Dry evergreen forest Evergreenforest Oil palmplantation

Bulk density 1.051 0.743 1.063

Sand content (%) 61.22 16.61 67.21

Clay content (%) 24.92 57.81 21.01

1 Measured in the present study,2 Yamashita et al. (2010),3 Yashiro et al. (2007)

Table 3. Climate parameters from NCEP/NCAR used in the VISIT
model.

Parameters Unit

Air temperature at 2 m hight K
Specific humidity at 2 m kg kg−1

Precipitation kg m−2 s−1

Downward shortwave radiation W m−2

Cloud cover %
Soil surface temperature K
Soil temperature at 0–10 cm depth K
Soil temperature at 10–200 cm depth K
Soil temperature at 300 cm depth K
U wind (component of west-east) m s−1

V wind (component of north-south) m s−1

Air pressure (Pa) Pa

determine the effect of water stress on plant production and
soil decomposition, are simulated in a hydrological sub-
scheme. In the submodel, soil moisture content is calculated
from the water-budget equation using precipitation data (in-
put), and estimated evapotranspiration and runoff discharge
(outputs) are estimated in another submodel (Ito and Oikawa,
2002). The VISIT model incorporates the increase of back-
ground atmospheric CO2 concentration from 310 ppmv in
1948 to 392 ppmv in 2008, leading to a CO2 fertilization ef-
fect on the photosynthesis rate.

The model simulations were conducted at a daily time
step, using daily average meteorological forcing data (Ta-
ble 3). Ito and Oikawa (2002) and Ito et al. (2006) indi-
cated the details of calculation methods for radiation and
water budget of the Sim-CYCLE model, and these methods
were used in the VISIT model. For this study, daily data
were derived from a reanalysis global climate dataset pro-
duced by the US National Centers for Environmental Pre-
diction and the US National Center for Atmospheric Re-
search (NCEP/NCAR; Kistler et al., 2001) for the period
from 1 January 1948 to 31 December 2008. Although these
data have a coarse spatial resolution, they provide a repre-
sentative long-term time series of meteorological conditions.

Because the NCEP/NCAR data represent large-scale aver-
age meteorological conditions, there remain several biases in
comparison with observational data at specific sites. Figure 3
shows a comparison between monthly precipitation accord-
ing to NCEP/NCAR data and field observation at RF and
DEF. Based on the discrepancies, NCEP/NCAR precipita-
tion data were corrected using the differences of monthly
mean precipitation from 2001 to 2003 in DEF and 1991 to
1997 in RF (Fig. 3). Moreover, the NCEP/NCAR precipita-
tion data from 1948 to 1954 contain a clear low-precipitation
bias due to insufficient observational data. Therefore, the
data during that period were replaced by the daily averages
for 1955–2008 in DEF and 1955–1978 in RF. Figure 4 shows
the annual mean air temperature and corrected precipitation
pattern in DEF and RF from 1948 to 2008. On the other hand,
annual mean air temperature by NCEP/NCAR data was not
greatly different with the in-situ data.

2.5 Sensitivity analysis of C flux induced by land-use
change

When a clear-cut occurs at a certain stand age in the VISIT
model, it is assumed that all canopy trees are cut and ex-
ported, except for a part of the stems, leaves and roots that
are left behind as residual woody debris. The VISIT model is
able to define the individual ratios of remaining stems, leaves
and roots as residual debris. Houghton et al. (1983) reported
various conversion ratios for the amount of C stored in prod-
ucts obtained from tropical ecosystems, that is released into
the atmosphere: 33 % of total biomass C remained in the soil
as residual woody debris, and the other 67 % was removed as
wood harvest. We assumed that 60 % of harvested wood C
is consumed and returned to the atmosphere within 1 yr and
that the remaining 40 % is decomposed over the course of the
next 9 yr (i.e., all is decomposed after 10 yr). Residual debris
was added to soil C and its decomposition rate was assumed
to be the same as the litter decomposition rate. Therefore,
the soil respiration rate in OPP included the respiration of oil
palm roots and microbes, which consumed the residual de-
bris and oil palm litter. In the present study, the proportions
of the stem, leaf and root C pools were changed individually
from 0 to 100 %.
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Table 4. Comparisons of gross primary production (GPP), net ecosystem production (NEP), soil respiration rate (SR) and aboveground
biomass carbon (AGB) between the VISIT model simulations and field measurements. AGB carbon values were estimated as half of the
aboveground biomass.

DEF site RF site OPP site

t C ha−1 yr− VISIT1 Field data Year of data VISIT1 Field data Year of data VISIT1 Field data Year of data

GPP 32.5 35.62 2002 26.5 32.64 2003 6.3 nd Average of 1–10 yr old
34.5 39.62 2003 26.6 32.84 2004 18.5 nd Average of 11–20 yr old
31.8 nd 2004 31.5 32.04 2005 25.2 nd Average of 21–30 yr old

NEP 1.0 −1.82 2002 −1.9 −0.44 2003 −6.4 1.067 5 yr old
2.5 0.92 2003 −1.9 2.44 2004 5.2 nd Average of 11–20 yr old

0.69 nd 2004 0.3 2.84 2005 6.2 nd Average of 21–30 yr old
SR 18.2 nd 2001 20.1 18.15 2001 14.9 14.45 2001
AGB 160.4 226.33 1993 182.8 201.56 1998 34.9 33.98 27.5 yr old

1 Same year or period as field data;2 Hirata et al. (2008);3 Half of aboveground biomass; Kanzaki et al. (2009);4 Kosugi et al. (2008);5 Adachi and Koizumi (2009);
6 Half of aboveground biomass; Hoshizaki et al. (2004);7 Melling et al. (2008);8 Half of aboveground biomass; Corley and Tinker (2003); nd: no dataFigure 3
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Fig. 3. Comparison of observed monthly precipitation data and that
from the US National Centers for Environmental Prediction and the
US National Center for Atmospheric Research (NCEP/NCAR) in
(a) dry evergreen forest (DEF) from 2001 to 2003 and(b) rainforest
(RF) from 1991 to 1997.

2.6 Validation data for the VISIT model

The diurnal patterns of GPP from 2003 to 2005 were com-
pared with GPP data gathered by two satellites. Data subsets
for RF and DEF were obtained from the Moderate Resolution
Imaging Spectrometer (MODIS), Collection 5, onboard the
Terra and Aqua satellites, target area were 3 km2 at a 1-km
resolution. The data were provided by the US Oak Ridge
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Fig. 4. Annual mean(a) air temperatures and(b) precipitation
in dry evergreen forest (DEF) in Thailand and rainforest (RF) in
Malaysia based on NCEP/NCAR data from 1948 to 2008. Precip-
itation data were corrected using the observed monthly mean pre-
cipitation (Fig. 3).

National Laboratory (http://daac.ornl.gov/MODIS/). Terra
and Aqua pass the equator each day at 10:30 and 13:30 LT,
respectively. Data that passed the quality assurance testing
by the US Oak Ridge National Laboratory were used for the
comparison.
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Fig. 6. The relationship between annual precipitation and gross pri-
mary production estimated by the VISIT model.

3 Results

3.1 C budget in the primary forests

The seasonal variations in original NCEP/NCAR data of
precipitation were lower than the field measurement, espe-
cially in RF (Fig. 3b). The corrected mean annual pre-
cipitations were 1967 mm in DEF and 2339 mm in RF in
1995–2008 (Fig. 4b), these rates were lower than the orig-
inal NCEP/NCAR data: 2659 mm in DEF and 3299 mm
in RF. The C stock and C fluxes in two primary tropical
forests (DEF and RF) were simulated using the VISIT model
(Fig. 5). The gradual increase of C stock at both sites from
1948 to 2008 (Fig. 5a, b) would be induced by the increase
of atmospheric CO2 concentration, that is, by the CO2 fertil-
ization effect. Because the ecophysiological parameters used

in the model simulations were set at the same values at the
two forests (Table 1), the difference in their C budgets were
mainly attributable to the differences in air temperatures, pre-
cipitation and site-specific soil parameters. The more hu-
mid RF had a larger total C stock (canopy trees, understory
plants, litter and humus, 299.7 t C ha−1) than the drier DEF
(287.6 t C ha−1) in 2008. The seasonal variation in NEP was
clearer in DEF than in RF (Fig. 5c, d). The standard deviation
(SD) of NEP in 2002–2006 was 1.48 g C m−2 day−1 in DEF
and 1.26 g C m−2 day−1 in RF. The SDs of SR were 0.81 and
1.19 g C m−2 day−1 in DEF and RF, respectively (Fig. 5e, f).
Neither daily NEP nor SR had a significant relationship with
daily precipitation in DEF and RF.

Table 4 presents the forest C budgets for DEF and RF
based on field measurements versus model estimates. As
compared to tropical ecosystems in general, relatively high
photosynthetic uptakes (GPP) of 32.0–39.6 t C ha−1 yr−1

were observed at both sites. The model slightly underesti-
mated GPP as 26.5–34.5 t C ha−1 yr−1. The simulated above-
ground biomass and GPP in 2005 were consistent with field
data (Table 4). The relationship between the annual precipi-
tation and GPP rate in RF was expressed as a quadratic equa-
tion (Fig. 6). The low simulated GPP rate in RF would have
been affected by the lower precipitation from 2002 to 2004
(Figs. 4b, 6), because single-leaf photosynthetic capacity was
assumed to be limited by low soil water content induced by
low precipitation in the VISIT model. In DEF, aboveground
biomass was underestimated by the model, although the esti-
mated GPP was consistent with field observations. Because
the net C budgets of the tropical forest sites were close to
equilibrium, it was difficult for the model to capture the small
interannual variability in NEP (Table 4).
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Table 5. Results of sensitivity analysis of the carbon flux for 2 yr (1977–1978) and total carbon flux during 10 yr (1977–1986) after de-
forestation in the VISIT model. Deforestation occurred in 1976 in this simulation. Harvest rate changes and changes in the proportions of
remaining leaves, stems and roots are shown.

Proportion remaining Cumulative C flux induced by land use change (t C ha−1)

Leaf (%) Stem (%) Root (%) (a) Harvest (t C ha−1) (b) 60 % of Harvest (c) SR in 2 yra Total C flux ((b) + (c)) (d) SR in 10 yrb Total C flux ((a) + (d))

100 100 100 0.0 0.0 74.4 74.4 209.3 209.3
80 80 80 36.9 22.1 63.2 85.3 181.5 218.4
60 60 60 73.8 44.3 52.1 96.4 153.8 227.6
50 50 50 92.3 55.4 46.5 101.9 140.0 232.3
40 40 40 110.7 66.4 40.9 107.3 126.1 236.8
20 20 20 147.7 88.6 29.7 118.3 98.4 246.1
0 0 0 184.6 110.8 18.5 129.3 70.7 255.3

100 40.7 100 123.6 74.2 35.0 109.2 116.0 239.6

No disturbance (Forest) 0.0 0.0 31.6 31.6 175.9 175.9

Disturbance year was 1976.
Harbest carbon was assumed to be released to the atmosphere, with 60 % in 1 yr and 100 % in 10 yr:a 1977 to 1978;b 1977 to 1986.
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Fig. 7. Temporal variation in C stock(a) and C flux (b) within
the rainforest (RF) during 1948–2008, including land-use conver-
sion from a primary forest to oil palm plantation in 1976. The sub-
classes of C stock are aboveground biomass of canopy tree (gray),
belowground biomass (vertical), understory plant biomass (black),
dead biomass and detritus (litter; white), humus (diagonal line), and
residual debris (dotted) from top to bottom. The subclasses of C flux
are gross primary production (GPP; solid line), soil respiration (SR;
broken line) and net primary production (NEP; bold line).

3.2 Effect of plantation formation on C stock

The VISIT model considered the impacts of land-use con-
version, especially the effect of residual woody debris added
to the soil C pool. Table 5 shows the results of a sensitivity
analysis of the VISIT model for RF in terms of changes in
the ratios of remaining residual debris as stem, leaf and root
when a plantation is formed. Cumulative C flux induced by
land-use change represents the sum of C flux from soil dur-
ing a 2-yr period (1977–1978) and 10-yr period (1977–1986)
plus harvested C within the 1st and 10th yr, respectively. The
analysis suggested that SR during the 10 yr was lower than
the no disturbance (forest) ecosystems at the some case of
ratios of remaining residual debris. Usually, the C loss from
harvest was not considered in the NBP, however, all cases of
ratios of remaining residual debris served as a C source in the
two periods when the C loss from harvest was added to the
SR.

Figure 7 shows the temporal variations in the C stock and
C flux before and after land-use conversion from a primary
forest (RF) to an oil palm plantation (OPP) in 1976, as sim-
ulated by the VISIT model. Note, however, that there were
few field data from OPP (Table 4). The aboveground biomass
C in OPP was similar for field measurements and model es-
timates of 27.5-yr-old oil palms in 2003 and half year. How-
ever, the estimated NEP in OPP was higher than that in for-
est ecosystem since 10 yr-old after planting of the seedlings
(Fig. 7b), our findings indicate that the total C stock (canopy
trees, litter and humus) in OPP (104.3 t C ha−1) at 30 yr fol-
lowing initiation of the plantation was about 35 % that of RF
(299.8 t C ha−1) in 2006 (Fig. 7a).
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Fig. 8. Comparisons of the VISIT model simulation and field mea-
surements of(a) soil respiration rates (SR) in the rainforest (RF)
and oil palm plantation (OPP) from 2000 to 2004 and(b) daily
mean soil water content at 0- to 30-cm depth in RF from 2003 to
2008. In(a), model simulation for RF (bold line), model simula-
tion for OPP (gray line), observed mean SR in RF (filled circles),
observed mean SR in OPP (open circles); error bars show the stan-
dard deviation (n = 16). See Adachi and Koizumi (2009) for field
measurements. In(b), field observation from Kosugi et al. (2009)
(bold line) and VISIT model estimates in RF (gray line).

3.3 Validation of the temporal variation on SR,
soil water content and GPP

Figure 8a shows the seasonal variation in SR estimated using
the VISIT model and field data from RF and OPP. Accord-
ing to the field data, the spatial variation in SR was greater
than the seasonal variation. Adachi et al. (2005) reported
that the spatial variation in SR in RF and OPP was larger
than the temperate ecosystems, and the coefficient of vari-
ation for SR was 43 % in RF and 46 % in OPP. Moreover,
the estimated seasonal variation of SR was less than that ob-
served in the field. The estimated annual SR was similar to
that of field observations (Table 4), but the spatial variation
in SR was not considered in the VISIT model. The second
disturbance of replanting oil palms might have caused the de-
crease in observed SR from 2001 to 2002 in OPP (Fig. 8a);
however, the VISIT model cannot consider the process of the
second disturbance. The SR and soil water content in RF es-
timated by the VISIT model was lower than that measured in
the field from 2003 to 2005 (Fig. 8), mainly because precip-
itation based on NCEP/NCAR data tended to be low during
this period (Fig. 4).

A comparison of the VISIT model estimates with MODIS
data showed that the seasonal variation range of GPP in DEF
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Fig. 9. Seasonal variations in gross primary production (GPP) based
on satellite observations (Aqua and Terra MODIS values) and the
VISIT model simulation in(a) the dry evergreen forest (DEF) in
Thailand, and(b) the rainforest (RF) in Malaysia, and(c) the oil
palm plantation (OPP) in Malaysia. Because oil palm seedlings
were replanted in 2002 for second rotation in OPP, the disturbance
event from forest to oil palm plantation in the VISIT model was set
for 2001.

was more similar to the data gathered by the Terra satellite
than that from the Aqua satellite (Fig. 9a). The Aqua satel-
lite data of GPP was lower than that from Terra satellite in
RF (Fig. 9b). The Terra and Aqua GPP data at OPP varied
widely, but the estimated GPP by the VISIT model was con-
sistently lower than the MODIS observation (Fig. 9c).

4 Discussion

4.1 Comparison of the two primary forests

The observed aboveground biomass in DEF (226.3 t C ha−1)

and RF (201.5 t C ha−1) indicate that tropical forests of
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Southeast Asia are among the most C-abundant ecosys-
tems in the world, surpassing Amazonian rainforest
(161.4 t C ha−1; Malhi et al., 2006). The model simula-
tion results were consistent with field data in RF, except for
the NEP (Table 4). However, the aboveground biomass es-
timated by the VISIT model was about 71 % of the field
measurement in DEF. The underestimation of aboveground
biomass in DEF would be due to the relationship between
annual GPP and precipitation in the VISIT model (Fig. 6).
Based on soil C content and bulk density measured in the
field (Adachi et al., 2006; Yamashita et al., 2010; Table 2),
soil organic C at 5-cm depth was estimated as 13.0 t C ha−1

in DEF, which was higher than the estimate of 10.8 t C ha−1

in RF. But the results of the VISIT model showed the oppo-
site trend: in 2008 the soil C stocks (litter and humus) were
75.6 t C ha−1 in RF and 74.7 t C ha−1 in DEF. Thus, field
measurements indicate that the C budget and stock in DEF
were larger than those in RF, but the VISIT model tended to
underestimate those in DEF.

The seasonal mean light-saturated photosynthetic rates
were formulated by functions of temperature, CO2 level,
air humidity and soil water (Ito and Oikawa, 2002),
and these rates used in the VISIT model were 13.1 and
12.8 µmol m−2 s−1 in DEF and RF, respectively, and these
rates are an important factor in estimating the GPP. Ishida
et al. (2006) reported that the maximum photosynthetic rate
in dry evergreen forest differs according to tree species,
leaf maturity and the wet and dry seasons, ranging from
4.6 to 10.7 µmol m−2 s−1 in the dry season and from 8.6 to
12.9 µmol m−2 s−1 in the wet season. Kosugi et al. (2009)
reported that the maximum photosynthetic rate in RF was
less than 10 µmol m−2 s−1. Although the model parame-
ter of maximum photosynthetic rate was higher than these
observed values, the simulated aboveground biomass val-
ues were smaller than the field measurements at both sites.
Therefore, the underestimation of aboveground biomass
could be due to higher respiration rates or turnover rates used
in the model.

Estimated NEP was not consistent with field data in both
DEF and RF. Ohtsuka et al. (2009) reported that the dif-
ference in NEP between the biometric method and eddy-
covariance method was±2 t C ha−1 yr−1 in a cool-temperate
deciduous broad-leaved forest. Saleska et al. (2003) reported
that in Amazonian rainforest the observed seasonal pattern of
NEE was opposite the simulated pattern, despite the proper
precipitation pattern being used in the models. Therefore, in
the present study the difference in NEP between the model
simulation and field observation was within the acceptable
range. On the other hand, the annual precipitation influenced
annual GPP in RF (Fig. 6), this result suggested that meteo-
rological data was also important to accuracy evaluation.

Based on the comparison of the VISIT model estimates
with MODIS data, the maximum GPP rate in DEF was
higher than that in RF (Fig. 9a, b). In RF, the GPP rate
showed a large difference between the results based on Terra

versus Aqua data due to the formation of cumulus clouds
before the Aqua overpass (Miettinen and Liew, 2008). In
a temperate forest, Ito (2010b) compared VISIT model es-
timates with MODIS data of leaf area index, however, the
MODIS-estimated LAI had a large variation during the mon-
soon rainy season. The MODIS-estimated LAI in the present
study sites also had a large variation (data not shown), and
this result could be one reason why there were large differ-
ences between the results of VISIT model and MODIS esti-
mations. The direct distance from OPP and the edge of RF
was about 4-km, and this could cause the inconsistency of
GPP data between Terra and Aqua at OPP (Fig. 9c).

More data gathered in tropical regions using various meth-
ods are needed to validate and improve the VISIT model
simulations. Data obtained by the biometric method, eddy-
covariance method, and remote sensing have different spa-
tiotemporal scales. For instance, field measurements of SR
rates are expected not only to vary temporally due to meteo-
rological conditions, but also to show spatial variation among
a limited number of SR chambers.

4.2 Effect of land-use change to an oil palm plantation
on the ecosystem C budget

Our findings indicate that the total C stock and SR in
OPP at 30 yr became smaller than that in forest ecosystems
(Fig. 7). Although oil palm plantations are structurally sim-
pler than primary forest ecosystems, the agricultural tasks
performed by people are expected to engender complexity
and make model simulations of this system more difficult.
We added the event of leaf harvest and removal to the model
in order to more accurately compare the simulated and ob-
served SR rates. The maximum photosynthetic rate was
20 µmol m−2 s−1, it decreased with leaf ages in oil palms
(Dufrene and Saugier, 1993). The estimated seasonal mean
light-saturated photosynthesis rates by the VISIT model were
11.8 µmol m−2 s−1 in OPP, but the reduction of photosynthe-
sis rates induced by leaf senescence was not considered in
this model. Oil palm trees are clear-cut and seedlings are re-
planted at 25- to 30-yr rotations in Southeast Asia (Corley
and Tinker, 2003). These events occurred again for the sec-
ond rotation in OPP in 2001, however, the VISIT model can
simulate the event of disturbance and planting of oil palm
seedlings only once. The VISIT model needs to improve for
evaluation of the C budget in maintained agricultural man-
agement, because the second disturbance was different from
first disturbance (e.g., amount of residual debris and its de-
composition rate).

The estimated values of soil C emission after disturbance
are expected to be underestimated, however, because the cal-
culation does not account for the acceleration of decomposi-
tion at the soil surface due to the change in the radiation bud-
get. In general, the soil surface becomes warmer and dryer
after a clear-cut because it receives more direct solar radi-
ation (Ritter et al., 2005). Several studies have shown that

Biogeosciences, 8, 2635–2647, 2011 www.biogeosciences.net/8/2635/2011/



M. Adachi et al.: Carbon budget of tropical forests in Southeast Asia 2645

soil organic matter is sensitive to land-use change in tropical
ecosystems (Chaplot et al., 2005; Fujii et al., 2009; Marin-
Spoitta et al., 2009). Sheng et al. (2010) reported that the
temperature sensitivity of SR rates (i.e., theQ10 value) was
higher in sloping tilled land than in a natural subtropical for-
est in China. Solomon et al. (2007) found that soil organic
C loss occurred during the first 4 yr after land-use change
in a tropical region, and the forest soil was more sensitive
to environmental conditions than that of native grasslands.
However, Tanaka et al. (2009) reported finding no significant
difference in total C contents among secondary forests and
some types of plantations, including trees of different ages in
Malaysia. Our field measurements indicated that soil physi-
cal parameters change when primary forest is converted to an
oil palm plantation (Table 2). Clay content in OPP was lower
than that in RF, whereas sand content showed the opposite
pattern. Islam and Weil (2000) also reported that land-use
change from tropical forest to cropland caused a decrease in
silt and clay content. The relationship between clay content
and soil organic content was not clear in the worldwide, but
clay minerals help to stabilize soil organic matter (McLauch-
lan, 2006). These results suggest that soil properties would
be affected by land-use change, and the VISIT model would
develop to consider the relationship between soil character-
istics and the productively of ecosystems in the future.

Using the VISIT model and the deforestation rate reported
by FAO (2010), the total C emissions induced by land-use
change in Malaysia between 1995 and 2004 was estimated
as 16.8 Mt C. This value was calculated by multiplying the
deforestation area and the estimated NEP by VISIT model at
every year. This is useful information for managing activities
related the Reduce Emissions from Deforestation and Forest
Degradation (REDD) initiative. Detecting the effects of land-
use change on soil biochemical and physical characteris-
tics requires long-term measurements, however, because it is
necessary to examine when and how these soil characteristics
change. Unfortunately, we lack sufficient information about
how fast soil physical properties are expected to change af-
ter disturbances in tropical forests. Published reports and/or
opened database are the most important sources of informa-
tion for model development and validation. For instance, for
the present model simulations the following observational
data or empirical equations were needed: (1) long-term or
short-term change in carbon pools and fluxes (e.g., above-
ground biomass, NPP and litter decomposition rate) for the
model validation and input data, (2) basic environmental
variables (e.g., precipitation, soil water content and soil tem-
perature) for input data, and (3) disturbance history infor-
mation (e.g., logging and land-use) for model constraint fac-
tors. Many black boxes and mechanisms of the matter flow
of ecosystems would be more easily understood through the
combined use of field observations and model simulations.
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