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Abstract. Conventionally, measurements of carbon isotopes
in atmospheric CO2 (δ13CO2) have been used to partition
fluxes between terrestrial and ocean carbon pools. However,
novel analytical approaches combined with an increase in the
spatial extent and frequency ofδ13CO2 measurements allow
us to conduct a global analysis ofδ13CO2 variability to infer
the isotopic composition of source CO2 to the atmosphere
(δs). This global analysis yields coherent seasonal patterns of
isotopic enrichment. Our results indicate that seasonal values
of δs are more highly correlated with vapor pressure deficit
(r = 0.404) than relative humidity (r = 0.149). We then eval-
uate two widely used stomatal conductance models and de-
termine that the Leuning Model, which is primarily driven by
vapor pressure deficit is more effective globally at predicting
δs (RMSE= 1.6 ‰) than the Ball-Woodrow-Berry model,
which is driven by relative humidity (RMSE= 2.7 ‰). Thus
stomatal conductance on a global scale may be more sen-
sitive to changes in vapor pressure deficit than relative hu-
midity. This approach highlights a new application of using
δ13CO2 measurements to validate global models.

1 Introduction

The isotopic composition of atmospheric carbon dioxide
(δ13CO2) is a very powerful tool for inferring sources of CO2
to the atmosphere, as well as processes affecting the global
carbon cycle. Conventionally,δ13CO2 has been used for par-
titioning net global CO2 uptake between the land and ocean.
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This application ofδ13CO2 is based on the greater uptake
of the lighter12C isotope by terrestrial plants, relative to the
oceans. During photosynthesis plants discriminate against
the heavier isotope13C in atmospheric CO2, yielding a glob-
ally flux-weighted estimated fractionation between the atmo-
sphere and the terrestrial biosphere (εal) between−14.8 ‰
and−16.5 ‰ (Fung et al., 1997; Suits et al., 2005). In con-
trast, isotopic fractionation during air-sea gas exchange dis-
criminates only slightly against13C (εao= −2.0 ‰) and thus
is an order of magnitude less than isotopic discrimination by
the terrestrial biosphere. Thus this differential isotopic frac-
tionation has been used to partition carbon fluxes between the
marine and terrestrial biosphere on global scales (Ciais et al.,
1995; Battle et al., 2000). With the expansion of the global
δ13CO2 observation network (NOAA/ESRL), we are now ca-
pable of partitioning these fluxes at regional scales to assess
the spatially heterogeneous response of the biosphere to cli-
mate variations (Bousquet et al., 2000). However,δ13CO2
has largely been used in the inverse mode to solve for the
partitioning of fluxes between the land and ocean. Here we
outline a novel application for the use ofδ13CO2 in an en-
tirely different mode of model testing.

The network ofδ13CO2 observations is continuously ex-
panding and thus integrating much more detailed informa-
tion about carbon cycle processes. The number of sites
where regular flask measurements of atmosphericδ13CO2
are being made has increased from 9 sites in 1990 to over
90 sites in 2010, with 4 sites currently using non-dispersive
infrared analyzers to make continuous hourly in situ mea-
surements of CO2. There has also been an increase in sam-
pling from tall towers and aircraft, which allow us to bet-
ter resolve vertical gradients of CO2 and its isotopic com-
position in the atmosphere (Stephens et al., 2007). This
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increase in the frequency and density ofδ13CO2observations
has the potential to provide new insights into the global car-
bon cycle at finer spatial and temporal scales. Although we
only include sites from the NOAA/ESRL global flask net-
work (http://www.esrl.noaa.gov/gmd/ccgg/) in our analysis,
these flask samples could be combined with other regional
sampling networks or even eddy flux measurements where
δ13CO2 measurements are being made.

At the local scaleδ13CO2 observations are a useful di-
agnostic for inferring ecophysiological responses to envi-
ronmental changes. Using the Keeling plot approach, re-
searchers have been able to infer changes in the isotopic
signature of respired CO2 at the scale of individual forest-
stands. This approach has revealed insights into the stom-
atal response of forests to changes in their environment over
broad regional scales (Pataki et al., 2003). Using theδ13CO2
composition of recently respired CO2, researchers have been
able to infer stomatal response to atmospheric water vapor,
but that this isotopic signal may take weeks to be transmitted
as respired CO2 (Ekblad and Hogberg, 2001; Bowling et al.,
2002). This approach has also been used at regional scales to
determine thatεal is highly sensitive to total annual precipita-
tion amount and to a lesser extent mean annual temperature
(Pataki et al., 2003). Collectively, these observations from
the Keeling plot approach confirm that stomatal conductance
responds to water availability, as expected. However, these
observations are restricted to the regional scale (i.e. primarily
North America) and there are fundamental assumptions un-
derlying the Keeling plot approach (see 2.0 Isotopic Theory)
that make it challenging to apply to the global scale.

Recent advances in isotopic theory have also taken place
that allow us to gain insights into processes in the terrestrial
biosphere from atmospheric observations at the global scale.
An extension of the Keeling plot approach has been used by
Miller and Tans (2003) to account for changes in the back-
ground concentrations of atmospheric CO2 and δ13CO2 to
infer sourceδ13CO2 to the atmosphere. This approach makes
use of the increased sampling effort of atmosphericδ13CO2.
Based on this approach, it has been demonstrated that latitu-
dinal gradients inεal are not nearly as steep as previously pre-
dicted from models and thatεal of the North American bio-
sphere has shown a steady decline (Miller et al., 2003). Fur-
thermore, it has been demonstrated that seasonal climatolo-
gies of sourceδ13CO2 inferred from the atmosphere show
similar patterns to seasonal climatologiesδ13C in cellulose
of trees, suggesting that patterns ofεal can be inferred from
atmospheric observations (Ballantyne et al., 2010). Although
these insights derived from atmospheric observations pro-
vide independent empirical evidence of spatial and tempo-
ral changes in isotopic fractionation, they do not provide
detailed information about processes occurring on seasonal
scales at a global scale.

Here we propose a new application ofδ13CO2 by ana-
lyzing the wealth ofδ13CO2 observations using the analyt-
ical framework proposed by Miller and Tans (2003). Using

this approach, we are able to derive seasonal distributions of
sourceδ13CO2 to the atmosphere for a range of sites included
in the NOAA/ESRL flask network. Lastly, we hypothesize
that these seasonal distributions ofδ13CO2 are driven by
stomatal conductance and we use two empirical models of
stomatal conductance to test this hypothesis.

2 Inferring CO 2 source using isotopes

2.1 Isotopic theory

Our ability to infer the isotopic signature source CO2 to the
atmosphere is based on the conservation of mass, such that
the concentration of atmospheric CO2 (ca):

ca= cbg+cs, (1)

is equal to the sum of the background CO2 concentration
(cbg) and the CO2 contribution from recent sources, posi-
tive or negative (cs). Becauseδ13CO2 is also effectively con-
served in the atmosphere Eq. (1) can be expanded to include
the product of CO2 and its isotopic composition,

δaca= δbgcbg+δscs, (2)

whereδa represents theδ13CO2 composition of atmospheric
CO2, δbg represents theδ13CO2 composition of back-
ground CO2, andδs represents theδ13CO2 composition of
source CO2. These equations were first combined by Keel-
ing (1958), to derive the familiar Keeling plot:

δa= cbg(δbg−δs)/ca+δs, (3)

whereby the y-intercept corresponds with sourceδ13CO2.
However, the most common application of this relationship
is to infer the isotopic composition of respired CO2 in rela-
tively pristine forest environments, whereδbg is assumed to
be constant. This assumption is usually satisfied by sampling
at night in the absence of photosynthesis when the canopy air
space is stratified. However, with the greater abundance of
δ13CO2 observations we need not assume thatδbg is constant,
but rather we can rearrange Eqs. (1) and (2) to formulate the
following expression:

δaca−δbgcbg= δs(ca−cbg), (4)

based on this approach we can specify a slowly varying back-
ground concentration of CO2 (i.e. cbg) and its isotopic com-
position (i.e.δbg) to solve for the slope-termδs, which cor-
responds to the isotopic composition of source CO2 to the
atmosphere.δs can then be used as a diagnostic tool for
processes regulating the transfer of carbon between the bio-
sphere and the atmosphere. In theory, we can useδs to ap-
proximate the isotopic signature of the terrestrial biosphere
(δl), such that:
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εal =
δl −δa

1+δl
(5)

whereεal is primarily regulated by stomatal conductance on
shorter time-scales, according to (Farquhar et al., 1989):

εal = a+(b−a)cici/ca, (6)

wherea is a constant representing fractionation during diffu-
sion (−4.4 ‰) andb is a constant representing fractionation
during carboxylation by Rubisco (−27 ‰).

Although it has been shown that the isotopic signature
of respired CO2 is dependent upon the isotopic composi-
tion of the carbohydrate consumed during decarboxylation
on diurnal timescales (Tcherkez et al., 2003), on seasonal
timescales, at the forest stand level, the isotopic composi-
tion of respired CO2 is thought to co-vary with the isotopic
composition of recently assimilated carbon in the form of
sucrose (Scartazza et al., 2004). Moreover, respired CO2
is dominated by recently assimilated carbon at weekly to
monthly timescales (Ḧogberg et al., 2001). There is no ev-
idence of isotopic fractionation of recently assimilated car-
bon during autotrophic respiration at the cellular level (Lin
and Ehleringer, 1997). However, diel variations in the iso-
topic composition of plant respired CO2 are often observed
and cannot be explained solely by the isotopic composition
of the photosynthetic substrate respired. Thus other mecha-
nisms, such as temperature and light availability, are likely
factors leading to post-photosynthetic isotopic fractionation
of respired CO2 (Werner and Gessler, 2011). Our previous
analysis using a global model revealed that the coherent pat-
terns inδ13C in cellulose of the biosphere andδs inferred
from the atmosphere during the growing season were driven
primarily by stomatal conductance (Ballantyne et al., 2010).
Therefore our estimates ofδs should be a suitable proxy for
the isotopic signature of recently assimilated CO2 (i.e. δl).

2.2 Analytical approach

Our approach for inferring the isotopic signature of source
CO2 to the atmosphere is contingent upon selecting a suit-
able background reference curve for calculating residuals. It
has been demonstrated previously that the free-troposphere
(2000 to 5000 m a.s.l.) represents the best background ref-
erence as it introduces the fewest artifacts when inferring a
seasonal cycle inδs (Ballantyne et al., 2010). Ideally, we
would use free troposphere observations immediately above
each atmospheric sampling site as our background reference;
however, this is only possible for a limited number of sites.
Instead Niwot Ridge, CO (NWR, 3437 m a.s.l.) has been
identified as a suitable mid-continental background site for
observations in North America.

To demonstrate how this analysis is performed, let us con-
sider the isotopic variability of CO2 observed at Wendover,
UT (UTA). We see that there is considerably more variability
in atmospheric CO2 andδ13CO2 observations at UTA than
the more attenuated tropospheric reference curve at NWR

(Fig. 1a). Atmospheric CO2 levels at UTA are greater during
winter months and lesser during summer months than those
at NWR (Fig. 1a). Although the curves differ in seasonal am-
plitude, they tend to be in phase on seasonal timescales. At-
mosphericδ13CO2 values are a reflection of the CO2 curves,
with values more depleted at UTA than NWR during winter
months and values more enriched at UTA than NWR during
summer months (Fig. 1b). Essentially, surface observations
show an amplification of the seasonal cycle in both CO2 con-
centration and isotopic composition relative to the free tropo-
sphere.

If we take the residuals between CO2 in the boundary layer
and CO2 in the free troposphere and we plot them against
the residuals between the product of CO2 andδ13CO2 in the
boundary layer and the product in the free troposphere, we
can then determine the slope (Fig. 1c). This slope value cor-
responds toδs and it is evident thatδs varies according to
season. If we solve forδs for each month, using our mov-
ing window approach, a distinct seasonal pattern emerges
whereby winter months are characterized by more depleted
δs values and summer months are characterized by more en-
riched δs values (Fig. 1d). The magnitude of the seasonal
pattern (i.e. the signal) greatly exceeds the uncertainty in any
given month (i.e. the noise), suggesting a robust seasonal iso-
topic signal that be an effective tool for detecting the source
of fluxes from the biosphere to the atmosphere.

3 Methods

3.1 Site selection

For our analysis we only included terrestrial sites from the
NOAA/ESRL network of atmospheric sampling sites with at
least 5 yr of data. These terrestrial sites are generally located
away from large fossil fuel point-sources of emissions, but
some downwind sites may be affected by cumulative emis-
sions. These criteria yielded 18 sites, 5 of which were tall
tower sites, all located within the Northern Hemisphere (Ta-
ble 1). Tall tower sites were sampled daily and surface sites
were sampled weekly. On average these sites had 13 yr of
data, which is more than sufficient for determining seasonal
distributions ofδs. Although a rigorous footprint analysis of
all these sites has not been performed, the footprint of the
tall tower measurements tends to be much larger (∼104 km2)

than the footprint for surface measurements (<1 km2) (Hel-
liker et al., 2004). There are several potential time series
to specify as background isotopic concentrations for infer-
ring δs, but previous analysis has indicated that observations
at Niwot Ridge, CO, USA (NWR) are statistically indis-
tinguishable from independent observations made from the
free troposphere (2000 to 5000 m a.s.l.) making it an ex-
cellent background reference for the Northern Hemisphere
(Ballantyne et al., 2010).
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Figure 1.  Analytical approach to inferring δ13CO2 source to the atmosphere.  Panel A shows the seasonal cycle of 

atmospheric CO2 observations at Wendover, Utah (UTA) compared with free troposphere observations of CO2 at Niwot 
Ridge, Colorado (NWR).  Panel B shows atmospheric δ13CO2 observations at UTA compared to free troposphere 

observations of δ13CO2 at NWR.  Panel C shows the residual technique used for inferring changes in δ13CO2 source (δs) to 
the atmosphere, where δs is estimated as the slope.  Lastly, Panel D shows the resultant seasonal pattern in δs generated 

from monthly estimates and their associated uncertainties (1 σ).  

Fig. 1. Analytical approach to inferringδ13CO2 source to the atmosphere. Panel(A) shows the seasonal cycle of atmospheric CO2 obser-
vations at Wendover, Utah (UTA) compared with free troposphere observations of CO2 at Niwot Ridge, Colorado (NWR). Panel(B) shows
atmosphericδ13CO2 observations at UTA compared to free troposphere observations ofδ13CO2 at NWR. Panel(C) shows the residual
technique used for inferring changes inδ13CO2 source (δs) to the atmosphere, whereδs is estimated as the slope. Lastly, Panel(D) shows
the resultant seasonal pattern inδs generated from monthly estimates and their associated uncertainties (1σ).

3.2 Data analysis

For each site a seasonal distribution ofδs was calculated. A
moving three month window was used for calculatingδs val-
ues, such that Januaryδs values were calculated from obser-
vations made during December, January, and February (DJF)
and Februaryδs values were calculated from JFM observa-
tions, etc. This approach has been shown to yield the most
robust seasonal patterns with the smallest standard error esti-
mates for any given month (Ballantyne et al., 2010). Values
of δs were calculated by first subtracting the background ref-
erence curve from time series at each site and then using a
linear least-squares regression that incorporates error terms
in both the x and y axes (Miller and Tans, 2003) to calculate
the slope (δs in Eq. 4). Although such a regression analysis
with errors in both the x ,and y terms may lead to values ofδs
that are biased (Zobitz et al., 2006), this is at ranges of CO2
concentration below 10 ppm, which are much lower than
those in our 3 month moving window of atmospheric ob-
servations. All atmospheric observations were screened for
anomalous values that might contribute disproportionately to
our regression. All atmospheric CO2 andδ13CO2 observa-
tions that exceeded 2σ from the mean of our 3 month moving
window were excluded from our analysis. This screening of

data only removed between 0 and 2 % of observations across
all sites, but greatly reduced anomalous values that may have
caused an over-amplification of the seasonal cycle inδs.

3.3 Evaluation of models

To test models designed to simulate the isotopic fractionation
occurring during stomatal conductance, we used the simple
biosphere model SiB biosphere model (Sellers et al., 1996).
The model was driven by National Centers for Environmen-
tal Prediction Reanalysis Data (Kanamitsu et al., 2002) in-
terpolated to the model timestep for the years 1983–2006.
Maps of plant functional types were derived from remote
sensing products (DeFries and Townshend, 1994). Mean
monthly values of assimilation-weighted leaf surface tem-
peratures (T ) and relative humidity (RH) were calculated for
each grid cell (1◦ × 1◦) encompassing a network site using
the most recent version SiB3 (Baker et al., 2010). For our
regression analysis we only included months when net ex-
change between the atmosphere and biosphere was negative,
resulting in an annual cycle that was truncated to the grow-
ing season. This was done to isolate the isotopic signal at-
tributable to carbon that had recently been assimilated by the
biosphere (Miller et al., 2003). LeafT and RH were then
used to calculate saturation vapor pressure and ultimately
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Table 1. Seasonal correlations betweenδs and metrics of atmospheric water vapor for terrestrial sites from the NOAA/ESRL network
included in this analysis. For each site the corresponding station code from the NOAA/ESRL flask network and the biome according to SiB3
are reported in addition to the duration and growing season length of the dataset included in the analysis. Correlation coefficients (r) are
reported between seasonal distributions ofδs and vapor pressure deficit (VPD) and relatively humidity (RH), respectively (see Fig. 2). The
sign of the correlation coefficient indicates the sign of the relationship. Significant correlation coefficients (p < .05) appear in italics and
highly significant correlation coefficients (p < .01) appear in bold italics. Root mean squared error (RMSE) are reported for growth season
predictions ofδs from the Leuning and BWB stomatal conductance models compared withδs values inferred from the atmosphere. Mean
RMSE values across all sites are also reported.

Station Latitude Longitude Biomes Duration Growing Seasonal Correlation Seasonal RMSE
Code (yr) Season Amplitude Coefficients

(months) (Sourceδ13C ‰)

VPD RH Minimum Maximum Leuning BWB

BRW 71.32 −156.61 tundra (C3) 19 4 5.7 0.986a −0.953a Jan Sep 1.4 2.5
PAL 67.97 24.12 needleleaf (C3) 8 6 3.2 0.565b

−0.456a Jan Aug 1.0 2.3
BAL 55.35 17.22 mixed forest (C3) 17 10 2.7 0.763a −0.383b Jan Aug 0.8 2.5
OXK 50.03 11.8 generic crop (C3) 6 9 3.8 0.032a

−0.297b Jun Sep 1.5 2.6
HUN* 46.95 16.65 generic crop (C3) 16 10 6 0.743b 0.270b Mar Aug 1.5 3.7
LEF* 45.95 −90.27 mixed forest (C3) 15 8 3.8 0.751b −0.080b Apr Jul 1.0 2.0
AMT* 45.03 −68.68 mixed forest (C3) 6 8 4.9 0.925a −0.617b Jan Aug 0.9 2.9
UUM 44.45 111.1 generic crop (C3) 17 7 3.6 0.679b 0.393b Feb Jun 2.0 2.2
BSC 44.17 28.68 generic crop (C3) 15 12 3.3 0.812a 0.417b Apr Aug 1.1 3.3
KZD 44.08 76.87 generic crop (C3) 12 9 7.6 0.823a −0.703b Jan Jun 1.9 1.9
NWF 40.05 −105.58 generic crop (C3) 19 6 5.2 0.862a −0.736b Mar Aug 1.3 1.5
UTA 39.9 −113.72 low-latitude desert (C4) 16 9 6.6 0.848a −0.782a Feb Aug 2.9 1.8
SGP 36.8 −97.5 generic crop (C3) 7 12 5.2 0.902a −0.166b Feb Aug 1.6 4.3
TAP 36.73 126.13 generic crop (C3) 19 12 2 0.366b 0.529b May Aug 1.8 4.0
WLG 36.29 100.9 generic crop (C3) 19 7 5.6 0.584a −0.335b Jan Oct 2.6 2.9
ITN* 35.35 −77.38 mixed forest (C3) 7 10 3.7 0.858b −0.725b Jan Aug 1.0 2.3
WKT* 31.32 −97.33 generic crop (C3) 8 12 7.1 0.961a −0.813b Dec Jul 2.8 2.1
WIS 31.13 34.88 generic crop (C3) 14 12 3.5 0.846b −0.456a Jan Sep 1.2 1.3
ASK 23.18 5.42 low-latitude desert (C4) 14 12 7.2 0.636b −0.450a Feb Jul 3.0 5.2

Global 0.404a 0.149a 1.6 2.7

* Indicates tall tower sites.
a Indicates regressions where the atmospheric vapor terms (i.e. VPD or RH) have been transformed by the natural logarithm and correlated withδs.
b Indicates linear regressions between the atmospheric vapor pressure term (i.e. VPD or RH) andδs.

vapor pressure deficit (VPD). The assimilation-weighted val-
ues of RH and VPD were then used as the primary variables
driving 2 commonly used stomatal conductance models- the
Ball-Woodrow-Berry (BWB) Model (Ball, 1988):

gc = m
(A×RH)

ca
+b, (7)

and the Leuning Model (Leuning, 1995):

gc = go+mL

A

(ca−0×)
(
1+

VPD
Do

)
.

(8)

The effects of these models on isotopic fractionation by the
biosphere were evaluated based on the framework outlined
by Katul et al. (2000), whereby the equation for assimilation
(Farquhar and Sharkey, 1982):

A = gc(ca−ci), (9)

was substituted into the assimilation term (A) for both mod-
els which were then solved for ratio of intercellular to atmo-
spheric CO2 (ci/ca). All model parameters and the values
used for the various biomes considered in this study are re-
ported in Table 2.

4 Results

4.1 Globally coherent patterns

The distribution ofδs inferred from a network of atmo-
spheric sampling sites (Fig. 2a) reveals globally coherent
seasonal patterns. The array of Northern Hemisphere sites
shows a consistent pattern of enrichedδs values during sum-
mer months and more depleted values during winter months
(Fig. 2b). Most of the sites included in our analysis showed
maximumδs values between July and August (see Supple-
ment Fig. S1); however, lower latitude sites appear to reach
maximumδs values (July–August) prior to higher latitude
sites (August–September). The seasonal amplitudes inδs
values vary between 2 and 7.6 ‰, with arid low latitude
desert sites, such as KZD, Kazakhstan and ASK, Algeria,
experiencing much greater amplitudes in seasonal variations
of δs, than mid-latitude mixed forest sites, such as BAL near
the Baltic Sea and TAP in Korea (Table 1).

Values of δs inferred at most of our sites were more
highly correlated with assimilation-weighted values of VPD
than RH calculated at the leaf’s surface (Table 1). Correla-
tion coefficients for all sites ranged from 0.03 to 0.99, but

www.biogeosciences.net/8/3093/2011/ Biogeosciences, 8, 3093–3106, 2011
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Table 2. Model Parameters for the BWB and Leuning stomatal conductance models according to vegetation photosynthetic pathway.

Vegetation Type BWBa Leuningb Farquhar

m Do mL 0*c a (‰) b (‰)

C3 Vegetation 9.0 1.0 6.4 3.69+0.188(T −25)+0.0036(T −25)2 4.4 27.3
C4 Vegetation 4.0 3.0 4.0 3.69+0.188(T −25)+0.0036(T −25)2 4.4 –

a The intercept term in the original BWB model “b” (Eq. 7) can be neglected when solving for isotopic discrimination (Katul et al., 2000).
b Similarly the intercept term in the Leuning model “go” can be neglected when solving for isotopic discrimination (Katul et al., 2000)
c 0* represents the CO2 compensation point and varies as function of leaf surface temperature (T ◦C), according to Brooks and Farquhar (1985).
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Figure 2.  Global coherence of δ13CO2 source (δs) anomalies to the atmosphere.  The 
network of sites included in our analysis (A), where the size of points corresponds with 
length of the dataset (see Table1) and the color of the point corresponds with latitude 
and also the seasonal distribution of points in panel B.  The seasonal distribution of δs 

for all sites included in our analysis (B).   

Fig. 2. Global coherence ofδ13CO2 source (δs) anomalies to the at-
mosphere. The network of sites included in our analysis(A), where
the size of points corresponds with length of the dataset (see Table1)
and the color of the point corresponds with latitude and also the sea-
sonal distribution of points in panel(B). The seasonal distribution
of δs for all sites included in our analysis(B).

mid-latitude and low-latitude sites with greater seasonal am-
plitude in δs tended to have higher correlations with both
VPD and RH. Of the 19 sites included in our analysis 16
showed significant correlations with vapor pressure deficit
and only 6 showed significant correlations with relative hu-
midity.

Although there was generally a strong relationship be-
tween seasonalδs values and metrics of atmospheric water
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Figure 3.  Correlation analysis δ13CO2 source (δs) and metrics of atmospheric water 
vapor.  The color of points corresponds with the color code for individual sites denoted 

in Fig. 1.  Global correlations for growing season vapor pressure deficit and δs (A).  
Global correlations for growing season relative humidity and  δs (B).  Comparisons 

between observed δs and predicted δs values for the Leuning Model driven by vapor 
pressure deficit (C) and for the BWB Model driven by relative humidity (D).  See table 1 

for global and local statistics and see Table 2 for model parameters.  

Fig. 3. Correlation analysisδ13CO2 source (δs) and metrics of
atmospheric water vapor. The color of points corresponds with the
color code for individual sites denoted in Fig. 1. Global correlations
for growing season vapor pressure deficit andδs (A). Global correla-
tions for growing season relative humidity andδs (B). Comparisons
between observedδs and predictedδs values for the Leuning Model
driven by vapor pressure deficit(C) and for the BWB Model driven
by relative humidity(D). See Table 1 for global and local statistics
and see Table 2 for model parameters.

vapor across sites, some sites showed a stronger response to
VPD and some sites showed a stronger response to RH. Of
the 16 sites that showed a significant response to VPD, 10
were more highly correlated with the natural log of VPD and
of the 6 sites that showed a significant response to RH, only
2 were more highly correlated with the natural log of RH.
These results indicate a non-linear response of stomatal con-
ductance to atmospheric water vapor, especially at the sites
that were more responsive to VPD.

Although some sites do not correlate well with metrics of
atmospheric water vapor, if we look at the global dataset of
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seasonalδs values for all sites there is a much stronger cor-
relation with VPD than RH (Fig. 3). We found the opti-
mal global fit to be betweenδs and the natural log of VPD
(r = −0.404, p-value= 2.2× 10−6, DF= 152), indicating
an incrementally smaller amount of isotopic fractionation at
higher VPD values. There was only a slight increase in this
correlation when individual non-significant sites (see PAL,
OXK, and TAP in Table 1) were removed from the analy-
sis (r = −0.408, p-value= 2.2× 10−6, DF= 148). Regional
differences between sites also emerged from this analysis,
such that high-latitude sites tended to have a much greater re-
sponse inδs over a smaller range of VPD values, whereasδs
was not nearly as sensitive to changes in VPD values at lower
latitude desert sites (Fig. 3a). Although the global relation-
ship betweenδs and RH was also significant, the relation-
ship was not nearly as strong (r = 0.149, p-value= 0.023,
DF= 152) and the optimal relationship was with a natural
log transformation of RH. These global patterns suggest that
if the isotopic signature of source CO2 to the atmosphere is
indeed due to stomatal conductance, then the physical mech-
anism responsible for these patterns of isotopic discrimina-
tion is probably VPD on a global scale.

4.2 Evaluation of models

Values ofδs inferred from atmospheric measurements can
also be used to test biosphere models created to simulate the
exchange of mass at the biosphere-atmosphere interface. Be-
cause stomatal conductance is the primary mechanism caus-
ing isotopic fractionation during photosynthesis (Farquhar
et al., 1989) and there is no net fractionation associated
with autotrophic respiration (Lin and Ehleringer, 1997), we
can then use values ofδs to gain insight about factors con-
trolling stomatal conductance. In most cases, the Leuning
model driven by changes in VPD performed better at pre-
dicting δs than the Ball-Berry model driven by changes in
RH (Table 1). At almost all sites, root mean squared error
(RMSE) estimates were less for the Leuning model than the
BWB model. The exceptions were UTA, and WKT. Glob-
ally, RMSE values were significantly lower for the Leuning
model, 1.6 ‰, than for the BWB model, 2.7 ‰ (two tailed t-
test, p-value= 0.00106, DF= 27), suggesting that VPD may
be more important in governing stomatal conductance than
RH at global scales.

Although the Leuning model tends to outperform the
BWB model, there are instances where the Leuning model
deviates from observedδs values (Fig. 3). For instance, the
Leuning model tends to be fairly accurate in its predictions
of δs towards the mean of the distribution in observedδs val-
ues; however, it appears to be biased towards more enriched
values at lower and higher observedδs values (Fig. 3c). In
contrast, the BWB model tends to over-predict depletedδs
values from low-latitude sites and under-predict enrichedδs
values from high-latitude sites (Fig. 3d).

5 Discussion

5.1 Analytical approach

The approach that we have presented here, relying solely on
atmospheric observations is effective for extracting seasonal
information regarding biosphere-atmosphere interactions on
a global scale. By specifying background concentrations of
CO2 andδ13CO2 we are able to generate seasonally coherent
patterns ofδs for most Northern Hemisphere sites included
in this analysis. Here we have refined the original approach
presented by Miller and Tans (2003) by resolving seasonal
patterns on a global scale. Previous analyses of atmospheric
observations and model simulations have identified the free
troposphere as the most effective background reference curve
for inferring δs values at regional scales and that the high
elevation mid-continental site at NWR is an effective back-
ground reference, at least for North America (Ballantyne et
al., 2010). Here we have extended this approach to a wider
array of Northern Hemisphere sites and our analysis reveals
coherent seasonal cycles ofδs among these sites.

Although our more extensive analysis has revealed coher-
ent seasonal patterns, there are subtle differences in these
seasonal patterns that may be artifacts introduced during our
analysis. For instance there appears to be a characteristic
“stair-step” pattern inδs at higher northern latitudes. This
is evidenced by the dark blue curves in Fig. 2b represent-
ing seasonal patterns inδs for Barrow, Alaska, USA (BRW);
Baltic Sea, Poland (BAL), and Pallas-Sammaltunturi, Fin-
land (PAL). Unlike lower-latitude sites that show a pro-
nounced seasonal cycle of more enrichedδs values dur-
ing summer months and more depleted values during win-
ter months, these high-latitude sites show depletedδs values
during winter months, more enriched values during summer
months, but thenδs values remain high into the fall months
(see Supplement Fig. S1). This “stair-step” pattern may also
be contributing to the reduced correlation coefficients be-
tweenδs and VPD and RH, as well as the less optimal fit
of stomatal conductance models at higher latitudes (Table 1).
Indeed, we would expect for lower correlations at higher lat-
itudes as the length of the growing season considered in our
analysis becomes greatly reduced at higher-latitudes, effec-
tively reducing our sample size. It is difficult to ascertain
whether this is a circumarctic phenomenom based on our
analysis from only three sites, but it does deserve further
investigation. The anomalous seasonal pattern observed at
these sites may also be due to the mid-latitude background
site (i.e. NWR) selected for our analysis. There may be lags
introduced into the analysis as a result of the transport time
of mid-latitude background air by Ferrel cells advecting air
poleward. However, with increased aircraft sampling, back-
ground reference curves from higher latitudes are becoming
increasingly available and more highly resolved.

Some low-latitude sites also showed deviations from
the seasonal patterns characteristic of mid-latitude sites.
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Generally, lower-latitude sites had larger seasonal ampli-
tudes inδs than higher-latitude sites. However, there is a
clear anomaly to the seasonal pattern in Assekrem, Alge-
ria (ASK) where the primary peak inδs values is observed in
July, but a secondary peak inδs is observed in November (see
Supplement Fig. S1). Although this anamolous pattern may
be due to our specification of the very distant NWR back-
ground reference curve for this site, it may also be due to this
sites proximity to the equator. In our original analysis we
included two equatorial sites (Bukit Kototaband, Indonesia:
BKT and Mt. Kenya: MKN) and two southern hemisphere
sites (Cape Grim, Tasmania: CGO and Gobadeb, Namibia:
NMB). However, seasonal patterns were not as clear and er-
rors were much greater at these sites, leading to their ulti-
mate removal from our analysis. Although the equivocal re-
sults in the Southern Hemisphere are most likely due to our
Northern Hemisphere background reference curve, this ap-
proach may yield ambiguous results at equatorial sites due
to the inter-hemispheric transport of air masses. According
to SiB3, ASK is classified as a “low-latitude C4 dessert” of
Northern Africa. Recently revised global maps of C4 veg-
etation, however, show most C4 vegetation to be restricted
to the savannahs of sub-Saharan Africa (Still et al., 2003).
Furthermore, there is very little vegetation in this mountain-
ous interior region of Algeria, based on satellite-derived es-
timates of vegetation cover (Foley et al., 2003), suggesting
that the seasonal cycle ofδs at ASK may be an admixture of
isotopic signals from Mediterranean biomes to the north and
sub-Saharan biomes to the south. Therefore it is possible that
tropical sites, especially those in Africa, may be subjected to
both C3 and C4 vegetation signals that differ in their seasonal
timing andδs signatures.

The choice of background reference curves is not trivial.
In fact, our previous analysis (Ballantyne et al., 2010) com-
paring model simulations with observations indicated that
using a reference curve from the “free-troposphere” above
3000 m a.s.l. was the optimal reference curve for inferring
isotopic source signature of fluxes from the biosphere to the
atmosphere. Unfortunately, such high elevation “free tro-
posphere” reference sites are not available for comparison
with all the surface sites on all continents. The alternative
would be to select the appropriate marine boundary layer ref-
erence curve for each site based on latitude. Although this
would address latitudinal differences in the isotopic signa-
ture of background air-masses (i.e.δbg),it would introduce
other artifacts, such as possible seasonal patterns in isotopic
signatures from air-sea gas exchange. We acknowledge that
there are assumptions in using NWR as the reference curve
for all sites in the Northern Hemisphere; however, using re-
gional reference curves from surface sites would also require
assumptions. Our previous analysis indicated that the choice
of background reference curves did not affect the seasonal
amplitude ofδs so much as the timing of peakδs values (Bal-
lantyne et al., 2010). Therefore our choice of NWR as the
background reference curve for all Northen Hemisphere sites

may have introduced temporal biases into our analysis; how-
ever, these potential temporal biases do not appear substan-
tial enough to have impacted the significance of our results
(Table 1). Moreover, these temporal biases inδs would not
differentially affect our seasonal correlations with leaf level
estimates of VPD and RH. Thus as more free troposphere
reference curves become available for other regions of the
world; fewer assumptions will be necessary in specifying
background reference curves and ultimately calculatingδs at
regional scales.

5.2 Globally coherent patterns

Our analysis of a network of sites in the Northern Hemi-
sphere has revealed seasonally coherent patterns in the iso-
topic composition of source CO2 to the atmosphere. These
broad global patterns are consistent with previous analyses
done on individual sites. For example, Bakwin et al. (1998),
employing the Keeling plot approach at ITN and HUN iden-
tified a slight enrichment ofδs during summer months com-
pared to winter months. Bakwin et al. attributed the changes
in δs at these two sites to isotopic sources that were domi-
nated by fossil fuel sources during winter months and dom-
inated by terrestrial uptake during the summer months. Our
results are consistent at ITN and HUN; however, we are able
to take advantage of additional data to resolve a clear sea-
sonal cycle inδs at these two sites. Although there are nu-
merous confounding factors that may influenceδs on sea-
sonal time scales, the globally coherent seasonal cycle inδs
reported here indicates a common underlying physical mech-
anism rather than disparate local factors influencingδs.

At local to regional scales fossil fuel emissions may have
a large impact onδs values inferred from atmospheric ob-
servations, especially near large urban areas. In fact, two
of the sites that show no correlation betweenδs and VPD
or RH are located in heavily industrial regions of South Ko-
rea (TAP) and Eastern Germany (OXK). The strong isotopic
source from fossil fuels has been clearly demonstrated in
urban environments that experience strong inversions dur-
ing winter months. For example in Salt Lake City, midday
δ13CO2 values may become depleted during winter months
by as much as 5 ‰, which has been attributed primarily to
increased emissions from natural gas used for home heating
(Pataki et al., 2006). Although fossil fuel emissions should
be taken into account when evaluatingδs values at individual
sites, fossil fuel consumption and fossil fuel type show broad
spatial and temporal variability. For instance, the Eastern US
relies primarily on coal and the Western US relies primar-
ily on natural gas for power generation (Pétron et al., 2008)
and emissions from these sources have very different isotopic
signatures. Furthermore, emissions tend to be higher during
winter months in northern US states due to home heating,
whereas emissions tend to be higher during summer months
in southern US states due to home cooling (Gregg et al.,
2010). Despite this regional variability in the timing and
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type of fossil fuel consumption our network of sites shows
a clear and consistent seasonal cycle inδs, especially across
the continental US. Furthermore emissions from respiration
(∼120 GtC yr−1) greatly exceed emissions from fossil fuels
(∼8 GtC yr−1); thus a very strong seasonal cycle in fossil
fuel emissions or an extremely variable isotopic signature of
fossil fuel emissions would have to be invoked to account for
the 6 to 8 ‰ range in the observed globally coherentδs val-
ues. Therefore fossil fuels may help to explain the variability
in seasonalδs between sites, but fossil fuel emissions cannot
explain the global patterns ofδs revealed by our analysis.

Changes in climate may also affect the seasonal cycle inδs.
In fact, a covariance between isotopic discrimination by the
terrestrial biosphere and precipitation amount as mediated
by El Niño events has been previously identified (Randerson
et al., 2001). Although climate variability probably affects
stomatal conductance and thus isotopic discrimination on
inter-annual scales, this contributes to the error in our es-
timates of the seasonal climatology ofδs. The fact that a
strong seasonal signal inδs emerges despite the error associ-
ated with inter-annual climate variability suggests that tem-
poral variability inδs is actually dominated by the seasonal
cycle. However, our seasonal climatologies ofδs could be
used to estimate anomalies in any given year due to climate
variability. For instance, if prolonged drought results in di-
minished stomatal conductance this could be diagnosed as
an enriched departure from our seasonal climatology ofδs
due to decreased isotopic discrimination. Long term variabil-
ity in isotopic discrimination may also arise from changes
in atmospheric CO2 concentration and/or climate change.
Model simulations of the global carbon isotopic budget in-
dicate a decrease in isotopic discrimination by the terrestrial
biosphere of approximately 0.4 ‰, primarily due to an in-
crease in water stress (Scholze et al., 2003). Such long term
trends in isotopic discrimination should probably be consid-
ered, especially at some of the sites included in our analysis
with more data (∼20 yr). However, this potential change in
isotopic discrimination of 0.4 ‰ yr−1, is dwarfed by the am-
plitude of the seasonal signal for sites included in our analy-
sis (between 4 and 8 ‰).

Changes in land use may also impact values ofδs over
time. It has been suggested that the intensification of agri-
culture and the proliferation of C4 crops has offset a frac-
tion of CO2 emissions (Burney et al., 2010). This has been
demonstrated at the regional scale in the Amazon where the
widespread conversion of tropical C3 forest to C4 pasture
should lead to a decrease in isotopic discrimination and such
a reduction in regional isotopic discrimination could lead to
the spurious conclustion that terrestrial uptake in the tropics
has decreased (Townsend et al., 2002). Unfortunately, there
are very few tropical sites with continuous observations of
δ13CO2 making it impossible to extend this analytical ap-
proach into the tropics. However, there has been widespread
land-use change at temperate latitudes as well, especially the
proliferation of C4 corn to meet biofuel demands. Recent

analyses ofδ13CO2 and CO2 observations made from a tall
tower in the Midwestern US have identified a strong isotopic
signal from increased corn cultivation (Griffis et al., 2010).
Griffis et al. (2010) suggest that increased corn cultivation
for biofuels lead to an apparent decrease in isotopic discrim-
ination from∼15 ‰ to ∼12 ‰. Although most of this iso-
topic effect due to corn production was observed during the
summer months the isotopic effect and its impact onδ13CO2
seem to extend into the fall as well. These independent ob-
servations from Griffis et al. (2010) are a mere 300 km. from
our LEF site and may actually help to explain some of the
seasonal anomalies observed at LEF. Although LEF exhibits
the same seasonal pattern inδs characteristic of most our
northern hemisphere sites, there is a secondary peak inδs that
occurs in the fall and may be due to decreased isotopic dis-
crimination as a result of increased corn cultivation (Fig. 2).
Furthermore, the leaf temperature estimates from SiB3 used
in our model validation exercise consider the dominant plant
functional type within this region to be “mixed C3 forest”.
Although this is consistent for the most part with land use
maps from the region (Griffis et al., 2010), the proportion and
composition of crops in this region may change from year to
year to meet market demands.

It is also possible that air-sea gas exchange may contribute
to the observed seasonal cycle inδs at some of our Northern
Hemisphere terrestrial sites. Although isotopic fractionation
associated with air-sea gas exchange (εao = −2.0 ‰) is an
order of magnitude less than isotopic fractionation associ-
ated with terrestrial biosphere-atmosphere exchange (εao∼

−16.0 ‰), certain terrestrial sites, especially those near the
ocean, may be impacted by marine derived air masses. This
marine effect would also be the strongest at mid-latitudes
that are subjected to strong onshore breezes as the continents
heat faster than the ocean during summer months. Such a
marine effect would lead to more enriched values (i.e. less
isotopic discrimination) during summer months than winter
months, which is indeed what is observed in the seasonal cy-
cle ofδs. A marine effect may also help explain the complete
lack of correlation betweenδs and atmospheric water vapor
at some sites, such as TAP, and also the reduced amplitude
in seasonalδs at some sites, such as PAL and TAP (Table 1).
However, the fact that all terrestrial sites show coherent sea-
sonal cycles, even sites located in continental interiors (see
Supplement Fig. S1), suggests a common mechanism reg-
ulating biosphere-atmosphere interactions and imparting a
strong isotopic signal.

Although factors such as fossil fuels, climate variability,
land use, and air-sea gas exchange may have an impact on the
seasonal cycles inδs inferred from the atmosphere, the fact
that these seasonal cycles inδs are coherent across most sites
in the northern hemisphere and that they are reproducible
from year to year strongly suggests that they are driven by
carbon exchange between the biosphere and atmosphere.
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5.3 Evaluation of models

Our results suggest that most of the seasonal variability inδs
can be explained by changes in atmospheric water vapor over
the growth season. Of the 19 sites investigated, 16 showed
significant correlations with VPD and 6 showed significant
correlations with RH. Globally,δs was significantly corre-
lated with both VPD and RH, but was more highly correlated
with VPD. Conceptually, we would expect increases RH
to lead to increases in stomatal conductance (i.e. increased
ci /ca), resulting in greater isotopic discrimination against at-
mosphericδ13CO2. In contrast, we would expect increases
in VPD to lead to a decrease in stomatal conductance (i.e.
decreasedci /ca), resulting in reduced isotopic discrimination
against atmosphericδ13CO2. Thus we would predict a nega-
tive relationship betweenδs and RH, in contrast to a positive
relationship betweenδs and VPD. Where the sign of these
predicted relationships is consistent with two stomatal con-
ductance models evaluated here (Eqs. 7 and 8).

At every terrestrial site in the Northern Hemisphere that
we evaluated VPD was positively correlated withδs, even
at sites where the correlation is not significant (Table 1).
Furthermore, the distribution of these correlation coeffi-
cients does not deviate significantly from normal (W = 0.92,
p-value= 0.097), indicating that stomatal conductance re-
sponds to VPD according to our conceptual model (Fig. 4a).
In contrast, the correlation coefficients between RH andδs
are both positive and negative (Table 1). Moreover, the distri-
bution of correlation coefficients between RH andδs deviate
significantly from normal (W = 0.82, p-value= 0.0015), in-
dicating that at some sites stomatal conductance is respond-
ing to RH as expected based on our conceptual model (i.e.
negative correlations), but at other sites stomatal conductance
contradicts our conceptual expectations (i.e. positive corre-
lations). Lastly, many of the optimal correlation coefficients
were based on the natural log of VPD or RH, which indicates
a non-linear response ofδs and thus stomatal conductance.
In the Leuning model stomatal conductance responds non-
linearly to VPD, whereas in the BWB model the response of
stomatal conductance to RH is strictly linear. The more sig-
nificant correlations observed betweenδs and VPD thanδs
and RH are consistent with our model evaluations indicating
that the Leuning model is more accurate at predictingδs than
the BWB model. RMSE values were significantly lower for
the Leuning model than the BWB model (p-value= 0.001,
DF= 27). Thus, if the global seasonal cycles observed inδs
are in fact due to stomatal response to the environment, than
the Leuning Model appears to be more effective at captur-
ing this stomatal response on seasonal timescales. Although
both models showed a significant relationship withδs glob-
ally (Table 1), both models failed to predict the extremely
depleted values ofδs observed at some sites (Fig. 3). This
mis-match between observed and predictedδs was slightly
rectified by removing highly depleted values ofδs during
winter months when net assimilation goes below zero, but

22 

 

 
Figure 4.  Density functions of Pearson correlation coefficients.  Correlation coefficients 
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Fig. 4. Density functions of Pearson correlation coefficients. Cor-
relation coefficients are reported for relationships betweenδs and
vapor pressure deficit(A.) as well as relative humidity(B.). Prob-
ability density functions (black lines) are superimposed on his-
tograms (boxes) where positive relationships are indicated by pos-
itive correlation coefficients (grey bars) and negative relationships
are indicated by negative correlation coefficients (white bars). See
Table 1 for actual correlation coefficients.

this problem seems to persist during the shoulder seasons of
fall and winter whenδs values still remain fairly depleted
(see Supplement Fig. S1). However, there was not enough
parameter space allowed by either model to account for these
highly depleted values during winter months. In fact, in order
to obtain reasonable predictions forδs we had to set the slope
term in both models (i.e.m andmL) to 25.0, which greatly
exceeds any values from the literature (Sellers et al., 1996;
Leuning, 1995). This mis-match between observations and
predictions could be due to extreme physiological conditions
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that are not well simulated by the models, or else a depletion
bias in inferred values ofδs at some of our sites. The site at
which this mis-match was the most pronounced was at ASK
in Algeria. Although seasonal values of VPD range from 0.5
to 3.0 KPa and values of RH range from 35 to 50 %, this site
does not seem to experience climatic conditions that are any
more extreme than other sites evaluated such as UTA or WIS.
It is also possible that the extremely depleted values ofδs ob-
served during the winter months at ASK are an artifact of
this site being very distant from the tropospheric background
site specified (i.e. NWR) when calculatingδs. Therefore, is
more likely that the extremely depleted values ofδs are due to
possible biases introduced during this analysis and not nec-
essarily a deficiency of the models.

There is considerable debate within the ecophysiology lit-
erature as to whether stomates respond primarily to VPD or
RH. Although there is empirical evidence at the forest stand
scale that stomatal conductance in some instances responds
more to VPD (Bowling et al., 2002) and in other instances re-
sponds more to RH (Wang et al., 2009), a consensus has yet
to emerge as to what is the primary metric of atmospheric
vapor to which plants are responding. Part of this lack of
consensus may be due to the fact that VPD and RH are not
independent variables and thus strong empirical relationships
may emerge between stomatal conductance and both of these
variables. Recent efforts have turned towards combining the
empirical stomatal conductance models evaluated here with
optimization models to gain greater insight into stomatal sen-
sitivity to both CO2 and H2O (Medlyn et al., 2011; Katul et
al., 2010). In contrast, biosphere models seem to be con-
verging on VPD as the physical mechanism driving stomatal
conductance (Medvigy et al., 2009; Cramer et al., 2001) and
coupled global carbon-climate models seem to be converging
on RH as the physical mechanism driving stomatal conduc-
tance (Friedlingstein et al., 2006), indicating a disconnect in
how stomatal conductance is formulated at different spatial
scales. Here we have analyzed and presented a global dataset
of atmospheric observations that may provide new insight as
to how plants respond to the soil-atmosphere water contin-
uum.

Both of these stomatal conductance models have been de-
rived from empirical observations at the laboratory scale and
have subsequently been validated using field observations.
However, they were not explicitly designed for global ap-
plications and yet they are now being used to evaluate how
the Earth’s biosphere will respond to future changes in atmo-
spheric CO2 and concomitant climate change (Friedlingstein
et al., 2006). Our results suggest that the Leuning model of
stomatal conductance may be more suitable for simulating
stomatal conductance over a wider variety of biomes under a
wider variety of climatic conditions. However, this is not so
surprising as the Leuning model includes more parameters
and thus has more degrees of freedom for simulating actual
observations. In contrast, the BWB model is elegant in its
simplicity and actually performs reasonably well for some

biomes and climatic conditions. Because of its simplicity it
is not surprising that it has become the default stomatal con-
ductance parameterization for many of the next generation
Earth System Models. Furthermore, in order to implement
both of these conductance models the continuous surface of
the Earth’s terrestrial biosphere, must be transformed into in-
dividual grid cells, and the wide array of biome’s must be
discretized into one of several plant functional types. Al-
though the terms driving these respective models (VPD and
RH) are used almost interchangeably in the ecophysiologi-
cal literature, they are very different metrics of atmospheric
water vapor and thus may respond very differently to future
warming scenarios.

The degree to which surface RH and VPD change in re-
sponse to atmospheric warming remains uncertain. Based on
the Clausius-Clapeyron relationship a 1◦C increase in tem-
perature should increase the atmosphere’s capacity to hold
water by∼7 %. This relationship seems to hold true at the
global scale, where a significant increase in specific humid-
ity (kg H2O vapor/kg dry air) has been attributed to anthro-
pogenic warming over the latter half of the 20th century (Wil-
lett et al., 2007). Although it is clear that as the atmosphere
warms it contains more water vapor, the response of RH is
much less clear. At the global scale there does not appear
to be significant trends in RH (Willett et al., 2007) and in
fact spatially and temporally invariant RH seems to be an
emergent property of global climate models (Held and So-
den, 2000). If in fact, specific humidity is increasing (i.e. the
amount of water vapor in the atmosphere) and RH (i.e. the
ratio of the amount of water vapor in the atmosphere to the
amount of water that the atmosphere could potentially hold)
then VPD must be increasing at the global scale. However,
more recent data suggests that surface RH may in fact be de-
clining over land, possibly due to limited ocean moisture as
the Earth’s ocean surface warms slower than the land surface
(O’Gorman and Muller, 2010). However, there is consider-
able regional variability in changes in RH with very limited
data from tropical regions (Simmons et al., 2010). Therefore,
determining whether stomatal conductance responds toVPD
that is increasing globally, or to RH, that may be decreasing
regionally, is critical to predicting future carbon assimilation
by the biosphere and thus realistic future climate scenarios.

6 Conclusions

Isotopic measurements in atmospheric CO2 have greatly en-
hanced our understanding of the global carbon cycle. How-
ever, the increased sampling frequency ofδ13CO2 (both in
space and time) combined with new analytical techniques,
now make it possible to address research questions that were
previously intractable using isotopes. Here we have pre-
sented a novel application ofδ13CO2, by which we are able
to infer broad seasonal patterns of source CO2 to the atmo-
sphere. We have used this approach to yield a seasonal cycle
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of δs that is coherent across an array of N. Hemisphere atmo-
spheric sampling sites. The resulting pattern can be thought
of as a seasonal “Keeling Plot” for the Earth. The broad
seasonal coherence observed across all sites suggests a sin-
gle underlying physical mechanism driving this variability.
To explain this variability we test two stomatal conductance
models, which both suggest that changes in atmospheric wa-
ter vapor drive changes inδs on seasonal timescales. The ana-
lytical approach here can be improved by specifying more re-
gional background reference curves essential for calculating
δs values. This analytical approach could also be extended
to the tropics and the Southern Hemisphere as atmospheric
observations ofδ13CO2 become increasingly available.

Supplementary material related to this
article is available online at:
http://www.biogeosciences.net/8/3093/2011/
bg-8-3093-2011-supplement.pdf.
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